| //===- LocalAliasAnalysis.cpp - Local stateless alias Analysis for MLIR ---===// |
| // |
| // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
| // See https://llvm.org/LICENSE.txt for license information. |
| // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
| // |
| //===----------------------------------------------------------------------===// |
| |
| #include "mlir/Analysis/AliasAnalysis/LocalAliasAnalysis.h" |
| |
| #include "mlir/IR/FunctionSupport.h" |
| #include "mlir/IR/Matchers.h" |
| #include "mlir/Interfaces/ControlFlowInterfaces.h" |
| #include "mlir/Interfaces/SideEffectInterfaces.h" |
| #include "mlir/Interfaces/ViewLikeInterface.h" |
| |
| using namespace mlir; |
| |
| //===----------------------------------------------------------------------===// |
| // Underlying Address Computation |
| //===----------------------------------------------------------------------===// |
| |
| /// The maximum depth that will be searched when trying to find an underlying |
| /// value. |
| static constexpr unsigned maxUnderlyingValueSearchDepth = 10; |
| |
| /// Given a value, collect all of the underlying values being addressed. |
| static void collectUnderlyingAddressValues(Value value, unsigned maxDepth, |
| DenseSet<Value> &visited, |
| SmallVectorImpl<Value> &output); |
| |
| /// Given a successor (`region`) of a RegionBranchOpInterface, collect all of |
| /// the underlying values being addressed by one of the successor inputs. If the |
| /// provided `region` is null, as per `RegionBranchOpInterface` this represents |
| /// the parent operation. |
| static void collectUnderlyingAddressValues(RegionBranchOpInterface branch, |
| Region *region, Value inputValue, |
| unsigned inputIndex, |
| unsigned maxDepth, |
| DenseSet<Value> &visited, |
| SmallVectorImpl<Value> &output) { |
| // Given the index of a region of the branch (`predIndex`), or None to |
| // represent the parent operation, try to return the index into the outputs of |
| // this region predecessor that correspond to the input values of `region`. If |
| // an index could not be found, None is returned instead. |
| auto getOperandIndexIfPred = |
| [&](Optional<unsigned> predIndex) -> Optional<unsigned> { |
| SmallVector<RegionSuccessor, 2> successors; |
| branch.getSuccessorRegions(predIndex, successors); |
| for (RegionSuccessor &successor : successors) { |
| if (successor.getSuccessor() != region) |
| continue; |
| // Check that the successor inputs map to the given input value. |
| ValueRange inputs = successor.getSuccessorInputs(); |
| if (inputs.empty()) { |
| output.push_back(inputValue); |
| break; |
| } |
| unsigned firstInputIndex, lastInputIndex; |
| if (region) { |
| firstInputIndex = inputs[0].cast<BlockArgument>().getArgNumber(); |
| lastInputIndex = inputs.back().cast<BlockArgument>().getArgNumber(); |
| } else { |
| firstInputIndex = inputs[0].cast<OpResult>().getResultNumber(); |
| lastInputIndex = inputs.back().cast<OpResult>().getResultNumber(); |
| } |
| if (firstInputIndex > inputIndex || lastInputIndex < inputIndex) { |
| output.push_back(inputValue); |
| break; |
| } |
| return inputIndex - firstInputIndex; |
| } |
| return llvm::None; |
| }; |
| |
| // Check branches from the parent operation. |
| Optional<unsigned> regionIndex; |
| if (region) { |
| // Determine the actual region number from the passed region. |
| regionIndex = region->getRegionNumber(); |
| if (Optional<unsigned> operandIndex = |
| getOperandIndexIfPred(/*predIndex=*/llvm::None)) { |
| collectUnderlyingAddressValues( |
| branch.getSuccessorEntryOperands(*regionIndex)[*operandIndex], |
| maxDepth, visited, output); |
| } |
| } |
| // Check branches from each child region. |
| Operation *op = branch.getOperation(); |
| for (int i = 0, e = op->getNumRegions(); i != e; ++i) { |
| if (Optional<unsigned> operandIndex = getOperandIndexIfPred(i)) { |
| for (Block &block : op->getRegion(i)) { |
| Operation *term = block.getTerminator(); |
| // Try to determine possible region-branch successor operands for the |
| // current region. |
| auto successorOperands = |
| getRegionBranchSuccessorOperands(term, regionIndex); |
| if (successorOperands) { |
| collectUnderlyingAddressValues((*successorOperands)[*operandIndex], |
| maxDepth, visited, output); |
| } else if (term->getNumSuccessors()) { |
| // Otherwise, if this terminator may exit the region we can't make |
| // any assumptions about which values get passed. |
| output.push_back(inputValue); |
| return; |
| } |
| } |
| } |
| } |
| } |
| |
| /// Given a result, collect all of the underlying values being addressed. |
| static void collectUnderlyingAddressValues(OpResult result, unsigned maxDepth, |
| DenseSet<Value> &visited, |
| SmallVectorImpl<Value> &output) { |
| Operation *op = result.getOwner(); |
| |
| // If this is a view, unwrap to the source. |
| if (ViewLikeOpInterface view = dyn_cast<ViewLikeOpInterface>(op)) |
| return collectUnderlyingAddressValues(view.getViewSource(), maxDepth, |
| visited, output); |
| // Check to see if we can reason about the control flow of this op. |
| if (auto branch = dyn_cast<RegionBranchOpInterface>(op)) { |
| return collectUnderlyingAddressValues(branch, /*region=*/nullptr, result, |
| result.getResultNumber(), maxDepth, |
| visited, output); |
| } |
| |
| output.push_back(result); |
| } |
| |
| /// Given a block argument, collect all of the underlying values being |
| /// addressed. |
| static void collectUnderlyingAddressValues(BlockArgument arg, unsigned maxDepth, |
| DenseSet<Value> &visited, |
| SmallVectorImpl<Value> &output) { |
| Block *block = arg.getOwner(); |
| unsigned argNumber = arg.getArgNumber(); |
| |
| // Handle the case of a non-entry block. |
| if (!block->isEntryBlock()) { |
| for (auto it = block->pred_begin(), e = block->pred_end(); it != e; ++it) { |
| auto branch = dyn_cast<BranchOpInterface>((*it)->getTerminator()); |
| if (!branch) { |
| // We can't analyze the control flow, so bail out early. |
| output.push_back(arg); |
| return; |
| } |
| |
| // Try to get the operand passed for this argument. |
| unsigned index = it.getSuccessorIndex(); |
| Optional<OperandRange> operands = branch.getSuccessorOperands(index); |
| if (!operands) { |
| // We can't analyze the control flow, so bail out early. |
| output.push_back(arg); |
| return; |
| } |
| collectUnderlyingAddressValues((*operands)[argNumber], maxDepth, visited, |
| output); |
| } |
| return; |
| } |
| |
| // Otherwise, check to see if we can reason about the control flow of this op. |
| Region *region = block->getParent(); |
| Operation *op = region->getParentOp(); |
| if (auto branch = dyn_cast<RegionBranchOpInterface>(op)) { |
| return collectUnderlyingAddressValues(branch, region, arg, argNumber, |
| maxDepth, visited, output); |
| } |
| |
| // We can't reason about the underlying address of this argument. |
| output.push_back(arg); |
| } |
| |
| /// Given a value, collect all of the underlying values being addressed. |
| static void collectUnderlyingAddressValues(Value value, unsigned maxDepth, |
| DenseSet<Value> &visited, |
| SmallVectorImpl<Value> &output) { |
| // Check that we don't infinitely recurse. |
| if (!visited.insert(value).second) |
| return; |
| if (maxDepth == 0) { |
| output.push_back(value); |
| return; |
| } |
| --maxDepth; |
| |
| if (BlockArgument arg = value.dyn_cast<BlockArgument>()) |
| return collectUnderlyingAddressValues(arg, maxDepth, visited, output); |
| collectUnderlyingAddressValues(value.cast<OpResult>(), maxDepth, visited, |
| output); |
| } |
| |
| /// Given a value, collect all of the underlying values being addressed. |
| static void collectUnderlyingAddressValues(Value value, |
| SmallVectorImpl<Value> &output) { |
| DenseSet<Value> visited; |
| collectUnderlyingAddressValues(value, maxUnderlyingValueSearchDepth, visited, |
| output); |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // LocalAliasAnalysis: alias |
| //===----------------------------------------------------------------------===// |
| |
| /// Given a value, try to get an allocation effect attached to it. If |
| /// successful, `allocEffect` is populated with the effect. If an effect was |
| /// found, `allocScopeOp` is also specified if a parent operation of `value` |
| /// could be identified that bounds the scope of the allocated value; i.e. if |
| /// non-null it specifies the parent operation that the allocation does not |
| /// escape. If no scope is found, `allocScopeOp` is set to nullptr. |
| static LogicalResult |
| getAllocEffectFor(Value value, Optional<MemoryEffects::EffectInstance> &effect, |
| Operation *&allocScopeOp) { |
| // Try to get a memory effect interface for the parent operation. |
| Operation *op; |
| if (BlockArgument arg = value.dyn_cast<BlockArgument>()) |
| op = arg.getOwner()->getParentOp(); |
| else |
| op = value.cast<OpResult>().getOwner(); |
| MemoryEffectOpInterface interface = dyn_cast<MemoryEffectOpInterface>(op); |
| if (!interface) |
| return failure(); |
| |
| // Try to find an allocation effect on the resource. |
| if (!(effect = interface.getEffectOnValue<MemoryEffects::Allocate>(value))) |
| return failure(); |
| |
| // If we found an allocation effect, try to find a scope for the allocation. |
| // If the resource of this allocation is automatically scoped, find the parent |
| // operation that bounds the allocation scope. |
| if (llvm::isa<SideEffects::AutomaticAllocationScopeResource>( |
| effect->getResource())) { |
| allocScopeOp = op->getParentWithTrait<OpTrait::AutomaticAllocationScope>(); |
| return success(); |
| } |
| |
| // TODO: Here we could look at the users to see if the resource is either |
| // freed on all paths within the region, or is just not captured by anything. |
| // For now assume allocation scope to the function scope (we don't care if |
| // pointer escape outside function). |
| allocScopeOp = op->getParentWithTrait<OpTrait::FunctionLike>(); |
| return success(); |
| } |
| |
| /// Given the two values, return their aliasing behavior. |
| static AliasResult aliasImpl(Value lhs, Value rhs) { |
| if (lhs == rhs) |
| return AliasResult::MustAlias; |
| Operation *lhsAllocScope = nullptr, *rhsAllocScope = nullptr; |
| Optional<MemoryEffects::EffectInstance> lhsAlloc, rhsAlloc; |
| |
| // Handle the case where lhs is a constant. |
| Attribute lhsAttr, rhsAttr; |
| if (matchPattern(lhs, m_Constant(&lhsAttr))) { |
| // TODO: This is overly conservative. Two matching constants don't |
| // necessarily map to the same address. For example, if the two values |
| // correspond to different symbols that both represent a definition. |
| if (matchPattern(rhs, m_Constant(&rhsAttr))) |
| return AliasResult::MayAlias; |
| |
| // Try to find an alloc effect on rhs. If an effect was found we can't |
| // alias, otherwise we might. |
| return succeeded(getAllocEffectFor(rhs, rhsAlloc, rhsAllocScope)) |
| ? AliasResult::NoAlias |
| : AliasResult::MayAlias; |
| } |
| // Handle the case where rhs is a constant. |
| if (matchPattern(rhs, m_Constant(&rhsAttr))) { |
| // Try to find an alloc effect on lhs. If an effect was found we can't |
| // alias, otherwise we might. |
| return succeeded(getAllocEffectFor(lhs, lhsAlloc, lhsAllocScope)) |
| ? AliasResult::NoAlias |
| : AliasResult::MayAlias; |
| } |
| |
| // Otherwise, neither of the values are constant so check to see if either has |
| // an allocation effect. |
| bool lhsHasAlloc = succeeded(getAllocEffectFor(lhs, lhsAlloc, lhsAllocScope)); |
| bool rhsHasAlloc = succeeded(getAllocEffectFor(rhs, rhsAlloc, rhsAllocScope)); |
| if (lhsHasAlloc == rhsHasAlloc) { |
| // If both values have an allocation effect we know they don't alias, and if |
| // neither have an effect we can't make an assumptions. |
| return lhsHasAlloc ? AliasResult::NoAlias : AliasResult::MayAlias; |
| } |
| |
| // When we reach this point we have one value with a known allocation effect, |
| // and one without. Move the one with the effect to the lhs to make the next |
| // checks simpler. |
| if (rhsHasAlloc) { |
| std::swap(lhs, rhs); |
| lhsAlloc = rhsAlloc; |
| lhsAllocScope = rhsAllocScope; |
| } |
| |
| // If the effect has a scoped allocation region, check to see if the |
| // non-effect value is defined above that scope. |
| if (lhsAllocScope) { |
| // If the parent operation of rhs is an ancestor of the allocation scope, or |
| // if rhs is an entry block argument of the allocation scope we know the two |
| // values can't alias. |
| Operation *rhsParentOp = rhs.getParentRegion()->getParentOp(); |
| if (rhsParentOp->isProperAncestor(lhsAllocScope)) |
| return AliasResult::NoAlias; |
| if (rhsParentOp == lhsAllocScope) { |
| BlockArgument rhsArg = rhs.dyn_cast<BlockArgument>(); |
| if (rhsArg && rhs.getParentBlock()->isEntryBlock()) |
| return AliasResult::NoAlias; |
| } |
| } |
| |
| // If we couldn't reason about the relationship between the two values, |
| // conservatively assume they might alias. |
| return AliasResult::MayAlias; |
| } |
| |
| /// Given the two values, return their aliasing behavior. |
| AliasResult LocalAliasAnalysis::alias(Value lhs, Value rhs) { |
| if (lhs == rhs) |
| return AliasResult::MustAlias; |
| |
| // Get the underlying values being addressed. |
| SmallVector<Value, 8> lhsValues, rhsValues; |
| collectUnderlyingAddressValues(lhs, lhsValues); |
| collectUnderlyingAddressValues(rhs, rhsValues); |
| |
| // If we failed to collect for either of the values somehow, conservatively |
| // assume they may alias. |
| if (lhsValues.empty() || rhsValues.empty()) |
| return AliasResult::MayAlias; |
| |
| // Check the alias results against each of the underlying values. |
| Optional<AliasResult> result; |
| for (Value lhsVal : lhsValues) { |
| for (Value rhsVal : rhsValues) { |
| AliasResult nextResult = aliasImpl(lhsVal, rhsVal); |
| result = result ? result->merge(nextResult) : nextResult; |
| } |
| } |
| |
| // We should always have a valid result here. |
| return *result; |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // LocalAliasAnalysis: getModRef |
| //===----------------------------------------------------------------------===// |
| |
| ModRefResult LocalAliasAnalysis::getModRef(Operation *op, Value location) { |
| // Check to see if this operation relies on nested side effects. |
| if (op->hasTrait<OpTrait::HasRecursiveSideEffects>()) { |
| // TODO: To check recursive operations we need to check all of the nested |
| // operations, which can result in a quadratic number of queries. We should |
| // introduce some caching of some kind to help alleviate this, especially as |
| // this caching could be used in other areas of the codebase (e.g. when |
| // checking `wouldOpBeTriviallyDead`). |
| return ModRefResult::getModAndRef(); |
| } |
| |
| // Otherwise, check to see if this operation has a memory effect interface. |
| MemoryEffectOpInterface interface = dyn_cast<MemoryEffectOpInterface>(op); |
| if (!interface) |
| return ModRefResult::getModAndRef(); |
| |
| // Build a ModRefResult by merging the behavior of the effects of this |
| // operation. |
| SmallVector<MemoryEffects::EffectInstance> effects; |
| interface.getEffects(effects); |
| |
| ModRefResult result = ModRefResult::getNoModRef(); |
| for (const MemoryEffects::EffectInstance &effect : effects) { |
| if (isa<MemoryEffects::Allocate, MemoryEffects::Free>(effect.getEffect())) |
| continue; |
| |
| // Check for an alias between the effect and our memory location. |
| // TODO: Add support for checking an alias with a symbol reference. |
| AliasResult aliasResult = AliasResult::MayAlias; |
| if (Value effectValue = effect.getValue()) |
| aliasResult = alias(effectValue, location); |
| |
| // If we don't alias, ignore this effect. |
| if (aliasResult.isNo()) |
| continue; |
| |
| // Merge in the corresponding mod or ref for this effect. |
| if (isa<MemoryEffects::Read>(effect.getEffect())) { |
| result = result.merge(ModRefResult::getRef()); |
| } else { |
| assert(isa<MemoryEffects::Write>(effect.getEffect())); |
| result = result.merge(ModRefResult::getMod()); |
| } |
| if (result.isModAndRef()) |
| break; |
| } |
| return result; |
| } |