| //===- Shape.cpp - MLIR Shape Operations ----------------------------------===// |
| // |
| // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
| // See https://llvm.org/LICENSE.txt for license information. |
| // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
| // |
| //===----------------------------------------------------------------------===// |
| |
| #include "mlir/Dialect/Shape/IR/Shape.h" |
| |
| #include "mlir/Dialect/Arithmetic/IR/Arithmetic.h" |
| #include "mlir/Dialect/CommonFolders.h" |
| #include "mlir/Dialect/StandardOps/IR/Ops.h" |
| #include "mlir/Dialect/Tensor/IR/Tensor.h" |
| #include "mlir/Dialect/Traits.h" |
| #include "mlir/IR/Builders.h" |
| #include "mlir/IR/BuiltinTypes.h" |
| #include "mlir/IR/DialectImplementation.h" |
| #include "mlir/IR/Matchers.h" |
| #include "mlir/IR/PatternMatch.h" |
| #include "mlir/IR/TypeUtilities.h" |
| #include "mlir/Transforms/InliningUtils.h" |
| #include "llvm/ADT/SmallString.h" |
| #include "llvm/ADT/TypeSwitch.h" |
| #include "llvm/Support/raw_ostream.h" |
| |
| using namespace mlir; |
| using namespace mlir::shape; |
| |
| #include "mlir/Dialect/Shape/IR/ShapeOpsDialect.cpp.inc" |
| |
| namespace { |
| #include "ShapeCanonicalization.inc" |
| } |
| |
| RankedTensorType shape::getExtentTensorType(MLIRContext *ctx, int64_t rank) { |
| return RankedTensorType::get({rank}, IndexType::get(ctx)); |
| } |
| |
| bool shape::isExtentTensorType(Type type) { |
| auto ranked = type.dyn_cast<RankedTensorType>(); |
| return ranked && ranked.getRank() == 1 && ranked.getElementType().isIndex(); |
| } |
| |
| LogicalResult shape::getShapeVec(Value input, |
| SmallVectorImpl<int64_t> &shapeValues) { |
| if (auto inputOp = input.getDefiningOp<ShapeOfOp>()) { |
| auto type = inputOp.getArg().getType().dyn_cast<ShapedType>(); |
| if (!type.hasRank()) |
| return failure(); |
| shapeValues = llvm::to_vector<6>(type.getShape()); |
| return success(); |
| } else if (auto inputOp = input.getDefiningOp<ConstShapeOp>()) { |
| shapeValues = llvm::to_vector<6>(inputOp.getShape().getValues<int64_t>()); |
| return success(); |
| } else if (auto inputOp = input.getDefiningOp<arith::ConstantOp>()) { |
| shapeValues = llvm::to_vector<6>( |
| inputOp.getValue().cast<DenseIntElementsAttr>().getValues<int64_t>()); |
| return success(); |
| } else { |
| return failure(); |
| } |
| } |
| |
| static bool isErrorPropagationPossible(TypeRange operandTypes) { |
| return llvm::any_of(operandTypes, [](Type ty) { |
| return ty.isa<SizeType, ShapeType, ValueShapeType>(); |
| }); |
| } |
| |
| static LogicalResult verifySizeOrIndexOp(Operation *op) { |
| assert(op != nullptr && op->getNumResults() == 1); |
| Type resultTy = op->getResultTypes().front(); |
| if (isErrorPropagationPossible(op->getOperandTypes())) { |
| if (!resultTy.isa<SizeType>()) |
| return op->emitOpError() |
| << "if at least one of the operands can hold error values then " |
| "the result must be of type `size` to propagate them"; |
| } |
| return success(); |
| } |
| |
| static LogicalResult verifyShapeOrExtentTensorOp(Operation *op) { |
| assert(op != nullptr && op->getNumResults() == 1); |
| Type resultTy = op->getResultTypes().front(); |
| if (isErrorPropagationPossible(op->getOperandTypes())) { |
| if (!resultTy.isa<ShapeType>()) |
| return op->emitOpError() |
| << "if at least one of the operands can hold error values then " |
| "the result must be of type `shape` to propagate them"; |
| } |
| return success(); |
| } |
| |
| template <typename... Ty> |
| static bool eachHasOnlyOneOfTypes(TypeRange typeRange) { |
| return typeRange.size() == 1 && typeRange.front().isa<Ty...>(); |
| } |
| |
| template <typename... Ty, typename... ranges> |
| static bool eachHasOnlyOneOfTypes(TypeRange l, ranges... rs) { |
| return eachHasOnlyOneOfTypes<Ty...>(l) && eachHasOnlyOneOfTypes<Ty...>(rs...); |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // InlinerInterface |
| //===----------------------------------------------------------------------===// |
| |
| namespace { |
| /// This class defines the interface for inlining shape dialect ops. |
| struct ShapeInlinerInterface : public DialectInlinerInterface { |
| using DialectInlinerInterface::DialectInlinerInterface; |
| |
| // Returns true if the given region 'src' can be inlined into the region |
| // 'dest' that is attached to an operation registered to the current dialect. |
| bool isLegalToInline(Region *dest, Region *src, bool wouldBeCloned, |
| BlockAndValueMapping &) const final { |
| return true; |
| } |
| |
| // Returns true if the given operation 'op', that is registered to this |
| // dialect, can be inlined into the region 'dest' that is attached to an |
| // operation registered to the current dialect. |
| bool isLegalToInline(Operation *op, Region *dest, bool wouldBeCloned, |
| BlockAndValueMapping &) const final { |
| return true; |
| } |
| }; |
| } // namespace |
| |
| void ShapeDialect::initialize() { |
| addOperations< |
| #define GET_OP_LIST |
| #include "mlir/Dialect/Shape/IR/ShapeOps.cpp.inc" |
| >(); |
| addTypes<ShapeType, SizeType, ValueShapeType, WitnessType>(); |
| addInterfaces<ShapeInlinerInterface>(); |
| // Allow unknown operations during prototyping and testing. As the dialect is |
| // still evolving it makes it simple to start with an unregistered ops and |
| // try different variants before actually defining the op. |
| allowUnknownOperations(); |
| } |
| |
| Operation *ShapeDialect::materializeConstant(OpBuilder &builder, |
| Attribute value, Type type, |
| Location loc) { |
| if (type.isa<ShapeType>() || isExtentTensorType(type)) |
| return builder.create<ConstShapeOp>(loc, type, |
| value.cast<DenseIntElementsAttr>()); |
| if (type.isa<SizeType>()) |
| return builder.create<ConstSizeOp>(loc, type, value.cast<IntegerAttr>()); |
| if (type.isa<WitnessType>()) |
| return builder.create<ConstWitnessOp>(loc, type, value.cast<BoolAttr>()); |
| if (arith::ConstantOp::isBuildableWith(value, type)) |
| return builder.create<arith::ConstantOp>(loc, type, value); |
| return nullptr; |
| } |
| |
| /// Parse a type registered to this dialect. |
| Type ShapeDialect::parseType(DialectAsmParser &parser) const { |
| StringRef keyword; |
| if (parser.parseKeyword(&keyword)) |
| return Type(); |
| |
| if (keyword == "shape") |
| return ShapeType::get(getContext()); |
| if (keyword == "size") |
| return SizeType::get(getContext()); |
| if (keyword == "value_shape") |
| return ValueShapeType::get(getContext()); |
| if (keyword == "witness") |
| return WitnessType::get(getContext()); |
| |
| parser.emitError(parser.getNameLoc(), "unknown shape type: ") << keyword; |
| return Type(); |
| } |
| |
| /// Print a type registered to this dialect. |
| void ShapeDialect::printType(Type type, DialectAsmPrinter &os) const { |
| TypeSwitch<Type>(type) |
| .Case<ShapeType>([&](Type) { os << "shape"; }) |
| .Case<SizeType>([&](Type) { os << "size"; }) |
| .Case<ValueShapeType>([&](Type) { os << "value_shape"; }) |
| .Case<WitnessType>([&](Type) { os << "witness"; }) |
| .Default([](Type) { llvm_unreachable("unexpected 'shape' type kind"); }); |
| } |
| |
| LogicalResult ShapeDialect::verifyOperationAttribute(Operation *op, |
| NamedAttribute attribute) { |
| // Verify shape.lib attribute. |
| if (attribute.getName() == "shape.lib") { |
| if (!op->hasTrait<OpTrait::SymbolTable>()) |
| return op->emitError( |
| "shape.lib attribute may only be on op implementing SymbolTable"); |
| |
| if (auto symbolRef = attribute.getValue().dyn_cast<SymbolRefAttr>()) { |
| auto *symbol = SymbolTable::lookupSymbolIn(op, symbolRef); |
| if (!symbol) |
| return op->emitError("shape function library ") |
| << symbolRef << " not found"; |
| return isa<shape::FunctionLibraryOp>(symbol) |
| ? success() |
| : op->emitError() |
| << symbolRef << " required to be shape function library"; |
| } |
| |
| if (auto arr = attribute.getValue().dyn_cast<ArrayAttr>()) { |
| // Verify all entries are function libraries and mappings in libraries |
| // refer to unique ops. |
| DenseSet<StringAttr> key; |
| for (auto it : arr) { |
| if (!it.isa<SymbolRefAttr>()) |
| return op->emitError( |
| "only SymbolRefAttr allowed in shape.lib attribute array"); |
| |
| auto shapeFnLib = dyn_cast<shape::FunctionLibraryOp>( |
| SymbolTable::lookupSymbolIn(op, it.cast<SymbolRefAttr>())); |
| if (!shapeFnLib) |
| return op->emitError() |
| << it << " does not refer to FunctionLibraryOp"; |
| for (auto mapping : shapeFnLib.getMapping()) { |
| if (!key.insert(mapping.getName()).second) { |
| return op->emitError("only one op to shape mapping allowed, found " |
| "multiple for `") |
| << mapping.getName() << "`"; |
| } |
| } |
| } |
| return success(); |
| } |
| |
| return op->emitError("only SymbolRefAttr or array of SymbolRefAttrs " |
| "allowed as shape.lib attribute"); |
| } |
| return success(); |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // AnyOp |
| //===----------------------------------------------------------------------===// |
| |
| // TODO: Canonicalization should be implemented for shapes that can be |
| // determined through mixtures of the known dimensions of the inputs. |
| OpFoldResult AnyOp::fold(ArrayRef<Attribute> operands) { |
| // Only the last operand is checked because AnyOp is commutative. |
| if (operands.back()) |
| return operands.back(); |
| |
| return nullptr; |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // AssumingOp |
| //===----------------------------------------------------------------------===// |
| |
| static ParseResult parseAssumingOp(OpAsmParser &parser, |
| OperationState &result) { |
| result.regions.reserve(1); |
| Region *doRegion = result.addRegion(); |
| |
| auto &builder = parser.getBuilder(); |
| OpAsmParser::OperandType cond; |
| if (parser.parseOperand(cond) || |
| parser.resolveOperand(cond, builder.getType<WitnessType>(), |
| result.operands)) |
| return failure(); |
| |
| // Parse optional results type list. |
| if (parser.parseOptionalArrowTypeList(result.types)) |
| return failure(); |
| |
| // Parse the region and add a terminator if elided. |
| if (parser.parseRegion(*doRegion, /*arguments=*/{}, /*argTypes=*/{})) |
| return failure(); |
| AssumingOp::ensureTerminator(*doRegion, parser.getBuilder(), result.location); |
| |
| // Parse the optional attribute list. |
| if (parser.parseOptionalAttrDict(result.attributes)) |
| return failure(); |
| return success(); |
| } |
| |
| static void print(OpAsmPrinter &p, AssumingOp op) { |
| bool yieldsResults = !op.getResults().empty(); |
| |
| p << " " << op.getWitness(); |
| if (yieldsResults) { |
| p << " -> (" << op.getResultTypes() << ")"; |
| } |
| p.printRegion(op.getDoRegion(), |
| /*printEntryBlockArgs=*/false, |
| /*printBlockTerminators=*/yieldsResults); |
| p.printOptionalAttrDict(op->getAttrs()); |
| } |
| |
| namespace { |
| // Removes AssumingOp with a passing witness and inlines the region. |
| struct AssumingWithTrue : public OpRewritePattern<AssumingOp> { |
| using OpRewritePattern<AssumingOp>::OpRewritePattern; |
| |
| LogicalResult matchAndRewrite(AssumingOp op, |
| PatternRewriter &rewriter) const override { |
| auto witness = op.getWitness().getDefiningOp<ConstWitnessOp>(); |
| if (!witness || !witness.getPassingAttr()) |
| return failure(); |
| |
| AssumingOp::inlineRegionIntoParent(op, rewriter); |
| return success(); |
| } |
| }; |
| |
| struct AssumingOpRemoveUnusedResults : public OpRewritePattern<AssumingOp> { |
| using OpRewritePattern<AssumingOp>::OpRewritePattern; |
| |
| LogicalResult matchAndRewrite(AssumingOp op, |
| PatternRewriter &rewriter) const override { |
| Block *body = op.getBody(); |
| auto yieldOp = llvm::cast<AssumingYieldOp>(body->getTerminator()); |
| |
| // Find used values. |
| SmallVector<Value, 4> newYieldOperands; |
| Value opResult, yieldOperand; |
| for (auto it : llvm::zip(op.getResults(), yieldOp.getOperands())) { |
| std::tie(opResult, yieldOperand) = it; |
| if (!opResult.getUses().empty()) { |
| newYieldOperands.push_back(yieldOperand); |
| } |
| } |
| |
| // Rewrite only if redundant results exist. |
| if (newYieldOperands.size() == yieldOp->getNumOperands()) |
| return failure(); |
| |
| // Replace yield op in the old assuming op's body and move the entire region |
| // to the new assuming op. |
| rewriter.setInsertionPointToEnd(body); |
| auto newYieldOp = |
| rewriter.replaceOpWithNewOp<AssumingYieldOp>(yieldOp, newYieldOperands); |
| rewriter.setInsertionPoint(op); |
| auto newOp = rewriter.create<AssumingOp>( |
| op.getLoc(), newYieldOp->getOperandTypes(), op.getWitness()); |
| newOp.getDoRegion().takeBody(op.getDoRegion()); |
| |
| // Use the new results to replace the previously used ones. |
| SmallVector<Value, 4> replacementValues; |
| auto src = newOp.getResults().begin(); |
| for (auto it : op.getResults()) { |
| if (it.getUses().empty()) |
| replacementValues.push_back(nullptr); |
| else |
| replacementValues.push_back(*src++); |
| } |
| rewriter.replaceOp(op, replacementValues); |
| return success(); |
| } |
| }; |
| } // namespace |
| |
| void AssumingOp::getCanonicalizationPatterns(RewritePatternSet &patterns, |
| MLIRContext *context) { |
| patterns.add<AssumingOpRemoveUnusedResults, AssumingWithTrue>(context); |
| } |
| |
| // See RegionBranchOpInterface in Interfaces/ControlFlowInterfaces.td |
| void AssumingOp::getSuccessorRegions( |
| Optional<unsigned> index, ArrayRef<Attribute> operands, |
| SmallVectorImpl<RegionSuccessor> ®ions) { |
| // AssumingOp has unconditional control flow into the region and back to the |
| // parent, so return the correct RegionSuccessor purely based on the index |
| // being None or 0. |
| if (index.hasValue()) { |
| regions.push_back(RegionSuccessor(getResults())); |
| return; |
| } |
| |
| regions.push_back(RegionSuccessor(&getDoRegion())); |
| } |
| |
| void AssumingOp::inlineRegionIntoParent(AssumingOp &op, |
| PatternRewriter &rewriter) { |
| auto *blockBeforeAssuming = rewriter.getInsertionBlock(); |
| auto *assumingBlock = op.getBody(); |
| auto initPosition = rewriter.getInsertionPoint(); |
| auto *blockAfterAssuming = |
| rewriter.splitBlock(blockBeforeAssuming, initPosition); |
| |
| // Remove the AssumingOp and AssumingYieldOp. |
| auto &yieldOp = assumingBlock->back(); |
| rewriter.inlineRegionBefore(op.getDoRegion(), blockAfterAssuming); |
| rewriter.replaceOp(op, yieldOp.getOperands()); |
| rewriter.eraseOp(&yieldOp); |
| |
| // Merge blocks together as there was no branching behavior from the |
| // AssumingOp. |
| rewriter.mergeBlocks(assumingBlock, blockBeforeAssuming); |
| rewriter.mergeBlocks(blockAfterAssuming, blockBeforeAssuming); |
| } |
| |
| void AssumingOp::build( |
| OpBuilder &builder, OperationState &result, Value witness, |
| function_ref<SmallVector<Value, 2>(OpBuilder &, Location)> bodyBuilder) { |
| |
| result.addOperands(witness); |
| Region *bodyRegion = result.addRegion(); |
| bodyRegion->push_back(new Block); |
| Block &bodyBlock = bodyRegion->front(); |
| |
| // Build body. |
| OpBuilder::InsertionGuard guard(builder); |
| builder.setInsertionPointToStart(&bodyBlock); |
| SmallVector<Value, 2> yieldValues = bodyBuilder(builder, result.location); |
| builder.create<AssumingYieldOp>(result.location, yieldValues); |
| |
| SmallVector<Type, 2> assumingTypes; |
| for (Value v : yieldValues) |
| assumingTypes.push_back(v.getType()); |
| result.addTypes(assumingTypes); |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // AddOp |
| //===----------------------------------------------------------------------===// |
| |
| LogicalResult mlir::shape::AddOp::inferReturnTypes( |
| MLIRContext *context, Optional<Location> location, ValueRange operands, |
| DictionaryAttr attributes, RegionRange regions, |
| SmallVectorImpl<Type> &inferredReturnTypes) { |
| if (operands[0].getType().isa<SizeType>() || |
| operands[1].getType().isa<SizeType>()) |
| inferredReturnTypes.assign({SizeType::get(context)}); |
| else |
| inferredReturnTypes.assign({IndexType::get(context)}); |
| return success(); |
| } |
| |
| bool mlir::shape::AddOp::isCompatibleReturnTypes(TypeRange l, TypeRange r) { |
| // SizeType is compatible with IndexType. |
| return eachHasOnlyOneOfTypes<SizeType, IndexType>(l, r); |
| } |
| |
| OpFoldResult mlir::shape::AddOp::fold(ArrayRef<Attribute> operands) { |
| // add(x, 0) -> x |
| if (matchPattern(getRhs(), m_Zero())) |
| return getLhs(); |
| |
| return constFoldBinaryOp<IntegerAttr>(operands, |
| [](APInt a, APInt b) { return a + b; }); |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // AssumingAllOp |
| //===----------------------------------------------------------------------===// |
| |
| namespace { |
| struct AssumingAllToCstrEqCanonicalization |
| : public OpRewritePattern<AssumingAllOp> { |
| using OpRewritePattern<AssumingAllOp>::OpRewritePattern; |
| |
| LogicalResult matchAndRewrite(AssumingAllOp op, |
| PatternRewriter &rewriter) const override { |
| SmallVector<Value, 8> shapes; |
| for (Value w : op.getInputs()) { |
| auto cstrEqOp = w.getDefiningOp<CstrEqOp>(); |
| if (!cstrEqOp) |
| return failure(); |
| bool disjointShapes = llvm::none_of(cstrEqOp.getShapes(), [&](Value s) { |
| return llvm::is_contained(shapes, s); |
| }); |
| if (!shapes.empty() && !cstrEqOp.getShapes().empty() && disjointShapes) |
| return failure(); |
| shapes.append(cstrEqOp.getShapes().begin(), cstrEqOp.getShapes().end()); |
| } |
| rewriter.replaceOpWithNewOp<CstrEqOp>(op, shapes); |
| return success(); |
| } |
| }; |
| |
| template <typename OpTy> |
| struct RemoveDuplicateOperandsPattern : public OpRewritePattern<OpTy> { |
| using OpRewritePattern<OpTy>::OpRewritePattern; |
| |
| LogicalResult matchAndRewrite(OpTy op, |
| PatternRewriter &rewriter) const override { |
| // Find unique operands. |
| SmallVector<Value, 2> unique; |
| for (Value v : op.getOperands()) { |
| if (!llvm::is_contained(unique, v)) |
| unique.push_back(v); |
| } |
| |
| // Reduce op to equivalent with unique operands. |
| if (unique.size() < op.getNumOperands()) { |
| rewriter.replaceOpWithNewOp<OpTy>(op, op->getResultTypes(), unique, |
| op->getAttrs()); |
| return success(); |
| } |
| |
| return failure(); |
| } |
| }; |
| } // namespace |
| |
| void AssumingAllOp::getCanonicalizationPatterns(RewritePatternSet &patterns, |
| MLIRContext *context) { |
| patterns.add<AssumingAllOneOp, AssumingAllToCstrEqCanonicalization, |
| RemoveDuplicateOperandsPattern<AssumingAllOp>>(context); |
| } |
| |
| OpFoldResult AssumingAllOp::fold(ArrayRef<Attribute> operands) { |
| // Iterate in reverse to first handle all constant operands. They are |
| // guaranteed to be the tail of the inputs because this is commutative. |
| for (int idx = operands.size() - 1; idx >= 0; idx--) { |
| Attribute a = operands[idx]; |
| // Cannot fold if any inputs are not constant; |
| if (!a) |
| return nullptr; |
| |
| // We do not need to keep statically known values after handling them in |
| // this method. |
| getOperation()->eraseOperand(idx); |
| |
| // Always false if any input is statically known false |
| if (!a.cast<BoolAttr>().getValue()) |
| return a; |
| } |
| // If this is reached, all inputs were statically known passing. |
| return BoolAttr::get(getContext(), true); |
| } |
| |
| static LogicalResult verify(AssumingAllOp op) { |
| // Ensure that AssumingAllOp contains at least one operand |
| if (op.getNumOperands() == 0) |
| return op.emitOpError("no operands specified"); |
| |
| return success(); |
| } |
| |
| void AssumingAllOp::build(OpBuilder &b, OperationState &state, |
| ValueRange inputs) { |
| build(b, state, b.getType<WitnessType>(), inputs); |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // BroadcastOp |
| //===----------------------------------------------------------------------===// |
| |
| OpFoldResult BroadcastOp::fold(ArrayRef<Attribute> operands) { |
| if (getShapes().size() == 1) { |
| // Otherwise, we need a cast which would be a canonicalization, not folding. |
| if (getShapes().front().getType() != getType()) |
| return nullptr; |
| return getShapes().front(); |
| } |
| |
| // TODO: Support folding with more than 2 input shapes |
| if (getShapes().size() > 2) |
| return nullptr; |
| |
| if (!operands[0] || !operands[1]) |
| return nullptr; |
| auto lhsShape = llvm::to_vector<6>( |
| operands[0].cast<DenseIntElementsAttr>().getValues<int64_t>()); |
| auto rhsShape = llvm::to_vector<6>( |
| operands[1].cast<DenseIntElementsAttr>().getValues<int64_t>()); |
| SmallVector<int64_t, 6> resultShape; |
| |
| // If the shapes are not compatible, we can't fold it. |
| // TODO: Fold to an "error". |
| if (!OpTrait::util::getBroadcastedShape(lhsShape, rhsShape, resultShape)) |
| return nullptr; |
| |
| Builder builder(getContext()); |
| return builder.getIndexTensorAttr(resultShape); |
| } |
| |
| static LogicalResult verify(BroadcastOp op) { |
| return verifyShapeOrExtentTensorOp(op); |
| } |
| |
| namespace { |
| template <typename OpTy> |
| struct RemoveEmptyShapeOperandsPattern : public OpRewritePattern<OpTy> { |
| using OpRewritePattern<OpTy>::OpRewritePattern; |
| |
| LogicalResult matchAndRewrite(OpTy op, |
| PatternRewriter &rewriter) const override { |
| auto isPotentiallyNonEmptyShape = [](Value shape) { |
| if (auto extentTensorTy = shape.getType().dyn_cast<RankedTensorType>()) { |
| if (extentTensorTy.getDimSize(0) == 0) |
| return false; |
| } |
| if (auto constShape = shape.getDefiningOp<ConstShapeOp>()) { |
| if (constShape.getShape().empty()) |
| return false; |
| } |
| return true; |
| }; |
| auto newOperands = llvm::to_vector<8>( |
| llvm::make_filter_range(op->getOperands(), isPotentiallyNonEmptyShape)); |
| |
| // Reduce op to equivalent without empty shape operands. |
| if (newOperands.size() < op.getNumOperands()) { |
| rewriter.replaceOpWithNewOp<OpTy>(op, op->getResultTypes(), newOperands, |
| op->getAttrs()); |
| return success(); |
| } |
| |
| return failure(); |
| } |
| }; |
| |
| struct BroadcastForwardSingleOperandPattern |
| : public OpRewritePattern<BroadcastOp> { |
| using OpRewritePattern<BroadcastOp>::OpRewritePattern; |
| |
| LogicalResult matchAndRewrite(BroadcastOp op, |
| PatternRewriter &rewriter) const override { |
| if (op.getNumOperands() != 1) |
| return failure(); |
| Value replacement = op.getShapes().front(); |
| |
| // Insert cast if needed. |
| if (replacement.getType() != op.getType()) { |
| auto loc = op.getLoc(); |
| if (op.getType().isa<ShapeType>()) { |
| replacement = rewriter.create<FromExtentTensorOp>(loc, replacement); |
| } else { |
| assert(!op.getType().isa<ShapeType>() && |
| !replacement.getType().isa<ShapeType>() && |
| "expect extent tensor cast"); |
| replacement = |
| rewriter.create<tensor::CastOp>(loc, op.getType(), replacement); |
| } |
| } |
| |
| rewriter.replaceOp(op, replacement); |
| return success(); |
| } |
| }; |
| |
| struct BroadcastFoldConstantOperandsPattern |
| : public OpRewritePattern<BroadcastOp> { |
| using OpRewritePattern<BroadcastOp>::OpRewritePattern; |
| |
| LogicalResult matchAndRewrite(BroadcastOp op, |
| PatternRewriter &rewriter) const override { |
| SmallVector<int64_t, 8> foldedConstantShape; |
| SmallVector<Value, 8> newShapeOperands; |
| for (Value shape : op.getShapes()) { |
| if (auto constShape = shape.getDefiningOp<ConstShapeOp>()) { |
| SmallVector<int64_t, 8> newFoldedConstantShape; |
| if (OpTrait::util::getBroadcastedShape( |
| foldedConstantShape, |
| llvm::to_vector<8>(constShape.getShape().getValues<int64_t>()), |
| newFoldedConstantShape)) { |
| foldedConstantShape = newFoldedConstantShape; |
| continue; |
| } |
| } |
| newShapeOperands.push_back(shape); |
| } |
| |
| // Need at least two constant operands to fold anything. |
| if (op.getNumOperands() - newShapeOperands.size() < 2) |
| return failure(); |
| |
| auto foldedConstantOperandsTy = RankedTensorType::get( |
| {static_cast<int64_t>(foldedConstantShape.size())}, |
| rewriter.getIndexType()); |
| newShapeOperands.push_back(rewriter.create<ConstShapeOp>( |
| op.getLoc(), foldedConstantOperandsTy, |
| rewriter.getIndexTensorAttr(foldedConstantShape))); |
| rewriter.replaceOpWithNewOp<BroadcastOp>(op, op.getType(), |
| newShapeOperands); |
| return success(); |
| } |
| }; |
| |
| template <typename OpTy> |
| struct CanonicalizeCastExtentTensorOperandsPattern |
| : public OpRewritePattern<OpTy> { |
| using OpRewritePattern<OpTy>::OpRewritePattern; |
| |
| LogicalResult matchAndRewrite(OpTy op, |
| PatternRewriter &rewriter) const override { |
| // Canonicalize operands. |
| bool anyChange = false; |
| auto canonicalizeOperand = [&](Value operand) { |
| if (auto castOp = operand.getDefiningOp<tensor::CastOp>()) { |
| // Only eliminate the cast if it holds no shape information. |
| bool isInformationLoosingCast = |
| castOp.getType().cast<RankedTensorType>().isDynamicDim(0); |
| if (isInformationLoosingCast) { |
| anyChange = true; |
| return castOp.source(); |
| } |
| } |
| return operand; |
| }; |
| auto newOperands = llvm::to_vector<8>( |
| llvm::map_range(op.getOperands(), canonicalizeOperand)); |
| |
| // Rewrite op if any change required. |
| if (!anyChange) |
| return failure(); |
| rewriter.replaceOpWithNewOp<OpTy>(op, op->getResultTypes(), newOperands); |
| return success(); |
| } |
| }; |
| |
| struct BroadcastConcretizeResultTypePattern |
| : public OpRewritePattern<BroadcastOp> { |
| using OpRewritePattern<BroadcastOp>::OpRewritePattern; |
| |
| LogicalResult matchAndRewrite(BroadcastOp op, |
| PatternRewriter &rewriter) const override { |
| // Only concretize dynamic extent tensor result types. |
| auto resultTy = op.getType().dyn_cast<RankedTensorType>(); |
| if (!resultTy || !resultTy.isDynamicDim(0)) |
| return failure(); |
| |
| // Infer resulting shape rank if possible. |
| int64_t maxRank = 0; |
| for (Value shape : op.getShapes()) { |
| if (auto extentTensorTy = shape.getType().dyn_cast<RankedTensorType>()) { |
| // Cannot infer resulting shape rank if any operand is dynamically |
| // ranked. |
| if (extentTensorTy.isDynamicDim(0)) |
| return failure(); |
| maxRank = std::max(maxRank, extentTensorTy.getDimSize(0)); |
| } |
| } |
| |
| auto newOp = rewriter.create<BroadcastOp>( |
| op.getLoc(), getExtentTensorType(getContext(), maxRank), |
| op.getShapes()); |
| rewriter.replaceOpWithNewOp<tensor::CastOp>(op, op.getType(), newOp); |
| return success(); |
| } |
| }; |
| } // namespace |
| |
| void BroadcastOp::getCanonicalizationPatterns(RewritePatternSet &patterns, |
| MLIRContext *context) { |
| patterns.add<BroadcastConcretizeResultTypePattern, |
| BroadcastFoldConstantOperandsPattern, |
| BroadcastForwardSingleOperandPattern, |
| CanonicalizeCastExtentTensorOperandsPattern<BroadcastOp>, |
| RemoveDuplicateOperandsPattern<BroadcastOp>, |
| RemoveEmptyShapeOperandsPattern<BroadcastOp>>(context); |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // ConcatOp |
| //===----------------------------------------------------------------------===// |
| |
| OpFoldResult ConcatOp::fold(ArrayRef<Attribute> operands) { |
| if (!operands[0] || !operands[1]) |
| return nullptr; |
| auto lhsShape = llvm::to_vector<6>( |
| operands[0].cast<DenseIntElementsAttr>().getValues<int64_t>()); |
| auto rhsShape = llvm::to_vector<6>( |
| operands[1].cast<DenseIntElementsAttr>().getValues<int64_t>()); |
| SmallVector<int64_t, 6> resultShape; |
| resultShape.append(lhsShape.begin(), lhsShape.end()); |
| resultShape.append(rhsShape.begin(), rhsShape.end()); |
| Builder builder(getContext()); |
| return builder.getIndexTensorAttr(resultShape); |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // ConstShapeOp |
| //===----------------------------------------------------------------------===// |
| |
| static void print(OpAsmPrinter &p, ConstShapeOp &op) { |
| p << " "; |
| p.printOptionalAttrDict(op->getAttrs(), /*elidedAttrs=*/{"shape"}); |
| p << "["; |
| interleaveComma(op.getShape().getValues<int64_t>(), p, |
| [&](int64_t i) { p << i; }); |
| p << "] : "; |
| p.printType(op.getType()); |
| } |
| |
| static ParseResult parseConstShapeOp(OpAsmParser &parser, |
| OperationState &result) { |
| if (parser.parseOptionalAttrDict(result.attributes)) |
| return failure(); |
| // We piggy-back on ArrayAttr parsing, though we don't internally store the |
| // shape as an ArrayAttr. |
| // TODO: Implement custom parser and maybe make syntax a bit more concise. |
| Attribute extentsRaw; |
| NamedAttrList dummy; |
| if (parser.parseAttribute(extentsRaw, "dummy", dummy)) |
| return failure(); |
| auto extentsArray = extentsRaw.dyn_cast<ArrayAttr>(); |
| if (!extentsArray) |
| return failure(); |
| SmallVector<int64_t, 6> ints; |
| for (Attribute extent : extentsArray) { |
| IntegerAttr attr = extent.dyn_cast<IntegerAttr>(); |
| if (!attr) |
| return failure(); |
| ints.push_back(attr.getInt()); |
| } |
| Builder &builder = parser.getBuilder(); |
| result.addAttribute("shape", builder.getIndexTensorAttr(ints)); |
| Type resultTy; |
| if (parser.parseColonType(resultTy)) |
| return failure(); |
| result.types.push_back(resultTy); |
| return success(); |
| } |
| |
| OpFoldResult ConstShapeOp::fold(ArrayRef<Attribute>) { return getShapeAttr(); } |
| |
| void ConstShapeOp::getCanonicalizationPatterns(RewritePatternSet &patterns, |
| MLIRContext *context) { |
| patterns.add<TensorCastConstShape>(context); |
| } |
| |
| LogicalResult mlir::shape::ConstShapeOp::inferReturnTypes( |
| MLIRContext *context, Optional<Location> location, ValueRange operands, |
| DictionaryAttr attributes, RegionRange regions, |
| SmallVectorImpl<Type> &inferredReturnTypes) { |
| Builder b(context); |
| auto shape = attributes.getAs<DenseIntElementsAttr>("shape"); |
| if (!shape) |
| return emitOptionalError(location, "missing shape attribute"); |
| inferredReturnTypes.assign({RankedTensorType::get( |
| {static_cast<int64_t>(shape.size())}, b.getIndexType())}); |
| return success(); |
| } |
| |
| bool mlir::shape::ConstShapeOp::isCompatibleReturnTypes(TypeRange l, |
| TypeRange r) { |
| if (l.size() != 1 || r.size() != 1) |
| return false; |
| |
| Type lhs = l.front(); |
| Type rhs = r.front(); |
| |
| if (lhs.isa<ShapeType>() || rhs.isa<ShapeType>()) |
| // Shape type is compatible with all other valid return types. |
| return true; |
| return lhs == rhs; |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // CstrBroadcastableOp |
| //===----------------------------------------------------------------------===// |
| |
| void CstrBroadcastableOp::getCanonicalizationPatterns( |
| RewritePatternSet &patterns, MLIRContext *context) { |
| // Canonicalization patterns have overlap with the considerations during |
| // folding in case additional shape information is inferred at some point that |
| // does not result in folding. |
| patterns.add<CanonicalizeCastExtentTensorOperandsPattern<CstrBroadcastableOp>, |
| CstrBroadcastableEqOps, |
| RemoveDuplicateOperandsPattern<CstrBroadcastableOp>, |
| RemoveEmptyShapeOperandsPattern<CstrBroadcastableOp>>(context); |
| } |
| |
| // Return true if there is exactly one attribute not representing a scalar |
| // broadcast. |
| static bool hasAtMostSingleNonScalar(ArrayRef<Attribute> attributes) { |
| bool nonScalarSeen = false; |
| for (Attribute a : attributes) { |
| if (!a || a.cast<DenseIntElementsAttr>().getNumElements() != 0) { |
| if (nonScalarSeen) |
| return false; |
| nonScalarSeen = true; |
| } |
| } |
| return true; |
| } |
| |
| OpFoldResult CstrBroadcastableOp::fold(ArrayRef<Attribute> operands) { |
| // No broadcasting is needed if all operands but one are scalar. |
| if (hasAtMostSingleNonScalar(operands)) |
| return BoolAttr::get(getContext(), true); |
| |
| if ([&] { |
| SmallVector<SmallVector<int64_t, 6>, 6> extents; |
| for (const auto &operand : operands) { |
| if (!operand) |
| return false; |
| extents.push_back(llvm::to_vector<6>( |
| operand.cast<DenseIntElementsAttr>().getValues<int64_t>())); |
| } |
| return OpTrait::util::staticallyKnownBroadcastable(extents); |
| }()) |
| return BoolAttr::get(getContext(), true); |
| |
| // Lastly, see if folding can be completed based on what constraints are known |
| // on the input shapes. |
| if ([&] { |
| SmallVector<SmallVector<int64_t, 6>, 6> extents; |
| for (auto shapeValue : getShapes()) { |
| extents.emplace_back(); |
| if (failed(getShapeVec(shapeValue, extents.back()))) |
| return false; |
| } |
| return OpTrait::util::staticallyKnownBroadcastable(extents); |
| }()) |
| return BoolAttr::get(getContext(), true); |
| |
| // Because a failing witness result here represents an eventual assertion |
| // failure, we do not replace it with a constant witness. |
| return nullptr; |
| } |
| |
| static LogicalResult verify(CstrBroadcastableOp op) { |
| // Ensure that AssumingAllOp contains at least one operand |
| if (op.getNumOperands() < 2) |
| return op.emitOpError("required at least 2 input shapes"); |
| return success(); |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // CstrEqOp |
| //===----------------------------------------------------------------------===// |
| |
| void CstrEqOp::getCanonicalizationPatterns(RewritePatternSet &patterns, |
| MLIRContext *context) { |
| // If inputs are equal, return passing witness |
| patterns.add<CstrEqEqOps>(context); |
| } |
| |
| OpFoldResult CstrEqOp::fold(ArrayRef<Attribute> operands) { |
| if (llvm::all_of(operands, |
| [&](Attribute a) { return a && a == operands[0]; })) |
| return BoolAttr::get(getContext(), true); |
| |
| // Because a failing witness result here represents an eventual assertion |
| // failure, we do not try to replace it with a constant witness. Similarly, we |
| // cannot if there are any non-const inputs. |
| return nullptr; |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // ConstSizeOp |
| //===----------------------------------------------------------------------===// |
| |
| void ConstSizeOp::build(OpBuilder &builder, OperationState &result, |
| int64_t value) { |
| build(builder, result, builder.getIndexAttr(value)); |
| } |
| |
| OpFoldResult ConstSizeOp::fold(ArrayRef<Attribute>) { return getValueAttr(); } |
| |
| void ConstSizeOp::getAsmResultNames( |
| llvm::function_ref<void(Value, StringRef)> setNameFn) { |
| SmallString<4> buffer; |
| llvm::raw_svector_ostream os(buffer); |
| os << "c" << getValue(); |
| setNameFn(getResult(), os.str()); |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // ConstWitnessOp |
| //===----------------------------------------------------------------------===// |
| |
| OpFoldResult ConstWitnessOp::fold(ArrayRef<Attribute>) { |
| return getPassingAttr(); |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // CstrRequireOp |
| //===----------------------------------------------------------------------===// |
| |
| OpFoldResult CstrRequireOp::fold(ArrayRef<Attribute> operands) { |
| return operands[0]; |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // DivOp |
| //===----------------------------------------------------------------------===// |
| |
| OpFoldResult DivOp::fold(ArrayRef<Attribute> operands) { |
| auto lhs = operands[0].dyn_cast_or_null<IntegerAttr>(); |
| if (!lhs) |
| return nullptr; |
| auto rhs = operands[1].dyn_cast_or_null<IntegerAttr>(); |
| if (!rhs) |
| return nullptr; |
| |
| // Division in APInt does not follow floor(lhs, rhs) when the result is |
| // negative. Rather, APInt rounds toward zero. |
| APInt quotient, remainder; |
| APInt::sdivrem(lhs.getValue(), rhs.getValue(), quotient, remainder); |
| if (quotient.isNegative() && !remainder.isNullValue()) { |
| quotient -= 1; |
| } |
| |
| Type indexTy = IndexType::get(getContext()); |
| return IntegerAttr::get(indexTy, quotient); |
| } |
| |
| LogicalResult mlir::shape::DivOp::inferReturnTypes( |
| MLIRContext *context, Optional<Location> location, ValueRange operands, |
| DictionaryAttr attributes, RegionRange regions, |
| SmallVectorImpl<Type> &inferredReturnTypes) { |
| if (operands[0].getType().isa<SizeType>() || |
| operands[1].getType().isa<SizeType>()) |
| inferredReturnTypes.assign({SizeType::get(context)}); |
| else |
| inferredReturnTypes.assign({IndexType::get(context)}); |
| return success(); |
| } |
| |
| bool mlir::shape::DivOp::isCompatibleReturnTypes(TypeRange l, TypeRange r) { |
| // SizeType is compatible with IndexType. |
| return eachHasOnlyOneOfTypes<SizeType, IndexType>(l, r); |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // ShapeEqOp |
| //===----------------------------------------------------------------------===// |
| |
| OpFoldResult ShapeEqOp::fold(ArrayRef<Attribute> operands) { |
| bool allSame = true; |
| if (!operands.empty() && !operands[0]) |
| return {}; |
| for (Attribute operand : operands.drop_front(1)) { |
| if (!operand) |
| return {}; |
| allSame = allSame && operand == operands[0]; |
| } |
| return BoolAttr::get(getContext(), allSame); |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // IndexToSizeOp |
| //===----------------------------------------------------------------------===// |
| |
| OpFoldResult IndexToSizeOp::fold(ArrayRef<Attribute> operands) { |
| // Constant values of both types, `shape.size` and `index`, are represented as |
| // `IntegerAttr`s which makes constant folding simple. |
| if (Attribute arg = operands[0]) |
| return arg; |
| return {}; |
| } |
| |
| void IndexToSizeOp::getCanonicalizationPatterns(RewritePatternSet &patterns, |
| MLIRContext *context) { |
| patterns.add<SizeToIndexToSizeCanonicalization>(context); |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // FromExtentsOp |
| //===----------------------------------------------------------------------===// |
| |
| OpFoldResult FromExtentsOp::fold(ArrayRef<Attribute> operands) { |
| if (llvm::any_of(operands, [](Attribute a) { return !a; })) |
| return nullptr; |
| SmallVector<int64_t, 6> extents; |
| for (auto attr : operands) |
| extents.push_back(attr.cast<IntegerAttr>().getInt()); |
| Builder builder(getContext()); |
| return builder.getIndexTensorAttr(extents); |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // FunctionLibraryOp |
| //===----------------------------------------------------------------------===// |
| |
| void FunctionLibraryOp::build(OpBuilder &builder, OperationState &result, |
| StringRef name) { |
| result.attributes.push_back(builder.getNamedAttr( |
| ::mlir::SymbolTable::getSymbolAttrName(), builder.getStringAttr(name))); |
| } |
| |
| FuncOp FunctionLibraryOp::getShapeFunction(Operation *op) { |
| auto attr = getMapping() |
| .get(op->getName().getIdentifier()) |
| .dyn_cast_or_null<FlatSymbolRefAttr>(); |
| if (!attr) |
| return nullptr; |
| return lookupSymbol<FuncOp>(attr); |
| } |
| |
| ParseResult parseFunctionLibraryOp(OpAsmParser &parser, |
| OperationState &result) { |
| // Parse the op name. |
| StringAttr nameAttr; |
| if (parser.parseSymbolName(nameAttr, ::mlir::SymbolTable::getSymbolAttrName(), |
| result.attributes)) |
| return failure(); |
| |
| if (parser.parseOptionalAttrDictWithKeyword(result.attributes)) |
| return failure(); |
| |
| auto *bodyRegion = result.addRegion(); |
| if (parser.parseRegion(*bodyRegion)) |
| return failure(); |
| |
| if (parser.parseKeyword("mapping")) |
| return failure(); |
| |
| DictionaryAttr mappingAttr; |
| if (parser.parseAttribute(mappingAttr, |
| parser.getBuilder().getType<NoneType>(), "mapping", |
| result.attributes)) |
| return failure(); |
| return success(); |
| } |
| |
| void print(OpAsmPrinter &p, FunctionLibraryOp op) { |
| p << ' '; |
| p.printSymbolName(op.getName()); |
| p.printOptionalAttrDictWithKeyword( |
| op->getAttrs(), {SymbolTable::getSymbolAttrName(), "mapping"}); |
| p.printRegion(op.getOperation()->getRegion(0), /*printEntryBlockArgs=*/false, |
| /*printBlockTerminators=*/false); |
| p << " mapping "; |
| p.printAttributeWithoutType(op.getMappingAttr()); |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // GetExtentOp |
| //===----------------------------------------------------------------------===// |
| |
| Optional<int64_t> GetExtentOp::getConstantDim() { |
| if (auto constSizeOp = getDim().getDefiningOp<ConstSizeOp>()) |
| return constSizeOp.getValue().getLimitedValue(); |
| if (auto constantOp = getDim().getDefiningOp<arith::ConstantOp>()) |
| return constantOp.getValue().cast<IntegerAttr>().getInt(); |
| return llvm::None; |
| } |
| |
| OpFoldResult GetExtentOp::fold(ArrayRef<Attribute> operands) { |
| auto elements = operands[0].dyn_cast_or_null<DenseIntElementsAttr>(); |
| if (!elements) |
| return nullptr; |
| Optional<int64_t> dim = getConstantDim(); |
| if (!dim.hasValue()) |
| return nullptr; |
| if (dim.getValue() >= elements.getNumElements()) |
| return nullptr; |
| return elements.getValues<Attribute>()[(uint64_t)dim.getValue()]; |
| } |
| |
| void GetExtentOp::build(OpBuilder &builder, OperationState &result, Value shape, |
| int64_t dim) { |
| auto loc = result.location; |
| auto dimAttr = builder.getIndexAttr(dim); |
| if (shape.getType().isa<ShapeType>()) { |
| Value dim = builder.create<ConstSizeOp>(loc, dimAttr); |
| build(builder, result, builder.getType<SizeType>(), shape, dim); |
| } else { |
| Value dim = |
| builder.create<arith::ConstantOp>(loc, builder.getIndexType(), dimAttr); |
| build(builder, result, builder.getIndexType(), shape, dim); |
| } |
| } |
| |
| LogicalResult mlir::shape::GetExtentOp::inferReturnTypes( |
| MLIRContext *context, Optional<Location> location, ValueRange operands, |
| DictionaryAttr attributes, RegionRange regions, |
| SmallVectorImpl<Type> &inferredReturnTypes) { |
| inferredReturnTypes.assign({IndexType::get(context)}); |
| return success(); |
| } |
| |
| bool mlir::shape::GetExtentOp::isCompatibleReturnTypes(TypeRange l, |
| TypeRange r) { |
| // SizeType is compatible with IndexType. |
| return eachHasOnlyOneOfTypes<SizeType, IndexType>(l, r); |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // IsBroadcastableOp |
| //===----------------------------------------------------------------------===// |
| |
| void IsBroadcastableOp::getCanonicalizationPatterns(RewritePatternSet &patterns, |
| MLIRContext *context) { |
| patterns.add<RemoveDuplicateOperandsPattern<IsBroadcastableOp>>(context); |
| } |
| |
| OpFoldResult IsBroadcastableOp::fold(ArrayRef<Attribute> operands) { |
| // Can always broadcast fewer than two shapes. |
| if (operands.size() < 2) { |
| return BoolAttr::get(getContext(), true); |
| } |
| |
| return nullptr; |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // MeetOp |
| //===----------------------------------------------------------------------===// |
| |
| LogicalResult mlir::shape::MeetOp::inferReturnTypes( |
| MLIRContext *context, Optional<Location> location, ValueRange operands, |
| DictionaryAttr attributes, RegionRange regions, |
| SmallVectorImpl<Type> &inferredReturnTypes) { |
| inferredReturnTypes.assign({operands[0].getType()}); |
| return success(); |
| } |
| |
| bool mlir::shape::MeetOp::isCompatibleReturnTypes(TypeRange l, TypeRange r) { |
| if (l.size() != 1 || r.size() != 1) |
| return false; |
| if (l == r) |
| return true; |
| |
| Type lhs = l.front(); |
| Type rhs = r.front(); |
| |
| if (lhs != rhs) |
| return false; |
| |
| if (lhs.isa<SizeType>() || lhs.isa<ShapeType>()) |
| return true; |
| |
| if (succeeded(verifyCompatibleShapes({lhs, rhs}))) |
| return true; |
| return false; |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // RankOp |
| //===----------------------------------------------------------------------===// |
| |
| OpFoldResult shape::RankOp::fold(ArrayRef<Attribute> operands) { |
| auto shape = operands[0].dyn_cast_or_null<DenseIntElementsAttr>(); |
| if (!shape) |
| return {}; |
| int64_t rank = shape.getNumElements(); |
| Builder builder(getContext()); |
| return builder.getIndexAttr(rank); |
| } |
| |
| /// Evaluate the `rank` operation for shapes of ranked tensors at compile time. |
| /// Constant folding fails in cases where only the rank is constant, not the |
| /// shape itself. |
| /// This canonicalization matches `shape.rank(shape.shape_of(%ranked_tensor))`. |
| /// |
| /// Example: |
| /// |
| /// %shape = shape.shape_of %ranked_tensor : tensor<1x2x?xf32> |
| /// %rank = shape.rank %shape |
| /// |
| /// becomes |
| /// |
| /// %rank = shape.const_size 3 |
| |
| namespace { |
| struct RankShapeOfCanonicalizationPattern |
| : public OpRewritePattern<shape::RankOp> { |
| using OpRewritePattern<shape::RankOp>::OpRewritePattern; |
| |
| LogicalResult matchAndRewrite(shape::RankOp op, |
| PatternRewriter &rewriter) const override { |
| auto shapeOfOp = op.getShape().getDefiningOp<ShapeOfOp>(); |
| if (!shapeOfOp) |
| return failure(); |
| auto rankedTensorType = |
| shapeOfOp.getArg().getType().dyn_cast<RankedTensorType>(); |
| if (!rankedTensorType) |
| return failure(); |
| int64_t rank = rankedTensorType.getRank(); |
| if (op.getType().isa<IndexType>()) { |
| rewriter.replaceOpWithNewOp<arith::ConstantIndexOp>(op.getOperation(), |
| rank); |
| } else if (op.getType().isa<shape::SizeType>()) { |
| rewriter.replaceOpWithNewOp<shape::ConstSizeOp>(op.getOperation(), rank); |
| } else { |
| return failure(); |
| } |
| return success(); |
| } |
| }; |
| } // namespace |
| |
| void shape::RankOp::getCanonicalizationPatterns(RewritePatternSet &patterns, |
| MLIRContext *context) { |
| patterns.add<RankShapeOfCanonicalizationPattern>(context); |
| } |
| |
| LogicalResult mlir::shape::RankOp::inferReturnTypes( |
| MLIRContext *context, Optional<Location> location, ValueRange operands, |
| DictionaryAttr attributes, RegionRange regions, |
| SmallVectorImpl<Type> &inferredReturnTypes) { |
| if (operands[0].getType().isa<ShapeType>()) |
| inferredReturnTypes.assign({SizeType::get(context)}); |
| else |
| inferredReturnTypes.assign({IndexType::get(context)}); |
| return success(); |
| } |
| |
| bool mlir::shape::RankOp::isCompatibleReturnTypes(TypeRange l, TypeRange r) { |
| // SizeType is compatible with IndexType. |
| return eachHasOnlyOneOfTypes<SizeType, IndexType>(l, r); |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // NumElementsOp |
| //===----------------------------------------------------------------------===// |
| |
| OpFoldResult NumElementsOp::fold(ArrayRef<Attribute> operands) { |
| |
| // Fold only when argument constant. |
| Attribute shape = operands[0]; |
| if (!shape) |
| return {}; |
| |
| APInt product(64, 1); |
| for (auto value : shape.cast<DenseIntElementsAttr>()) |
| product *= value; |
| Builder builder(getContext()); |
| return builder.getIndexAttr(product.getLimitedValue()); |
| } |
| |
| LogicalResult mlir::shape::NumElementsOp::inferReturnTypes( |
| MLIRContext *context, Optional<Location> location, ValueRange operands, |
| DictionaryAttr attributes, RegionRange regions, |
| SmallVectorImpl<Type> &inferredReturnTypes) { |
| if (operands[0].getType().isa<ShapeType>()) |
| inferredReturnTypes.assign({SizeType::get(context)}); |
| else |
| inferredReturnTypes.assign({IndexType::get(context)}); |
| return success(); |
| } |
| |
| bool mlir::shape::NumElementsOp::isCompatibleReturnTypes(TypeRange l, |
| TypeRange r) { |
| // SizeType is compatible with IndexType. |
| return eachHasOnlyOneOfTypes<SizeType, IndexType>(l, r); |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // MaxOp |
| //===----------------------------------------------------------------------===// |
| |
| OpFoldResult MaxOp::fold(llvm::ArrayRef<mlir::Attribute> operands) { |
| // If operands are equal, just propagate one. |
| if (getLhs() == getRhs()) |
| return getLhs(); |
| return nullptr; |
| } |
| |
| LogicalResult mlir::shape::MaxOp::inferReturnTypes( |
| MLIRContext *context, Optional<Location> location, ValueRange operands, |
| DictionaryAttr attributes, RegionRange regions, |
| SmallVectorImpl<Type> &inferredReturnTypes) { |
| if (operands[0].getType() == operands[1].getType()) |
| inferredReturnTypes.assign({operands[0].getType()}); |
| else |
| inferredReturnTypes.assign({SizeType::get(context)}); |
| return success(); |
| } |
| |
| bool mlir::shape::MaxOp::isCompatibleReturnTypes(TypeRange l, TypeRange r) { |
| if (l.size() != 1 || r.size() != 1) |
| return false; |
| if (l.front().isa<ShapeType>() && r.front().isa<ShapeType>()) |
| return true; |
| if (l.front().isa<SizeType>() && r.front().isa<SizeType>()) |
| return true; |
| return false; |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // MinOp |
| //===----------------------------------------------------------------------===// |
| |
| OpFoldResult MinOp::fold(llvm::ArrayRef<mlir::Attribute> operands) { |
| // If operands are equal, just propagate one. |
| if (getLhs() == getRhs()) |
| return getLhs(); |
| return nullptr; |
| } |
| |
| LogicalResult mlir::shape::MinOp::inferReturnTypes( |
| MLIRContext *context, Optional<Location> location, ValueRange operands, |
| DictionaryAttr attributes, RegionRange regions, |
| SmallVectorImpl<Type> &inferredReturnTypes) { |
| if (operands[0].getType() == operands[1].getType()) |
| inferredReturnTypes.assign({operands[0].getType()}); |
| else |
| inferredReturnTypes.assign({SizeType::get(context)}); |
| return success(); |
| } |
| |
| bool mlir::shape::MinOp::isCompatibleReturnTypes(TypeRange l, TypeRange r) { |
| if (l.size() != 1 || r.size() != 1) |
| return false; |
| if (l.front().isa<ShapeType>() && r.front().isa<ShapeType>()) |
| return true; |
| if (l.front().isa<SizeType>() && r.front().isa<SizeType>()) |
| return true; |
| return false; |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // MulOp |
| //===----------------------------------------------------------------------===// |
| |
| OpFoldResult MulOp::fold(ArrayRef<Attribute> operands) { |
| auto lhs = operands[0].dyn_cast_or_null<IntegerAttr>(); |
| if (!lhs) |
| return nullptr; |
| auto rhs = operands[1].dyn_cast_or_null<IntegerAttr>(); |
| if (!rhs) |
| return nullptr; |
| APInt folded = lhs.getValue() * rhs.getValue(); |
| Type indexTy = IndexType::get(getContext()); |
| return IntegerAttr::get(indexTy, folded); |
| } |
| |
| LogicalResult mlir::shape::MulOp::inferReturnTypes( |
| MLIRContext *context, Optional<Location> location, ValueRange operands, |
| DictionaryAttr attributes, RegionRange regions, |
| SmallVectorImpl<Type> &inferredReturnTypes) { |
| if (operands[0].getType().isa<SizeType>() || |
| operands[1].getType().isa<SizeType>()) |
| inferredReturnTypes.assign({SizeType::get(context)}); |
| else |
| inferredReturnTypes.assign({IndexType::get(context)}); |
| return success(); |
| } |
| |
| bool mlir::shape::MulOp::isCompatibleReturnTypes(TypeRange l, TypeRange r) { |
| // SizeType is compatible with IndexType. |
| return eachHasOnlyOneOfTypes<SizeType, IndexType>(l, r); |
| } |
| //===----------------------------------------------------------------------===// |
| // ShapeOfOp |
| //===----------------------------------------------------------------------===// |
| |
| OpFoldResult ShapeOfOp::fold(ArrayRef<Attribute>) { |
| auto type = getOperand().getType().dyn_cast<ShapedType>(); |
| if (!type || !type.hasStaticShape()) |
| return nullptr; |
| Builder builder(getContext()); |
| return builder.getIndexTensorAttr(type.getShape()); |
| } |
| |
| namespace { |
| struct ShapeOfWithTensor : public OpRewritePattern<shape::ShapeOfOp> { |
| using OpRewritePattern<shape::ShapeOfOp>::OpRewritePattern; |
| |
| LogicalResult matchAndRewrite(shape::ShapeOfOp op, |
| PatternRewriter &rewriter) const override { |
| if (!op.getArg().getType().isa<ShapedType>()) |
| return failure(); |
| if (op.getType().isa<ShapedType>()) |
| return failure(); |
| |
| rewriter.replaceOpWithNewOp<shape::ShapeOfOp>(op.getOperation(), |
| op.getArg()); |
| return success(); |
| } |
| }; |
| |
| // Canonicalize |
| // ``` |
| // %0 = shape.shape_of %arg : tensor<?x?x?xf32> -> tensor<3xindex> |
| // %1 = tensor.cast %0 : tensor<3xindex> to tensor<?xindex> |
| // ``` |
| // to |
| // ``` |
| // %1 = shape.shape_of %arg : tensor<?x?x?xf32> -> tensor<?xindex> |
| // ``` |
| struct ShapeOfCastExtentTensor : public OpRewritePattern<tensor::CastOp> { |
| using OpRewritePattern<tensor::CastOp>::OpRewritePattern; |
| |
| LogicalResult matchAndRewrite(tensor::CastOp op, |
| PatternRewriter &rewriter) const override { |
| auto ty = op.getType().dyn_cast<RankedTensorType>(); |
| if (!ty || ty.getRank() != 1) |
| return failure(); |
| |
| auto shapeOfOp = op.source().getDefiningOp<ShapeOfOp>(); |
| if (!shapeOfOp) |
| return failure(); |
| |
| // Argument type must be ranked and must not conflict. |
| auto argTy = shapeOfOp.getArg().getType().dyn_cast<RankedTensorType>(); |
| if (!argTy || (!ty.isDynamicDim(0) && ty.getDimSize(0) != argTy.getRank())) |
| return failure(); |
| |
| rewriter.replaceOpWithNewOp<ShapeOfOp>(op, ty, shapeOfOp.getArg()); |
| return success(); |
| } |
| }; |
| } // namespace |
| |
| void ShapeOfOp::getCanonicalizationPatterns(RewritePatternSet &patterns, |
| MLIRContext *context) { |
| patterns.add<ShapeOfCastExtentTensor, ShapeOfWithTensor, |
| ExtractFromShapeOfExtentTensor>(context); |
| } |
| |
| LogicalResult mlir::shape::ShapeOfOp::inferReturnTypes( |
| MLIRContext *context, Optional<Location> location, ValueRange operands, |
| DictionaryAttr attributes, RegionRange regions, |
| SmallVectorImpl<Type> &inferredReturnTypes) { |
| if (operands[0].getType().isa<ValueShapeType>()) |
| inferredReturnTypes.assign({ShapeType::get(context)}); |
| else { |
| auto shapedTy = operands[0].getType().cast<ShapedType>(); |
| int64_t rank = |
| shapedTy.hasRank() ? shapedTy.getRank() : ShapedType::kDynamicSize; |
| Type indexTy = IndexType::get(context); |
| Type extentTensorTy = RankedTensorType::get({rank}, indexTy); |
| inferredReturnTypes.assign({extentTensorTy}); |
| } |
| return success(); |
| } |
| |
| bool mlir::shape::ShapeOfOp::isCompatibleReturnTypes(TypeRange l, TypeRange r) { |
| if (l.size() != 1 || r.size() != 1) |
| return false; |
| if (l == r) |
| return true; |
| |
| Type lhs = l.front(); |
| Type rhs = r.front(); |
| |
| if (!lhs.isa<ShapeType, ShapedType>() || !rhs.isa<ShapeType, ShapedType>()) |
| return false; |
| |
| if (lhs.isa<ShapeType>() || rhs.isa<ShapeType>()) |
| // Shape type is compatible with all other valid return types. |
| return true; |
| |
| if (succeeded(verifyCompatibleShapes({lhs, rhs}))) |
| return true; |
| return false; |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // SizeToIndexOp |
| //===----------------------------------------------------------------------===// |
| |
| OpFoldResult SizeToIndexOp::fold(ArrayRef<Attribute> operands) { |
| // Constant values of both types, `shape.size` and `index`, are represented as |
| // `IntegerAttr`s which makes constant folding simple. |
| if (Attribute arg = operands[0]) |
| return arg; |
| return impl::foldCastOp(*this); |
| } |
| |
| void SizeToIndexOp::getCanonicalizationPatterns(RewritePatternSet &patterns, |
| MLIRContext *context) { |
| patterns.add<IndexToSizeToIndexCanonicalization>(context); |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // YieldOp |
| //===----------------------------------------------------------------------===// |
| |
| static LogicalResult verify(shape::YieldOp op) { |
| auto *parentOp = op->getParentOp(); |
| auto results = parentOp->getResults(); |
| auto operands = op.getOperands(); |
| |
| if (parentOp->getNumResults() != op.getNumOperands()) |
| return op.emitOpError() << "number of operands does not match number of " |
| "results of its parent"; |
| for (auto e : llvm::zip(results, operands)) |
| if (std::get<0>(e).getType() != std::get<1>(e).getType()) |
| return op.emitOpError() |
| << "types mismatch between yield op and its parent"; |
| |
| return success(); |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // SplitAtOp |
| //===----------------------------------------------------------------------===// |
| |
| LogicalResult SplitAtOp::fold(ArrayRef<Attribute> operands, |
| SmallVectorImpl<OpFoldResult> &results) { |
| if (!operands[0] || !operands[1]) |
| return failure(); |
| auto shapeVec = llvm::to_vector<6>( |
| operands[0].cast<DenseIntElementsAttr>().getValues<int64_t>()); |
| auto shape = llvm::makeArrayRef(shapeVec); |
| auto splitPoint = operands[1].cast<IntegerAttr>().getInt(); |
| // Verify that the split point is in the correct range. |
| // TODO: Constant fold to an "error". |
| int64_t rank = shape.size(); |
| if (!(-rank <= splitPoint && splitPoint <= rank)) |
| return failure(); |
| if (splitPoint < 0) |
| splitPoint += shape.size(); |
| Builder builder(operands[0].getContext()); |
| results.push_back(builder.getIndexTensorAttr(shape.take_front(splitPoint))); |
| results.push_back(builder.getIndexTensorAttr(shape.drop_front(splitPoint))); |
| return success(); |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // ToExtentTensorOp |
| //===----------------------------------------------------------------------===// |
| |
| OpFoldResult ToExtentTensorOp::fold(ArrayRef<Attribute> operands) { |
| if (!operands[0]) |
| return impl::foldCastOp(*this); |
| Builder builder(getContext()); |
| auto shape = llvm::to_vector<6>( |
| operands[0].cast<DenseIntElementsAttr>().getValues<int64_t>()); |
| auto type = RankedTensorType::get({static_cast<int64_t>(shape.size())}, |
| builder.getIndexType()); |
| return DenseIntElementsAttr::get(type, shape); |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // ReduceOp |
| //===----------------------------------------------------------------------===// |
| |
| void ReduceOp::build(OpBuilder &builder, OperationState &result, Value shape, |
| ValueRange initVals) { |
| result.addOperands(shape); |
| result.addOperands(initVals); |
| |
| Region *bodyRegion = result.addRegion(); |
| bodyRegion->push_back(new Block); |
| Block &bodyBlock = bodyRegion->front(); |
| bodyBlock.addArgument(builder.getIndexType()); |
| |
| Type elementType; |
| if (auto tensorType = shape.getType().dyn_cast<TensorType>()) |
| elementType = tensorType.getElementType(); |
| else |
| elementType = SizeType::get(builder.getContext()); |
| bodyBlock.addArgument(elementType); |
| |
| for (Type initValType : initVals.getTypes()) { |
| bodyBlock.addArgument(initValType); |
| result.addTypes(initValType); |
| } |
| } |
| |
| static LogicalResult verify(ReduceOp op) { |
| // Verify block arg types. |
| Block &block = op.getRegion().front(); |
| |
| // The block takes index, extent, and aggregated values as arguments. |
| auto blockArgsCount = op.getInitVals().size() + 2; |
| if (block.getNumArguments() != blockArgsCount) |
| return op.emitOpError() << "ReduceOp body is expected to have " |
| << blockArgsCount << " arguments"; |
| |
| // The first block argument is the index and must always be of type `index`. |
| if (!block.getArgument(0).getType().isa<IndexType>()) |
| return op.emitOpError( |
| "argument 0 of ReduceOp body is expected to be of IndexType"); |
| |
| // The second block argument is the extent and must be of type `size` or |
| // `index`, depending on whether the reduce operation is applied to a shape or |
| // to an extent tensor. |
| Type extentTy = block.getArgument(1).getType(); |
| if (op.getShape().getType().isa<ShapeType>()) { |
| if (!extentTy.isa<SizeType>()) |
| return op.emitOpError("argument 1 of ReduceOp body is expected to be of " |
| "SizeType if the ReduceOp operates on a ShapeType"); |
| } else { |
| if (!extentTy.isa<IndexType>()) |
| return op.emitOpError( |
| "argument 1 of ReduceOp body is expected to be of IndexType if the " |
| "ReduceOp operates on an extent tensor"); |
| } |
| |
| for (auto type : llvm::enumerate(op.getInitVals())) |
| if (block.getArgument(type.index() + 2).getType() != type.value().getType()) |
| return op.emitOpError() |
| << "type mismatch between argument " << type.index() + 2 |
| << " of ReduceOp body and initial value " << type.index(); |
| return success(); |
| } |
| |
| static ParseResult parseReduceOp(OpAsmParser &parser, OperationState &result) { |
| // Parse operands. |
| SmallVector<OpAsmParser::OperandType, 3> operands; |
| Type shapeOrExtentTensorType; |
| if (parser.parseOperandList(operands, /*requiredOperandCount=*/-1, |
| OpAsmParser::Delimiter::Paren) || |
| parser.parseColonType(shapeOrExtentTensorType) || |
| parser.parseOptionalArrowTypeList(result.types)) |
| return failure(); |
| |
| // Resolve operands. |
| auto initVals = llvm::makeArrayRef(operands).drop_front(); |
| if (parser.resolveOperand(operands.front(), shapeOrExtentTensorType, |
| result.operands) || |
| parser.resolveOperands(initVals, result.types, parser.getNameLoc(), |
| result.operands)) |
| return failure(); |
| |
| // Parse the body. |
| Region *body = result.addRegion(); |
| if (parser.parseRegion(*body, /*args=*/{}, /*argTypes=*/{})) |
| return failure(); |
| |
| // Parse attributes. |
| if (parser.parseOptionalAttrDict(result.attributes)) |
| return failure(); |
| |
| return success(); |
| } |
| |
| static void print(OpAsmPrinter &p, ReduceOp op) { |
| p << '(' << op.getShape() << ", " << op.getInitVals() |
| << ") : " << op.getShape().getType(); |
| p.printOptionalArrowTypeList(op.getResultTypes()); |
| p.printRegion(op.getRegion()); |
| p.printOptionalAttrDict(op->getAttrs()); |
| } |
| |
| #define GET_OP_CLASSES |
| #include "mlir/Dialect/Shape/IR/ShapeOps.cpp.inc" |