blob: 0764b0920db6782095465aaaecf377b724bd2403 [file] [log] [blame]
//===- Shape.cpp - MLIR Shape Operations ----------------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
#include "mlir/Dialect/Shape/IR/Shape.h"
#include "mlir/Dialect/Arithmetic/IR/Arithmetic.h"
#include "mlir/Dialect/CommonFolders.h"
#include "mlir/Dialect/StandardOps/IR/Ops.h"
#include "mlir/Dialect/Tensor/IR/Tensor.h"
#include "mlir/Dialect/Traits.h"
#include "mlir/IR/Builders.h"
#include "mlir/IR/BuiltinTypes.h"
#include "mlir/IR/DialectImplementation.h"
#include "mlir/IR/Matchers.h"
#include "mlir/IR/PatternMatch.h"
#include "mlir/IR/TypeUtilities.h"
#include "mlir/Transforms/InliningUtils.h"
#include "llvm/ADT/SmallString.h"
#include "llvm/ADT/TypeSwitch.h"
#include "llvm/Support/raw_ostream.h"
using namespace mlir;
using namespace mlir::shape;
#include "mlir/Dialect/Shape/IR/ShapeOpsDialect.cpp.inc"
namespace {
#include "ShapeCanonicalization.inc"
}
RankedTensorType shape::getExtentTensorType(MLIRContext *ctx, int64_t rank) {
return RankedTensorType::get({rank}, IndexType::get(ctx));
}
bool shape::isExtentTensorType(Type type) {
auto ranked = type.dyn_cast<RankedTensorType>();
return ranked && ranked.getRank() == 1 && ranked.getElementType().isIndex();
}
LogicalResult shape::getShapeVec(Value input,
SmallVectorImpl<int64_t> &shapeValues) {
if (auto inputOp = input.getDefiningOp<ShapeOfOp>()) {
auto type = inputOp.getArg().getType().dyn_cast<ShapedType>();
if (!type.hasRank())
return failure();
shapeValues = llvm::to_vector<6>(type.getShape());
return success();
} else if (auto inputOp = input.getDefiningOp<ConstShapeOp>()) {
shapeValues = llvm::to_vector<6>(inputOp.getShape().getValues<int64_t>());
return success();
} else if (auto inputOp = input.getDefiningOp<arith::ConstantOp>()) {
shapeValues = llvm::to_vector<6>(
inputOp.getValue().cast<DenseIntElementsAttr>().getValues<int64_t>());
return success();
} else {
return failure();
}
}
static bool isErrorPropagationPossible(TypeRange operandTypes) {
return llvm::any_of(operandTypes, [](Type ty) {
return ty.isa<SizeType, ShapeType, ValueShapeType>();
});
}
static LogicalResult verifySizeOrIndexOp(Operation *op) {
assert(op != nullptr && op->getNumResults() == 1);
Type resultTy = op->getResultTypes().front();
if (isErrorPropagationPossible(op->getOperandTypes())) {
if (!resultTy.isa<SizeType>())
return op->emitOpError()
<< "if at least one of the operands can hold error values then "
"the result must be of type `size` to propagate them";
}
return success();
}
static LogicalResult verifyShapeOrExtentTensorOp(Operation *op) {
assert(op != nullptr && op->getNumResults() == 1);
Type resultTy = op->getResultTypes().front();
if (isErrorPropagationPossible(op->getOperandTypes())) {
if (!resultTy.isa<ShapeType>())
return op->emitOpError()
<< "if at least one of the operands can hold error values then "
"the result must be of type `shape` to propagate them";
}
return success();
}
template <typename... Ty>
static bool eachHasOnlyOneOfTypes(TypeRange typeRange) {
return typeRange.size() == 1 && typeRange.front().isa<Ty...>();
}
template <typename... Ty, typename... ranges>
static bool eachHasOnlyOneOfTypes(TypeRange l, ranges... rs) {
return eachHasOnlyOneOfTypes<Ty...>(l) && eachHasOnlyOneOfTypes<Ty...>(rs...);
}
//===----------------------------------------------------------------------===//
// InlinerInterface
//===----------------------------------------------------------------------===//
namespace {
/// This class defines the interface for inlining shape dialect ops.
struct ShapeInlinerInterface : public DialectInlinerInterface {
using DialectInlinerInterface::DialectInlinerInterface;
// Returns true if the given region 'src' can be inlined into the region
// 'dest' that is attached to an operation registered to the current dialect.
bool isLegalToInline(Region *dest, Region *src, bool wouldBeCloned,
BlockAndValueMapping &) const final {
return true;
}
// Returns true if the given operation 'op', that is registered to this
// dialect, can be inlined into the region 'dest' that is attached to an
// operation registered to the current dialect.
bool isLegalToInline(Operation *op, Region *dest, bool wouldBeCloned,
BlockAndValueMapping &) const final {
return true;
}
};
} // namespace
void ShapeDialect::initialize() {
addOperations<
#define GET_OP_LIST
#include "mlir/Dialect/Shape/IR/ShapeOps.cpp.inc"
>();
addTypes<ShapeType, SizeType, ValueShapeType, WitnessType>();
addInterfaces<ShapeInlinerInterface>();
// Allow unknown operations during prototyping and testing. As the dialect is
// still evolving it makes it simple to start with an unregistered ops and
// try different variants before actually defining the op.
allowUnknownOperations();
}
Operation *ShapeDialect::materializeConstant(OpBuilder &builder,
Attribute value, Type type,
Location loc) {
if (type.isa<ShapeType>() || isExtentTensorType(type))
return builder.create<ConstShapeOp>(loc, type,
value.cast<DenseIntElementsAttr>());
if (type.isa<SizeType>())
return builder.create<ConstSizeOp>(loc, type, value.cast<IntegerAttr>());
if (type.isa<WitnessType>())
return builder.create<ConstWitnessOp>(loc, type, value.cast<BoolAttr>());
if (arith::ConstantOp::isBuildableWith(value, type))
return builder.create<arith::ConstantOp>(loc, type, value);
return nullptr;
}
/// Parse a type registered to this dialect.
Type ShapeDialect::parseType(DialectAsmParser &parser) const {
StringRef keyword;
if (parser.parseKeyword(&keyword))
return Type();
if (keyword == "shape")
return ShapeType::get(getContext());
if (keyword == "size")
return SizeType::get(getContext());
if (keyword == "value_shape")
return ValueShapeType::get(getContext());
if (keyword == "witness")
return WitnessType::get(getContext());
parser.emitError(parser.getNameLoc(), "unknown shape type: ") << keyword;
return Type();
}
/// Print a type registered to this dialect.
void ShapeDialect::printType(Type type, DialectAsmPrinter &os) const {
TypeSwitch<Type>(type)
.Case<ShapeType>([&](Type) { os << "shape"; })
.Case<SizeType>([&](Type) { os << "size"; })
.Case<ValueShapeType>([&](Type) { os << "value_shape"; })
.Case<WitnessType>([&](Type) { os << "witness"; })
.Default([](Type) { llvm_unreachable("unexpected 'shape' type kind"); });
}
LogicalResult ShapeDialect::verifyOperationAttribute(Operation *op,
NamedAttribute attribute) {
// Verify shape.lib attribute.
if (attribute.getName() == "shape.lib") {
if (!op->hasTrait<OpTrait::SymbolTable>())
return op->emitError(
"shape.lib attribute may only be on op implementing SymbolTable");
if (auto symbolRef = attribute.getValue().dyn_cast<SymbolRefAttr>()) {
auto *symbol = SymbolTable::lookupSymbolIn(op, symbolRef);
if (!symbol)
return op->emitError("shape function library ")
<< symbolRef << " not found";
return isa<shape::FunctionLibraryOp>(symbol)
? success()
: op->emitError()
<< symbolRef << " required to be shape function library";
}
if (auto arr = attribute.getValue().dyn_cast<ArrayAttr>()) {
// Verify all entries are function libraries and mappings in libraries
// refer to unique ops.
DenseSet<StringAttr> key;
for (auto it : arr) {
if (!it.isa<SymbolRefAttr>())
return op->emitError(
"only SymbolRefAttr allowed in shape.lib attribute array");
auto shapeFnLib = dyn_cast<shape::FunctionLibraryOp>(
SymbolTable::lookupSymbolIn(op, it.cast<SymbolRefAttr>()));
if (!shapeFnLib)
return op->emitError()
<< it << " does not refer to FunctionLibraryOp";
for (auto mapping : shapeFnLib.getMapping()) {
if (!key.insert(mapping.getName()).second) {
return op->emitError("only one op to shape mapping allowed, found "
"multiple for `")
<< mapping.getName() << "`";
}
}
}
return success();
}
return op->emitError("only SymbolRefAttr or array of SymbolRefAttrs "
"allowed as shape.lib attribute");
}
return success();
}
//===----------------------------------------------------------------------===//
// AnyOp
//===----------------------------------------------------------------------===//
// TODO: Canonicalization should be implemented for shapes that can be
// determined through mixtures of the known dimensions of the inputs.
OpFoldResult AnyOp::fold(ArrayRef<Attribute> operands) {
// Only the last operand is checked because AnyOp is commutative.
if (operands.back())
return operands.back();
return nullptr;
}
//===----------------------------------------------------------------------===//
// AssumingOp
//===----------------------------------------------------------------------===//
static ParseResult parseAssumingOp(OpAsmParser &parser,
OperationState &result) {
result.regions.reserve(1);
Region *doRegion = result.addRegion();
auto &builder = parser.getBuilder();
OpAsmParser::OperandType cond;
if (parser.parseOperand(cond) ||
parser.resolveOperand(cond, builder.getType<WitnessType>(),
result.operands))
return failure();
// Parse optional results type list.
if (parser.parseOptionalArrowTypeList(result.types))
return failure();
// Parse the region and add a terminator if elided.
if (parser.parseRegion(*doRegion, /*arguments=*/{}, /*argTypes=*/{}))
return failure();
AssumingOp::ensureTerminator(*doRegion, parser.getBuilder(), result.location);
// Parse the optional attribute list.
if (parser.parseOptionalAttrDict(result.attributes))
return failure();
return success();
}
static void print(OpAsmPrinter &p, AssumingOp op) {
bool yieldsResults = !op.getResults().empty();
p << " " << op.getWitness();
if (yieldsResults) {
p << " -> (" << op.getResultTypes() << ")";
}
p.printRegion(op.getDoRegion(),
/*printEntryBlockArgs=*/false,
/*printBlockTerminators=*/yieldsResults);
p.printOptionalAttrDict(op->getAttrs());
}
namespace {
// Removes AssumingOp with a passing witness and inlines the region.
struct AssumingWithTrue : public OpRewritePattern<AssumingOp> {
using OpRewritePattern<AssumingOp>::OpRewritePattern;
LogicalResult matchAndRewrite(AssumingOp op,
PatternRewriter &rewriter) const override {
auto witness = op.getWitness().getDefiningOp<ConstWitnessOp>();
if (!witness || !witness.getPassingAttr())
return failure();
AssumingOp::inlineRegionIntoParent(op, rewriter);
return success();
}
};
struct AssumingOpRemoveUnusedResults : public OpRewritePattern<AssumingOp> {
using OpRewritePattern<AssumingOp>::OpRewritePattern;
LogicalResult matchAndRewrite(AssumingOp op,
PatternRewriter &rewriter) const override {
Block *body = op.getBody();
auto yieldOp = llvm::cast<AssumingYieldOp>(body->getTerminator());
// Find used values.
SmallVector<Value, 4> newYieldOperands;
Value opResult, yieldOperand;
for (auto it : llvm::zip(op.getResults(), yieldOp.getOperands())) {
std::tie(opResult, yieldOperand) = it;
if (!opResult.getUses().empty()) {
newYieldOperands.push_back(yieldOperand);
}
}
// Rewrite only if redundant results exist.
if (newYieldOperands.size() == yieldOp->getNumOperands())
return failure();
// Replace yield op in the old assuming op's body and move the entire region
// to the new assuming op.
rewriter.setInsertionPointToEnd(body);
auto newYieldOp =
rewriter.replaceOpWithNewOp<AssumingYieldOp>(yieldOp, newYieldOperands);
rewriter.setInsertionPoint(op);
auto newOp = rewriter.create<AssumingOp>(
op.getLoc(), newYieldOp->getOperandTypes(), op.getWitness());
newOp.getDoRegion().takeBody(op.getDoRegion());
// Use the new results to replace the previously used ones.
SmallVector<Value, 4> replacementValues;
auto src = newOp.getResults().begin();
for (auto it : op.getResults()) {
if (it.getUses().empty())
replacementValues.push_back(nullptr);
else
replacementValues.push_back(*src++);
}
rewriter.replaceOp(op, replacementValues);
return success();
}
};
} // namespace
void AssumingOp::getCanonicalizationPatterns(RewritePatternSet &patterns,
MLIRContext *context) {
patterns.add<AssumingOpRemoveUnusedResults, AssumingWithTrue>(context);
}
// See RegionBranchOpInterface in Interfaces/ControlFlowInterfaces.td
void AssumingOp::getSuccessorRegions(
Optional<unsigned> index, ArrayRef<Attribute> operands,
SmallVectorImpl<RegionSuccessor> &regions) {
// AssumingOp has unconditional control flow into the region and back to the
// parent, so return the correct RegionSuccessor purely based on the index
// being None or 0.
if (index.hasValue()) {
regions.push_back(RegionSuccessor(getResults()));
return;
}
regions.push_back(RegionSuccessor(&getDoRegion()));
}
void AssumingOp::inlineRegionIntoParent(AssumingOp &op,
PatternRewriter &rewriter) {
auto *blockBeforeAssuming = rewriter.getInsertionBlock();
auto *assumingBlock = op.getBody();
auto initPosition = rewriter.getInsertionPoint();
auto *blockAfterAssuming =
rewriter.splitBlock(blockBeforeAssuming, initPosition);
// Remove the AssumingOp and AssumingYieldOp.
auto &yieldOp = assumingBlock->back();
rewriter.inlineRegionBefore(op.getDoRegion(), blockAfterAssuming);
rewriter.replaceOp(op, yieldOp.getOperands());
rewriter.eraseOp(&yieldOp);
// Merge blocks together as there was no branching behavior from the
// AssumingOp.
rewriter.mergeBlocks(assumingBlock, blockBeforeAssuming);
rewriter.mergeBlocks(blockAfterAssuming, blockBeforeAssuming);
}
void AssumingOp::build(
OpBuilder &builder, OperationState &result, Value witness,
function_ref<SmallVector<Value, 2>(OpBuilder &, Location)> bodyBuilder) {
result.addOperands(witness);
Region *bodyRegion = result.addRegion();
bodyRegion->push_back(new Block);
Block &bodyBlock = bodyRegion->front();
// Build body.
OpBuilder::InsertionGuard guard(builder);
builder.setInsertionPointToStart(&bodyBlock);
SmallVector<Value, 2> yieldValues = bodyBuilder(builder, result.location);
builder.create<AssumingYieldOp>(result.location, yieldValues);
SmallVector<Type, 2> assumingTypes;
for (Value v : yieldValues)
assumingTypes.push_back(v.getType());
result.addTypes(assumingTypes);
}
//===----------------------------------------------------------------------===//
// AddOp
//===----------------------------------------------------------------------===//
LogicalResult mlir::shape::AddOp::inferReturnTypes(
MLIRContext *context, Optional<Location> location, ValueRange operands,
DictionaryAttr attributes, RegionRange regions,
SmallVectorImpl<Type> &inferredReturnTypes) {
if (operands[0].getType().isa<SizeType>() ||
operands[1].getType().isa<SizeType>())
inferredReturnTypes.assign({SizeType::get(context)});
else
inferredReturnTypes.assign({IndexType::get(context)});
return success();
}
bool mlir::shape::AddOp::isCompatibleReturnTypes(TypeRange l, TypeRange r) {
// SizeType is compatible with IndexType.
return eachHasOnlyOneOfTypes<SizeType, IndexType>(l, r);
}
OpFoldResult mlir::shape::AddOp::fold(ArrayRef<Attribute> operands) {
// add(x, 0) -> x
if (matchPattern(getRhs(), m_Zero()))
return getLhs();
return constFoldBinaryOp<IntegerAttr>(operands,
[](APInt a, APInt b) { return a + b; });
}
//===----------------------------------------------------------------------===//
// AssumingAllOp
//===----------------------------------------------------------------------===//
namespace {
struct AssumingAllToCstrEqCanonicalization
: public OpRewritePattern<AssumingAllOp> {
using OpRewritePattern<AssumingAllOp>::OpRewritePattern;
LogicalResult matchAndRewrite(AssumingAllOp op,
PatternRewriter &rewriter) const override {
SmallVector<Value, 8> shapes;
for (Value w : op.getInputs()) {
auto cstrEqOp = w.getDefiningOp<CstrEqOp>();
if (!cstrEqOp)
return failure();
bool disjointShapes = llvm::none_of(cstrEqOp.getShapes(), [&](Value s) {
return llvm::is_contained(shapes, s);
});
if (!shapes.empty() && !cstrEqOp.getShapes().empty() && disjointShapes)
return failure();
shapes.append(cstrEqOp.getShapes().begin(), cstrEqOp.getShapes().end());
}
rewriter.replaceOpWithNewOp<CstrEqOp>(op, shapes);
return success();
}
};
template <typename OpTy>
struct RemoveDuplicateOperandsPattern : public OpRewritePattern<OpTy> {
using OpRewritePattern<OpTy>::OpRewritePattern;
LogicalResult matchAndRewrite(OpTy op,
PatternRewriter &rewriter) const override {
// Find unique operands.
SmallVector<Value, 2> unique;
for (Value v : op.getOperands()) {
if (!llvm::is_contained(unique, v))
unique.push_back(v);
}
// Reduce op to equivalent with unique operands.
if (unique.size() < op.getNumOperands()) {
rewriter.replaceOpWithNewOp<OpTy>(op, op->getResultTypes(), unique,
op->getAttrs());
return success();
}
return failure();
}
};
} // namespace
void AssumingAllOp::getCanonicalizationPatterns(RewritePatternSet &patterns,
MLIRContext *context) {
patterns.add<AssumingAllOneOp, AssumingAllToCstrEqCanonicalization,
RemoveDuplicateOperandsPattern<AssumingAllOp>>(context);
}
OpFoldResult AssumingAllOp::fold(ArrayRef<Attribute> operands) {
// Iterate in reverse to first handle all constant operands. They are
// guaranteed to be the tail of the inputs because this is commutative.
for (int idx = operands.size() - 1; idx >= 0; idx--) {
Attribute a = operands[idx];
// Cannot fold if any inputs are not constant;
if (!a)
return nullptr;
// We do not need to keep statically known values after handling them in
// this method.
getOperation()->eraseOperand(idx);
// Always false if any input is statically known false
if (!a.cast<BoolAttr>().getValue())
return a;
}
// If this is reached, all inputs were statically known passing.
return BoolAttr::get(getContext(), true);
}
static LogicalResult verify(AssumingAllOp op) {
// Ensure that AssumingAllOp contains at least one operand
if (op.getNumOperands() == 0)
return op.emitOpError("no operands specified");
return success();
}
void AssumingAllOp::build(OpBuilder &b, OperationState &state,
ValueRange inputs) {
build(b, state, b.getType<WitnessType>(), inputs);
}
//===----------------------------------------------------------------------===//
// BroadcastOp
//===----------------------------------------------------------------------===//
OpFoldResult BroadcastOp::fold(ArrayRef<Attribute> operands) {
if (getShapes().size() == 1) {
// Otherwise, we need a cast which would be a canonicalization, not folding.
if (getShapes().front().getType() != getType())
return nullptr;
return getShapes().front();
}
// TODO: Support folding with more than 2 input shapes
if (getShapes().size() > 2)
return nullptr;
if (!operands[0] || !operands[1])
return nullptr;
auto lhsShape = llvm::to_vector<6>(
operands[0].cast<DenseIntElementsAttr>().getValues<int64_t>());
auto rhsShape = llvm::to_vector<6>(
operands[1].cast<DenseIntElementsAttr>().getValues<int64_t>());
SmallVector<int64_t, 6> resultShape;
// If the shapes are not compatible, we can't fold it.
// TODO: Fold to an "error".
if (!OpTrait::util::getBroadcastedShape(lhsShape, rhsShape, resultShape))
return nullptr;
Builder builder(getContext());
return builder.getIndexTensorAttr(resultShape);
}
static LogicalResult verify(BroadcastOp op) {
return verifyShapeOrExtentTensorOp(op);
}
namespace {
template <typename OpTy>
struct RemoveEmptyShapeOperandsPattern : public OpRewritePattern<OpTy> {
using OpRewritePattern<OpTy>::OpRewritePattern;
LogicalResult matchAndRewrite(OpTy op,
PatternRewriter &rewriter) const override {
auto isPotentiallyNonEmptyShape = [](Value shape) {
if (auto extentTensorTy = shape.getType().dyn_cast<RankedTensorType>()) {
if (extentTensorTy.getDimSize(0) == 0)
return false;
}
if (auto constShape = shape.getDefiningOp<ConstShapeOp>()) {
if (constShape.getShape().empty())
return false;
}
return true;
};
auto newOperands = llvm::to_vector<8>(
llvm::make_filter_range(op->getOperands(), isPotentiallyNonEmptyShape));
// Reduce op to equivalent without empty shape operands.
if (newOperands.size() < op.getNumOperands()) {
rewriter.replaceOpWithNewOp<OpTy>(op, op->getResultTypes(), newOperands,
op->getAttrs());
return success();
}
return failure();
}
};
struct BroadcastForwardSingleOperandPattern
: public OpRewritePattern<BroadcastOp> {
using OpRewritePattern<BroadcastOp>::OpRewritePattern;
LogicalResult matchAndRewrite(BroadcastOp op,
PatternRewriter &rewriter) const override {
if (op.getNumOperands() != 1)
return failure();
Value replacement = op.getShapes().front();
// Insert cast if needed.
if (replacement.getType() != op.getType()) {
auto loc = op.getLoc();
if (op.getType().isa<ShapeType>()) {
replacement = rewriter.create<FromExtentTensorOp>(loc, replacement);
} else {
assert(!op.getType().isa<ShapeType>() &&
!replacement.getType().isa<ShapeType>() &&
"expect extent tensor cast");
replacement =
rewriter.create<tensor::CastOp>(loc, op.getType(), replacement);
}
}
rewriter.replaceOp(op, replacement);
return success();
}
};
struct BroadcastFoldConstantOperandsPattern
: public OpRewritePattern<BroadcastOp> {
using OpRewritePattern<BroadcastOp>::OpRewritePattern;
LogicalResult matchAndRewrite(BroadcastOp op,
PatternRewriter &rewriter) const override {
SmallVector<int64_t, 8> foldedConstantShape;
SmallVector<Value, 8> newShapeOperands;
for (Value shape : op.getShapes()) {
if (auto constShape = shape.getDefiningOp<ConstShapeOp>()) {
SmallVector<int64_t, 8> newFoldedConstantShape;
if (OpTrait::util::getBroadcastedShape(
foldedConstantShape,
llvm::to_vector<8>(constShape.getShape().getValues<int64_t>()),
newFoldedConstantShape)) {
foldedConstantShape = newFoldedConstantShape;
continue;
}
}
newShapeOperands.push_back(shape);
}
// Need at least two constant operands to fold anything.
if (op.getNumOperands() - newShapeOperands.size() < 2)
return failure();
auto foldedConstantOperandsTy = RankedTensorType::get(
{static_cast<int64_t>(foldedConstantShape.size())},
rewriter.getIndexType());
newShapeOperands.push_back(rewriter.create<ConstShapeOp>(
op.getLoc(), foldedConstantOperandsTy,
rewriter.getIndexTensorAttr(foldedConstantShape)));
rewriter.replaceOpWithNewOp<BroadcastOp>(op, op.getType(),
newShapeOperands);
return success();
}
};
template <typename OpTy>
struct CanonicalizeCastExtentTensorOperandsPattern
: public OpRewritePattern<OpTy> {
using OpRewritePattern<OpTy>::OpRewritePattern;
LogicalResult matchAndRewrite(OpTy op,
PatternRewriter &rewriter) const override {
// Canonicalize operands.
bool anyChange = false;
auto canonicalizeOperand = [&](Value operand) {
if (auto castOp = operand.getDefiningOp<tensor::CastOp>()) {
// Only eliminate the cast if it holds no shape information.
bool isInformationLoosingCast =
castOp.getType().cast<RankedTensorType>().isDynamicDim(0);
if (isInformationLoosingCast) {
anyChange = true;
return castOp.source();
}
}
return operand;
};
auto newOperands = llvm::to_vector<8>(
llvm::map_range(op.getOperands(), canonicalizeOperand));
// Rewrite op if any change required.
if (!anyChange)
return failure();
rewriter.replaceOpWithNewOp<OpTy>(op, op->getResultTypes(), newOperands);
return success();
}
};
struct BroadcastConcretizeResultTypePattern
: public OpRewritePattern<BroadcastOp> {
using OpRewritePattern<BroadcastOp>::OpRewritePattern;
LogicalResult matchAndRewrite(BroadcastOp op,
PatternRewriter &rewriter) const override {
// Only concretize dynamic extent tensor result types.
auto resultTy = op.getType().dyn_cast<RankedTensorType>();
if (!resultTy || !resultTy.isDynamicDim(0))
return failure();
// Infer resulting shape rank if possible.
int64_t maxRank = 0;
for (Value shape : op.getShapes()) {
if (auto extentTensorTy = shape.getType().dyn_cast<RankedTensorType>()) {
// Cannot infer resulting shape rank if any operand is dynamically
// ranked.
if (extentTensorTy.isDynamicDim(0))
return failure();
maxRank = std::max(maxRank, extentTensorTy.getDimSize(0));
}
}
auto newOp = rewriter.create<BroadcastOp>(
op.getLoc(), getExtentTensorType(getContext(), maxRank),
op.getShapes());
rewriter.replaceOpWithNewOp<tensor::CastOp>(op, op.getType(), newOp);
return success();
}
};
} // namespace
void BroadcastOp::getCanonicalizationPatterns(RewritePatternSet &patterns,
MLIRContext *context) {
patterns.add<BroadcastConcretizeResultTypePattern,
BroadcastFoldConstantOperandsPattern,
BroadcastForwardSingleOperandPattern,
CanonicalizeCastExtentTensorOperandsPattern<BroadcastOp>,
RemoveDuplicateOperandsPattern<BroadcastOp>,
RemoveEmptyShapeOperandsPattern<BroadcastOp>>(context);
}
//===----------------------------------------------------------------------===//
// ConcatOp
//===----------------------------------------------------------------------===//
OpFoldResult ConcatOp::fold(ArrayRef<Attribute> operands) {
if (!operands[0] || !operands[1])
return nullptr;
auto lhsShape = llvm::to_vector<6>(
operands[0].cast<DenseIntElementsAttr>().getValues<int64_t>());
auto rhsShape = llvm::to_vector<6>(
operands[1].cast<DenseIntElementsAttr>().getValues<int64_t>());
SmallVector<int64_t, 6> resultShape;
resultShape.append(lhsShape.begin(), lhsShape.end());
resultShape.append(rhsShape.begin(), rhsShape.end());
Builder builder(getContext());
return builder.getIndexTensorAttr(resultShape);
}
//===----------------------------------------------------------------------===//
// ConstShapeOp
//===----------------------------------------------------------------------===//
static void print(OpAsmPrinter &p, ConstShapeOp &op) {
p << " ";
p.printOptionalAttrDict(op->getAttrs(), /*elidedAttrs=*/{"shape"});
p << "[";
interleaveComma(op.getShape().getValues<int64_t>(), p,
[&](int64_t i) { p << i; });
p << "] : ";
p.printType(op.getType());
}
static ParseResult parseConstShapeOp(OpAsmParser &parser,
OperationState &result) {
if (parser.parseOptionalAttrDict(result.attributes))
return failure();
// We piggy-back on ArrayAttr parsing, though we don't internally store the
// shape as an ArrayAttr.
// TODO: Implement custom parser and maybe make syntax a bit more concise.
Attribute extentsRaw;
NamedAttrList dummy;
if (parser.parseAttribute(extentsRaw, "dummy", dummy))
return failure();
auto extentsArray = extentsRaw.dyn_cast<ArrayAttr>();
if (!extentsArray)
return failure();
SmallVector<int64_t, 6> ints;
for (Attribute extent : extentsArray) {
IntegerAttr attr = extent.dyn_cast<IntegerAttr>();
if (!attr)
return failure();
ints.push_back(attr.getInt());
}
Builder &builder = parser.getBuilder();
result.addAttribute("shape", builder.getIndexTensorAttr(ints));
Type resultTy;
if (parser.parseColonType(resultTy))
return failure();
result.types.push_back(resultTy);
return success();
}
OpFoldResult ConstShapeOp::fold(ArrayRef<Attribute>) { return getShapeAttr(); }
void ConstShapeOp::getCanonicalizationPatterns(RewritePatternSet &patterns,
MLIRContext *context) {
patterns.add<TensorCastConstShape>(context);
}
LogicalResult mlir::shape::ConstShapeOp::inferReturnTypes(
MLIRContext *context, Optional<Location> location, ValueRange operands,
DictionaryAttr attributes, RegionRange regions,
SmallVectorImpl<Type> &inferredReturnTypes) {
Builder b(context);
auto shape = attributes.getAs<DenseIntElementsAttr>("shape");
if (!shape)
return emitOptionalError(location, "missing shape attribute");
inferredReturnTypes.assign({RankedTensorType::get(
{static_cast<int64_t>(shape.size())}, b.getIndexType())});
return success();
}
bool mlir::shape::ConstShapeOp::isCompatibleReturnTypes(TypeRange l,
TypeRange r) {
if (l.size() != 1 || r.size() != 1)
return false;
Type lhs = l.front();
Type rhs = r.front();
if (lhs.isa<ShapeType>() || rhs.isa<ShapeType>())
// Shape type is compatible with all other valid return types.
return true;
return lhs == rhs;
}
//===----------------------------------------------------------------------===//
// CstrBroadcastableOp
//===----------------------------------------------------------------------===//
void CstrBroadcastableOp::getCanonicalizationPatterns(
RewritePatternSet &patterns, MLIRContext *context) {
// Canonicalization patterns have overlap with the considerations during
// folding in case additional shape information is inferred at some point that
// does not result in folding.
patterns.add<CanonicalizeCastExtentTensorOperandsPattern<CstrBroadcastableOp>,
CstrBroadcastableEqOps,
RemoveDuplicateOperandsPattern<CstrBroadcastableOp>,
RemoveEmptyShapeOperandsPattern<CstrBroadcastableOp>>(context);
}
// Return true if there is exactly one attribute not representing a scalar
// broadcast.
static bool hasAtMostSingleNonScalar(ArrayRef<Attribute> attributes) {
bool nonScalarSeen = false;
for (Attribute a : attributes) {
if (!a || a.cast<DenseIntElementsAttr>().getNumElements() != 0) {
if (nonScalarSeen)
return false;
nonScalarSeen = true;
}
}
return true;
}
OpFoldResult CstrBroadcastableOp::fold(ArrayRef<Attribute> operands) {
// No broadcasting is needed if all operands but one are scalar.
if (hasAtMostSingleNonScalar(operands))
return BoolAttr::get(getContext(), true);
if ([&] {
SmallVector<SmallVector<int64_t, 6>, 6> extents;
for (const auto &operand : operands) {
if (!operand)
return false;
extents.push_back(llvm::to_vector<6>(
operand.cast<DenseIntElementsAttr>().getValues<int64_t>()));
}
return OpTrait::util::staticallyKnownBroadcastable(extents);
}())
return BoolAttr::get(getContext(), true);
// Lastly, see if folding can be completed based on what constraints are known
// on the input shapes.
if ([&] {
SmallVector<SmallVector<int64_t, 6>, 6> extents;
for (auto shapeValue : getShapes()) {
extents.emplace_back();
if (failed(getShapeVec(shapeValue, extents.back())))
return false;
}
return OpTrait::util::staticallyKnownBroadcastable(extents);
}())
return BoolAttr::get(getContext(), true);
// Because a failing witness result here represents an eventual assertion
// failure, we do not replace it with a constant witness.
return nullptr;
}
static LogicalResult verify(CstrBroadcastableOp op) {
// Ensure that AssumingAllOp contains at least one operand
if (op.getNumOperands() < 2)
return op.emitOpError("required at least 2 input shapes");
return success();
}
//===----------------------------------------------------------------------===//
// CstrEqOp
//===----------------------------------------------------------------------===//
void CstrEqOp::getCanonicalizationPatterns(RewritePatternSet &patterns,
MLIRContext *context) {
// If inputs are equal, return passing witness
patterns.add<CstrEqEqOps>(context);
}
OpFoldResult CstrEqOp::fold(ArrayRef<Attribute> operands) {
if (llvm::all_of(operands,
[&](Attribute a) { return a && a == operands[0]; }))
return BoolAttr::get(getContext(), true);
// Because a failing witness result here represents an eventual assertion
// failure, we do not try to replace it with a constant witness. Similarly, we
// cannot if there are any non-const inputs.
return nullptr;
}
//===----------------------------------------------------------------------===//
// ConstSizeOp
//===----------------------------------------------------------------------===//
void ConstSizeOp::build(OpBuilder &builder, OperationState &result,
int64_t value) {
build(builder, result, builder.getIndexAttr(value));
}
OpFoldResult ConstSizeOp::fold(ArrayRef<Attribute>) { return getValueAttr(); }
void ConstSizeOp::getAsmResultNames(
llvm::function_ref<void(Value, StringRef)> setNameFn) {
SmallString<4> buffer;
llvm::raw_svector_ostream os(buffer);
os << "c" << getValue();
setNameFn(getResult(), os.str());
}
//===----------------------------------------------------------------------===//
// ConstWitnessOp
//===----------------------------------------------------------------------===//
OpFoldResult ConstWitnessOp::fold(ArrayRef<Attribute>) {
return getPassingAttr();
}
//===----------------------------------------------------------------------===//
// CstrRequireOp
//===----------------------------------------------------------------------===//
OpFoldResult CstrRequireOp::fold(ArrayRef<Attribute> operands) {
return operands[0];
}
//===----------------------------------------------------------------------===//
// DivOp
//===----------------------------------------------------------------------===//
OpFoldResult DivOp::fold(ArrayRef<Attribute> operands) {
auto lhs = operands[0].dyn_cast_or_null<IntegerAttr>();
if (!lhs)
return nullptr;
auto rhs = operands[1].dyn_cast_or_null<IntegerAttr>();
if (!rhs)
return nullptr;
// Division in APInt does not follow floor(lhs, rhs) when the result is
// negative. Rather, APInt rounds toward zero.
APInt quotient, remainder;
APInt::sdivrem(lhs.getValue(), rhs.getValue(), quotient, remainder);
if (quotient.isNegative() && !remainder.isNullValue()) {
quotient -= 1;
}
Type indexTy = IndexType::get(getContext());
return IntegerAttr::get(indexTy, quotient);
}
LogicalResult mlir::shape::DivOp::inferReturnTypes(
MLIRContext *context, Optional<Location> location, ValueRange operands,
DictionaryAttr attributes, RegionRange regions,
SmallVectorImpl<Type> &inferredReturnTypes) {
if (operands[0].getType().isa<SizeType>() ||
operands[1].getType().isa<SizeType>())
inferredReturnTypes.assign({SizeType::get(context)});
else
inferredReturnTypes.assign({IndexType::get(context)});
return success();
}
bool mlir::shape::DivOp::isCompatibleReturnTypes(TypeRange l, TypeRange r) {
// SizeType is compatible with IndexType.
return eachHasOnlyOneOfTypes<SizeType, IndexType>(l, r);
}
//===----------------------------------------------------------------------===//
// ShapeEqOp
//===----------------------------------------------------------------------===//
OpFoldResult ShapeEqOp::fold(ArrayRef<Attribute> operands) {
bool allSame = true;
if (!operands.empty() && !operands[0])
return {};
for (Attribute operand : operands.drop_front(1)) {
if (!operand)
return {};
allSame = allSame && operand == operands[0];
}
return BoolAttr::get(getContext(), allSame);
}
//===----------------------------------------------------------------------===//
// IndexToSizeOp
//===----------------------------------------------------------------------===//
OpFoldResult IndexToSizeOp::fold(ArrayRef<Attribute> operands) {
// Constant values of both types, `shape.size` and `index`, are represented as
// `IntegerAttr`s which makes constant folding simple.
if (Attribute arg = operands[0])
return arg;
return {};
}
void IndexToSizeOp::getCanonicalizationPatterns(RewritePatternSet &patterns,
MLIRContext *context) {
patterns.add<SizeToIndexToSizeCanonicalization>(context);
}
//===----------------------------------------------------------------------===//
// FromExtentsOp
//===----------------------------------------------------------------------===//
OpFoldResult FromExtentsOp::fold(ArrayRef<Attribute> operands) {
if (llvm::any_of(operands, [](Attribute a) { return !a; }))
return nullptr;
SmallVector<int64_t, 6> extents;
for (auto attr : operands)
extents.push_back(attr.cast<IntegerAttr>().getInt());
Builder builder(getContext());
return builder.getIndexTensorAttr(extents);
}
//===----------------------------------------------------------------------===//
// FunctionLibraryOp
//===----------------------------------------------------------------------===//
void FunctionLibraryOp::build(OpBuilder &builder, OperationState &result,
StringRef name) {
result.attributes.push_back(builder.getNamedAttr(
::mlir::SymbolTable::getSymbolAttrName(), builder.getStringAttr(name)));
}
FuncOp FunctionLibraryOp::getShapeFunction(Operation *op) {
auto attr = getMapping()
.get(op->getName().getIdentifier())
.dyn_cast_or_null<FlatSymbolRefAttr>();
if (!attr)
return nullptr;
return lookupSymbol<FuncOp>(attr);
}
ParseResult parseFunctionLibraryOp(OpAsmParser &parser,
OperationState &result) {
// Parse the op name.
StringAttr nameAttr;
if (parser.parseSymbolName(nameAttr, ::mlir::SymbolTable::getSymbolAttrName(),
result.attributes))
return failure();
if (parser.parseOptionalAttrDictWithKeyword(result.attributes))
return failure();
auto *bodyRegion = result.addRegion();
if (parser.parseRegion(*bodyRegion))
return failure();
if (parser.parseKeyword("mapping"))
return failure();
DictionaryAttr mappingAttr;
if (parser.parseAttribute(mappingAttr,
parser.getBuilder().getType<NoneType>(), "mapping",
result.attributes))
return failure();
return success();
}
void print(OpAsmPrinter &p, FunctionLibraryOp op) {
p << ' ';
p.printSymbolName(op.getName());
p.printOptionalAttrDictWithKeyword(
op->getAttrs(), {SymbolTable::getSymbolAttrName(), "mapping"});
p.printRegion(op.getOperation()->getRegion(0), /*printEntryBlockArgs=*/false,
/*printBlockTerminators=*/false);
p << " mapping ";
p.printAttributeWithoutType(op.getMappingAttr());
}
//===----------------------------------------------------------------------===//
// GetExtentOp
//===----------------------------------------------------------------------===//
Optional<int64_t> GetExtentOp::getConstantDim() {
if (auto constSizeOp = getDim().getDefiningOp<ConstSizeOp>())
return constSizeOp.getValue().getLimitedValue();
if (auto constantOp = getDim().getDefiningOp<arith::ConstantOp>())
return constantOp.getValue().cast<IntegerAttr>().getInt();
return llvm::None;
}
OpFoldResult GetExtentOp::fold(ArrayRef<Attribute> operands) {
auto elements = operands[0].dyn_cast_or_null<DenseIntElementsAttr>();
if (!elements)
return nullptr;
Optional<int64_t> dim = getConstantDim();
if (!dim.hasValue())
return nullptr;
if (dim.getValue() >= elements.getNumElements())
return nullptr;
return elements.getValues<Attribute>()[(uint64_t)dim.getValue()];
}
void GetExtentOp::build(OpBuilder &builder, OperationState &result, Value shape,
int64_t dim) {
auto loc = result.location;
auto dimAttr = builder.getIndexAttr(dim);
if (shape.getType().isa<ShapeType>()) {
Value dim = builder.create<ConstSizeOp>(loc, dimAttr);
build(builder, result, builder.getType<SizeType>(), shape, dim);
} else {
Value dim =
builder.create<arith::ConstantOp>(loc, builder.getIndexType(), dimAttr);
build(builder, result, builder.getIndexType(), shape, dim);
}
}
LogicalResult mlir::shape::GetExtentOp::inferReturnTypes(
MLIRContext *context, Optional<Location> location, ValueRange operands,
DictionaryAttr attributes, RegionRange regions,
SmallVectorImpl<Type> &inferredReturnTypes) {
inferredReturnTypes.assign({IndexType::get(context)});
return success();
}
bool mlir::shape::GetExtentOp::isCompatibleReturnTypes(TypeRange l,
TypeRange r) {
// SizeType is compatible with IndexType.
return eachHasOnlyOneOfTypes<SizeType, IndexType>(l, r);
}
//===----------------------------------------------------------------------===//
// IsBroadcastableOp
//===----------------------------------------------------------------------===//
void IsBroadcastableOp::getCanonicalizationPatterns(RewritePatternSet &patterns,
MLIRContext *context) {
patterns.add<RemoveDuplicateOperandsPattern<IsBroadcastableOp>>(context);
}
OpFoldResult IsBroadcastableOp::fold(ArrayRef<Attribute> operands) {
// Can always broadcast fewer than two shapes.
if (operands.size() < 2) {
return BoolAttr::get(getContext(), true);
}
return nullptr;
}
//===----------------------------------------------------------------------===//
// MeetOp
//===----------------------------------------------------------------------===//
LogicalResult mlir::shape::MeetOp::inferReturnTypes(
MLIRContext *context, Optional<Location> location, ValueRange operands,
DictionaryAttr attributes, RegionRange regions,
SmallVectorImpl<Type> &inferredReturnTypes) {
inferredReturnTypes.assign({operands[0].getType()});
return success();
}
bool mlir::shape::MeetOp::isCompatibleReturnTypes(TypeRange l, TypeRange r) {
if (l.size() != 1 || r.size() != 1)
return false;
if (l == r)
return true;
Type lhs = l.front();
Type rhs = r.front();
if (lhs != rhs)
return false;
if (lhs.isa<SizeType>() || lhs.isa<ShapeType>())
return true;
if (succeeded(verifyCompatibleShapes({lhs, rhs})))
return true;
return false;
}
//===----------------------------------------------------------------------===//
// RankOp
//===----------------------------------------------------------------------===//
OpFoldResult shape::RankOp::fold(ArrayRef<Attribute> operands) {
auto shape = operands[0].dyn_cast_or_null<DenseIntElementsAttr>();
if (!shape)
return {};
int64_t rank = shape.getNumElements();
Builder builder(getContext());
return builder.getIndexAttr(rank);
}
/// Evaluate the `rank` operation for shapes of ranked tensors at compile time.
/// Constant folding fails in cases where only the rank is constant, not the
/// shape itself.
/// This canonicalization matches `shape.rank(shape.shape_of(%ranked_tensor))`.
///
/// Example:
///
/// %shape = shape.shape_of %ranked_tensor : tensor<1x2x?xf32>
/// %rank = shape.rank %shape
///
/// becomes
///
/// %rank = shape.const_size 3
namespace {
struct RankShapeOfCanonicalizationPattern
: public OpRewritePattern<shape::RankOp> {
using OpRewritePattern<shape::RankOp>::OpRewritePattern;
LogicalResult matchAndRewrite(shape::RankOp op,
PatternRewriter &rewriter) const override {
auto shapeOfOp = op.getShape().getDefiningOp<ShapeOfOp>();
if (!shapeOfOp)
return failure();
auto rankedTensorType =
shapeOfOp.getArg().getType().dyn_cast<RankedTensorType>();
if (!rankedTensorType)
return failure();
int64_t rank = rankedTensorType.getRank();
if (op.getType().isa<IndexType>()) {
rewriter.replaceOpWithNewOp<arith::ConstantIndexOp>(op.getOperation(),
rank);
} else if (op.getType().isa<shape::SizeType>()) {
rewriter.replaceOpWithNewOp<shape::ConstSizeOp>(op.getOperation(), rank);
} else {
return failure();
}
return success();
}
};
} // namespace
void shape::RankOp::getCanonicalizationPatterns(RewritePatternSet &patterns,
MLIRContext *context) {
patterns.add<RankShapeOfCanonicalizationPattern>(context);
}
LogicalResult mlir::shape::RankOp::inferReturnTypes(
MLIRContext *context, Optional<Location> location, ValueRange operands,
DictionaryAttr attributes, RegionRange regions,
SmallVectorImpl<Type> &inferredReturnTypes) {
if (operands[0].getType().isa<ShapeType>())
inferredReturnTypes.assign({SizeType::get(context)});
else
inferredReturnTypes.assign({IndexType::get(context)});
return success();
}
bool mlir::shape::RankOp::isCompatibleReturnTypes(TypeRange l, TypeRange r) {
// SizeType is compatible with IndexType.
return eachHasOnlyOneOfTypes<SizeType, IndexType>(l, r);
}
//===----------------------------------------------------------------------===//
// NumElementsOp
//===----------------------------------------------------------------------===//
OpFoldResult NumElementsOp::fold(ArrayRef<Attribute> operands) {
// Fold only when argument constant.
Attribute shape = operands[0];
if (!shape)
return {};
APInt product(64, 1);
for (auto value : shape.cast<DenseIntElementsAttr>())
product *= value;
Builder builder(getContext());
return builder.getIndexAttr(product.getLimitedValue());
}
LogicalResult mlir::shape::NumElementsOp::inferReturnTypes(
MLIRContext *context, Optional<Location> location, ValueRange operands,
DictionaryAttr attributes, RegionRange regions,
SmallVectorImpl<Type> &inferredReturnTypes) {
if (operands[0].getType().isa<ShapeType>())
inferredReturnTypes.assign({SizeType::get(context)});
else
inferredReturnTypes.assign({IndexType::get(context)});
return success();
}
bool mlir::shape::NumElementsOp::isCompatibleReturnTypes(TypeRange l,
TypeRange r) {
// SizeType is compatible with IndexType.
return eachHasOnlyOneOfTypes<SizeType, IndexType>(l, r);
}
//===----------------------------------------------------------------------===//
// MaxOp
//===----------------------------------------------------------------------===//
OpFoldResult MaxOp::fold(llvm::ArrayRef<mlir::Attribute> operands) {
// If operands are equal, just propagate one.
if (getLhs() == getRhs())
return getLhs();
return nullptr;
}
LogicalResult mlir::shape::MaxOp::inferReturnTypes(
MLIRContext *context, Optional<Location> location, ValueRange operands,
DictionaryAttr attributes, RegionRange regions,
SmallVectorImpl<Type> &inferredReturnTypes) {
if (operands[0].getType() == operands[1].getType())
inferredReturnTypes.assign({operands[0].getType()});
else
inferredReturnTypes.assign({SizeType::get(context)});
return success();
}
bool mlir::shape::MaxOp::isCompatibleReturnTypes(TypeRange l, TypeRange r) {
if (l.size() != 1 || r.size() != 1)
return false;
if (l.front().isa<ShapeType>() && r.front().isa<ShapeType>())
return true;
if (l.front().isa<SizeType>() && r.front().isa<SizeType>())
return true;
return false;
}
//===----------------------------------------------------------------------===//
// MinOp
//===----------------------------------------------------------------------===//
OpFoldResult MinOp::fold(llvm::ArrayRef<mlir::Attribute> operands) {
// If operands are equal, just propagate one.
if (getLhs() == getRhs())
return getLhs();
return nullptr;
}
LogicalResult mlir::shape::MinOp::inferReturnTypes(
MLIRContext *context, Optional<Location> location, ValueRange operands,
DictionaryAttr attributes, RegionRange regions,
SmallVectorImpl<Type> &inferredReturnTypes) {
if (operands[0].getType() == operands[1].getType())
inferredReturnTypes.assign({operands[0].getType()});
else
inferredReturnTypes.assign({SizeType::get(context)});
return success();
}
bool mlir::shape::MinOp::isCompatibleReturnTypes(TypeRange l, TypeRange r) {
if (l.size() != 1 || r.size() != 1)
return false;
if (l.front().isa<ShapeType>() && r.front().isa<ShapeType>())
return true;
if (l.front().isa<SizeType>() && r.front().isa<SizeType>())
return true;
return false;
}
//===----------------------------------------------------------------------===//
// MulOp
//===----------------------------------------------------------------------===//
OpFoldResult MulOp::fold(ArrayRef<Attribute> operands) {
auto lhs = operands[0].dyn_cast_or_null<IntegerAttr>();
if (!lhs)
return nullptr;
auto rhs = operands[1].dyn_cast_or_null<IntegerAttr>();
if (!rhs)
return nullptr;
APInt folded = lhs.getValue() * rhs.getValue();
Type indexTy = IndexType::get(getContext());
return IntegerAttr::get(indexTy, folded);
}
LogicalResult mlir::shape::MulOp::inferReturnTypes(
MLIRContext *context, Optional<Location> location, ValueRange operands,
DictionaryAttr attributes, RegionRange regions,
SmallVectorImpl<Type> &inferredReturnTypes) {
if (operands[0].getType().isa<SizeType>() ||
operands[1].getType().isa<SizeType>())
inferredReturnTypes.assign({SizeType::get(context)});
else
inferredReturnTypes.assign({IndexType::get(context)});
return success();
}
bool mlir::shape::MulOp::isCompatibleReturnTypes(TypeRange l, TypeRange r) {
// SizeType is compatible with IndexType.
return eachHasOnlyOneOfTypes<SizeType, IndexType>(l, r);
}
//===----------------------------------------------------------------------===//
// ShapeOfOp
//===----------------------------------------------------------------------===//
OpFoldResult ShapeOfOp::fold(ArrayRef<Attribute>) {
auto type = getOperand().getType().dyn_cast<ShapedType>();
if (!type || !type.hasStaticShape())
return nullptr;
Builder builder(getContext());
return builder.getIndexTensorAttr(type.getShape());
}
namespace {
struct ShapeOfWithTensor : public OpRewritePattern<shape::ShapeOfOp> {
using OpRewritePattern<shape::ShapeOfOp>::OpRewritePattern;
LogicalResult matchAndRewrite(shape::ShapeOfOp op,
PatternRewriter &rewriter) const override {
if (!op.getArg().getType().isa<ShapedType>())
return failure();
if (op.getType().isa<ShapedType>())
return failure();
rewriter.replaceOpWithNewOp<shape::ShapeOfOp>(op.getOperation(),
op.getArg());
return success();
}
};
// Canonicalize
// ```
// %0 = shape.shape_of %arg : tensor<?x?x?xf32> -> tensor<3xindex>
// %1 = tensor.cast %0 : tensor<3xindex> to tensor<?xindex>
// ```
// to
// ```
// %1 = shape.shape_of %arg : tensor<?x?x?xf32> -> tensor<?xindex>
// ```
struct ShapeOfCastExtentTensor : public OpRewritePattern<tensor::CastOp> {
using OpRewritePattern<tensor::CastOp>::OpRewritePattern;
LogicalResult matchAndRewrite(tensor::CastOp op,
PatternRewriter &rewriter) const override {
auto ty = op.getType().dyn_cast<RankedTensorType>();
if (!ty || ty.getRank() != 1)
return failure();
auto shapeOfOp = op.source().getDefiningOp<ShapeOfOp>();
if (!shapeOfOp)
return failure();
// Argument type must be ranked and must not conflict.
auto argTy = shapeOfOp.getArg().getType().dyn_cast<RankedTensorType>();
if (!argTy || (!ty.isDynamicDim(0) && ty.getDimSize(0) != argTy.getRank()))
return failure();
rewriter.replaceOpWithNewOp<ShapeOfOp>(op, ty, shapeOfOp.getArg());
return success();
}
};
} // namespace
void ShapeOfOp::getCanonicalizationPatterns(RewritePatternSet &patterns,
MLIRContext *context) {
patterns.add<ShapeOfCastExtentTensor, ShapeOfWithTensor,
ExtractFromShapeOfExtentTensor>(context);
}
LogicalResult mlir::shape::ShapeOfOp::inferReturnTypes(
MLIRContext *context, Optional<Location> location, ValueRange operands,
DictionaryAttr attributes, RegionRange regions,
SmallVectorImpl<Type> &inferredReturnTypes) {
if (operands[0].getType().isa<ValueShapeType>())
inferredReturnTypes.assign({ShapeType::get(context)});
else {
auto shapedTy = operands[0].getType().cast<ShapedType>();
int64_t rank =
shapedTy.hasRank() ? shapedTy.getRank() : ShapedType::kDynamicSize;
Type indexTy = IndexType::get(context);
Type extentTensorTy = RankedTensorType::get({rank}, indexTy);
inferredReturnTypes.assign({extentTensorTy});
}
return success();
}
bool mlir::shape::ShapeOfOp::isCompatibleReturnTypes(TypeRange l, TypeRange r) {
if (l.size() != 1 || r.size() != 1)
return false;
if (l == r)
return true;
Type lhs = l.front();
Type rhs = r.front();
if (!lhs.isa<ShapeType, ShapedType>() || !rhs.isa<ShapeType, ShapedType>())
return false;
if (lhs.isa<ShapeType>() || rhs.isa<ShapeType>())
// Shape type is compatible with all other valid return types.
return true;
if (succeeded(verifyCompatibleShapes({lhs, rhs})))
return true;
return false;
}
//===----------------------------------------------------------------------===//
// SizeToIndexOp
//===----------------------------------------------------------------------===//
OpFoldResult SizeToIndexOp::fold(ArrayRef<Attribute> operands) {
// Constant values of both types, `shape.size` and `index`, are represented as
// `IntegerAttr`s which makes constant folding simple.
if (Attribute arg = operands[0])
return arg;
return impl::foldCastOp(*this);
}
void SizeToIndexOp::getCanonicalizationPatterns(RewritePatternSet &patterns,
MLIRContext *context) {
patterns.add<IndexToSizeToIndexCanonicalization>(context);
}
//===----------------------------------------------------------------------===//
// YieldOp
//===----------------------------------------------------------------------===//
static LogicalResult verify(shape::YieldOp op) {
auto *parentOp = op->getParentOp();
auto results = parentOp->getResults();
auto operands = op.getOperands();
if (parentOp->getNumResults() != op.getNumOperands())
return op.emitOpError() << "number of operands does not match number of "
"results of its parent";
for (auto e : llvm::zip(results, operands))
if (std::get<0>(e).getType() != std::get<1>(e).getType())
return op.emitOpError()
<< "types mismatch between yield op and its parent";
return success();
}
//===----------------------------------------------------------------------===//
// SplitAtOp
//===----------------------------------------------------------------------===//
LogicalResult SplitAtOp::fold(ArrayRef<Attribute> operands,
SmallVectorImpl<OpFoldResult> &results) {
if (!operands[0] || !operands[1])
return failure();
auto shapeVec = llvm::to_vector<6>(
operands[0].cast<DenseIntElementsAttr>().getValues<int64_t>());
auto shape = llvm::makeArrayRef(shapeVec);
auto splitPoint = operands[1].cast<IntegerAttr>().getInt();
// Verify that the split point is in the correct range.
// TODO: Constant fold to an "error".
int64_t rank = shape.size();
if (!(-rank <= splitPoint && splitPoint <= rank))
return failure();
if (splitPoint < 0)
splitPoint += shape.size();
Builder builder(operands[0].getContext());
results.push_back(builder.getIndexTensorAttr(shape.take_front(splitPoint)));
results.push_back(builder.getIndexTensorAttr(shape.drop_front(splitPoint)));
return success();
}
//===----------------------------------------------------------------------===//
// ToExtentTensorOp
//===----------------------------------------------------------------------===//
OpFoldResult ToExtentTensorOp::fold(ArrayRef<Attribute> operands) {
if (!operands[0])
return impl::foldCastOp(*this);
Builder builder(getContext());
auto shape = llvm::to_vector<6>(
operands[0].cast<DenseIntElementsAttr>().getValues<int64_t>());
auto type = RankedTensorType::get({static_cast<int64_t>(shape.size())},
builder.getIndexType());
return DenseIntElementsAttr::get(type, shape);
}
//===----------------------------------------------------------------------===//
// ReduceOp
//===----------------------------------------------------------------------===//
void ReduceOp::build(OpBuilder &builder, OperationState &result, Value shape,
ValueRange initVals) {
result.addOperands(shape);
result.addOperands(initVals);
Region *bodyRegion = result.addRegion();
bodyRegion->push_back(new Block);
Block &bodyBlock = bodyRegion->front();
bodyBlock.addArgument(builder.getIndexType());
Type elementType;
if (auto tensorType = shape.getType().dyn_cast<TensorType>())
elementType = tensorType.getElementType();
else
elementType = SizeType::get(builder.getContext());
bodyBlock.addArgument(elementType);
for (Type initValType : initVals.getTypes()) {
bodyBlock.addArgument(initValType);
result.addTypes(initValType);
}
}
static LogicalResult verify(ReduceOp op) {
// Verify block arg types.
Block &block = op.getRegion().front();
// The block takes index, extent, and aggregated values as arguments.
auto blockArgsCount = op.getInitVals().size() + 2;
if (block.getNumArguments() != blockArgsCount)
return op.emitOpError() << "ReduceOp body is expected to have "
<< blockArgsCount << " arguments";
// The first block argument is the index and must always be of type `index`.
if (!block.getArgument(0).getType().isa<IndexType>())
return op.emitOpError(
"argument 0 of ReduceOp body is expected to be of IndexType");
// The second block argument is the extent and must be of type `size` or
// `index`, depending on whether the reduce operation is applied to a shape or
// to an extent tensor.
Type extentTy = block.getArgument(1).getType();
if (op.getShape().getType().isa<ShapeType>()) {
if (!extentTy.isa<SizeType>())
return op.emitOpError("argument 1 of ReduceOp body is expected to be of "
"SizeType if the ReduceOp operates on a ShapeType");
} else {
if (!extentTy.isa<IndexType>())
return op.emitOpError(
"argument 1 of ReduceOp body is expected to be of IndexType if the "
"ReduceOp operates on an extent tensor");
}
for (auto type : llvm::enumerate(op.getInitVals()))
if (block.getArgument(type.index() + 2).getType() != type.value().getType())
return op.emitOpError()
<< "type mismatch between argument " << type.index() + 2
<< " of ReduceOp body and initial value " << type.index();
return success();
}
static ParseResult parseReduceOp(OpAsmParser &parser, OperationState &result) {
// Parse operands.
SmallVector<OpAsmParser::OperandType, 3> operands;
Type shapeOrExtentTensorType;
if (parser.parseOperandList(operands, /*requiredOperandCount=*/-1,
OpAsmParser::Delimiter::Paren) ||
parser.parseColonType(shapeOrExtentTensorType) ||
parser.parseOptionalArrowTypeList(result.types))
return failure();
// Resolve operands.
auto initVals = llvm::makeArrayRef(operands).drop_front();
if (parser.resolveOperand(operands.front(), shapeOrExtentTensorType,
result.operands) ||
parser.resolveOperands(initVals, result.types, parser.getNameLoc(),
result.operands))
return failure();
// Parse the body.
Region *body = result.addRegion();
if (parser.parseRegion(*body, /*args=*/{}, /*argTypes=*/{}))
return failure();
// Parse attributes.
if (parser.parseOptionalAttrDict(result.attributes))
return failure();
return success();
}
static void print(OpAsmPrinter &p, ReduceOp op) {
p << '(' << op.getShape() << ", " << op.getInitVals()
<< ") : " << op.getShape().getType();
p.printOptionalArrowTypeList(op.getResultTypes());
p.printRegion(op.getRegion());
p.printOptionalAttrDict(op->getAttrs());
}
#define GET_OP_CLASSES
#include "mlir/Dialect/Shape/IR/ShapeOps.cpp.inc"