| //===---- CGBuiltin.cpp - Emit LLVM Code for builtins ---------------------===// |
| // |
| // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
| // See https://llvm.org/LICENSE.txt for license information. |
| // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
| // |
| //===----------------------------------------------------------------------===// |
| // |
| // This contains code to emit Builtin calls as LLVM code. |
| // |
| //===----------------------------------------------------------------------===// |
| |
| #include "CGCUDARuntime.h" |
| #include "CGCXXABI.h" |
| #include "CGObjCRuntime.h" |
| #include "CGOpenCLRuntime.h" |
| #include "CGRecordLayout.h" |
| #include "CodeGenFunction.h" |
| #include "CodeGenModule.h" |
| #include "ConstantEmitter.h" |
| #include "PatternInit.h" |
| #include "TargetInfo.h" |
| #include "clang/AST/ASTContext.h" |
| #include "clang/AST/Attr.h" |
| #include "clang/AST/Decl.h" |
| #include "clang/AST/OSLog.h" |
| #include "clang/Basic/TargetBuiltins.h" |
| #include "clang/Basic/TargetInfo.h" |
| #include "clang/CodeGen/CGFunctionInfo.h" |
| #include "llvm/ADT/APFloat.h" |
| #include "llvm/ADT/APInt.h" |
| #include "llvm/ADT/SmallPtrSet.h" |
| #include "llvm/ADT/StringExtras.h" |
| #include "llvm/Analysis/ValueTracking.h" |
| #include "llvm/IR/DataLayout.h" |
| #include "llvm/IR/InlineAsm.h" |
| #include "llvm/IR/Intrinsics.h" |
| #include "llvm/IR/IntrinsicsAArch64.h" |
| #include "llvm/IR/IntrinsicsAMDGPU.h" |
| #include "llvm/IR/IntrinsicsARM.h" |
| #include "llvm/IR/IntrinsicsBPF.h" |
| #include "llvm/IR/IntrinsicsHexagon.h" |
| #include "llvm/IR/IntrinsicsNVPTX.h" |
| #include "llvm/IR/IntrinsicsPowerPC.h" |
| #include "llvm/IR/IntrinsicsR600.h" |
| #include "llvm/IR/IntrinsicsRISCV.h" |
| #include "llvm/IR/IntrinsicsS390.h" |
| #include "llvm/IR/IntrinsicsWebAssembly.h" |
| #include "llvm/IR/IntrinsicsX86.h" |
| #include "llvm/IR/MDBuilder.h" |
| #include "llvm/IR/MatrixBuilder.h" |
| #include "llvm/Support/ConvertUTF.h" |
| #include "llvm/Support/ScopedPrinter.h" |
| #include "llvm/Support/X86TargetParser.h" |
| #include <sstream> |
| |
| using namespace clang; |
| using namespace CodeGen; |
| using namespace llvm; |
| |
| static |
| int64_t clamp(int64_t Value, int64_t Low, int64_t High) { |
| return std::min(High, std::max(Low, Value)); |
| } |
| |
| static void initializeAlloca(CodeGenFunction &CGF, AllocaInst *AI, Value *Size, |
| Align AlignmentInBytes) { |
| ConstantInt *Byte; |
| switch (CGF.getLangOpts().getTrivialAutoVarInit()) { |
| case LangOptions::TrivialAutoVarInitKind::Uninitialized: |
| // Nothing to initialize. |
| return; |
| case LangOptions::TrivialAutoVarInitKind::Zero: |
| Byte = CGF.Builder.getInt8(0x00); |
| break; |
| case LangOptions::TrivialAutoVarInitKind::Pattern: { |
| llvm::Type *Int8 = llvm::IntegerType::getInt8Ty(CGF.CGM.getLLVMContext()); |
| Byte = llvm::dyn_cast<llvm::ConstantInt>( |
| initializationPatternFor(CGF.CGM, Int8)); |
| break; |
| } |
| } |
| if (CGF.CGM.stopAutoInit()) |
| return; |
| auto *I = CGF.Builder.CreateMemSet(AI, Byte, Size, AlignmentInBytes); |
| I->addAnnotationMetadata("auto-init"); |
| } |
| |
| /// getBuiltinLibFunction - Given a builtin id for a function like |
| /// "__builtin_fabsf", return a Function* for "fabsf". |
| llvm::Constant *CodeGenModule::getBuiltinLibFunction(const FunctionDecl *FD, |
| unsigned BuiltinID) { |
| assert(Context.BuiltinInfo.isLibFunction(BuiltinID)); |
| |
| // Get the name, skip over the __builtin_ prefix (if necessary). |
| StringRef Name; |
| GlobalDecl D(FD); |
| |
| // If the builtin has been declared explicitly with an assembler label, |
| // use the mangled name. This differs from the plain label on platforms |
| // that prefix labels. |
| if (FD->hasAttr<AsmLabelAttr>()) |
| Name = getMangledName(D); |
| else |
| Name = Context.BuiltinInfo.getName(BuiltinID) + 10; |
| |
| llvm::FunctionType *Ty = |
| cast<llvm::FunctionType>(getTypes().ConvertType(FD->getType())); |
| |
| return GetOrCreateLLVMFunction(Name, Ty, D, /*ForVTable=*/false); |
| } |
| |
| /// Emit the conversions required to turn the given value into an |
| /// integer of the given size. |
| static Value *EmitToInt(CodeGenFunction &CGF, llvm::Value *V, |
| QualType T, llvm::IntegerType *IntType) { |
| V = CGF.EmitToMemory(V, T); |
| |
| if (V->getType()->isPointerTy()) |
| return CGF.Builder.CreatePtrToInt(V, IntType); |
| |
| assert(V->getType() == IntType); |
| return V; |
| } |
| |
| static Value *EmitFromInt(CodeGenFunction &CGF, llvm::Value *V, |
| QualType T, llvm::Type *ResultType) { |
| V = CGF.EmitFromMemory(V, T); |
| |
| if (ResultType->isPointerTy()) |
| return CGF.Builder.CreateIntToPtr(V, ResultType); |
| |
| assert(V->getType() == ResultType); |
| return V; |
| } |
| |
| /// Utility to insert an atomic instruction based on Intrinsic::ID |
| /// and the expression node. |
| static Value *MakeBinaryAtomicValue( |
| CodeGenFunction &CGF, llvm::AtomicRMWInst::BinOp Kind, const CallExpr *E, |
| AtomicOrdering Ordering = AtomicOrdering::SequentiallyConsistent) { |
| QualType T = E->getType(); |
| assert(E->getArg(0)->getType()->isPointerType()); |
| assert(CGF.getContext().hasSameUnqualifiedType(T, |
| E->getArg(0)->getType()->getPointeeType())); |
| assert(CGF.getContext().hasSameUnqualifiedType(T, E->getArg(1)->getType())); |
| |
| llvm::Value *DestPtr = CGF.EmitScalarExpr(E->getArg(0)); |
| unsigned AddrSpace = DestPtr->getType()->getPointerAddressSpace(); |
| |
| llvm::IntegerType *IntType = |
| llvm::IntegerType::get(CGF.getLLVMContext(), |
| CGF.getContext().getTypeSize(T)); |
| llvm::Type *IntPtrType = IntType->getPointerTo(AddrSpace); |
| |
| llvm::Value *Args[2]; |
| Args[0] = CGF.Builder.CreateBitCast(DestPtr, IntPtrType); |
| Args[1] = CGF.EmitScalarExpr(E->getArg(1)); |
| llvm::Type *ValueType = Args[1]->getType(); |
| Args[1] = EmitToInt(CGF, Args[1], T, IntType); |
| |
| llvm::Value *Result = CGF.Builder.CreateAtomicRMW( |
| Kind, Args[0], Args[1], Ordering); |
| return EmitFromInt(CGF, Result, T, ValueType); |
| } |
| |
| static Value *EmitNontemporalStore(CodeGenFunction &CGF, const CallExpr *E) { |
| Value *Val = CGF.EmitScalarExpr(E->getArg(0)); |
| Value *Address = CGF.EmitScalarExpr(E->getArg(1)); |
| |
| // Convert the type of the pointer to a pointer to the stored type. |
| Val = CGF.EmitToMemory(Val, E->getArg(0)->getType()); |
| Value *BC = CGF.Builder.CreateBitCast( |
| Address, llvm::PointerType::getUnqual(Val->getType()), "cast"); |
| LValue LV = CGF.MakeNaturalAlignAddrLValue(BC, E->getArg(0)->getType()); |
| LV.setNontemporal(true); |
| CGF.EmitStoreOfScalar(Val, LV, false); |
| return nullptr; |
| } |
| |
| static Value *EmitNontemporalLoad(CodeGenFunction &CGF, const CallExpr *E) { |
| Value *Address = CGF.EmitScalarExpr(E->getArg(0)); |
| |
| LValue LV = CGF.MakeNaturalAlignAddrLValue(Address, E->getType()); |
| LV.setNontemporal(true); |
| return CGF.EmitLoadOfScalar(LV, E->getExprLoc()); |
| } |
| |
| static RValue EmitBinaryAtomic(CodeGenFunction &CGF, |
| llvm::AtomicRMWInst::BinOp Kind, |
| const CallExpr *E) { |
| return RValue::get(MakeBinaryAtomicValue(CGF, Kind, E)); |
| } |
| |
| /// Utility to insert an atomic instruction based Intrinsic::ID and |
| /// the expression node, where the return value is the result of the |
| /// operation. |
| static RValue EmitBinaryAtomicPost(CodeGenFunction &CGF, |
| llvm::AtomicRMWInst::BinOp Kind, |
| const CallExpr *E, |
| Instruction::BinaryOps Op, |
| bool Invert = false) { |
| QualType T = E->getType(); |
| assert(E->getArg(0)->getType()->isPointerType()); |
| assert(CGF.getContext().hasSameUnqualifiedType(T, |
| E->getArg(0)->getType()->getPointeeType())); |
| assert(CGF.getContext().hasSameUnqualifiedType(T, E->getArg(1)->getType())); |
| |
| llvm::Value *DestPtr = CGF.EmitScalarExpr(E->getArg(0)); |
| unsigned AddrSpace = DestPtr->getType()->getPointerAddressSpace(); |
| |
| llvm::IntegerType *IntType = |
| llvm::IntegerType::get(CGF.getLLVMContext(), |
| CGF.getContext().getTypeSize(T)); |
| llvm::Type *IntPtrType = IntType->getPointerTo(AddrSpace); |
| |
| llvm::Value *Args[2]; |
| Args[1] = CGF.EmitScalarExpr(E->getArg(1)); |
| llvm::Type *ValueType = Args[1]->getType(); |
| Args[1] = EmitToInt(CGF, Args[1], T, IntType); |
| Args[0] = CGF.Builder.CreateBitCast(DestPtr, IntPtrType); |
| |
| llvm::Value *Result = CGF.Builder.CreateAtomicRMW( |
| Kind, Args[0], Args[1], llvm::AtomicOrdering::SequentiallyConsistent); |
| Result = CGF.Builder.CreateBinOp(Op, Result, Args[1]); |
| if (Invert) |
| Result = |
| CGF.Builder.CreateBinOp(llvm::Instruction::Xor, Result, |
| llvm::ConstantInt::getAllOnesValue(IntType)); |
| Result = EmitFromInt(CGF, Result, T, ValueType); |
| return RValue::get(Result); |
| } |
| |
| /// Utility to insert an atomic cmpxchg instruction. |
| /// |
| /// @param CGF The current codegen function. |
| /// @param E Builtin call expression to convert to cmpxchg. |
| /// arg0 - address to operate on |
| /// arg1 - value to compare with |
| /// arg2 - new value |
| /// @param ReturnBool Specifies whether to return success flag of |
| /// cmpxchg result or the old value. |
| /// |
| /// @returns result of cmpxchg, according to ReturnBool |
| /// |
| /// Note: In order to lower Microsoft's _InterlockedCompareExchange* intrinsics |
| /// invoke the function EmitAtomicCmpXchgForMSIntrin. |
| static Value *MakeAtomicCmpXchgValue(CodeGenFunction &CGF, const CallExpr *E, |
| bool ReturnBool) { |
| QualType T = ReturnBool ? E->getArg(1)->getType() : E->getType(); |
| llvm::Value *DestPtr = CGF.EmitScalarExpr(E->getArg(0)); |
| unsigned AddrSpace = DestPtr->getType()->getPointerAddressSpace(); |
| |
| llvm::IntegerType *IntType = llvm::IntegerType::get( |
| CGF.getLLVMContext(), CGF.getContext().getTypeSize(T)); |
| llvm::Type *IntPtrType = IntType->getPointerTo(AddrSpace); |
| |
| Value *Args[3]; |
| Args[0] = CGF.Builder.CreateBitCast(DestPtr, IntPtrType); |
| Args[1] = CGF.EmitScalarExpr(E->getArg(1)); |
| llvm::Type *ValueType = Args[1]->getType(); |
| Args[1] = EmitToInt(CGF, Args[1], T, IntType); |
| Args[2] = EmitToInt(CGF, CGF.EmitScalarExpr(E->getArg(2)), T, IntType); |
| |
| Value *Pair = CGF.Builder.CreateAtomicCmpXchg( |
| Args[0], Args[1], Args[2], llvm::AtomicOrdering::SequentiallyConsistent, |
| llvm::AtomicOrdering::SequentiallyConsistent); |
| if (ReturnBool) |
| // Extract boolean success flag and zext it to int. |
| return CGF.Builder.CreateZExt(CGF.Builder.CreateExtractValue(Pair, 1), |
| CGF.ConvertType(E->getType())); |
| else |
| // Extract old value and emit it using the same type as compare value. |
| return EmitFromInt(CGF, CGF.Builder.CreateExtractValue(Pair, 0), T, |
| ValueType); |
| } |
| |
| /// This function should be invoked to emit atomic cmpxchg for Microsoft's |
| /// _InterlockedCompareExchange* intrinsics which have the following signature: |
| /// T _InterlockedCompareExchange(T volatile *Destination, |
| /// T Exchange, |
| /// T Comparand); |
| /// |
| /// Whereas the llvm 'cmpxchg' instruction has the following syntax: |
| /// cmpxchg *Destination, Comparand, Exchange. |
| /// So we need to swap Comparand and Exchange when invoking |
| /// CreateAtomicCmpXchg. That is the reason we could not use the above utility |
| /// function MakeAtomicCmpXchgValue since it expects the arguments to be |
| /// already swapped. |
| |
| static |
| Value *EmitAtomicCmpXchgForMSIntrin(CodeGenFunction &CGF, const CallExpr *E, |
| AtomicOrdering SuccessOrdering = AtomicOrdering::SequentiallyConsistent) { |
| assert(E->getArg(0)->getType()->isPointerType()); |
| assert(CGF.getContext().hasSameUnqualifiedType( |
| E->getType(), E->getArg(0)->getType()->getPointeeType())); |
| assert(CGF.getContext().hasSameUnqualifiedType(E->getType(), |
| E->getArg(1)->getType())); |
| assert(CGF.getContext().hasSameUnqualifiedType(E->getType(), |
| E->getArg(2)->getType())); |
| |
| auto *Destination = CGF.EmitScalarExpr(E->getArg(0)); |
| auto *Comparand = CGF.EmitScalarExpr(E->getArg(2)); |
| auto *Exchange = CGF.EmitScalarExpr(E->getArg(1)); |
| |
| // For Release ordering, the failure ordering should be Monotonic. |
| auto FailureOrdering = SuccessOrdering == AtomicOrdering::Release ? |
| AtomicOrdering::Monotonic : |
| SuccessOrdering; |
| |
| // The atomic instruction is marked volatile for consistency with MSVC. This |
| // blocks the few atomics optimizations that LLVM has. If we want to optimize |
| // _Interlocked* operations in the future, we will have to remove the volatile |
| // marker. |
| auto *Result = CGF.Builder.CreateAtomicCmpXchg( |
| Destination, Comparand, Exchange, |
| SuccessOrdering, FailureOrdering); |
| Result->setVolatile(true); |
| return CGF.Builder.CreateExtractValue(Result, 0); |
| } |
| |
| // 64-bit Microsoft platforms support 128 bit cmpxchg operations. They are |
| // prototyped like this: |
| // |
| // unsigned char _InterlockedCompareExchange128...( |
| // __int64 volatile * _Destination, |
| // __int64 _ExchangeHigh, |
| // __int64 _ExchangeLow, |
| // __int64 * _ComparandResult); |
| static Value *EmitAtomicCmpXchg128ForMSIntrin(CodeGenFunction &CGF, |
| const CallExpr *E, |
| AtomicOrdering SuccessOrdering) { |
| assert(E->getNumArgs() == 4); |
| llvm::Value *Destination = CGF.EmitScalarExpr(E->getArg(0)); |
| llvm::Value *ExchangeHigh = CGF.EmitScalarExpr(E->getArg(1)); |
| llvm::Value *ExchangeLow = CGF.EmitScalarExpr(E->getArg(2)); |
| llvm::Value *ComparandPtr = CGF.EmitScalarExpr(E->getArg(3)); |
| |
| assert(Destination->getType()->isPointerTy()); |
| assert(!ExchangeHigh->getType()->isPointerTy()); |
| assert(!ExchangeLow->getType()->isPointerTy()); |
| assert(ComparandPtr->getType()->isPointerTy()); |
| |
| // For Release ordering, the failure ordering should be Monotonic. |
| auto FailureOrdering = SuccessOrdering == AtomicOrdering::Release |
| ? AtomicOrdering::Monotonic |
| : SuccessOrdering; |
| |
| // Convert to i128 pointers and values. |
| llvm::Type *Int128Ty = llvm::IntegerType::get(CGF.getLLVMContext(), 128); |
| llvm::Type *Int128PtrTy = Int128Ty->getPointerTo(); |
| Destination = CGF.Builder.CreateBitCast(Destination, Int128PtrTy); |
| Address ComparandResult(CGF.Builder.CreateBitCast(ComparandPtr, Int128PtrTy), |
| CGF.getContext().toCharUnitsFromBits(128)); |
| |
| // (((i128)hi) << 64) | ((i128)lo) |
| ExchangeHigh = CGF.Builder.CreateZExt(ExchangeHigh, Int128Ty); |
| ExchangeLow = CGF.Builder.CreateZExt(ExchangeLow, Int128Ty); |
| ExchangeHigh = |
| CGF.Builder.CreateShl(ExchangeHigh, llvm::ConstantInt::get(Int128Ty, 64)); |
| llvm::Value *Exchange = CGF.Builder.CreateOr(ExchangeHigh, ExchangeLow); |
| |
| // Load the comparand for the instruction. |
| llvm::Value *Comparand = CGF.Builder.CreateLoad(ComparandResult); |
| |
| auto *CXI = CGF.Builder.CreateAtomicCmpXchg(Destination, Comparand, Exchange, |
| SuccessOrdering, FailureOrdering); |
| |
| // The atomic instruction is marked volatile for consistency with MSVC. This |
| // blocks the few atomics optimizations that LLVM has. If we want to optimize |
| // _Interlocked* operations in the future, we will have to remove the volatile |
| // marker. |
| CXI->setVolatile(true); |
| |
| // Store the result as an outparameter. |
| CGF.Builder.CreateStore(CGF.Builder.CreateExtractValue(CXI, 0), |
| ComparandResult); |
| |
| // Get the success boolean and zero extend it to i8. |
| Value *Success = CGF.Builder.CreateExtractValue(CXI, 1); |
| return CGF.Builder.CreateZExt(Success, CGF.Int8Ty); |
| } |
| |
| static Value *EmitAtomicIncrementValue(CodeGenFunction &CGF, const CallExpr *E, |
| AtomicOrdering Ordering = AtomicOrdering::SequentiallyConsistent) { |
| assert(E->getArg(0)->getType()->isPointerType()); |
| |
| auto *IntTy = CGF.ConvertType(E->getType()); |
| auto *Result = CGF.Builder.CreateAtomicRMW( |
| AtomicRMWInst::Add, |
| CGF.EmitScalarExpr(E->getArg(0)), |
| ConstantInt::get(IntTy, 1), |
| Ordering); |
| return CGF.Builder.CreateAdd(Result, ConstantInt::get(IntTy, 1)); |
| } |
| |
| static Value *EmitAtomicDecrementValue(CodeGenFunction &CGF, const CallExpr *E, |
| AtomicOrdering Ordering = AtomicOrdering::SequentiallyConsistent) { |
| assert(E->getArg(0)->getType()->isPointerType()); |
| |
| auto *IntTy = CGF.ConvertType(E->getType()); |
| auto *Result = CGF.Builder.CreateAtomicRMW( |
| AtomicRMWInst::Sub, |
| CGF.EmitScalarExpr(E->getArg(0)), |
| ConstantInt::get(IntTy, 1), |
| Ordering); |
| return CGF.Builder.CreateSub(Result, ConstantInt::get(IntTy, 1)); |
| } |
| |
| // Build a plain volatile load. |
| static Value *EmitISOVolatileLoad(CodeGenFunction &CGF, const CallExpr *E) { |
| Value *Ptr = CGF.EmitScalarExpr(E->getArg(0)); |
| QualType ElTy = E->getArg(0)->getType()->getPointeeType(); |
| CharUnits LoadSize = CGF.getContext().getTypeSizeInChars(ElTy); |
| llvm::Type *ITy = |
| llvm::IntegerType::get(CGF.getLLVMContext(), LoadSize.getQuantity() * 8); |
| Ptr = CGF.Builder.CreateBitCast(Ptr, ITy->getPointerTo()); |
| llvm::LoadInst *Load = CGF.Builder.CreateAlignedLoad(ITy, Ptr, LoadSize); |
| Load->setVolatile(true); |
| return Load; |
| } |
| |
| // Build a plain volatile store. |
| static Value *EmitISOVolatileStore(CodeGenFunction &CGF, const CallExpr *E) { |
| Value *Ptr = CGF.EmitScalarExpr(E->getArg(0)); |
| Value *Value = CGF.EmitScalarExpr(E->getArg(1)); |
| QualType ElTy = E->getArg(0)->getType()->getPointeeType(); |
| CharUnits StoreSize = CGF.getContext().getTypeSizeInChars(ElTy); |
| llvm::Type *ITy = |
| llvm::IntegerType::get(CGF.getLLVMContext(), StoreSize.getQuantity() * 8); |
| Ptr = CGF.Builder.CreateBitCast(Ptr, ITy->getPointerTo()); |
| llvm::StoreInst *Store = |
| CGF.Builder.CreateAlignedStore(Value, Ptr, StoreSize); |
| Store->setVolatile(true); |
| return Store; |
| } |
| |
| // Emit a simple mangled intrinsic that has 1 argument and a return type |
| // matching the argument type. Depending on mode, this may be a constrained |
| // floating-point intrinsic. |
| static Value *emitUnaryMaybeConstrainedFPBuiltin(CodeGenFunction &CGF, |
| const CallExpr *E, unsigned IntrinsicID, |
| unsigned ConstrainedIntrinsicID) { |
| llvm::Value *Src0 = CGF.EmitScalarExpr(E->getArg(0)); |
| |
| if (CGF.Builder.getIsFPConstrained()) { |
| CodeGenFunction::CGFPOptionsRAII FPOptsRAII(CGF, E); |
| Function *F = CGF.CGM.getIntrinsic(ConstrainedIntrinsicID, Src0->getType()); |
| return CGF.Builder.CreateConstrainedFPCall(F, { Src0 }); |
| } else { |
| Function *F = CGF.CGM.getIntrinsic(IntrinsicID, Src0->getType()); |
| return CGF.Builder.CreateCall(F, Src0); |
| } |
| } |
| |
| // Emit an intrinsic that has 2 operands of the same type as its result. |
| // Depending on mode, this may be a constrained floating-point intrinsic. |
| static Value *emitBinaryMaybeConstrainedFPBuiltin(CodeGenFunction &CGF, |
| const CallExpr *E, unsigned IntrinsicID, |
| unsigned ConstrainedIntrinsicID) { |
| llvm::Value *Src0 = CGF.EmitScalarExpr(E->getArg(0)); |
| llvm::Value *Src1 = CGF.EmitScalarExpr(E->getArg(1)); |
| |
| if (CGF.Builder.getIsFPConstrained()) { |
| CodeGenFunction::CGFPOptionsRAII FPOptsRAII(CGF, E); |
| Function *F = CGF.CGM.getIntrinsic(ConstrainedIntrinsicID, Src0->getType()); |
| return CGF.Builder.CreateConstrainedFPCall(F, { Src0, Src1 }); |
| } else { |
| Function *F = CGF.CGM.getIntrinsic(IntrinsicID, Src0->getType()); |
| return CGF.Builder.CreateCall(F, { Src0, Src1 }); |
| } |
| } |
| |
| // Emit an intrinsic that has 3 operands of the same type as its result. |
| // Depending on mode, this may be a constrained floating-point intrinsic. |
| static Value *emitTernaryMaybeConstrainedFPBuiltin(CodeGenFunction &CGF, |
| const CallExpr *E, unsigned IntrinsicID, |
| unsigned ConstrainedIntrinsicID) { |
| llvm::Value *Src0 = CGF.EmitScalarExpr(E->getArg(0)); |
| llvm::Value *Src1 = CGF.EmitScalarExpr(E->getArg(1)); |
| llvm::Value *Src2 = CGF.EmitScalarExpr(E->getArg(2)); |
| |
| if (CGF.Builder.getIsFPConstrained()) { |
| CodeGenFunction::CGFPOptionsRAII FPOptsRAII(CGF, E); |
| Function *F = CGF.CGM.getIntrinsic(ConstrainedIntrinsicID, Src0->getType()); |
| return CGF.Builder.CreateConstrainedFPCall(F, { Src0, Src1, Src2 }); |
| } else { |
| Function *F = CGF.CGM.getIntrinsic(IntrinsicID, Src0->getType()); |
| return CGF.Builder.CreateCall(F, { Src0, Src1, Src2 }); |
| } |
| } |
| |
| // Emit an intrinsic where all operands are of the same type as the result. |
| // Depending on mode, this may be a constrained floating-point intrinsic. |
| static Value *emitCallMaybeConstrainedFPBuiltin(CodeGenFunction &CGF, |
| unsigned IntrinsicID, |
| unsigned ConstrainedIntrinsicID, |
| llvm::Type *Ty, |
| ArrayRef<Value *> Args) { |
| Function *F; |
| if (CGF.Builder.getIsFPConstrained()) |
| F = CGF.CGM.getIntrinsic(ConstrainedIntrinsicID, Ty); |
| else |
| F = CGF.CGM.getIntrinsic(IntrinsicID, Ty); |
| |
| if (CGF.Builder.getIsFPConstrained()) |
| return CGF.Builder.CreateConstrainedFPCall(F, Args); |
| else |
| return CGF.Builder.CreateCall(F, Args); |
| } |
| |
| // Emit a simple mangled intrinsic that has 1 argument and a return type |
| // matching the argument type. |
| static Value *emitUnaryBuiltin(CodeGenFunction &CGF, |
| const CallExpr *E, |
| unsigned IntrinsicID) { |
| llvm::Value *Src0 = CGF.EmitScalarExpr(E->getArg(0)); |
| |
| Function *F = CGF.CGM.getIntrinsic(IntrinsicID, Src0->getType()); |
| return CGF.Builder.CreateCall(F, Src0); |
| } |
| |
| // Emit an intrinsic that has 2 operands of the same type as its result. |
| static Value *emitBinaryBuiltin(CodeGenFunction &CGF, |
| const CallExpr *E, |
| unsigned IntrinsicID) { |
| llvm::Value *Src0 = CGF.EmitScalarExpr(E->getArg(0)); |
| llvm::Value *Src1 = CGF.EmitScalarExpr(E->getArg(1)); |
| |
| Function *F = CGF.CGM.getIntrinsic(IntrinsicID, Src0->getType()); |
| return CGF.Builder.CreateCall(F, { Src0, Src1 }); |
| } |
| |
| // Emit an intrinsic that has 3 operands of the same type as its result. |
| static Value *emitTernaryBuiltin(CodeGenFunction &CGF, |
| const CallExpr *E, |
| unsigned IntrinsicID) { |
| llvm::Value *Src0 = CGF.EmitScalarExpr(E->getArg(0)); |
| llvm::Value *Src1 = CGF.EmitScalarExpr(E->getArg(1)); |
| llvm::Value *Src2 = CGF.EmitScalarExpr(E->getArg(2)); |
| |
| Function *F = CGF.CGM.getIntrinsic(IntrinsicID, Src0->getType()); |
| return CGF.Builder.CreateCall(F, { Src0, Src1, Src2 }); |
| } |
| |
| // Emit an intrinsic that has 1 float or double operand, and 1 integer. |
| static Value *emitFPIntBuiltin(CodeGenFunction &CGF, |
| const CallExpr *E, |
| unsigned IntrinsicID) { |
| llvm::Value *Src0 = CGF.EmitScalarExpr(E->getArg(0)); |
| llvm::Value *Src1 = CGF.EmitScalarExpr(E->getArg(1)); |
| |
| Function *F = CGF.CGM.getIntrinsic(IntrinsicID, Src0->getType()); |
| return CGF.Builder.CreateCall(F, {Src0, Src1}); |
| } |
| |
| // Emit an intrinsic that has overloaded integer result and fp operand. |
| static Value * |
| emitMaybeConstrainedFPToIntRoundBuiltin(CodeGenFunction &CGF, const CallExpr *E, |
| unsigned IntrinsicID, |
| unsigned ConstrainedIntrinsicID) { |
| llvm::Type *ResultType = CGF.ConvertType(E->getType()); |
| llvm::Value *Src0 = CGF.EmitScalarExpr(E->getArg(0)); |
| |
| if (CGF.Builder.getIsFPConstrained()) { |
| CodeGenFunction::CGFPOptionsRAII FPOptsRAII(CGF, E); |
| Function *F = CGF.CGM.getIntrinsic(ConstrainedIntrinsicID, |
| {ResultType, Src0->getType()}); |
| return CGF.Builder.CreateConstrainedFPCall(F, {Src0}); |
| } else { |
| Function *F = |
| CGF.CGM.getIntrinsic(IntrinsicID, {ResultType, Src0->getType()}); |
| return CGF.Builder.CreateCall(F, Src0); |
| } |
| } |
| |
| /// EmitFAbs - Emit a call to @llvm.fabs(). |
| static Value *EmitFAbs(CodeGenFunction &CGF, Value *V) { |
| Function *F = CGF.CGM.getIntrinsic(Intrinsic::fabs, V->getType()); |
| llvm::CallInst *Call = CGF.Builder.CreateCall(F, V); |
| Call->setDoesNotAccessMemory(); |
| return Call; |
| } |
| |
| /// Emit the computation of the sign bit for a floating point value. Returns |
| /// the i1 sign bit value. |
| static Value *EmitSignBit(CodeGenFunction &CGF, Value *V) { |
| LLVMContext &C = CGF.CGM.getLLVMContext(); |
| |
| llvm::Type *Ty = V->getType(); |
| int Width = Ty->getPrimitiveSizeInBits(); |
| llvm::Type *IntTy = llvm::IntegerType::get(C, Width); |
| V = CGF.Builder.CreateBitCast(V, IntTy); |
| if (Ty->isPPC_FP128Ty()) { |
| // We want the sign bit of the higher-order double. The bitcast we just |
| // did works as if the double-double was stored to memory and then |
| // read as an i128. The "store" will put the higher-order double in the |
| // lower address in both little- and big-Endian modes, but the "load" |
| // will treat those bits as a different part of the i128: the low bits in |
| // little-Endian, the high bits in big-Endian. Therefore, on big-Endian |
| // we need to shift the high bits down to the low before truncating. |
| Width >>= 1; |
| if (CGF.getTarget().isBigEndian()) { |
| Value *ShiftCst = llvm::ConstantInt::get(IntTy, Width); |
| V = CGF.Builder.CreateLShr(V, ShiftCst); |
| } |
| // We are truncating value in order to extract the higher-order |
| // double, which we will be using to extract the sign from. |
| IntTy = llvm::IntegerType::get(C, Width); |
| V = CGF.Builder.CreateTrunc(V, IntTy); |
| } |
| Value *Zero = llvm::Constant::getNullValue(IntTy); |
| return CGF.Builder.CreateICmpSLT(V, Zero); |
| } |
| |
| static RValue emitLibraryCall(CodeGenFunction &CGF, const FunctionDecl *FD, |
| const CallExpr *E, llvm::Constant *calleeValue) { |
| CGCallee callee = CGCallee::forDirect(calleeValue, GlobalDecl(FD)); |
| return CGF.EmitCall(E->getCallee()->getType(), callee, E, ReturnValueSlot()); |
| } |
| |
| /// Emit a call to llvm.{sadd,uadd,ssub,usub,smul,umul}.with.overflow.* |
| /// depending on IntrinsicID. |
| /// |
| /// \arg CGF The current codegen function. |
| /// \arg IntrinsicID The ID for the Intrinsic we wish to generate. |
| /// \arg X The first argument to the llvm.*.with.overflow.*. |
| /// \arg Y The second argument to the llvm.*.with.overflow.*. |
| /// \arg Carry The carry returned by the llvm.*.with.overflow.*. |
| /// \returns The result (i.e. sum/product) returned by the intrinsic. |
| static llvm::Value *EmitOverflowIntrinsic(CodeGenFunction &CGF, |
| const llvm::Intrinsic::ID IntrinsicID, |
| llvm::Value *X, llvm::Value *Y, |
| llvm::Value *&Carry) { |
| // Make sure we have integers of the same width. |
| assert(X->getType() == Y->getType() && |
| "Arguments must be the same type. (Did you forget to make sure both " |
| "arguments have the same integer width?)"); |
| |
| Function *Callee = CGF.CGM.getIntrinsic(IntrinsicID, X->getType()); |
| llvm::Value *Tmp = CGF.Builder.CreateCall(Callee, {X, Y}); |
| Carry = CGF.Builder.CreateExtractValue(Tmp, 1); |
| return CGF.Builder.CreateExtractValue(Tmp, 0); |
| } |
| |
| static Value *emitRangedBuiltin(CodeGenFunction &CGF, |
| unsigned IntrinsicID, |
| int low, int high) { |
| llvm::MDBuilder MDHelper(CGF.getLLVMContext()); |
| llvm::MDNode *RNode = MDHelper.createRange(APInt(32, low), APInt(32, high)); |
| Function *F = CGF.CGM.getIntrinsic(IntrinsicID, {}); |
| llvm::Instruction *Call = CGF.Builder.CreateCall(F); |
| Call->setMetadata(llvm::LLVMContext::MD_range, RNode); |
| return Call; |
| } |
| |
| namespace { |
| struct WidthAndSignedness { |
| unsigned Width; |
| bool Signed; |
| }; |
| } |
| |
| static WidthAndSignedness |
| getIntegerWidthAndSignedness(const clang::ASTContext &context, |
| const clang::QualType Type) { |
| assert(Type->isIntegerType() && "Given type is not an integer."); |
| unsigned Width = Type->isBooleanType() ? 1 |
| : Type->isExtIntType() ? context.getIntWidth(Type) |
| : context.getTypeInfo(Type).Width; |
| bool Signed = Type->isSignedIntegerType(); |
| return {Width, Signed}; |
| } |
| |
| // Given one or more integer types, this function produces an integer type that |
| // encompasses them: any value in one of the given types could be expressed in |
| // the encompassing type. |
| static struct WidthAndSignedness |
| EncompassingIntegerType(ArrayRef<struct WidthAndSignedness> Types) { |
| assert(Types.size() > 0 && "Empty list of types."); |
| |
| // If any of the given types is signed, we must return a signed type. |
| bool Signed = false; |
| for (const auto &Type : Types) { |
| Signed |= Type.Signed; |
| } |
| |
| // The encompassing type must have a width greater than or equal to the width |
| // of the specified types. Additionally, if the encompassing type is signed, |
| // its width must be strictly greater than the width of any unsigned types |
| // given. |
| unsigned Width = 0; |
| for (const auto &Type : Types) { |
| unsigned MinWidth = Type.Width + (Signed && !Type.Signed); |
| if (Width < MinWidth) { |
| Width = MinWidth; |
| } |
| } |
| |
| return {Width, Signed}; |
| } |
| |
| Value *CodeGenFunction::EmitVAStartEnd(Value *ArgValue, bool IsStart) { |
| llvm::Type *DestType = Int8PtrTy; |
| if (ArgValue->getType() != DestType) |
| ArgValue = |
| Builder.CreateBitCast(ArgValue, DestType, ArgValue->getName().data()); |
| |
| Intrinsic::ID inst = IsStart ? Intrinsic::vastart : Intrinsic::vaend; |
| return Builder.CreateCall(CGM.getIntrinsic(inst), ArgValue); |
| } |
| |
| /// Checks if using the result of __builtin_object_size(p, @p From) in place of |
| /// __builtin_object_size(p, @p To) is correct |
| static bool areBOSTypesCompatible(int From, int To) { |
| // Note: Our __builtin_object_size implementation currently treats Type=0 and |
| // Type=2 identically. Encoding this implementation detail here may make |
| // improving __builtin_object_size difficult in the future, so it's omitted. |
| return From == To || (From == 0 && To == 1) || (From == 3 && To == 2); |
| } |
| |
| static llvm::Value * |
| getDefaultBuiltinObjectSizeResult(unsigned Type, llvm::IntegerType *ResType) { |
| return ConstantInt::get(ResType, (Type & 2) ? 0 : -1, /*isSigned=*/true); |
| } |
| |
| llvm::Value * |
| CodeGenFunction::evaluateOrEmitBuiltinObjectSize(const Expr *E, unsigned Type, |
| llvm::IntegerType *ResType, |
| llvm::Value *EmittedE, |
| bool IsDynamic) { |
| uint64_t ObjectSize; |
| if (!E->tryEvaluateObjectSize(ObjectSize, getContext(), Type)) |
| return emitBuiltinObjectSize(E, Type, ResType, EmittedE, IsDynamic); |
| return ConstantInt::get(ResType, ObjectSize, /*isSigned=*/true); |
| } |
| |
| /// Returns a Value corresponding to the size of the given expression. |
| /// This Value may be either of the following: |
| /// - A llvm::Argument (if E is a param with the pass_object_size attribute on |
| /// it) |
| /// - A call to the @llvm.objectsize intrinsic |
| /// |
| /// EmittedE is the result of emitting `E` as a scalar expr. If it's non-null |
| /// and we wouldn't otherwise try to reference a pass_object_size parameter, |
| /// we'll call @llvm.objectsize on EmittedE, rather than emitting E. |
| llvm::Value * |
| CodeGenFunction::emitBuiltinObjectSize(const Expr *E, unsigned Type, |
| llvm::IntegerType *ResType, |
| llvm::Value *EmittedE, bool IsDynamic) { |
| // We need to reference an argument if the pointer is a parameter with the |
| // pass_object_size attribute. |
| if (auto *D = dyn_cast<DeclRefExpr>(E->IgnoreParenImpCasts())) { |
| auto *Param = dyn_cast<ParmVarDecl>(D->getDecl()); |
| auto *PS = D->getDecl()->getAttr<PassObjectSizeAttr>(); |
| if (Param != nullptr && PS != nullptr && |
| areBOSTypesCompatible(PS->getType(), Type)) { |
| auto Iter = SizeArguments.find(Param); |
| assert(Iter != SizeArguments.end()); |
| |
| const ImplicitParamDecl *D = Iter->second; |
| auto DIter = LocalDeclMap.find(D); |
| assert(DIter != LocalDeclMap.end()); |
| |
| return EmitLoadOfScalar(DIter->second, /*Volatile=*/false, |
| getContext().getSizeType(), E->getBeginLoc()); |
| } |
| } |
| |
| // LLVM can't handle Type=3 appropriately, and __builtin_object_size shouldn't |
| // evaluate E for side-effects. In either case, we shouldn't lower to |
| // @llvm.objectsize. |
| if (Type == 3 || (!EmittedE && E->HasSideEffects(getContext()))) |
| return getDefaultBuiltinObjectSizeResult(Type, ResType); |
| |
| Value *Ptr = EmittedE ? EmittedE : EmitScalarExpr(E); |
| assert(Ptr->getType()->isPointerTy() && |
| "Non-pointer passed to __builtin_object_size?"); |
| |
| Function *F = |
| CGM.getIntrinsic(Intrinsic::objectsize, {ResType, Ptr->getType()}); |
| |
| // LLVM only supports 0 and 2, make sure that we pass along that as a boolean. |
| Value *Min = Builder.getInt1((Type & 2) != 0); |
| // For GCC compatibility, __builtin_object_size treat NULL as unknown size. |
| Value *NullIsUnknown = Builder.getTrue(); |
| Value *Dynamic = Builder.getInt1(IsDynamic); |
| return Builder.CreateCall(F, {Ptr, Min, NullIsUnknown, Dynamic}); |
| } |
| |
| namespace { |
| /// A struct to generically describe a bit test intrinsic. |
| struct BitTest { |
| enum ActionKind : uint8_t { TestOnly, Complement, Reset, Set }; |
| enum InterlockingKind : uint8_t { |
| Unlocked, |
| Sequential, |
| Acquire, |
| Release, |
| NoFence |
| }; |
| |
| ActionKind Action; |
| InterlockingKind Interlocking; |
| bool Is64Bit; |
| |
| static BitTest decodeBitTestBuiltin(unsigned BuiltinID); |
| }; |
| } // namespace |
| |
| BitTest BitTest::decodeBitTestBuiltin(unsigned BuiltinID) { |
| switch (BuiltinID) { |
| // Main portable variants. |
| case Builtin::BI_bittest: |
| return {TestOnly, Unlocked, false}; |
| case Builtin::BI_bittestandcomplement: |
| return {Complement, Unlocked, false}; |
| case Builtin::BI_bittestandreset: |
| return {Reset, Unlocked, false}; |
| case Builtin::BI_bittestandset: |
| return {Set, Unlocked, false}; |
| case Builtin::BI_interlockedbittestandreset: |
| return {Reset, Sequential, false}; |
| case Builtin::BI_interlockedbittestandset: |
| return {Set, Sequential, false}; |
| |
| // X86-specific 64-bit variants. |
| case Builtin::BI_bittest64: |
| return {TestOnly, Unlocked, true}; |
| case Builtin::BI_bittestandcomplement64: |
| return {Complement, Unlocked, true}; |
| case Builtin::BI_bittestandreset64: |
| return {Reset, Unlocked, true}; |
| case Builtin::BI_bittestandset64: |
| return {Set, Unlocked, true}; |
| case Builtin::BI_interlockedbittestandreset64: |
| return {Reset, Sequential, true}; |
| case Builtin::BI_interlockedbittestandset64: |
| return {Set, Sequential, true}; |
| |
| // ARM/AArch64-specific ordering variants. |
| case Builtin::BI_interlockedbittestandset_acq: |
| return {Set, Acquire, false}; |
| case Builtin::BI_interlockedbittestandset_rel: |
| return {Set, Release, false}; |
| case Builtin::BI_interlockedbittestandset_nf: |
| return {Set, NoFence, false}; |
| case Builtin::BI_interlockedbittestandreset_acq: |
| return {Reset, Acquire, false}; |
| case Builtin::BI_interlockedbittestandreset_rel: |
| return {Reset, Release, false}; |
| case Builtin::BI_interlockedbittestandreset_nf: |
| return {Reset, NoFence, false}; |
| } |
| llvm_unreachable("expected only bittest intrinsics"); |
| } |
| |
| static char bitActionToX86BTCode(BitTest::ActionKind A) { |
| switch (A) { |
| case BitTest::TestOnly: return '\0'; |
| case BitTest::Complement: return 'c'; |
| case BitTest::Reset: return 'r'; |
| case BitTest::Set: return 's'; |
| } |
| llvm_unreachable("invalid action"); |
| } |
| |
| static llvm::Value *EmitX86BitTestIntrinsic(CodeGenFunction &CGF, |
| BitTest BT, |
| const CallExpr *E, Value *BitBase, |
| Value *BitPos) { |
| char Action = bitActionToX86BTCode(BT.Action); |
| char SizeSuffix = BT.Is64Bit ? 'q' : 'l'; |
| |
| // Build the assembly. |
| SmallString<64> Asm; |
| raw_svector_ostream AsmOS(Asm); |
| if (BT.Interlocking != BitTest::Unlocked) |
| AsmOS << "lock "; |
| AsmOS << "bt"; |
| if (Action) |
| AsmOS << Action; |
| AsmOS << SizeSuffix << " $2, ($1)"; |
| |
| // Build the constraints. FIXME: We should support immediates when possible. |
| std::string Constraints = "={@ccc},r,r,~{cc},~{memory}"; |
| std::string MachineClobbers = CGF.getTarget().getClobbers(); |
| if (!MachineClobbers.empty()) { |
| Constraints += ','; |
| Constraints += MachineClobbers; |
| } |
| llvm::IntegerType *IntType = llvm::IntegerType::get( |
| CGF.getLLVMContext(), |
| CGF.getContext().getTypeSize(E->getArg(1)->getType())); |
| llvm::Type *IntPtrType = IntType->getPointerTo(); |
| llvm::FunctionType *FTy = |
| llvm::FunctionType::get(CGF.Int8Ty, {IntPtrType, IntType}, false); |
| |
| llvm::InlineAsm *IA = |
| llvm::InlineAsm::get(FTy, Asm, Constraints, /*hasSideEffects=*/true); |
| return CGF.Builder.CreateCall(IA, {BitBase, BitPos}); |
| } |
| |
| static llvm::AtomicOrdering |
| getBitTestAtomicOrdering(BitTest::InterlockingKind I) { |
| switch (I) { |
| case BitTest::Unlocked: return llvm::AtomicOrdering::NotAtomic; |
| case BitTest::Sequential: return llvm::AtomicOrdering::SequentiallyConsistent; |
| case BitTest::Acquire: return llvm::AtomicOrdering::Acquire; |
| case BitTest::Release: return llvm::AtomicOrdering::Release; |
| case BitTest::NoFence: return llvm::AtomicOrdering::Monotonic; |
| } |
| llvm_unreachable("invalid interlocking"); |
| } |
| |
| /// Emit a _bittest* intrinsic. These intrinsics take a pointer to an array of |
| /// bits and a bit position and read and optionally modify the bit at that |
| /// position. The position index can be arbitrarily large, i.e. it can be larger |
| /// than 31 or 63, so we need an indexed load in the general case. |
| static llvm::Value *EmitBitTestIntrinsic(CodeGenFunction &CGF, |
| unsigned BuiltinID, |
| const CallExpr *E) { |
| Value *BitBase = CGF.EmitScalarExpr(E->getArg(0)); |
| Value *BitPos = CGF.EmitScalarExpr(E->getArg(1)); |
| |
| BitTest BT = BitTest::decodeBitTestBuiltin(BuiltinID); |
| |
| // X86 has special BT, BTC, BTR, and BTS instructions that handle the array |
| // indexing operation internally. Use them if possible. |
| if (CGF.getTarget().getTriple().isX86()) |
| return EmitX86BitTestIntrinsic(CGF, BT, E, BitBase, BitPos); |
| |
| // Otherwise, use generic code to load one byte and test the bit. Use all but |
| // the bottom three bits as the array index, and the bottom three bits to form |
| // a mask. |
| // Bit = BitBaseI8[BitPos >> 3] & (1 << (BitPos & 0x7)) != 0; |
| Value *ByteIndex = CGF.Builder.CreateAShr( |
| BitPos, llvm::ConstantInt::get(BitPos->getType(), 3), "bittest.byteidx"); |
| Value *BitBaseI8 = CGF.Builder.CreatePointerCast(BitBase, CGF.Int8PtrTy); |
| Address ByteAddr(CGF.Builder.CreateInBoundsGEP(CGF.Int8Ty, BitBaseI8, |
| ByteIndex, "bittest.byteaddr"), |
| CharUnits::One()); |
| Value *PosLow = |
| CGF.Builder.CreateAnd(CGF.Builder.CreateTrunc(BitPos, CGF.Int8Ty), |
| llvm::ConstantInt::get(CGF.Int8Ty, 0x7)); |
| |
| // The updating instructions will need a mask. |
| Value *Mask = nullptr; |
| if (BT.Action != BitTest::TestOnly) { |
| Mask = CGF.Builder.CreateShl(llvm::ConstantInt::get(CGF.Int8Ty, 1), PosLow, |
| "bittest.mask"); |
| } |
| |
| // Check the action and ordering of the interlocked intrinsics. |
| llvm::AtomicOrdering Ordering = getBitTestAtomicOrdering(BT.Interlocking); |
| |
| Value *OldByte = nullptr; |
| if (Ordering != llvm::AtomicOrdering::NotAtomic) { |
| // Emit a combined atomicrmw load/store operation for the interlocked |
| // intrinsics. |
| llvm::AtomicRMWInst::BinOp RMWOp = llvm::AtomicRMWInst::Or; |
| if (BT.Action == BitTest::Reset) { |
| Mask = CGF.Builder.CreateNot(Mask); |
| RMWOp = llvm::AtomicRMWInst::And; |
| } |
| OldByte = CGF.Builder.CreateAtomicRMW(RMWOp, ByteAddr.getPointer(), Mask, |
| Ordering); |
| } else { |
| // Emit a plain load for the non-interlocked intrinsics. |
| OldByte = CGF.Builder.CreateLoad(ByteAddr, "bittest.byte"); |
| Value *NewByte = nullptr; |
| switch (BT.Action) { |
| case BitTest::TestOnly: |
| // Don't store anything. |
| break; |
| case BitTest::Complement: |
| NewByte = CGF.Builder.CreateXor(OldByte, Mask); |
| break; |
| case BitTest::Reset: |
| NewByte = CGF.Builder.CreateAnd(OldByte, CGF.Builder.CreateNot(Mask)); |
| break; |
| case BitTest::Set: |
| NewByte = CGF.Builder.CreateOr(OldByte, Mask); |
| break; |
| } |
| if (NewByte) |
| CGF.Builder.CreateStore(NewByte, ByteAddr); |
| } |
| |
| // However we loaded the old byte, either by plain load or atomicrmw, shift |
| // the bit into the low position and mask it to 0 or 1. |
| Value *ShiftedByte = CGF.Builder.CreateLShr(OldByte, PosLow, "bittest.shr"); |
| return CGF.Builder.CreateAnd( |
| ShiftedByte, llvm::ConstantInt::get(CGF.Int8Ty, 1), "bittest.res"); |
| } |
| |
| static llvm::Value *emitPPCLoadReserveIntrinsic(CodeGenFunction &CGF, |
| unsigned BuiltinID, |
| const CallExpr *E) { |
| Value *Addr = CGF.EmitScalarExpr(E->getArg(0)); |
| |
| SmallString<64> Asm; |
| raw_svector_ostream AsmOS(Asm); |
| llvm::IntegerType *RetType = CGF.Int32Ty; |
| |
| switch (BuiltinID) { |
| case clang::PPC::BI__builtin_ppc_ldarx: |
| AsmOS << "ldarx "; |
| RetType = CGF.Int64Ty; |
| break; |
| case clang::PPC::BI__builtin_ppc_lwarx: |
| AsmOS << "lwarx "; |
| RetType = CGF.Int32Ty; |
| break; |
| case clang::PPC::BI__builtin_ppc_lharx: |
| AsmOS << "lharx "; |
| RetType = CGF.Int16Ty; |
| break; |
| case clang::PPC::BI__builtin_ppc_lbarx: |
| AsmOS << "lbarx "; |
| RetType = CGF.Int8Ty; |
| break; |
| default: |
| llvm_unreachable("Expected only PowerPC load reserve intrinsics"); |
| } |
| |
| AsmOS << "$0, ${1:y}"; |
| |
| std::string Constraints = "=r,*Z,~{memory}"; |
| std::string MachineClobbers = CGF.getTarget().getClobbers(); |
| if (!MachineClobbers.empty()) { |
| Constraints += ','; |
| Constraints += MachineClobbers; |
| } |
| |
| llvm::Type *IntPtrType = RetType->getPointerTo(); |
| llvm::FunctionType *FTy = |
| llvm::FunctionType::get(RetType, {IntPtrType}, false); |
| |
| llvm::InlineAsm *IA = |
| llvm::InlineAsm::get(FTy, Asm, Constraints, /*hasSideEffects=*/true); |
| return CGF.Builder.CreateCall(IA, {Addr}); |
| } |
| |
| namespace { |
| enum class MSVCSetJmpKind { |
| _setjmpex, |
| _setjmp3, |
| _setjmp |
| }; |
| } |
| |
| /// MSVC handles setjmp a bit differently on different platforms. On every |
| /// architecture except 32-bit x86, the frame address is passed. On x86, extra |
| /// parameters can be passed as variadic arguments, but we always pass none. |
| static RValue EmitMSVCRTSetJmp(CodeGenFunction &CGF, MSVCSetJmpKind SJKind, |
| const CallExpr *E) { |
| llvm::Value *Arg1 = nullptr; |
| llvm::Type *Arg1Ty = nullptr; |
| StringRef Name; |
| bool IsVarArg = false; |
| if (SJKind == MSVCSetJmpKind::_setjmp3) { |
| Name = "_setjmp3"; |
| Arg1Ty = CGF.Int32Ty; |
| Arg1 = llvm::ConstantInt::get(CGF.IntTy, 0); |
| IsVarArg = true; |
| } else { |
| Name = SJKind == MSVCSetJmpKind::_setjmp ? "_setjmp" : "_setjmpex"; |
| Arg1Ty = CGF.Int8PtrTy; |
| if (CGF.getTarget().getTriple().getArch() == llvm::Triple::aarch64) { |
| Arg1 = CGF.Builder.CreateCall( |
| CGF.CGM.getIntrinsic(Intrinsic::sponentry, CGF.AllocaInt8PtrTy)); |
| } else |
| Arg1 = CGF.Builder.CreateCall( |
| CGF.CGM.getIntrinsic(Intrinsic::frameaddress, CGF.AllocaInt8PtrTy), |
| llvm::ConstantInt::get(CGF.Int32Ty, 0)); |
| } |
| |
| // Mark the call site and declaration with ReturnsTwice. |
| llvm::Type *ArgTypes[2] = {CGF.Int8PtrTy, Arg1Ty}; |
| llvm::AttributeList ReturnsTwiceAttr = llvm::AttributeList::get( |
| CGF.getLLVMContext(), llvm::AttributeList::FunctionIndex, |
| llvm::Attribute::ReturnsTwice); |
| llvm::FunctionCallee SetJmpFn = CGF.CGM.CreateRuntimeFunction( |
| llvm::FunctionType::get(CGF.IntTy, ArgTypes, IsVarArg), Name, |
| ReturnsTwiceAttr, /*Local=*/true); |
| |
| llvm::Value *Buf = CGF.Builder.CreateBitOrPointerCast( |
| CGF.EmitScalarExpr(E->getArg(0)), CGF.Int8PtrTy); |
| llvm::Value *Args[] = {Buf, Arg1}; |
| llvm::CallBase *CB = CGF.EmitRuntimeCallOrInvoke(SetJmpFn, Args); |
| CB->setAttributes(ReturnsTwiceAttr); |
| return RValue::get(CB); |
| } |
| |
| // Many of MSVC builtins are on x64, ARM and AArch64; to avoid repeating code, |
| // we handle them here. |
| enum class CodeGenFunction::MSVCIntrin { |
| _BitScanForward, |
| _BitScanReverse, |
| _InterlockedAnd, |
| _InterlockedDecrement, |
| _InterlockedExchange, |
| _InterlockedExchangeAdd, |
| _InterlockedExchangeSub, |
| _InterlockedIncrement, |
| _InterlockedOr, |
| _InterlockedXor, |
| _InterlockedExchangeAdd_acq, |
| _InterlockedExchangeAdd_rel, |
| _InterlockedExchangeAdd_nf, |
| _InterlockedExchange_acq, |
| _InterlockedExchange_rel, |
| _InterlockedExchange_nf, |
| _InterlockedCompareExchange_acq, |
| _InterlockedCompareExchange_rel, |
| _InterlockedCompareExchange_nf, |
| _InterlockedCompareExchange128, |
| _InterlockedCompareExchange128_acq, |
| _InterlockedCompareExchange128_rel, |
| _InterlockedCompareExchange128_nf, |
| _InterlockedOr_acq, |
| _InterlockedOr_rel, |
| _InterlockedOr_nf, |
| _InterlockedXor_acq, |
| _InterlockedXor_rel, |
| _InterlockedXor_nf, |
| _InterlockedAnd_acq, |
| _InterlockedAnd_rel, |
| _InterlockedAnd_nf, |
| _InterlockedIncrement_acq, |
| _InterlockedIncrement_rel, |
| _InterlockedIncrement_nf, |
| _InterlockedDecrement_acq, |
| _InterlockedDecrement_rel, |
| _InterlockedDecrement_nf, |
| __fastfail, |
| }; |
| |
| static Optional<CodeGenFunction::MSVCIntrin> |
| translateArmToMsvcIntrin(unsigned BuiltinID) { |
| using MSVCIntrin = CodeGenFunction::MSVCIntrin; |
| switch (BuiltinID) { |
| default: |
| return None; |
| case ARM::BI_BitScanForward: |
| case ARM::BI_BitScanForward64: |
| return MSVCIntrin::_BitScanForward; |
| case ARM::BI_BitScanReverse: |
| case ARM::BI_BitScanReverse64: |
| return MSVCIntrin::_BitScanReverse; |
| case ARM::BI_InterlockedAnd64: |
| return MSVCIntrin::_InterlockedAnd; |
| case ARM::BI_InterlockedExchange64: |
| return MSVCIntrin::_InterlockedExchange; |
| case ARM::BI_InterlockedExchangeAdd64: |
| return MSVCIntrin::_InterlockedExchangeAdd; |
| case ARM::BI_InterlockedExchangeSub64: |
| return MSVCIntrin::_InterlockedExchangeSub; |
| case ARM::BI_InterlockedOr64: |
| return MSVCIntrin::_InterlockedOr; |
| case ARM::BI_InterlockedXor64: |
| return MSVCIntrin::_InterlockedXor; |
| case ARM::BI_InterlockedDecrement64: |
| return MSVCIntrin::_InterlockedDecrement; |
| case ARM::BI_InterlockedIncrement64: |
| return MSVCIntrin::_InterlockedIncrement; |
| case ARM::BI_InterlockedExchangeAdd8_acq: |
| case ARM::BI_InterlockedExchangeAdd16_acq: |
| case ARM::BI_InterlockedExchangeAdd_acq: |
| case ARM::BI_InterlockedExchangeAdd64_acq: |
| return MSVCIntrin::_InterlockedExchangeAdd_acq; |
| case ARM::BI_InterlockedExchangeAdd8_rel: |
| case ARM::BI_InterlockedExchangeAdd16_rel: |
| case ARM::BI_InterlockedExchangeAdd_rel: |
| case ARM::BI_InterlockedExchangeAdd64_rel: |
| return MSVCIntrin::_InterlockedExchangeAdd_rel; |
| case ARM::BI_InterlockedExchangeAdd8_nf: |
| case ARM::BI_InterlockedExchangeAdd16_nf: |
| case ARM::BI_InterlockedExchangeAdd_nf: |
| case ARM::BI_InterlockedExchangeAdd64_nf: |
| return MSVCIntrin::_InterlockedExchangeAdd_nf; |
| case ARM::BI_InterlockedExchange8_acq: |
| case ARM::BI_InterlockedExchange16_acq: |
| case ARM::BI_InterlockedExchange_acq: |
| case ARM::BI_InterlockedExchange64_acq: |
| return MSVCIntrin::_InterlockedExchange_acq; |
| case ARM::BI_InterlockedExchange8_rel: |
| case ARM::BI_InterlockedExchange16_rel: |
| case ARM::BI_InterlockedExchange_rel: |
| case ARM::BI_InterlockedExchange64_rel: |
| return MSVCIntrin::_InterlockedExchange_rel; |
| case ARM::BI_InterlockedExchange8_nf: |
| case ARM::BI_InterlockedExchange16_nf: |
| case ARM::BI_InterlockedExchange_nf: |
| case ARM::BI_InterlockedExchange64_nf: |
| return MSVCIntrin::_InterlockedExchange_nf; |
| case ARM::BI_InterlockedCompareExchange8_acq: |
| case ARM::BI_InterlockedCompareExchange16_acq: |
| case ARM::BI_InterlockedCompareExchange_acq: |
| case ARM::BI_InterlockedCompareExchange64_acq: |
| return MSVCIntrin::_InterlockedCompareExchange_acq; |
| case ARM::BI_InterlockedCompareExchange8_rel: |
| case ARM::BI_InterlockedCompareExchange16_rel: |
| case ARM::BI_InterlockedCompareExchange_rel: |
| case ARM::BI_InterlockedCompareExchange64_rel: |
| return MSVCIntrin::_InterlockedCompareExchange_rel; |
| case ARM::BI_InterlockedCompareExchange8_nf: |
| case ARM::BI_InterlockedCompareExchange16_nf: |
| case ARM::BI_InterlockedCompareExchange_nf: |
| case ARM::BI_InterlockedCompareExchange64_nf: |
| return MSVCIntrin::_InterlockedCompareExchange_nf; |
| case ARM::BI_InterlockedOr8_acq: |
| case ARM::BI_InterlockedOr16_acq: |
| case ARM::BI_InterlockedOr_acq: |
| case ARM::BI_InterlockedOr64_acq: |
| return MSVCIntrin::_InterlockedOr_acq; |
| case ARM::BI_InterlockedOr8_rel: |
| case ARM::BI_InterlockedOr16_rel: |
| case ARM::BI_InterlockedOr_rel: |
| case ARM::BI_InterlockedOr64_rel: |
| return MSVCIntrin::_InterlockedOr_rel; |
| case ARM::BI_InterlockedOr8_nf: |
| case ARM::BI_InterlockedOr16_nf: |
| case ARM::BI_InterlockedOr_nf: |
| case ARM::BI_InterlockedOr64_nf: |
| return MSVCIntrin::_InterlockedOr_nf; |
| case ARM::BI_InterlockedXor8_acq: |
| case ARM::BI_InterlockedXor16_acq: |
| case ARM::BI_InterlockedXor_acq: |
| case ARM::BI_InterlockedXor64_acq: |
| return MSVCIntrin::_InterlockedXor_acq; |
| case ARM::BI_InterlockedXor8_rel: |
| case ARM::BI_InterlockedXor16_rel: |
| case ARM::BI_InterlockedXor_rel: |
| case ARM::BI_InterlockedXor64_rel: |
| return MSVCIntrin::_InterlockedXor_rel; |
| case ARM::BI_InterlockedXor8_nf: |
| case ARM::BI_InterlockedXor16_nf: |
| case ARM::BI_InterlockedXor_nf: |
| case ARM::BI_InterlockedXor64_nf: |
| return MSVCIntrin::_InterlockedXor_nf; |
| case ARM::BI_InterlockedAnd8_acq: |
| case ARM::BI_InterlockedAnd16_acq: |
| case ARM::BI_InterlockedAnd_acq: |
| case ARM::BI_InterlockedAnd64_acq: |
| return MSVCIntrin::_InterlockedAnd_acq; |
| case ARM::BI_InterlockedAnd8_rel: |
| case ARM::BI_InterlockedAnd16_rel: |
| case ARM::BI_InterlockedAnd_rel: |
| case ARM::BI_InterlockedAnd64_rel: |
| return MSVCIntrin::_InterlockedAnd_rel; |
| case ARM::BI_InterlockedAnd8_nf: |
| case ARM::BI_InterlockedAnd16_nf: |
| case ARM::BI_InterlockedAnd_nf: |
| case ARM::BI_InterlockedAnd64_nf: |
| return MSVCIntrin::_InterlockedAnd_nf; |
| case ARM::BI_InterlockedIncrement16_acq: |
| case ARM::BI_InterlockedIncrement_acq: |
| case ARM::BI_InterlockedIncrement64_acq: |
| return MSVCIntrin::_InterlockedIncrement_acq; |
| case ARM::BI_InterlockedIncrement16_rel: |
| case ARM::BI_InterlockedIncrement_rel: |
| case ARM::BI_InterlockedIncrement64_rel: |
| return MSVCIntrin::_InterlockedIncrement_rel; |
| case ARM::BI_InterlockedIncrement16_nf: |
| case ARM::BI_InterlockedIncrement_nf: |
| case ARM::BI_InterlockedIncrement64_nf: |
| return MSVCIntrin::_InterlockedIncrement_nf; |
| case ARM::BI_InterlockedDecrement16_acq: |
| case ARM::BI_InterlockedDecrement_acq: |
| case ARM::BI_InterlockedDecrement64_acq: |
| return MSVCIntrin::_InterlockedDecrement_acq; |
| case ARM::BI_InterlockedDecrement16_rel: |
| case ARM::BI_InterlockedDecrement_rel: |
| case ARM::BI_InterlockedDecrement64_rel: |
| return MSVCIntrin::_InterlockedDecrement_rel; |
| case ARM::BI_InterlockedDecrement16_nf: |
| case ARM::BI_InterlockedDecrement_nf: |
| case ARM::BI_InterlockedDecrement64_nf: |
| return MSVCIntrin::_InterlockedDecrement_nf; |
| } |
| llvm_unreachable("must return from switch"); |
| } |
| |
| static Optional<CodeGenFunction::MSVCIntrin> |
| translateAarch64ToMsvcIntrin(unsigned BuiltinID) { |
| using MSVCIntrin = CodeGenFunction::MSVCIntrin; |
| switch (BuiltinID) { |
| default: |
| return None; |
| case AArch64::BI_BitScanForward: |
| case AArch64::BI_BitScanForward64: |
| return MSVCIntrin::_BitScanForward; |
| case AArch64::BI_BitScanReverse: |
| case AArch64::BI_BitScanReverse64: |
| return MSVCIntrin::_BitScanReverse; |
| case AArch64::BI_InterlockedAnd64: |
| return MSVCIntrin::_InterlockedAnd; |
| case AArch64::BI_InterlockedExchange64: |
| return MSVCIntrin::_InterlockedExchange; |
| case AArch64::BI_InterlockedExchangeAdd64: |
| return MSVCIntrin::_InterlockedExchangeAdd; |
| case AArch64::BI_InterlockedExchangeSub64: |
| return MSVCIntrin::_InterlockedExchangeSub; |
| case AArch64::BI_InterlockedOr64: |
| return MSVCIntrin::_InterlockedOr; |
| case AArch64::BI_InterlockedXor64: |
| return MSVCIntrin::_InterlockedXor; |
| case AArch64::BI_InterlockedDecrement64: |
| return MSVCIntrin::_InterlockedDecrement; |
| case AArch64::BI_InterlockedIncrement64: |
| return MSVCIntrin::_InterlockedIncrement; |
| case AArch64::BI_InterlockedExchangeAdd8_acq: |
| case AArch64::BI_InterlockedExchangeAdd16_acq: |
| case AArch64::BI_InterlockedExchangeAdd_acq: |
| case AArch64::BI_InterlockedExchangeAdd64_acq: |
| return MSVCIntrin::_InterlockedExchangeAdd_acq; |
| case AArch64::BI_InterlockedExchangeAdd8_rel: |
| case AArch64::BI_InterlockedExchangeAdd16_rel: |
| case AArch64::BI_InterlockedExchangeAdd_rel: |
| case AArch64::BI_InterlockedExchangeAdd64_rel: |
| return MSVCIntrin::_InterlockedExchangeAdd_rel; |
| case AArch64::BI_InterlockedExchangeAdd8_nf: |
| case AArch64::BI_InterlockedExchangeAdd16_nf: |
| case AArch64::BI_InterlockedExchangeAdd_nf: |
| case AArch64::BI_InterlockedExchangeAdd64_nf: |
| return MSVCIntrin::_InterlockedExchangeAdd_nf; |
| case AArch64::BI_InterlockedExchange8_acq: |
| case AArch64::BI_InterlockedExchange16_acq: |
| case AArch64::BI_InterlockedExchange_acq: |
| case AArch64::BI_InterlockedExchange64_acq: |
| return MSVCIntrin::_InterlockedExchange_acq; |
| case AArch64::BI_InterlockedExchange8_rel: |
| case AArch64::BI_InterlockedExchange16_rel: |
| case AArch64::BI_InterlockedExchange_rel: |
| case AArch64::BI_InterlockedExchange64_rel: |
| return MSVCIntrin::_InterlockedExchange_rel; |
| case AArch64::BI_InterlockedExchange8_nf: |
| case AArch64::BI_InterlockedExchange16_nf: |
| case AArch64::BI_InterlockedExchange_nf: |
| case AArch64::BI_InterlockedExchange64_nf: |
| return MSVCIntrin::_InterlockedExchange_nf; |
| case AArch64::BI_InterlockedCompareExchange8_acq: |
| case AArch64::BI_InterlockedCompareExchange16_acq: |
| case AArch64::BI_InterlockedCompareExchange_acq: |
| case AArch64::BI_InterlockedCompareExchange64_acq: |
| return MSVCIntrin::_InterlockedCompareExchange_acq; |
| case AArch64::BI_InterlockedCompareExchange8_rel: |
| case AArch64::BI_InterlockedCompareExchange16_rel: |
| case AArch64::BI_InterlockedCompareExchange_rel: |
| case AArch64::BI_InterlockedCompareExchange64_rel: |
| return MSVCIntrin::_InterlockedCompareExchange_rel; |
| case AArch64::BI_InterlockedCompareExchange8_nf: |
| case AArch64::BI_InterlockedCompareExchange16_nf: |
| case AArch64::BI_InterlockedCompareExchange_nf: |
| case AArch64::BI_InterlockedCompareExchange64_nf: |
| return MSVCIntrin::_InterlockedCompareExchange_nf; |
| case AArch64::BI_InterlockedCompareExchange128: |
| return MSVCIntrin::_InterlockedCompareExchange128; |
| case AArch64::BI_InterlockedCompareExchange128_acq: |
| return MSVCIntrin::_InterlockedCompareExchange128_acq; |
| case AArch64::BI_InterlockedCompareExchange128_nf: |
| return MSVCIntrin::_InterlockedCompareExchange128_nf; |
| case AArch64::BI_InterlockedCompareExchange128_rel: |
| return MSVCIntrin::_InterlockedCompareExchange128_rel; |
| case AArch64::BI_InterlockedOr8_acq: |
| case AArch64::BI_InterlockedOr16_acq: |
| case AArch64::BI_InterlockedOr_acq: |
| case AArch64::BI_InterlockedOr64_acq: |
| return MSVCIntrin::_InterlockedOr_acq; |
| case AArch64::BI_InterlockedOr8_rel: |
| case AArch64::BI_InterlockedOr16_rel: |
| case AArch64::BI_InterlockedOr_rel: |
| case AArch64::BI_InterlockedOr64_rel: |
| return MSVCIntrin::_InterlockedOr_rel; |
| case AArch64::BI_InterlockedOr8_nf: |
| case AArch64::BI_InterlockedOr16_nf: |
| case AArch64::BI_InterlockedOr_nf: |
| case AArch64::BI_InterlockedOr64_nf: |
| return MSVCIntrin::_InterlockedOr_nf; |
| case AArch64::BI_InterlockedXor8_acq: |
| case AArch64::BI_InterlockedXor16_acq: |
| case AArch64::BI_InterlockedXor_acq: |
| case AArch64::BI_InterlockedXor64_acq: |
| return MSVCIntrin::_InterlockedXor_acq; |
| case AArch64::BI_InterlockedXor8_rel: |
| case AArch64::BI_InterlockedXor16_rel: |
| case AArch64::BI_InterlockedXor_rel: |
| case AArch64::BI_InterlockedXor64_rel: |
| return MSVCIntrin::_InterlockedXor_rel; |
| case AArch64::BI_InterlockedXor8_nf: |
| case AArch64::BI_InterlockedXor16_nf: |
| case AArch64::BI_InterlockedXor_nf: |
| case AArch64::BI_InterlockedXor64_nf: |
| return MSVCIntrin::_InterlockedXor_nf; |
| case AArch64::BI_InterlockedAnd8_acq: |
| case AArch64::BI_InterlockedAnd16_acq: |
| case AArch64::BI_InterlockedAnd_acq: |
| case AArch64::BI_InterlockedAnd64_acq: |
| return MSVCIntrin::_InterlockedAnd_acq; |
| case AArch64::BI_InterlockedAnd8_rel: |
| case AArch64::BI_InterlockedAnd16_rel: |
| case AArch64::BI_InterlockedAnd_rel: |
| case AArch64::BI_InterlockedAnd64_rel: |
| return MSVCIntrin::_InterlockedAnd_rel; |
| case AArch64::BI_InterlockedAnd8_nf: |
| case AArch64::BI_InterlockedAnd16_nf: |
| case AArch64::BI_InterlockedAnd_nf: |
| case AArch64::BI_InterlockedAnd64_nf: |
| return MSVCIntrin::_InterlockedAnd_nf; |
| case AArch64::BI_InterlockedIncrement16_acq: |
| case AArch64::BI_InterlockedIncrement_acq: |
| case AArch64::BI_InterlockedIncrement64_acq: |
| return MSVCIntrin::_InterlockedIncrement_acq; |
| case AArch64::BI_InterlockedIncrement16_rel: |
| case AArch64::BI_InterlockedIncrement_rel: |
| case AArch64::BI_InterlockedIncrement64_rel: |
| return MSVCIntrin::_InterlockedIncrement_rel; |
| case AArch64::BI_InterlockedIncrement16_nf: |
| case AArch64::BI_InterlockedIncrement_nf: |
| case AArch64::BI_InterlockedIncrement64_nf: |
| return MSVCIntrin::_InterlockedIncrement_nf; |
| case AArch64::BI_InterlockedDecrement16_acq: |
| case AArch64::BI_InterlockedDecrement_acq: |
| case AArch64::BI_InterlockedDecrement64_acq: |
| return MSVCIntrin::_InterlockedDecrement_acq; |
| case AArch64::BI_InterlockedDecrement16_rel: |
| case AArch64::BI_InterlockedDecrement_rel: |
| case AArch64::BI_InterlockedDecrement64_rel: |
| return MSVCIntrin::_InterlockedDecrement_rel; |
| case AArch64::BI_InterlockedDecrement16_nf: |
| case AArch64::BI_InterlockedDecrement_nf: |
| case AArch64::BI_InterlockedDecrement64_nf: |
| return MSVCIntrin::_InterlockedDecrement_nf; |
| } |
| llvm_unreachable("must return from switch"); |
| } |
| |
| static Optional<CodeGenFunction::MSVCIntrin> |
| translateX86ToMsvcIntrin(unsigned BuiltinID) { |
| using MSVCIntrin = CodeGenFunction::MSVCIntrin; |
| switch (BuiltinID) { |
| default: |
| return None; |
| case clang::X86::BI_BitScanForward: |
| case clang::X86::BI_BitScanForward64: |
| return MSVCIntrin::_BitScanForward; |
| case clang::X86::BI_BitScanReverse: |
| case clang::X86::BI_BitScanReverse64: |
| return MSVCIntrin::_BitScanReverse; |
| case clang::X86::BI_InterlockedAnd64: |
| return MSVCIntrin::_InterlockedAnd; |
| case clang::X86::BI_InterlockedCompareExchange128: |
| return MSVCIntrin::_InterlockedCompareExchange128; |
| case clang::X86::BI_InterlockedExchange64: |
| return MSVCIntrin::_InterlockedExchange; |
| case clang::X86::BI_InterlockedExchangeAdd64: |
| return MSVCIntrin::_InterlockedExchangeAdd; |
| case clang::X86::BI_InterlockedExchangeSub64: |
| return MSVCIntrin::_InterlockedExchangeSub; |
| case clang::X86::BI_InterlockedOr64: |
| return MSVCIntrin::_InterlockedOr; |
| case clang::X86::BI_InterlockedXor64: |
| return MSVCIntrin::_InterlockedXor; |
| case clang::X86::BI_InterlockedDecrement64: |
| return MSVCIntrin::_InterlockedDecrement; |
| case clang::X86::BI_InterlockedIncrement64: |
| return MSVCIntrin::_InterlockedIncrement; |
| } |
| llvm_unreachable("must return from switch"); |
| } |
| |
| // Emit an MSVC intrinsic. Assumes that arguments have *not* been evaluated. |
| Value *CodeGenFunction::EmitMSVCBuiltinExpr(MSVCIntrin BuiltinID, |
| const CallExpr *E) { |
| switch (BuiltinID) { |
| case MSVCIntrin::_BitScanForward: |
| case MSVCIntrin::_BitScanReverse: { |
| Address IndexAddress(EmitPointerWithAlignment(E->getArg(0))); |
| Value *ArgValue = EmitScalarExpr(E->getArg(1)); |
| |
| llvm::Type *ArgType = ArgValue->getType(); |
| llvm::Type *IndexType = |
| IndexAddress.getPointer()->getType()->getPointerElementType(); |
| llvm::Type *ResultType = ConvertType(E->getType()); |
| |
| Value *ArgZero = llvm::Constant::getNullValue(ArgType); |
| Value *ResZero = llvm::Constant::getNullValue(ResultType); |
| Value *ResOne = llvm::ConstantInt::get(ResultType, 1); |
| |
| BasicBlock *Begin = Builder.GetInsertBlock(); |
| BasicBlock *End = createBasicBlock("bitscan_end", this->CurFn); |
| Builder.SetInsertPoint(End); |
| PHINode *Result = Builder.CreatePHI(ResultType, 2, "bitscan_result"); |
| |
| Builder.SetInsertPoint(Begin); |
| Value *IsZero = Builder.CreateICmpEQ(ArgValue, ArgZero); |
| BasicBlock *NotZero = createBasicBlock("bitscan_not_zero", this->CurFn); |
| Builder.CreateCondBr(IsZero, End, NotZero); |
| Result->addIncoming(ResZero, Begin); |
| |
| Builder.SetInsertPoint(NotZero); |
| |
| if (BuiltinID == MSVCIntrin::_BitScanForward) { |
| Function *F = CGM.getIntrinsic(Intrinsic::cttz, ArgType); |
| Value *ZeroCount = Builder.CreateCall(F, {ArgValue, Builder.getTrue()}); |
| ZeroCount = Builder.CreateIntCast(ZeroCount, IndexType, false); |
| Builder.CreateStore(ZeroCount, IndexAddress, false); |
| } else { |
| unsigned ArgWidth = cast<llvm::IntegerType>(ArgType)->getBitWidth(); |
| Value *ArgTypeLastIndex = llvm::ConstantInt::get(IndexType, ArgWidth - 1); |
| |
| Function *F = CGM.getIntrinsic(Intrinsic::ctlz, ArgType); |
| Value *ZeroCount = Builder.CreateCall(F, {ArgValue, Builder.getTrue()}); |
| ZeroCount = Builder.CreateIntCast(ZeroCount, IndexType, false); |
| Value *Index = Builder.CreateNSWSub(ArgTypeLastIndex, ZeroCount); |
| Builder.CreateStore(Index, IndexAddress, false); |
| } |
| Builder.CreateBr(End); |
| Result->addIncoming(ResOne, NotZero); |
| |
| Builder.SetInsertPoint(End); |
| return Result; |
| } |
| case MSVCIntrin::_InterlockedAnd: |
| return MakeBinaryAtomicValue(*this, AtomicRMWInst::And, E); |
| case MSVCIntrin::_InterlockedExchange: |
| return MakeBinaryAtomicValue(*this, AtomicRMWInst::Xchg, E); |
| case MSVCIntrin::_InterlockedExchangeAdd: |
| return MakeBinaryAtomicValue(*this, AtomicRMWInst::Add, E); |
| case MSVCIntrin::_InterlockedExchangeSub: |
| return MakeBinaryAtomicValue(*this, AtomicRMWInst::Sub, E); |
| case MSVCIntrin::_InterlockedOr: |
| return MakeBinaryAtomicValue(*this, AtomicRMWInst::Or, E); |
| case MSVCIntrin::_InterlockedXor: |
| return MakeBinaryAtomicValue(*this, AtomicRMWInst::Xor, E); |
| case MSVCIntrin::_InterlockedExchangeAdd_acq: |
| return MakeBinaryAtomicValue(*this, AtomicRMWInst::Add, E, |
| AtomicOrdering::Acquire); |
| case MSVCIntrin::_InterlockedExchangeAdd_rel: |
| return MakeBinaryAtomicValue(*this, AtomicRMWInst::Add, E, |
| AtomicOrdering::Release); |
| case MSVCIntrin::_InterlockedExchangeAdd_nf: |
| return MakeBinaryAtomicValue(*this, AtomicRMWInst::Add, E, |
| AtomicOrdering::Monotonic); |
| case MSVCIntrin::_InterlockedExchange_acq: |
| return MakeBinaryAtomicValue(*this, AtomicRMWInst::Xchg, E, |
| AtomicOrdering::Acquire); |
| case MSVCIntrin::_InterlockedExchange_rel: |
| return MakeBinaryAtomicValue(*this, AtomicRMWInst::Xchg, E, |
| AtomicOrdering::Release); |
| case MSVCIntrin::_InterlockedExchange_nf: |
| return MakeBinaryAtomicValue(*this, AtomicRMWInst::Xchg, E, |
| AtomicOrdering::Monotonic); |
| case MSVCIntrin::_InterlockedCompareExchange_acq: |
| return EmitAtomicCmpXchgForMSIntrin(*this, E, AtomicOrdering::Acquire); |
| case MSVCIntrin::_InterlockedCompareExchange_rel: |
| return EmitAtomicCmpXchgForMSIntrin(*this, E, AtomicOrdering::Release); |
| case MSVCIntrin::_InterlockedCompareExchange_nf: |
| return EmitAtomicCmpXchgForMSIntrin(*this, E, AtomicOrdering::Monotonic); |
| case MSVCIntrin::_InterlockedCompareExchange128: |
| return EmitAtomicCmpXchg128ForMSIntrin( |
| *this, E, AtomicOrdering::SequentiallyConsistent); |
| case MSVCIntrin::_InterlockedCompareExchange128_acq: |
| return EmitAtomicCmpXchg128ForMSIntrin(*this, E, AtomicOrdering::Acquire); |
| case MSVCIntrin::_InterlockedCompareExchange128_rel: |
| return EmitAtomicCmpXchg128ForMSIntrin(*this, E, AtomicOrdering::Release); |
| case MSVCIntrin::_InterlockedCompareExchange128_nf: |
| return EmitAtomicCmpXchg128ForMSIntrin(*this, E, AtomicOrdering::Monotonic); |
| case MSVCIntrin::_InterlockedOr_acq: |
| return MakeBinaryAtomicValue(*this, AtomicRMWInst::Or, E, |
| AtomicOrdering::Acquire); |
| case MSVCIntrin::_InterlockedOr_rel: |
| return MakeBinaryAtomicValue(*this, AtomicRMWInst::Or, E, |
| AtomicOrdering::Release); |
| case MSVCIntrin::_InterlockedOr_nf: |
| return MakeBinaryAtomicValue(*this, AtomicRMWInst::Or, E, |
| AtomicOrdering::Monotonic); |
| case MSVCIntrin::_InterlockedXor_acq: |
| return MakeBinaryAtomicValue(*this, AtomicRMWInst::Xor, E, |
| AtomicOrdering::Acquire); |
| case MSVCIntrin::_InterlockedXor_rel: |
| return MakeBinaryAtomicValue(*this, AtomicRMWInst::Xor, E, |
| AtomicOrdering::Release); |
| case MSVCIntrin::_InterlockedXor_nf: |
| return MakeBinaryAtomicValue(*this, AtomicRMWInst::Xor, E, |
| AtomicOrdering::Monotonic); |
| case MSVCIntrin::_InterlockedAnd_acq: |
| return MakeBinaryAtomicValue(*this, AtomicRMWInst::And, E, |
| AtomicOrdering::Acquire); |
| case MSVCIntrin::_InterlockedAnd_rel: |
| return MakeBinaryAtomicValue(*this, AtomicRMWInst::And, E, |
| AtomicOrdering::Release); |
| case MSVCIntrin::_InterlockedAnd_nf: |
| return MakeBinaryAtomicValue(*this, AtomicRMWInst::And, E, |
| AtomicOrdering::Monotonic); |
| case MSVCIntrin::_InterlockedIncrement_acq: |
| return EmitAtomicIncrementValue(*this, E, AtomicOrdering::Acquire); |
| case MSVCIntrin::_InterlockedIncrement_rel: |
| return EmitAtomicIncrementValue(*this, E, AtomicOrdering::Release); |
| case MSVCIntrin::_InterlockedIncrement_nf: |
| return EmitAtomicIncrementValue(*this, E, AtomicOrdering::Monotonic); |
| case MSVCIntrin::_InterlockedDecrement_acq: |
| return EmitAtomicDecrementValue(*this, E, AtomicOrdering::Acquire); |
| case MSVCIntrin::_InterlockedDecrement_rel: |
| return EmitAtomicDecrementValue(*this, E, AtomicOrdering::Release); |
| case MSVCIntrin::_InterlockedDecrement_nf: |
| return EmitAtomicDecrementValue(*this, E, AtomicOrdering::Monotonic); |
| |
| case MSVCIntrin::_InterlockedDecrement: |
| return EmitAtomicDecrementValue(*this, E); |
| case MSVCIntrin::_InterlockedIncrement: |
| return EmitAtomicIncrementValue(*this, E); |
| |
| case MSVCIntrin::__fastfail: { |
| // Request immediate process termination from the kernel. The instruction |
| // sequences to do this are documented on MSDN: |
| // https://msdn.microsoft.com/en-us/library/dn774154.aspx |
| llvm::Triple::ArchType ISA = getTarget().getTriple().getArch(); |
| StringRef Asm, Constraints; |
| switch (ISA) { |
| default: |
| ErrorUnsupported(E, "__fastfail call for this architecture"); |
| break; |
| case llvm::Triple::x86: |
| case llvm::Triple::x86_64: |
| Asm = "int $$0x29"; |
| Constraints = "{cx}"; |
| break; |
| case llvm::Triple::thumb: |
| Asm = "udf #251"; |
| Constraints = "{r0}"; |
| break; |
| case llvm::Triple::aarch64: |
| Asm = "brk #0xF003"; |
| Constraints = "{w0}"; |
| } |
| llvm::FunctionType *FTy = llvm::FunctionType::get(VoidTy, {Int32Ty}, false); |
| llvm::InlineAsm *IA = |
| llvm::InlineAsm::get(FTy, Asm, Constraints, /*hasSideEffects=*/true); |
| llvm::AttributeList NoReturnAttr = llvm::AttributeList::get( |
| getLLVMContext(), llvm::AttributeList::FunctionIndex, |
| llvm::Attribute::NoReturn); |
| llvm::CallInst *CI = Builder.CreateCall(IA, EmitScalarExpr(E->getArg(0))); |
| CI->setAttributes(NoReturnAttr); |
| return CI; |
| } |
| } |
| llvm_unreachable("Incorrect MSVC intrinsic!"); |
| } |
| |
| namespace { |
| // ARC cleanup for __builtin_os_log_format |
| struct CallObjCArcUse final : EHScopeStack::Cleanup { |
| CallObjCArcUse(llvm::Value *object) : object(object) {} |
| llvm::Value *object; |
| |
| void Emit(CodeGenFunction &CGF, Flags flags) override { |
| CGF.EmitARCIntrinsicUse(object); |
| } |
| }; |
| } |
| |
| Value *CodeGenFunction::EmitCheckedArgForBuiltin(const Expr *E, |
| BuiltinCheckKind Kind) { |
| assert((Kind == BCK_CLZPassedZero || Kind == BCK_CTZPassedZero) |
| && "Unsupported builtin check kind"); |
| |
| Value *ArgValue = EmitScalarExpr(E); |
| if (!SanOpts.has(SanitizerKind::Builtin) || !getTarget().isCLZForZeroUndef()) |
| return ArgValue; |
| |
| SanitizerScope SanScope(this); |
| Value *Cond = Builder.CreateICmpNE( |
| ArgValue, llvm::Constant::getNullValue(ArgValue->getType())); |
| EmitCheck(std::make_pair(Cond, SanitizerKind::Builtin), |
| SanitizerHandler::InvalidBuiltin, |
| {EmitCheckSourceLocation(E->getExprLoc()), |
| llvm::ConstantInt::get(Builder.getInt8Ty(), Kind)}, |
| None); |
| return ArgValue; |
| } |
| |
| /// Get the argument type for arguments to os_log_helper. |
| static CanQualType getOSLogArgType(ASTContext &C, int Size) { |
| QualType UnsignedTy = C.getIntTypeForBitwidth(Size * 8, /*Signed=*/false); |
| return C.getCanonicalType(UnsignedTy); |
| } |
| |
| llvm::Function *CodeGenFunction::generateBuiltinOSLogHelperFunction( |
| const analyze_os_log::OSLogBufferLayout &Layout, |
| CharUnits BufferAlignment) { |
| ASTContext &Ctx = getContext(); |
| |
| llvm::SmallString<64> Name; |
| { |
| raw_svector_ostream OS(Name); |
| OS << "__os_log_helper"; |
| OS << "_" << BufferAlignment.getQuantity(); |
| OS << "_" << int(Layout.getSummaryByte()); |
| OS << "_" << int(Layout.getNumArgsByte()); |
| for (const auto &Item : Layout.Items) |
| OS << "_" << int(Item.getSizeByte()) << "_" |
| << int(Item.getDescriptorByte()); |
| } |
| |
| if (llvm::Function *F = CGM.getModule().getFunction(Name)) |
| return F; |
| |
| llvm::SmallVector<QualType, 4> ArgTys; |
| FunctionArgList Args; |
| Args.push_back(ImplicitParamDecl::Create( |
| Ctx, nullptr, SourceLocation(), &Ctx.Idents.get("buffer"), Ctx.VoidPtrTy, |
| ImplicitParamDecl::Other)); |
| ArgTys.emplace_back(Ctx.VoidPtrTy); |
| |
| for (unsigned int I = 0, E = Layout.Items.size(); I < E; ++I) { |
| char Size = Layout.Items[I].getSizeByte(); |
| if (!Size) |
| continue; |
| |
| QualType ArgTy = getOSLogArgType(Ctx, Size); |
| Args.push_back(ImplicitParamDecl::Create( |
| Ctx, nullptr, SourceLocation(), |
| &Ctx.Idents.get(std::string("arg") + llvm::to_string(I)), ArgTy, |
| ImplicitParamDecl::Other)); |
| ArgTys.emplace_back(ArgTy); |
| } |
| |
| QualType ReturnTy = Ctx.VoidTy; |
| |
| // The helper function has linkonce_odr linkage to enable the linker to merge |
| // identical functions. To ensure the merging always happens, 'noinline' is |
| // attached to the function when compiling with -Oz. |
| const CGFunctionInfo &FI = |
| CGM.getTypes().arrangeBuiltinFunctionDeclaration(ReturnTy, Args); |
| llvm::FunctionType *FuncTy = CGM.getTypes().GetFunctionType(FI); |
| llvm::Function *Fn = llvm::Function::Create( |
| FuncTy, llvm::GlobalValue::LinkOnceODRLinkage, Name, &CGM.getModule()); |
| Fn->setVisibility(llvm::GlobalValue::HiddenVisibility); |
| CGM.SetLLVMFunctionAttributes(GlobalDecl(), FI, Fn, /*IsThunk=*/false); |
| CGM.SetLLVMFunctionAttributesForDefinition(nullptr, Fn); |
| Fn->setDoesNotThrow(); |
| |
| // Attach 'noinline' at -Oz. |
| if (CGM.getCodeGenOpts().OptimizeSize == 2) |
| Fn->addFnAttr(llvm::Attribute::NoInline); |
| |
| auto NL = ApplyDebugLocation::CreateEmpty(*this); |
| StartFunction(GlobalDecl(), ReturnTy, Fn, FI, Args); |
| |
| // Create a scope with an artificial location for the body of this function. |
| auto AL = ApplyDebugLocation::CreateArtificial(*this); |
| |
| CharUnits Offset; |
| Address BufAddr(Builder.CreateLoad(GetAddrOfLocalVar(Args[0]), "buf"), |
| BufferAlignment); |
| Builder.CreateStore(Builder.getInt8(Layout.getSummaryByte()), |
| Builder.CreateConstByteGEP(BufAddr, Offset++, "summary")); |
| Builder.CreateStore(Builder.getInt8(Layout.getNumArgsByte()), |
| Builder.CreateConstByteGEP(BufAddr, Offset++, "numArgs")); |
| |
| unsigned I = 1; |
| for (const auto &Item : Layout.Items) { |
| Builder.CreateStore( |
| Builder.getInt8(Item.getDescriptorByte()), |
| Builder.CreateConstByteGEP(BufAddr, Offset++, "argDescriptor")); |
| Builder.CreateStore( |
| Builder.getInt8(Item.getSizeByte()), |
| Builder.CreateConstByteGEP(BufAddr, Offset++, "argSize")); |
| |
| CharUnits Size = Item.size(); |
| if (!Size.getQuantity()) |
| continue; |
| |
| Address Arg = GetAddrOfLocalVar(Args[I]); |
| Address Addr = Builder.CreateConstByteGEP(BufAddr, Offset, "argData"); |
| Addr = Builder.CreateBitCast(Addr, Arg.getPointer()->getType(), |
| "argDataCast"); |
| Builder.CreateStore(Builder.CreateLoad(Arg), Addr); |
| Offset += Size; |
| ++I; |
| } |
| |
| FinishFunction(); |
| |
| return Fn; |
| } |
| |
| RValue CodeGenFunction::emitBuiltinOSLogFormat(const CallExpr &E) { |
| assert(E.getNumArgs() >= 2 && |
| "__builtin_os_log_format takes at least 2 arguments"); |
| ASTContext &Ctx = getContext(); |
| analyze_os_log::OSLogBufferLayout Layout; |
| analyze_os_log::computeOSLogBufferLayout(Ctx, &E, Layout); |
| Address BufAddr = EmitPointerWithAlignment(E.getArg(0)); |
| llvm::SmallVector<llvm::Value *, 4> RetainableOperands; |
| |
| // Ignore argument 1, the format string. It is not currently used. |
| CallArgList Args; |
| Args.add(RValue::get(BufAddr.getPointer()), Ctx.VoidPtrTy); |
| |
| for (const auto &Item : Layout.Items) { |
| int Size = Item.getSizeByte(); |
| if (!Size) |
| continue; |
| |
| llvm::Value *ArgVal; |
| |
| if (Item.getKind() == analyze_os_log::OSLogBufferItem::MaskKind) { |
| uint64_t Val = 0; |
| for (unsigned I = 0, E = Item.getMaskType().size(); I < E; ++I) |
| Val |= ((uint64_t)Item.getMaskType()[I]) << I * 8; |
| ArgVal = llvm::Constant::getIntegerValue(Int64Ty, llvm::APInt(64, Val)); |
| } else if (const Expr *TheExpr = Item.getExpr()) { |
| ArgVal = EmitScalarExpr(TheExpr, /*Ignore*/ false); |
| |
| // If a temporary object that requires destruction after the full |
| // expression is passed, push a lifetime-extended cleanup to extend its |
| // lifetime to the end of the enclosing block scope. |
| auto LifetimeExtendObject = [&](const Expr *E) { |
| E = E->IgnoreParenCasts(); |
| // Extend lifetimes of objects returned by function calls and message |
| // sends. |
| |
| // FIXME: We should do this in other cases in which temporaries are |
| // created including arguments of non-ARC types (e.g., C++ |
| // temporaries). |
| if (isa<CallExpr>(E) || isa<ObjCMessageExpr>(E)) |
| return true; |
| return false; |
| }; |
| |
| if (TheExpr->getType()->isObjCRetainableType() && |
| getLangOpts().ObjCAutoRefCount && LifetimeExtendObject(TheExpr)) { |
| assert(getEvaluationKind(TheExpr->getType()) == TEK_Scalar && |
| "Only scalar can be a ObjC retainable type"); |
| if (!isa<Constant>(ArgVal)) { |
| CleanupKind Cleanup = getARCCleanupKind(); |
| QualType Ty = TheExpr->getType(); |
| Address Alloca = Address::invalid(); |
| Address Addr = CreateMemTemp(Ty, "os.log.arg", &Alloca); |
| ArgVal = EmitARCRetain(Ty, ArgVal); |
| Builder.CreateStore(ArgVal, Addr); |
| pushLifetimeExtendedDestroy(Cleanup, Alloca, Ty, |
| CodeGenFunction::destroyARCStrongPrecise, |
| Cleanup & EHCleanup); |
| |
| // Push a clang.arc.use call to ensure ARC optimizer knows that the |
| // argument has to be alive. |
| if (CGM.getCodeGenOpts().OptimizationLevel != 0) |
| pushCleanupAfterFullExpr<CallObjCArcUse>(Cleanup, ArgVal); |
| } |
| } |
| } else { |
| ArgVal = Builder.getInt32(Item.getConstValue().getQuantity()); |
| } |
| |
| unsigned ArgValSize = |
| CGM.getDataLayout().getTypeSizeInBits(ArgVal->getType()); |
| llvm::IntegerType *IntTy = llvm::Type::getIntNTy(getLLVMContext(), |
| ArgValSize); |
| ArgVal = Builder.CreateBitOrPointerCast(ArgVal, IntTy); |
| CanQualType ArgTy = getOSLogArgType(Ctx, Size); |
| // If ArgVal has type x86_fp80, zero-extend ArgVal. |
| ArgVal = Builder.CreateZExtOrBitCast(ArgVal, ConvertType(ArgTy)); |
| Args.add(RValue::get(ArgVal), ArgTy); |
| } |
| |
| const CGFunctionInfo &FI = |
| CGM.getTypes().arrangeBuiltinFunctionCall(Ctx.VoidTy, Args); |
| llvm::Function *F = CodeGenFunction(CGM).generateBuiltinOSLogHelperFunction( |
| Layout, BufAddr.getAlignment()); |
| EmitCall(FI, CGCallee::forDirect(F), ReturnValueSlot(), Args); |
| return RValue::get(BufAddr.getPointer()); |
| } |
| |
| static bool isSpecialUnsignedMultiplySignedResult( |
| unsigned BuiltinID, WidthAndSignedness Op1Info, WidthAndSignedness Op2Info, |
| WidthAndSignedness ResultInfo) { |
| return BuiltinID == Builtin::BI__builtin_mul_overflow && |
| Op1Info.Width == Op2Info.Width && Op2Info.Width == ResultInfo.Width && |
| !Op1Info.Signed && !Op2Info.Signed && ResultInfo.Signed; |
| } |
| |
| static RValue EmitCheckedUnsignedMultiplySignedResult( |
| CodeGenFunction &CGF, const clang::Expr *Op1, WidthAndSignedness Op1Info, |
| const clang::Expr *Op2, WidthAndSignedness Op2Info, |
| const clang::Expr *ResultArg, QualType ResultQTy, |
| WidthAndSignedness ResultInfo) { |
| assert(isSpecialUnsignedMultiplySignedResult( |
| Builtin::BI__builtin_mul_overflow, Op1Info, Op2Info, ResultInfo) && |
| "Cannot specialize this multiply"); |
| |
| llvm::Value *V1 = CGF.EmitScalarExpr(Op1); |
| llvm::Value *V2 = CGF.EmitScalarExpr(Op2); |
| |
| llvm::Value *HasOverflow; |
| llvm::Value *Result = EmitOverflowIntrinsic( |
| CGF, llvm::Intrinsic::umul_with_overflow, V1, V2, HasOverflow); |
| |
| // The intrinsic call will detect overflow when the value is > UINT_MAX, |
| // however, since the original builtin had a signed result, we need to report |
| // an overflow when the result is greater than INT_MAX. |
| auto IntMax = llvm::APInt::getSignedMaxValue(ResultInfo.Width); |
| llvm::Value *IntMaxValue = llvm::ConstantInt::get(Result->getType(), IntMax); |
| |
| llvm::Value *IntMaxOverflow = CGF.Builder.CreateICmpUGT(Result, IntMaxValue); |
| HasOverflow = CGF.Builder.CreateOr(HasOverflow, IntMaxOverflow); |
| |
| bool isVolatile = |
| ResultArg->getType()->getPointeeType().isVolatileQualified(); |
| Address ResultPtr = CGF.EmitPointerWithAlignment(ResultArg); |
| CGF.Builder.CreateStore(CGF.EmitToMemory(Result, ResultQTy), ResultPtr, |
| isVolatile); |
| return RValue::get(HasOverflow); |
| } |
| |
| /// Determine if a binop is a checked mixed-sign multiply we can specialize. |
| static bool isSpecialMixedSignMultiply(unsigned BuiltinID, |
| WidthAndSignedness Op1Info, |
| WidthAndSignedness Op2Info, |
| WidthAndSignedness ResultInfo) { |
| return BuiltinID == Builtin::BI__builtin_mul_overflow && |
| std::max(Op1Info.Width, Op2Info.Width) >= ResultInfo.Width && |
| Op1Info.Signed != Op2Info.Signed; |
| } |
| |
| /// Emit a checked mixed-sign multiply. This is a cheaper specialization of |
| /// the generic checked-binop irgen. |
| static RValue |
| EmitCheckedMixedSignMultiply(CodeGenFunction &CGF, const clang::Expr *Op1, |
| WidthAndSignedness Op1Info, const clang::Expr *Op2, |
| WidthAndSignedness Op2Info, |
| const clang::Expr *ResultArg, QualType ResultQTy, |
| WidthAndSignedness ResultInfo) { |
| assert(isSpecialMixedSignMultiply(Builtin::BI__builtin_mul_overflow, Op1Info, |
| Op2Info, ResultInfo) && |
| "Not a mixed-sign multipliction we can specialize"); |
| |
| // Emit the signed and unsigned operands. |
| const clang::Expr *SignedOp = Op1Info.Signed ? Op1 : Op2; |
| const clang::Expr *UnsignedOp = Op1Info.Signed ? Op2 : Op1; |
| llvm::Value *Signed = CGF.EmitScalarExpr(SignedOp); |
| llvm::Value *Unsigned = CGF.EmitScalarExpr(UnsignedOp); |
| unsigned SignedOpWidth = Op1Info.Signed ? Op1Info.Width : Op2Info.Width; |
| unsigned UnsignedOpWidth = Op1Info.Signed ? Op2Info.Width : Op1Info.Width; |
| |
| // One of the operands may be smaller than the other. If so, [s|z]ext it. |
| if (SignedOpWidth < UnsignedOpWidth) |
| Signed = CGF.Builder.CreateSExt(Signed, Unsigned->getType(), "op.sext"); |
| if (UnsignedOpWidth < SignedOpWidth) |
| Unsigned = CGF.Builder.CreateZExt(Unsigned, Signed->getType(), "op.zext"); |
| |
| llvm::Type *OpTy = Signed->getType(); |
| llvm::Value *Zero = llvm::Constant::getNullValue(OpTy); |
| Address ResultPtr = CGF.EmitPointerWithAlignment(ResultArg); |
| llvm::Type *ResTy = ResultPtr.getElementType(); |
| unsigned OpWidth = std::max(Op1Info.Width, Op2Info.Width); |
| |
| // Take the absolute value of the signed operand. |
| llvm::Value *IsNegative = CGF.Builder.CreateICmpSLT(Signed, Zero); |
| llvm::Value *AbsOfNegative = CGF.Builder.CreateSub(Zero, Signed); |
| llvm::Value *AbsSigned = |
| CGF.Builder.CreateSelect(IsNegative, AbsOfNegative, Signed); |
| |
| // Perform a checked unsigned multiplication. |
| llvm::Value *UnsignedOverflow; |
| llvm::Value *UnsignedResult = |
| EmitOverflowIntrinsic(CGF, llvm::Intrinsic::umul_with_overflow, AbsSigned, |
| Unsigned, UnsignedOverflow); |
| |
| llvm::Value *Overflow, *Result; |
| if (ResultInfo.Signed) { |
| // Signed overflow occurs if the result is greater than INT_MAX or lesser |
| // than INT_MIN, i.e when |Result| > (INT_MAX + IsNegative). |
| auto IntMax = |
| llvm::APInt::getSignedMaxValue(ResultInfo.Width).zextOrSelf(OpWidth); |
| llvm::Value *MaxResult = |
| CGF.Builder.CreateAdd(llvm::ConstantInt::get(OpTy, IntMax), |
| CGF.Builder.CreateZExt(IsNegative, OpTy)); |
| llvm::Value *SignedOverflow = |
| CGF.Builder.CreateICmpUGT(UnsignedResult, MaxResult); |
| Overflow = CGF.Builder.CreateOr(UnsignedOverflow, SignedOverflow); |
| |
| // Prepare the signed result (possibly by negating it). |
| llvm::Value *NegativeResult = CGF.Builder.CreateNeg(UnsignedResult); |
| llvm::Value *SignedResult = |
| CGF.Builder.CreateSelect(IsNegative, NegativeResult, UnsignedResult); |
| Result = CGF.Builder.CreateTrunc(SignedResult, ResTy); |
| } else { |
| // Unsigned overflow occurs if the result is < 0 or greater than UINT_MAX. |
| llvm::Value *Underflow = CGF.Builder.CreateAnd( |
| IsNegative, CGF.Builder.CreateIsNotNull(UnsignedResult)); |
| Overflow = CGF.Builder.CreateOr(UnsignedOverflow, Underflow); |
| if (ResultInfo.Width < OpWidth) { |
| auto IntMax = |
| llvm::APInt::getMaxValue(ResultInfo.Width).zext(OpWidth); |
| llvm::Value *TruncOverflow = CGF.Builder.CreateICmpUGT( |
| UnsignedResult, llvm::ConstantInt::get(OpTy, IntMax)); |
| Overflow = CGF.Builder.CreateOr(Overflow, TruncOverflow); |
| } |
| |
| // Negate the product if it would be negative in infinite precision. |
| Result = CGF.Builder.CreateSelect( |
| IsNegative, CGF.Builder.CreateNeg(UnsignedResult), UnsignedResult); |
| |
| Result = CGF.Builder.CreateTrunc(Result, ResTy); |
| } |
| assert(Overflow && Result && "Missing overflow or result"); |
| |
| bool isVolatile = |
| ResultArg->getType()->getPointeeType().isVolatileQualified(); |
| CGF.Builder.CreateStore(CGF.EmitToMemory(Result, ResultQTy), ResultPtr, |
| isVolatile); |
| return RValue::get(Overflow); |
| } |
| |
| static llvm::Value *dumpRecord(CodeGenFunction &CGF, QualType RType, |
| Value *&RecordPtr, CharUnits Align, |
| llvm::FunctionCallee Func, int Lvl) { |
| ASTContext &Context = CGF.getContext(); |
| RecordDecl *RD = RType->castAs<RecordType>()->getDecl()->getDefinition(); |
| std::string Pad = std::string(Lvl * 4, ' '); |
| |
| Value *GString = |
| CGF.Builder.CreateGlobalStringPtr(RType.getAsString() + " {\n"); |
| Value *Res = CGF.Builder.CreateCall(Func, {GString}); |
| |
| static llvm::DenseMap<QualType, const char *> Types; |
| if (Types.empty()) { |
| Types[Context.CharTy] = "%c"; |
| Types[Context.BoolTy] = "%d"; |
| Types[Context.SignedCharTy] = "%hhd"; |
| Types[Context.UnsignedCharTy] = "%hhu"; |
| Types[Context.IntTy] = "%d"; |
| Types[Context.UnsignedIntTy] = "%u"; |
| Types[Context.LongTy] = "%ld"; |
| Types[Context.UnsignedLongTy] = "%lu"; |
| Types[Context.LongLongTy] = "%lld"; |
| Types[Context.UnsignedLongLongTy] = "%llu"; |
| Types[Context.ShortTy] = "%hd"; |
| Types[Context.UnsignedShortTy] = "%hu"; |
| Types[Context.VoidPtrTy] = "%p"; |
| Types[Context.FloatTy] = "%f"; |
| Types[Context.DoubleTy] = "%f"; |
| Types[Context.LongDoubleTy] = "%Lf"; |
| Types[Context.getPointerType(Context.CharTy)] = "%s"; |
| Types[Context.getPointerType(Context.getConstType(Context.CharTy))] = "%s"; |
| } |
| |
| for (const auto *FD : RD->fields()) { |
| Value *FieldPtr = RecordPtr; |
| if (RD->isUnion()) |
| FieldPtr = CGF.Builder.CreatePointerCast( |
| FieldPtr, CGF.ConvertType(Context.getPointerType(FD->getType()))); |
| else |
| FieldPtr = CGF.Builder.CreateStructGEP(CGF.ConvertType(RType), FieldPtr, |
| FD->getFieldIndex()); |
| |
| GString = CGF.Builder.CreateGlobalStringPtr( |
| llvm::Twine(Pad) |
| .concat(FD->getType().getAsString()) |
| .concat(llvm::Twine(' ')) |
| .concat(FD->getNameAsString()) |
| .concat(" : ") |
| .str()); |
| Value *TmpRes = CGF.Builder.CreateCall(Func, {GString}); |
| Res = CGF.Builder.CreateAdd(Res, TmpRes); |
| |
| QualType CanonicalType = |
| FD->getType().getUnqualifiedType().getCanonicalType(); |
| |
| // We check whether we are in a recursive type |
| if (CanonicalType->isRecordType()) { |
| TmpRes = dumpRecord(CGF, CanonicalType, FieldPtr, Align, Func, Lvl + 1); |
| Res = CGF.Builder.CreateAdd(TmpRes, Res); |
| continue; |
| } |
| |
| // We try to determine the best format to print the current field |
| llvm::Twine Format = Types.find(CanonicalType) == Types.end() |
| ? Types[Context.VoidPtrTy] |
| : Types[CanonicalType]; |
| |
| Address FieldAddress = Address(FieldPtr, Align); |
| FieldPtr = CGF.Builder.CreateLoad(FieldAddress); |
| |
| // FIXME Need to handle bitfield here |
| GString = CGF.Builder.CreateGlobalStringPtr( |
| Format.concat(llvm::Twine('\n')).str()); |
| TmpRes = CGF.Builder.CreateCall(Func, {GString, FieldPtr}); |
| Res = CGF.Builder.CreateAdd(Res, TmpRes); |
| } |
| |
| GString = CGF.Builder.CreateGlobalStringPtr(Pad + "}\n"); |
| Value *TmpRes = CGF.Builder.CreateCall(Func, {GString}); |
| Res = CGF.Builder.CreateAdd(Res, TmpRes); |
| return Res; |
| } |
| |
| static bool |
| TypeRequiresBuiltinLaunderImp(const ASTContext &Ctx, QualType Ty, |
| llvm::SmallPtrSetImpl<const Decl *> &Seen) { |
| if (const auto *Arr = Ctx.getAsArrayType(Ty)) |
| Ty = Ctx.getBaseElementType(Arr); |
| |
| const auto *Record = Ty->getAsCXXRecordDecl(); |
| if (!Record) |
| return false; |
| |
| // We've already checked this type, or are in the process of checking it. |
| if (!Seen.insert(Record).second) |
| return false; |
| |
| assert(Record->hasDefinition() && |
| "Incomplete types should already be diagnosed"); |
| |
| if (Record->isDynamicClass()) |
| return true; |
| |
| for (FieldDecl *F : Record->fields()) { |
| if (TypeRequiresBuiltinLaunderImp(Ctx, F->getType(), Seen)) |
| return true; |
| } |
| return false; |
| } |
| |
| /// Determine if the specified type requires laundering by checking if it is a |
| /// dynamic class type or contains a subobject which is a dynamic class type. |
| static bool TypeRequiresBuiltinLaunder(CodeGenModule &CGM, QualType Ty) { |
| if (!CGM.getCodeGenOpts().StrictVTablePointers) |
| return false; |
| llvm::SmallPtrSet<const Decl *, 16> Seen; |
| return TypeRequiresBuiltinLaunderImp(CGM.getContext(), Ty, Seen); |
| } |
| |
| RValue CodeGenFunction::emitRotate(const CallExpr *E, bool IsRotateRight) { |
| llvm::Value *Src = EmitScalarExpr(E->getArg(0)); |
| llvm::Value *ShiftAmt = EmitScalarExpr(E->getArg(1)); |
| |
| // The builtin's shift arg may have a different type than the source arg and |
| // result, but the LLVM intrinsic uses the same type for all values. |
| llvm::Type *Ty = Src->getType(); |
| ShiftAmt = Builder.CreateIntCast(ShiftAmt, Ty, false); |
| |
| // Rotate is a special case of LLVM funnel shift - 1st 2 args are the same. |
| unsigned IID = IsRotateRight ? Intrinsic::fshr : Intrinsic::fshl; |
| Function *F = CGM.getIntrinsic(IID, Ty); |
| return RValue::get(Builder.CreateCall(F, { Src, Src, ShiftAmt })); |
| } |
| |
| // Map math builtins for long-double to f128 version. |
| static unsigned mutateLongDoubleBuiltin(unsigned BuiltinID) { |
| switch (BuiltinID) { |
| #define MUTATE_LDBL(func) \ |
| case Builtin::BI__builtin_##func##l: \ |
| return Builtin::BI__builtin_##func##f128; |
| MUTATE_LDBL(sqrt) |
| MUTATE_LDBL(cbrt) |
| MUTATE_LDBL(fabs) |
| MUTATE_LDBL(log) |
| MUTATE_LDBL(log2) |
| MUTATE_LDBL(log10) |
| MUTATE_LDBL(log1p) |
| MUTATE_LDBL(logb) |
| MUTATE_LDBL(exp) |
| MUTATE_LDBL(exp2) |
| MUTATE_LDBL(expm1) |
| MUTATE_LDBL(fdim) |
| MUTATE_LDBL(hypot) |
| MUTATE_LDBL(ilogb) |
| MUTATE_LDBL(pow) |
| MUTATE_LDBL(fmin) |
| MUTATE_LDBL(fmax) |
| MUTATE_LDBL(ceil) |
| MUTATE_LDBL(trunc) |
| MUTATE_LDBL(rint) |
| MUTATE_LDBL(nearbyint) |
| MUTATE_LDBL(round) |
| MUTATE_LDBL(floor) |
| MUTATE_LDBL(lround) |
| MUTATE_LDBL(llround) |
| MUTATE_LDBL(lrint) |
| MUTATE_LDBL(llrint) |
| MUTATE_LDBL(fmod) |
| MUTATE_LDBL(modf) |
| MUTATE_LDBL(nan) |
| MUTATE_LDBL(nans) |
| MUTATE_LDBL(inf) |
| MUTATE_LDBL(fma) |
| MUTATE_LDBL(sin) |
| MUTATE_LDBL(cos) |
| MUTATE_LDBL(tan) |
| MUTATE_LDBL(sinh) |
| MUTATE_LDBL(cosh) |
| MUTATE_LDBL(tanh) |
| MUTATE_LDBL(asin) |
| MUTATE_LDBL(acos) |
| MUTATE_LDBL(atan) |
| MUTATE_LDBL(asinh) |
| MUTATE_LDBL(acosh) |
| MUTATE_LDBL(atanh) |
| MUTATE_LDBL(atan2) |
| MUTATE_LDBL(erf) |
| MUTATE_LDBL(erfc) |
| MUTATE_LDBL(ldexp) |
| MUTATE_LDBL(frexp) |
| MUTATE_LDBL(huge_val) |
| MUTATE_LDBL(copysign) |
| MUTATE_LDBL(nextafter) |
| MUTATE_LDBL(nexttoward) |
| MUTATE_LDBL(remainder) |
| MUTATE_LDBL(remquo) |
| MUTATE_LDBL(scalbln) |
| MUTATE_LDBL(scalbn) |
| MUTATE_LDBL(tgamma) |
| MUTATE_LDBL(lgamma) |
| #undef MUTATE_LDBL |
| default: |
| return BuiltinID; |
| } |
| } |
| |
| RValue CodeGenFunction::EmitBuiltinExpr(const GlobalDecl GD, unsigned BuiltinID, |
| const CallExpr *E, |
| ReturnValueSlot ReturnValue) { |
| const FunctionDecl *FD = GD.getDecl()->getAsFunction(); |
| // See if we can constant fold this builtin. If so, don't emit it at all. |
| Expr::EvalResult Result; |
| if (E->EvaluateAsRValue(Result, CGM.getContext()) && |
| !Result.hasSideEffects()) { |
| if (Result.Val.isInt()) |
| return RValue::get(llvm::ConstantInt::get(getLLVMContext(), |
| Result.Val.getInt())); |
| if (Result.Val.isFloat()) |
| return RValue::get(llvm::ConstantFP::get(getLLVMContext(), |
| Result.Val.getFloat())); |
| } |
| |
| // If current long-double semantics is IEEE 128-bit, replace math builtins |
| // of long-double with f128 equivalent. |
| // TODO: This mutation should also be applied to other targets other than PPC, |
| // after backend supports IEEE 128-bit style libcalls. |
| if (getTarget().getTriple().isPPC64() && |
| &getTarget().getLongDoubleFormat() == &llvm::APFloat::IEEEquad()) |
| BuiltinID = mutateLongDoubleBuiltin(BuiltinID); |
| |
| // If the builtin has been declared explicitly with an assembler label, |
| // disable the specialized emitting below. Ideally we should communicate the |
| // rename in IR, or at least avoid generating the intrinsic calls that are |
| // likely to get lowered to the renamed library functions. |
| const unsigned BuiltinIDIfNoAsmLabel = |
| FD->hasAttr<AsmLabelAttr>() ? 0 : BuiltinID; |
| |
| // There are LLVM math intrinsics/instructions corresponding to math library |
| // functions except the LLVM op will never set errno while the math library |
| // might. Also, math builtins have the same semantics as their math library |
| // twins. Thus, we can transform math library and builtin calls to their |
| // LLVM counterparts if the call is marked 'const' (known to never set errno). |
| if (FD->hasAttr<ConstAttr>()) { |
| switch (BuiltinIDIfNoAsmLabel) { |
| case Builtin::BIceil: |
| case Builtin::BIceilf: |
| case Builtin::BIceill: |
| case Builtin::BI__builtin_ceil: |
| case Builtin::BI__builtin_ceilf: |
| case Builtin::BI__builtin_ceilf16: |
| case Builtin::BI__builtin_ceill: |
| case Builtin::BI__builtin_ceilf128: |
| return RValue::get(emitUnaryMaybeConstrainedFPBuiltin(*this, E, |
| Intrinsic::ceil, |
| Intrinsic::experimental_constrained_ceil)); |
| |
| case Builtin::BIcopysign: |
| case Builtin::BIcopysignf: |
| case Builtin::BIcopysignl: |
| case Builtin::BI__builtin_copysign: |
| case Builtin::BI__builtin_copysignf: |
| case Builtin::BI__builtin_copysignf16: |
| case Builtin::BI__builtin_copysignl: |
| case Builtin::BI__builtin_copysignf128: |
| return RValue::get(emitBinaryBuiltin(*this, E, Intrinsic::copysign)); |
| |
| case Builtin::BIcos: |
| case Builtin::BIcosf: |
| case Builtin::BIcosl: |
| case Builtin::BI__builtin_cos: |
| case Builtin::BI__builtin_cosf: |
| case Builtin::BI__builtin_cosf16: |
| case Builtin::BI__builtin_cosl: |
| case Builtin::BI__builtin_cosf128: |
| return RValue::get(emitUnaryMaybeConstrainedFPBuiltin(*this, E, |
| Intrinsic::cos, |
| Intrinsic::experimental_constrained_cos)); |
| |
| case Builtin::BIexp: |
| case Builtin::BIexpf: |
| case Builtin::BIexpl: |
| case Builtin::BI__builtin_exp: |
| case Builtin::BI__builtin_expf: |
| case Builtin::BI__builtin_expf16: |
| case Builtin::BI__builtin_expl: |
| case Builtin::BI__builtin_expf128: |
| return RValue::get(emitUnaryMaybeConstrainedFPBuiltin(*this, E, |
| Intrinsic::exp, |
| Intrinsic::experimental_constrained_exp)); |
| |
| case Builtin::BIexp2: |
| case Builtin::BIexp2f: |
| case Builtin::BIexp2l: |
| case Builtin::BI__builtin_exp2: |
| case Builtin::BI__builtin_exp2f: |
| case Builtin::BI__builtin_exp2f16: |
| case Builtin::BI__builtin_exp2l: |
| case Builtin::BI__builtin_exp2f128: |
| return RValue::get(emitUnaryMaybeConstrainedFPBuiltin(*this, E, |
| Intrinsic::exp2, |
| Intrinsic::experimental_constrained_exp2)); |
| |
| case Builtin::BIfabs: |
| case Builtin::BIfabsf: |
| case Builtin::BIfabsl: |
| case Builtin::BI__builtin_fabs: |
| case Builtin::BI__builtin_fabsf: |
| case Builtin::BI__builtin_fabsf16: |
| case Builtin::BI__builtin_fabsl: |
| case Builtin::BI__builtin_fabsf128: |
| return RValue::get(emitUnaryBuiltin(*this, E, Intrinsic::fabs)); |
| |
| case Builtin::BIfloor: |
| case Builtin::BIfloorf: |
| case Builtin::BIfloorl: |
| case Builtin::BI__builtin_floor: |
| case Builtin::BI__builtin_floorf: |
| case Builtin::BI__builtin_floorf16: |
| case Builtin::BI__builtin_floorl: |
| case Builtin::BI__builtin_floorf128: |
| return RValue::get(emitUnaryMaybeConstrainedFPBuiltin(*this, E, |
| Intrinsic::floor, |
| Intrinsic::experimental_constrained_floor)); |
| |
| case Builtin::BIfma: |
| case Builtin::BIfmaf: |
| case Builtin::BIfmal: |
| case Builtin::BI__builtin_fma: |
| case Builtin::BI__builtin_fmaf: |
| case Builtin::BI__builtin_fmaf16: |
| case Builtin::BI__builtin_fmal: |
| case Builtin::BI__builtin_fmaf128: |
| return RValue::get(emitTernaryMaybeConstrainedFPBuiltin(*this, E, |
| Intrinsic::fma, |
| Intrinsic::experimental_constrained_fma)); |
| |
| case Builtin::BIfmax: |
| case Builtin::BIfmaxf: |
| case Builtin::BIfmaxl: |
| case Builtin::BI__builtin_fmax: |
| case Builtin::BI__builtin_fmaxf: |
| case Builtin::BI__builtin_fmaxf16: |
| case Builtin::BI__builtin_fmaxl: |
| case Builtin::BI__builtin_fmaxf128: |
| return RValue::get(emitBinaryMaybeConstrainedFPBuiltin(*this, E, |
| Intrinsic::maxnum, |
| Intrinsic::experimental_constrained_maxnum)); |
| |
| case Builtin::BIfmin: |
| case Builtin::BIfminf: |
| case Builtin::BIfminl: |
| case Builtin::BI__builtin_fmin: |
| case Builtin::BI__builtin_fminf: |
| case Builtin::BI__builtin_fminf16: |
| case Builtin::BI__builtin_fminl: |
| case Builtin::BI__builtin_fminf128: |
| return RValue::get(emitBinaryMaybeConstrainedFPBuiltin(*this, E, |
| Intrinsic::minnum, |
| Intrinsic::experimental_constrained_minnum)); |
| |
| // fmod() is a special-case. It maps to the frem instruction rather than an |
| // LLVM intrinsic. |
| case Builtin::BIfmod: |
| case Builtin::BIfmodf: |
| case Builtin::BIfmodl: |
| case Builtin::BI__builtin_fmod: |
| case Builtin::BI__builtin_fmodf: |
| case Builtin::BI__builtin_fmodf16: |
| case Builtin::BI__builtin_fmodl: |
| case Builtin::BI__builtin_fmodf128: { |
| CodeGenFunction::CGFPOptionsRAII FPOptsRAII(*this, E); |
| Value *Arg1 = EmitScalarExpr(E->getArg(0)); |
| Value *Arg2 = EmitScalarExpr(E->getArg(1)); |
| return RValue::get(Builder.CreateFRem(Arg1, Arg2, "fmod")); |
| } |
| |
| case Builtin::BIlog: |
| case Builtin::BIlogf: |
| case Builtin::BIlogl: |
| case Builtin::BI__builtin_log: |
| case Builtin::BI__builtin_logf: |
| case Builtin::BI__builtin_logf16: |
| case Builtin::BI__builtin_logl: |
| case Builtin::BI__builtin_logf128: |
| return RValue::get(emitUnaryMaybeConstrainedFPBuiltin(*this, E, |
| Intrinsic::log, |
| Intrinsic::experimental_constrained_log)); |
| |
| case Builtin::BIlog10: |
| case Builtin::BIlog10f: |
| case Builtin::BIlog10l: |
| case Builtin::BI__builtin_log10: |
| case Builtin::BI__builtin_log10f: |
| case Builtin::BI__builtin_log10f16: |
| case Builtin::BI__builtin_log10l: |
| case Builtin::BI__builtin_log10f128: |
| return RValue::get(emitUnaryMaybeConstrainedFPBuiltin(*this, E, |
| Intrinsic::log10, |
| Intrinsic::experimental_constrained_log10)); |
| |
| case Builtin::BIlog2: |
| case Builtin::BIlog2f: |
| case Builtin::BIlog2l: |
| case Builtin::BI__builtin_log2: |
| case Builtin::BI__builtin_log2f: |
| case Builtin::BI__builtin_log2f16: |
| case Builtin::BI__builtin_log2l: |
| case Builtin::BI__builtin_log2f128: |
| return RValue::get(emitUnaryMaybeConstrainedFPBuiltin(*this, E, |
| Intrinsic::log2, |
| Intrinsic::experimental_constrained_log2)); |
| |
| case Builtin::BInearbyint: |
| case Builtin::BInearbyintf: |
| case Builtin::BInearbyintl: |
| case Builtin::BI__builtin_nearbyint: |
| case Builtin::BI__builtin_nearbyintf: |
| case Builtin::BI__builtin_nearbyintl: |
| case Builtin::BI__builtin_nearbyintf128: |
| return RValue::get(emitUnaryMaybeConstrainedFPBuiltin(*this, E, |
| Intrinsic::nearbyint, |
| Intrinsic::experimental_constrained_nearbyint)); |
| |
| case Builtin::BIpow: |
| case Builtin::BIpowf: |
| case Builtin::BIpowl: |
| case Builtin::BI__builtin_pow: |
| case Builtin::BI__builtin_powf: |
| case Builtin::BI__builtin_powf16: |
| case Builtin::BI__builtin_powl: |
| case Builtin::BI__builtin_powf128: |
| return RValue::get(emitBinaryMaybeConstrainedFPBuiltin(*this, E, |
| Intrinsic::pow, |
| Intrinsic::experimental_constrained_pow)); |
| |
| case Builtin::BIrint: |
| case Builtin::BIrintf: |
| case Builtin::BIrintl: |
| case Builtin::BI__builtin_rint: |
| case Builtin::BI__builtin_rintf: |
| case Builtin::BI__builtin_rintf16: |
| case Builtin::BI__builtin_rintl: |
| case Builtin::BI__builtin_rintf128: |
| return RValue::get(emitUnaryMaybeConstrainedFPBuiltin(*this, E, |
| Intrinsic::rint, |
| Intrinsic::experimental_constrained_rint)); |
| |
| case Builtin::BIround: |
| case Builtin::BIroundf: |
| case Builtin::BIroundl: |
| case Builtin::BI__builtin_round: |
| case Builtin::BI__builtin_roundf: |
| case Builtin::BI__builtin_roundf16: |
| case Builtin::BI__builtin_roundl: |
| case Builtin::BI__builtin_roundf128: |
| return RValue::get(emitUnaryMaybeConstrainedFPBuiltin(*this, E, |
| Intrinsic::round, |
| Intrinsic::experimental_constrained_round)); |
| |
| case Builtin::BIsin: |
| case Builtin::BIsinf: |
| case Builtin::BIsinl: |
| case Builtin::BI__builtin_sin: |
| case Builtin::BI__builtin_sinf: |
| case Builtin::BI__builtin_sinf16: |
| case Builtin::BI__builtin_sinl: |
| case Builtin::BI__builtin_sinf128: |
| return RValue::get(emitUnaryMaybeConstrainedFPBuiltin(*this, E, |
| Intrinsic::sin, |
| Intrinsic::experimental_constrained_sin)); |
| |
| case Builtin::BIsqrt: |
| case Builtin::BIsqrtf: |
| case Builtin::BIsqrtl: |
| case Builtin::BI__builtin_sqrt: |
| case Builtin::BI__builtin_sqrtf: |
| case Builtin::BI__builtin_sqrtf16: |
| case Builtin::BI__builtin_sqrtl: |
| case Builtin::BI__builtin_sqrtf128: |
| return RValue::get(emitUnaryMaybeConstrainedFPBuiltin(*this, E, |
| Intrinsic::sqrt, |
| Intrinsic::experimental_constrained_sqrt)); |
| |
| case Builtin::BItrunc: |
| case Builtin::BItruncf: |
| case Builtin::BItruncl: |
| case Builtin::BI__builtin_trunc: |
| case Builtin::BI__builtin_truncf: |
| case Builtin::BI__builtin_truncf16: |
| case Builtin::BI__builtin_truncl: |
| case Builtin::BI__builtin_truncf128: |
| return RValue::get(emitUnaryMaybeConstrainedFPBuiltin(*this, E, |
| Intrinsic::trunc, |
| Intrinsic::experimental_constrained_trunc)); |
| |
| case Builtin::BIlround: |
| case Builtin::BIlroundf: |
| case Builtin::BIlroundl: |
| case Builtin::BI__builtin_lround: |
| case Builtin::BI__builtin_lroundf: |
| case Builtin::BI__builtin_lroundl: |
| case Builtin::BI__builtin_lroundf128: |
| return RValue::get(emitMaybeConstrainedFPToIntRoundBuiltin( |
| *this, E, Intrinsic::lround, |
| Intrinsic::experimental_constrained_lround)); |
| |
| case Builtin::BIllround: |
| case Builtin::BIllroundf: |
| case Builtin::BIllroundl: |
| case Builtin::BI__builtin_llround: |
| case Builtin::BI__builtin_llroundf: |
| case Builtin::BI__builtin_llroundl: |
| case Builtin::BI__builtin_llroundf128: |
| return RValue::get(emitMaybeConstrainedFPToIntRoundBuiltin( |
| *this, E, Intrinsic::llround, |
| Intrinsic::experimental_constrained_llround)); |
| |
| case Builtin::BIlrint: |
| case Builtin::BIlrintf: |
| case Builtin::BIlrintl: |
| case Builtin::BI__builtin_lrint: |
| case Builtin::BI__builtin_lrintf: |
| case Builtin::BI__builtin_lrintl: |
| case Builtin::BI__builtin_lrintf128: |
| return RValue::get(emitMaybeConstrainedFPToIntRoundBuiltin( |
| *this, E, Intrinsic::lrint, |
| Intrinsic::experimental_constrained_lrint)); |
| |
| case Builtin::BIllrint: |
| case Builtin::BIllrintf: |
| case Builtin::BIllrintl: |
| case Builtin::BI__builtin_llrint: |
| case Builtin::BI__builtin_llrintf: |
| case Builtin::BI__builtin_llrintl: |
| case Builtin::BI__builtin_llrintf128: |
| return RValue::get(emitMaybeConstrainedFPToIntRoundBuiltin( |
| *this, E, Intrinsic::llrint, |
| Intrinsic::experimental_constrained_llrint)); |
| |
| default: |
| break; |
| } |
| } |
| |
| switch (BuiltinIDIfNoAsmLabel) { |
| default: break; |
| case Builtin::BI__builtin___CFStringMakeConstantString: |
| case Builtin::BI__builtin___NSStringMakeConstantString: |
| return RValue::get(ConstantEmitter(*this).emitAbstract(E, E->getType())); |
| case Builtin::BI__builtin_stdarg_start: |
| case Builtin::BI__builtin_va_start: |
| case Builtin::BI__va_start: |
| case Builtin::BI__builtin_va_end: |
| return RValue::get( |
| EmitVAStartEnd(BuiltinID == Builtin::BI__va_start |
| ? EmitScalarExpr(E->getArg(0)) |
| : EmitVAListRef(E->getArg(0)).getPointer(), |
| BuiltinID != Builtin::BI__builtin_va_end)); |
| case Builtin::BI__builtin_va_copy: { |
| Value *DstPtr = EmitVAListRef(E->getArg(0)).getPointer(); |
| Value *SrcPtr = EmitVAListRef(E->getArg(1)).getPointer(); |
| |
| llvm::Type *Type = Int8PtrTy; |
| |
| DstPtr = Builder.CreateBitCast(DstPtr, Type); |
| SrcPtr = Builder.CreateBitCast(SrcPtr, Type); |
| return RValue::get(Builder.CreateCall(CGM.getIntrinsic(Intrinsic::vacopy), |
| {DstPtr, SrcPtr})); |
| } |
| case Builtin::BI__builtin_abs: |
| case Builtin::BI__builtin_labs: |
| case Builtin::BI__builtin_llabs: { |
| // X < 0 ? -X : X |
| // The negation has 'nsw' because abs of INT_MIN is undefined. |
| Value *ArgValue = EmitScalarExpr(E->getArg(0)); |
| Value *NegOp = Builder.CreateNSWNeg(ArgValue, "neg"); |
| Constant *Zero = llvm::Constant::getNullValue(ArgValue->getType()); |
| Value *CmpResult = Builder.CreateICmpSLT(ArgValue, Zero, "abscond"); |
| Value *Result = Builder.CreateSelect(CmpResult, NegOp, ArgValue, "abs"); |
| return RValue::get(Result); |
| } |
| case Builtin::BI__builtin_complex: { |
| Value *Real = EmitScalarExpr(E->getArg(0)); |
| Value *Imag = EmitScalarExpr(E->getArg(1)); |
| return RValue::getComplex({Real, Imag}); |
| } |
| case Builtin::BI__builtin_conj: |
| case Builtin::BI__builtin_conjf: |
| case Builtin::BI__builtin_conjl: |
| case Builtin::BIconj: |
| case Builtin::BIconjf: |
| case Builtin::BIconjl: { |
| ComplexPairTy ComplexVal = EmitComplexExpr(E->getArg(0)); |
| Value *Real = ComplexVal.first; |
| Value *Imag = ComplexVal.second; |
| Imag = Builder.CreateFNeg(Imag, "neg"); |
| return RValue::getComplex(std::make_pair(Real, Imag)); |
| } |
| case Builtin::BI__builtin_creal: |
| case Builtin::BI__builtin_crealf: |
| case Builtin::BI__builtin_creall: |
| case Builtin::BIcreal: |
| case Builtin::BIcrealf: |
| case Builtin::BIcreall: { |
| ComplexPairTy ComplexVal = EmitComplexExpr(E->getArg(0)); |
| return RValue::get(ComplexVal.first); |
| } |
| |
| case Builtin::BI__builtin_dump_struct: { |
| llvm::Type *LLVMIntTy = getTypes().ConvertType(getContext().IntTy); |
| llvm::FunctionType *LLVMFuncType = llvm::FunctionType::get( |
| LLVMIntTy, {llvm::Type::getInt8PtrTy(getLLVMContext())}, true); |
| |
| Value *Func = EmitScalarExpr(E->getArg(1)->IgnoreImpCasts()); |
| CharUnits Arg0Align = EmitPointerWithAlignment(E->getArg(0)).getAlignment(); |
| |
| const Expr *Arg0 = E->getArg(0)->IgnoreImpCasts(); |
| QualType Arg0Type = Arg0->getType()->getPointeeType(); |
| |
| Value *RecordPtr = EmitScalarExpr(Arg0); |
| Value *Res = dumpRecord(*this, Arg0Type, RecordPtr, Arg0Align, |
| {LLVMFuncType, Func}, 0); |
| return RValue::get(Res); |
| } |
| |
| case Builtin::BI__builtin_preserve_access_index: { |
| // Only enabled preserved access index region when debuginfo |
| // is available as debuginfo is needed to preserve user-level |
| // access pattern. |
| if (!getDebugInfo()) { |
| CGM.Error(E->getExprLoc(), "using builtin_preserve_access_index() without -g"); |
| return RValue::get(EmitScalarExpr(E->getArg(0))); |
| } |
| |
| // Nested builtin_preserve_access_index() not supported |
| if (IsInPreservedAIRegion) { |
| CGM.Error(E->getExprLoc(), "nested builtin_preserve_access_index() not supported"); |
| return RValue::get(EmitScalarExpr(E->getArg(0))); |
| } |
| |
| IsInPreservedAIRegion = true; |
| Value *Res = EmitScalarExpr(E->getArg(0)); |
| IsInPreservedAIRegion = false; |
| return RValue::get(Res); |
| } |
| |
| case Builtin::BI__builtin_cimag: |
| case Builtin::BI__builtin_cimagf: |
| case Builtin::BI__builtin_cimagl: |
| case Builtin::BIcimag: |
| case Builtin::BIcimagf: |
| case Builtin::BIcimagl: { |
| ComplexPairTy ComplexVal = EmitComplexExpr(E->getArg(0)); |
| return RValue::get(ComplexVal.second); |
| } |
| |
| case Builtin::BI__builtin_clrsb: |
| case Builtin::BI__builtin_clrsbl: |
| case Builtin::BI__builtin_clrsbll: { |
| // clrsb(x) -> clz(x < 0 ? ~x : x) - 1 or |
| Value *ArgValue = EmitScalarExpr(E->getArg(0)); |
| |
| llvm::Type *ArgType = ArgValue->getType(); |
| Function *F = CGM.getIntrinsic(Intrinsic::ctlz, ArgType); |
| |
| llvm::Type *ResultType = ConvertType(E->getType()); |
| Value *Zero = llvm::Constant::getNullValue(ArgType); |
| Value *IsNeg = Builder.CreateICmpSLT(ArgValue, Zero, "isneg"); |
| Value *Inverse = Builder.CreateNot(ArgValue, "not"); |
| Value *Tmp = Builder.CreateSelect(IsNeg, Inverse, ArgValue); |
| Value *Ctlz = Builder.CreateCall(F, {Tmp, Builder.getFalse()}); |
| Value *Result = Builder.CreateSub(Ctlz, llvm::ConstantInt::get(ArgType, 1)); |
| Result = Builder.CreateIntCast(Result, ResultType, /*isSigned*/true, |
| "cast"); |
| return RValue::get(Result); |
| } |
| case Builtin::BI__builtin_ctzs: |
| case Builtin::BI__builtin_ctz: |
| case Builtin::BI__builtin_ctzl: |
| case Builtin::BI__builtin_ctzll: { |
| Value *ArgValue = EmitCheckedArgForBuiltin(E->getArg(0), BCK_CTZPassedZero); |
| |
| llvm::Type *ArgType = ArgValue->getType(); |
| Function *F = CGM.getIntrinsic(Intrinsic::cttz, ArgType); |
| |
| llvm::Type *ResultType = ConvertType(E->getType()); |
| Value *ZeroUndef = Builder.getInt1(getTarget().isCLZForZeroUndef()); |
| Value *Result = Builder.CreateCall(F, {ArgValue, ZeroUndef}); |
| if (Result->getType() != ResultType) |
| Result = Builder.CreateIntCast(Result, ResultType, /*isSigned*/true, |
| "cast"); |
| return RValue::get(Result); |
| } |
| case Builtin::BI__builtin_clzs: |
| case Builtin::BI__builtin_clz: |
| case Builtin::BI__builtin_clzl: |
| case Builtin::BI__builtin_clzll: { |
| Value *ArgValue = EmitCheckedArgForBuiltin(E->getArg(0), BCK_CLZPassedZero); |
| |
| llvm::Type *ArgType = ArgValue->getType(); |
| Function *F = CGM.getIntrinsic(Intrinsic::ctlz, ArgType); |
| |
| llvm::Type *ResultType = ConvertType(E->getType()); |
| Value *ZeroUndef = Builder.getInt1(getTarget().isCLZForZeroUndef()); |
| Value *Result = Builder.CreateCall(F, {ArgValue, ZeroUndef}); |
| if (Result->getType() != ResultType) |
| Result = Builder.CreateIntCast(Result, ResultType, /*isSigned*/true, |
| "cast"); |
| return RValue::get(Result); |
| } |
| case Builtin::BI__builtin_ffs: |
| case Builtin::BI__builtin_ffsl: |
| case Builtin::BI__builtin_ffsll: { |
| // ffs(x) -> x ? cttz(x) + 1 : 0 |
| Value *ArgValue = EmitScalarExpr(E->getArg(0)); |
| |
| llvm::Type *ArgType = ArgValue->getType(); |
| Function *F = CGM.getIntrinsic(Intrinsic::cttz, ArgType); |
| |
| llvm::Type *ResultType = ConvertType(E->getType()); |
| Value *Tmp = |
| Builder.CreateAdd(Builder.CreateCall(F, {ArgValue, Builder.getTrue()}), |
| llvm::ConstantInt::get(ArgType, 1)); |
| Value *Zero = llvm::Constant::getNullValue(ArgType); |
| Value *IsZero = Builder.CreateICmpEQ(ArgValue, Zero, "iszero"); |
| Value *Result = Builder.CreateSelect(IsZero, Zero, Tmp, "ffs"); |
| if (Result->getType() != ResultType) |
| Result = Builder.CreateIntCast(Result, ResultType, /*isSigned*/true, |
| "cast"); |
| return RValue::get(Result); |
| } |
| case Builtin::BI__builtin_parity: |
| case Builtin::BI__builtin_parityl: |
| case Builtin::BI__builtin_parityll: { |
| // parity(x) -> ctpop(x) & 1 |
| Value *ArgValue = EmitScalarExpr(E->getArg(0)); |
| |
| llvm::Type *ArgType = ArgValue->getType(); |
| Function *F = CGM.getIntrinsic(Intrinsic::ctpop, ArgType); |
| |
| llvm::Type *ResultType = ConvertType(E->getType()); |
| Value *Tmp = Builder.CreateCall(F, ArgValue); |
| Value *Result = Builder.CreateAnd(Tmp, llvm::ConstantInt::get(ArgType, 1)); |
| if (Result->getType() != ResultType) |
| Result = Builder.CreateIntCast(Result, ResultType, /*isSigned*/true, |
| "cast"); |
| return RValue::get(Result); |
| } |
| case Builtin::BI__lzcnt16: |
| case Builtin::BI__lzcnt: |
| case Builtin::BI__lzcnt64: { |
| Value *ArgValue = EmitScalarExpr(E->getArg(0)); |
| |
| llvm::Type *ArgType = ArgValue->getType(); |
| Function *F = CGM.getIntrinsic(Intrinsic::ctlz, ArgType); |
| |
| llvm::Type *ResultType = ConvertType(E->getType()); |
| Value *Result = Builder.CreateCall(F, {ArgValue, Builder.getFalse()}); |
| if (Result->getType() != ResultType) |
| Result = Builder.CreateIntCast(Result, ResultType, /*isSigned*/true, |
| "cast"); |
| return RValue::get(Result); |
| } |
| case Builtin::BI__popcnt16: |
| case Builtin::BI__popcnt: |
| case Builtin::BI__popcnt64: |
| case Builtin::BI__builtin_popcount: |
| case Builtin::BI__builtin_popcountl: |
| case Builtin::BI__builtin_popcountll: { |
| Value *ArgValue = EmitScalarExpr(E->getArg(0)); |
| |
| llvm::Type *ArgType = ArgValue->getType(); |
| Function *F = CGM.getIntrinsic(Intrinsic::ctpop, ArgType); |
| |
| llvm::Type *ResultType = ConvertType(E->getType()); |
| Value *Result = Builder.CreateCall(F, ArgValue); |
| if (Result->getType() != ResultType) |
| Result = Builder.CreateIntCast(Result, ResultType, /*isSigned*/true, |
| "cast"); |
| return RValue::get(Result); |
| } |
| case Builtin::BI__builtin_unpredictable: { |
| // Always return the argument of __builtin_unpredictable. LLVM does not |
| // handle this builtin. Metadata for this builtin should be added directly |
| // to instructions such as branches or switches that use it. |
| return RValue::get(EmitScalarExpr(E->getArg(0))); |
| } |
| case Builtin::BI__builtin_expect: { |
| Value *ArgValue = EmitScalarExpr(E->getArg(0)); |
| llvm::Type *ArgType = ArgValue->getType(); |
| |
| Value *ExpectedValue = EmitScalarExpr(E->getArg(1)); |
| // Don't generate llvm.expect on -O0 as the backend won't use it for |
| // anything. |
| // Note, we still IRGen ExpectedValue because it could have side-effects. |
| if (CGM.getCodeGenOpts().OptimizationLevel == 0) |
| return RValue::get(ArgValue); |
| |
| Function *FnExpect = CGM.getIntrinsic(Intrinsic::expect, ArgType); |
| Value *Result = |
| Builder.CreateCall(FnExpect, {ArgValue, ExpectedValue}, "expval"); |
| return RValue::get(Result); |
| } |
| case Builtin::BI__builtin_expect_with_probability: { |
| Value *ArgValue = EmitScalarExpr(E->getArg(0)); |
| llvm::Type *ArgType = ArgValue->getType(); |
| |
| Value *ExpectedValue = EmitScalarExpr(E->getArg(1)); |
| llvm::APFloat Probability(0.0); |
| const Expr *ProbArg = E->getArg(2); |
| bool EvalSucceed = ProbArg->EvaluateAsFloat(Probability, CGM.getContext()); |
| assert(EvalSucceed && "probability should be able to evaluate as float"); |
| (void)EvalSucceed; |
| bool LoseInfo = false; |
| Probability.convert(llvm::APFloat::IEEEdouble(), |
| llvm::RoundingMode::Dynamic, &LoseInfo); |
| llvm::Type *Ty = ConvertType(ProbArg->getType()); |
| Constant *Confidence = ConstantFP::get(Ty, Probability); |
| // Don't generate llvm.expect.with.probability on -O0 as the backend |
| // won't use it for anything. |
| // Note, we still IRGen ExpectedValue because it could have side-effects. |
| if (CGM.getCodeGenOpts().OptimizationLevel == 0) |
| return RValue::get(ArgValue); |
| |
| Function *FnExpect = |
| CGM.getIntrinsic(Intrinsic::expect_with_probability, ArgType); |
| Value *Result = Builder.CreateCall( |
| FnExpect, {ArgValue, ExpectedValue, Confidence}, "expval"); |
| return RValue::get(Result); |
| } |
| case Builtin::BI__builtin_assume_aligned: { |
| const Expr *Ptr = E->getArg(0); |
| Value *PtrValue = EmitScalarExpr(Ptr); |
| Value *OffsetValue = |
| (E->getNumArgs() > 2) ? EmitScalarExpr(E->getArg(2)) : nullptr; |
| |
| Value *AlignmentValue = EmitScalarExpr(E->getArg(1)); |
| ConstantInt *AlignmentCI = cast<ConstantInt>(AlignmentValue); |
| if (AlignmentCI->getValue().ugt(llvm::Value::MaximumAlignment)) |
| AlignmentCI = ConstantInt::get(AlignmentCI->getType(), |
| llvm::Value::MaximumAlignment); |
| |
| emitAlignmentAssumption(PtrValue, Ptr, |
| /*The expr loc is sufficient.*/ SourceLocation(), |
| AlignmentCI, OffsetValue); |
| return RValue::get(PtrValue); |
| } |
| case Builtin::BI__assume: |
| case Builtin::BI__builtin_assume: { |
| if (E->getArg(0)->HasSideEffects(getContext())) |
| return RValue::get(nullptr); |
| |
| Value *ArgValue = EmitScalarExpr(E->getArg(0)); |
| Function *FnAssume = CGM.getIntrinsic(Intrinsic::assume); |
| return RValue::get(Builder.CreateCall(FnAssume, ArgValue)); |
| } |
| case Builtin::BI__arithmetic_fence: { |
| // Create the builtin call if FastMath is selected, and the target |
| // supports the builtin, otherwise just return the argument. |
| CodeGenFunction::CGFPOptionsRAII FPOptsRAII(*this, E); |
| llvm::FastMathFlags FMF = Builder.getFastMathFlags(); |
| bool isArithmeticFenceEnabled = |
| FMF.allowReassoc() && |
| getContext().getTargetInfo().checkArithmeticFenceSupported(); |
| QualType ArgType = E->getArg(0)->getType(); |
| if (ArgType->isComplexType()) { |
| if (isArithmeticFenceEnabled) { |
| QualType ElementType = ArgType->castAs<ComplexType>()->getElementType(); |
| ComplexPairTy ComplexVal = EmitComplexExpr(E->getArg(0)); |
| Value *Real = Builder.CreateArithmeticFence(ComplexVal.first, |
| ConvertType(ElementType)); |
| Value *Imag = Builder.CreateArithmeticFence(ComplexVal.second, |
| ConvertType(ElementType)); |
| return RValue::getComplex(std::make_pair(Real, Imag)); |
| } |
| ComplexPairTy ComplexVal = EmitComplexExpr(E->getArg(0)); |
| Value *Real = ComplexVal.first; |
| Value *Imag = ComplexVal.second; |
| return RValue::getComplex(std::make_pair(Real, Imag)); |
| } |
| Value *ArgValue = EmitScalarExpr(E->getArg(0)); |
| if (isArithmeticFenceEnabled) |
| return RValue::get( |
| Builder.CreateArithmeticFence(ArgValue, ConvertType(ArgType))); |
| return RValue::get(ArgValue); |
| } |
| case Builtin::BI__builtin_bswap16: |
| case Builtin::BI__builtin_bswap32: |
| case Builtin::BI__builtin_bswap64: { |
| return RValue::get(emitUnaryBuiltin(*this, E, Intrinsic::bswap)); |
| } |
| case Builtin::BI__builtin_bitreverse8: |
| case Builtin::BI__builtin_bitreverse16: |
| case Builtin::BI__builtin_bitreverse32: |
| case Builtin::BI__builtin_bitreverse64: { |
| return RValue::get(emitUnaryBuiltin(*this, E, Intrinsic::bitreverse)); |
| } |
| case Builtin::BI__builtin_rotateleft8: |
| case Builtin::BI__builtin_rotateleft16: |
| case Builtin::BI__builtin_rotateleft32: |
| case Builtin::BI__builtin_rotateleft64: |
| case Builtin::BI_rotl8: // Microsoft variants of rotate left |
| case Builtin::BI_rotl16: |
| case Builtin::BI_rotl: |
| case Builtin::BI_lrotl: |
| case Builtin::BI_rotl64: |
| return emitRotate(E, false); |
| |
| case Builtin::BI__builtin_rotateright8: |
| case Builtin::BI__builtin_rotateright16: |
| case Builtin::BI__builtin_rotateright32: |
| case Builtin::BI__builtin_rotateright64: |
| case Builtin::BI_rotr8: // Microsoft variants of rotate right |
| case Builtin::BI_rotr16: |
| case Builtin::BI_rotr: |
| case Builtin::BI_lrotr: |
| case Builtin::BI_rotr64: |
| return emitRotate(E, true); |
| |
| case Builtin::BI__builtin_constant_p: { |
| llvm::Type *ResultType = ConvertType(E->getType()); |
| |
| const Expr *Arg = E->getArg(0); |
| QualType ArgType = Arg->getType(); |
| // FIXME: The allowance for Obj-C pointers and block pointers is historical |
| // and likely a mistake. |
| if (!ArgType->isIntegralOrEnumerationType() && !ArgType->isFloatingType() && |
| !ArgType->isObjCObjectPointerType() && !ArgType->isBlockPointerType()) |
| // Per the GCC documentation, only numeric constants are recognized after |
| // inlining. |
| return RValue::get(ConstantInt::get(ResultType, 0)); |
| |
| if (Arg->HasSideEffects(getContext())) |
| // The argument is unevaluated, so be conservative if it might have |
| // side-effects. |
| return RValue::get(ConstantInt::get(ResultType, 0)); |
| |
| Value *ArgValue = EmitScalarExpr(Arg); |
| if (ArgType->isObjCObjectPointerType()) { |
| // Convert Objective-C objects to id because we cannot distinguish between |
| // LLVM types for Obj-C classes as they are opaque. |
| ArgType = CGM.getContext().getObjCIdType(); |
| ArgValue = Builder.CreateBitCast(ArgValue, ConvertType(ArgType)); |
| } |
| Function *F = |
| CGM.getIntrinsic(Intrinsic::is_constant, ConvertType(ArgType)); |
| Value *Result = Builder.CreateCall(F, ArgValue); |
| if (Result->getType() != ResultType) |
| Result = Builder.CreateIntCast(Result, ResultType, /*isSigned*/false); |
| return RValue::get(Result); |
| } |
| case Builtin::BI__builtin_dynamic_object_size: |
| case Builtin::BI__builtin_object_size: { |
| unsigned Type = |
| E->getArg(1)->EvaluateKnownConstInt(getContext()).getZExtValue(); |
| auto *ResType = cast<llvm::IntegerType>(ConvertType(E->getType())); |
| |
| // We pass this builtin onto the optimizer so that it can figure out the |
| // object size in more complex cases. |
| bool IsDynamic = BuiltinID == Builtin::BI__builtin_dynamic_object_size; |
| return RValue::get(emitBuiltinObjectSize(E->getArg(0), Type, ResType, |
| /*EmittedE=*/nullptr, IsDynamic)); |
| } |
| case Builtin::BI__builtin_prefetch: { |
| Value *Locality, *RW, *Address = EmitScalarExpr(E->getArg(0)); |
| // FIXME: Technically these constants should of type 'int', yes? |
| RW = (E->getNumArgs() > 1) ? EmitScalarExpr(E->getArg(1)) : |
| llvm::ConstantInt::get(Int32Ty, 0); |
| Locality = (E->getNumArgs() > 2) ? EmitScalarExpr(E->getArg(2)) : |
| llvm::ConstantInt::get(Int32Ty, 3); |
| Value *Data = llvm::ConstantInt::get(Int32Ty, 1); |
| Function *F = CGM.getIntrinsic(Intrinsic::prefetch, Address->getType()); |
| return RValue::get(Builder.CreateCall(F, {Address, RW, Locality, Data})); |
| } |
| case Builtin::BI__builtin_readcyclecounter: { |
| Function *F = CGM.getIntrinsic(Intrinsic::readcyclecounter); |
| return RValue::get(Builder.CreateCall(F)); |
| } |
| case Builtin::BI__builtin___clear_cache: { |
| Value *Begin = EmitScalarExpr(E->getArg(0)); |
| Value *End = EmitScalarExpr(E->getArg(1)); |
| Function *F = CGM.getIntrinsic(Intrinsic::clear_cache); |
| return RValue::get(Builder.CreateCall(F, {Begin, End})); |
| } |
| case Builtin::BI__builtin_trap: |
| return RValue::get(EmitTrapCall(Intrinsic::trap)); |
| case Builtin::BI__debugbreak: |
| return RValue::get(EmitTrapCall(Intrinsic::debugtrap)); |
| case Builtin::BI__builtin_unreachable: { |
| EmitUnreachable(E->getExprLoc()); |
| |
| // We do need to preserve an insertion point. |
| EmitBlock(createBasicBlock("unreachable.cont")); |
| |
| return RValue::get(nullptr); |
| } |
| |
| case Builtin::BI__builtin_powi: |
| case Builtin::BI__builtin_powif: |
| case Builtin::BI__builtin_powil: { |
| llvm::Value *Src0 = EmitScalarExpr(E->getArg(0)); |
| llvm::Value *Src1 = EmitScalarExpr(E->getArg(1)); |
| |
| if (Builder.getIsFPConstrained()) { |
| CodeGenFunction::CGFPOptionsRAII FPOptsRAII(*this, E); |
| Function *F = CGM.getIntrinsic(Intrinsic::experimental_constrained_powi, |
| Src0->getType()); |
| return RValue::get(Builder.CreateConstrainedFPCall(F, { Src0, Src1 })); |
| } |
| |
| Function *F = CGM.getIntrinsic(Intrinsic::powi, |
| { Src0->getType(), Src1->getType() }); |
| return RValue::get(Builder.CreateCall(F, { Src0, Src1 })); |
| } |
| case Builtin::BI__builtin_isgreater: |
| case Builtin::BI__builtin_isgreaterequal: |
| case Builtin::BI__builtin_isless: |
| case Builtin::BI__builtin_islessequal: |
| case Builtin::BI__builtin_islessgreater: |
| case Builtin::BI__builtin_isunordered: { |
| // Ordered comparisons: we know the arguments to these are matching scalar |
| // floating point values. |
| CodeGenFunction::CGFPOptionsRAII FPOptsRAII(*this, E); |
| // FIXME: for strictfp/IEEE-754 we need to not trap on SNaN here. |
| Value *LHS = EmitScalarExpr(E->getArg(0)); |
| Value *RHS = EmitScalarExpr(E->getArg(1)); |
| |
| switch (BuiltinID) { |
| default: llvm_unreachable("Unknown ordered comparison"); |
| case Builtin::BI__builtin_isgreater: |
| LHS = Builder.CreateFCmpOGT(LHS, RHS, "cmp"); |
| break; |
| case Builtin::BI__builtin_isgreaterequal: |
| LHS = Builder.CreateFCmpOGE(LHS, RHS, "cmp"); |
| break; |
| case Builtin::BI__builtin_isless: |
| LHS = Builder.CreateFCmpOLT(LHS, RHS, "cmp"); |
| break; |
| case Builtin::BI__builtin_islessequal: |
| LHS = Builder.CreateFCmpOLE(LHS, RHS, "cmp"); |
| break; |
| case Builtin::BI__builtin_islessgreater: |
| LHS = Builder.CreateFCmpONE(LHS, RHS, "cmp"); |
| break; |
| case Builtin::BI__builtin_isunordered: |
| LHS = Builder.CreateFCmpUNO(LHS, RHS, "cmp"); |
| break; |
| } |
| // ZExt bool to int type. |
| return RValue::get(Builder.CreateZExt(LHS, ConvertType(E->getType()))); |
| } |
| case Builtin::BI__builtin_isnan: { |
| CodeGenFunction::CGFPOptionsRAII FPOptsRAII(*this, E); |
| Value *V = EmitScalarExpr(E->getArg(0)); |
| llvm::Type *Ty = V->getType(); |
| const llvm::fltSemantics &Semantics = Ty->getFltSemantics(); |
| if (!Builder.getIsFPConstrained() || |
| Builder.getDefaultConstrainedExcept() == fp::ebIgnore || |
| !Ty->isIEEE()) { |
| V = Builder.CreateFCmpUNO(V, V, "cmp"); |
| return RValue::get(Builder.CreateZExt(V, ConvertType(E->getType()))); |
| } |
| |
| if (Value *Result = getTargetHooks().testFPKind(V, BuiltinID, Builder, CGM)) |
| return RValue::get(Result); |
| |
| // NaN has all exp bits set and a non zero significand. Therefore: |
| // isnan(V) == ((exp mask - (abs(V) & exp mask)) < 0) |
| unsigned bitsize = Ty->getScalarSizeInBits(); |
| llvm::IntegerType *IntTy = Builder.getIntNTy(bitsize); |
| Value *IntV = Builder.CreateBitCast(V, IntTy); |
| APInt AndMask = APInt::getSignedMaxValue(bitsize); |
| Value *AbsV = |
| Builder.CreateAnd(IntV, llvm::ConstantInt::get(IntTy, AndMask)); |
| APInt ExpMask = APFloat::getInf(Semantics).bitcastToAPInt(); |
| Value *Sub = |
| Builder.CreateSub(llvm::ConstantInt::get(IntTy, ExpMask), AbsV); |
| // V = sign bit (Sub) <=> V = (Sub < 0) |
| V = Builder.CreateLShr(Sub, llvm::ConstantInt::get(IntTy, bitsize - 1)); |
| if (bitsize > 32) |
| V = Builder.CreateTrunc(V, ConvertType(E->getType())); |
| return RValue::get(V); |
| } |
| |
| case Builtin::BI__builtin_elementwise_abs: { |
| Value *Op0 = EmitScalarExpr(E->getArg(0)); |
| Value *Result; |
| if (Op0->getType()->isIntOrIntVectorTy()) |
| Result = Builder.CreateBinaryIntrinsic( |
| llvm::Intrinsic::abs, Op0, Builder.getFalse(), nullptr, "elt.abs"); |
| else |
| Result = Builder.CreateUnaryIntrinsic(llvm::Intrinsic::fabs, Op0, nullptr, |
| "elt.abs"); |
| return RValue::get(Result); |
| } |
| case Builtin::BI__builtin_elementwise_max: { |
| Value *Op0 = EmitScalarExpr(E->getArg(0)); |
| Value *Op1 = EmitScalarExpr(E->getArg(1)); |
| Value *Result; |
| if (Op0->getType()->isIntOrIntVectorTy()) { |
| QualType Ty = E->getArg(0)->getType(); |
| if (auto *VecTy = Ty->getAs<VectorType>()) |
| Ty = VecTy->getElementType(); |
| Result = Builder.CreateBinaryIntrinsic(Ty->isSignedIntegerType() |
| ? llvm::Intrinsic::smax |
| : llvm::Intrinsic::umax, |
| Op0, Op1, nullptr, "elt.max"); |
| } else |
| Result = Builder.CreateMaxNum(Op0, Op1, "elt.max"); |
| return RValue::get(Result); |
| } |
| case Builtin::BI__builtin_elementwise_min: { |
| Value *Op0 = EmitScalarExpr(E->getArg(0)); |
| Value *Op1 = EmitScalarExpr(E->getArg(1)); |
| Value *Result; |
| if (Op0->getType()->isIntOrIntVectorTy()) { |
| QualType Ty = E->getArg(0)->getType(); |
| if (auto *VecTy = Ty->getAs<VectorType>()) |
| Ty = VecTy->getElementType(); |
| Result = Builder.CreateBinaryIntrinsic(Ty->isSignedIntegerType() |
| ? llvm::Intrinsic::smin |
| : llvm::Intrinsic::umin, |
| Op0, Op1, nullptr, "elt.min"); |
| } else |
| Result = Builder.CreateMinNum(Op0, Op1, "elt.min"); |
| return RValue::get(Result); |
| } |
| |
| case Builtin::BI__builtin_reduce_max: { |
| auto GetIntrinsicID = [](QualType QT, llvm::Type *IrTy) { |
| if (IrTy->isIntOrIntVectorTy()) { |
| if (auto *VecTy = QT->getAs<VectorType>()) |
| QT = VecTy->getElementType(); |
| if (QT->isSignedIntegerType()) |
| return llvm::Intrinsic::vector_reduce_smax; |
| else |
| return llvm::Intrinsic::vector_reduce_umax; |
| } |
| return llvm::Intrinsic::vector_reduce_fmax; |
| }; |
| Value *Op0 = EmitScalarExpr(E->getArg(0)); |
| Value *Result = Builder.CreateUnaryIntrinsic( |
| GetIntrinsicID(E->getArg(0)->getType(), Op0->getType()), Op0, nullptr, |
| "rdx.min"); |
| return RValue::get(Result); |
| } |
| |
| case Builtin::BI__builtin_reduce_min: { |
| auto GetIntrinsicID = [](QualType QT, llvm::Type *IrTy) { |
| if (IrTy->isIntOrIntVectorTy()) { |
| if (auto *VecTy = QT->getAs<VectorType>()) |
| QT = VecTy->getElementType(); |
| if (QT->isSignedIntegerType()) |
| return llvm::Intrinsic::vector_reduce_smin; |
| else |
| return llvm::Intrinsic::vector_reduce_umin; |
| } |
| return llvm::Intrinsic::vector_reduce_fmin; |
| }; |
| Value *Op0 = EmitScalarExpr(E->getArg(0)); |
| Value *Result = Builder.CreateUnaryIntrinsic( |
| GetIntrinsicID(E->getArg(0)->getType(), Op0->getType()), Op0, nullptr, |
| "rdx.min"); |
| return RValue::get(Result); |
| } |
| |
| case Builtin::BI__builtin_matrix_transpose: { |
| const auto *MatrixTy = E->getArg(0)->getType()->getAs<ConstantMatrixType>(); |
| Value *MatValue = EmitScalarExpr(E->getArg(0)); |
| MatrixBuilder<CGBuilderTy> MB(Builder); |
| Value *Result = MB.CreateMatrixTranspose(MatValue, MatrixTy->getNumRows(), |
| MatrixTy->getNumColumns()); |
| return RValue::get(Result); |
| } |
| |
| case Builtin::BI__builtin_matrix_column_major_load: { |
| MatrixBuilder<CGBuilderTy> MB(Builder); |
| // Emit everything that isn't dependent on the first parameter type |
| Value *Stride = EmitScalarExpr(E->getArg(3)); |
| const auto *ResultTy = E->getType()->getAs<ConstantMatrixType>(); |
| auto *PtrTy = E->getArg(0)->getType()->getAs<PointerType>(); |
| assert(PtrTy && "arg0 must be of pointer type"); |
| bool IsVolatile = PtrTy->getPointeeType().isVolatileQualified(); |
| |
| Address Src = EmitPointerWithAlignment(E->getArg(0)); |
| EmitNonNullArgCheck(RValue::get(Src.getPointer()), E->getArg(0)->getType(), |
| E->getArg(0)->getExprLoc(), FD, 0); |
| Value *Result = MB.CreateColumnMajorLoad( |
| Src.getPointer(), Align(Src.getAlignment().getQuantity()), Stride, |
| IsVolatile, ResultTy->getNumRows(), ResultTy->getNumColumns(), |
| "matrix"); |
| return RValue::get(Result); |
| } |
| |
| case Builtin::BI__builtin_matrix_column_major_store: { |
| MatrixBuilder<CGBuilderTy> MB(Builder); |
| Value *Matrix = EmitScalarExpr(E->getArg(0)); |
| Address Dst = EmitPointerWithAlignment(E->getArg(1)); |
| Value *Stride = EmitScalarExpr(E->getArg(2)); |
| |
| const auto *MatrixTy = E->getArg(0)->getType()->getAs<ConstantMatrixType>(); |
| auto *PtrTy = E->getArg(1)->getType()->getAs<PointerType>(); |
| assert(PtrTy && "arg1 must be of pointer type"); |
| bool IsVolatile = PtrTy->getPointeeType().isVolatileQualified(); |
| |
| EmitNonNullArgCheck(RValue::get(Dst.getPointer()), E->getArg(1)->getType(), |
| E->getArg(1)->getExprLoc(), FD, 0); |
| Value *Result = MB.CreateColumnMajorStore( |
| Matrix, Dst.getPointer(), Align(Dst.getAlignment().getQuantity()), |
| Stride, IsVolatile, MatrixTy->getNumRows(), MatrixTy->getNumColumns()); |
| return RValue::get(Result); |
| } |
| |
| case Builtin::BIfinite: |
| case Builtin::BI__finite: |
| case Builtin::BIfinitef: |
| case Builtin::BI__finitef: |
| case Builtin::BIfinitel: |
| case Builtin::BI__finitel: |
| case Builtin::BI__builtin_isinf: |
| case Builtin::BI__builtin_isfinite: { |
| // isinf(x) --> fabs(x) == infinity |
| // isfinite(x) --> fabs(x) != infinity |
| // x != NaN via the ordered compare in either case. |
| CodeGenFunction::CGFPOptionsRAII FPOptsRAII(*this, E); |
| Value *V = EmitScalarExpr(E->getArg(0)); |
| llvm::Type *Ty = V->getType(); |
| if (!Builder.getIsFPConstrained() || |
| Builder.getDefaultConstrainedExcept() == fp::ebIgnore || |
| !Ty->isIEEE()) { |
| Value *Fabs = EmitFAbs(*this, V); |
| Constant *Infinity = ConstantFP::getInfinity(V->getType()); |
| CmpInst::Predicate Pred = (BuiltinID == Builtin::BI__builtin_isinf) |
| ? CmpInst::FCMP_OEQ |
| : CmpInst::FCMP_ONE; |
| Value *FCmp = Builder.CreateFCmp(Pred, Fabs, Infinity, "cmpinf"); |
| return RValue::get(Builder.CreateZExt(FCmp, ConvertType(E->getType()))); |
| } |
| |
| if (Value *Result = getTargetHooks().testFPKind(V, BuiltinID, Builder, CGM)) |
| return RValue::get(Result); |
| |
| // Inf values have all exp bits set and a zero significand. Therefore: |
| // isinf(V) == ((V << 1) == ((exp mask) << 1)) |
| // isfinite(V) == ((V << 1) < ((exp mask) << 1)) using unsigned comparison |
| unsigned bitsize = Ty->getScalarSizeInBits(); |
| llvm::IntegerType *IntTy = Builder.getIntNTy(bitsize); |
| Value *IntV = Builder.CreateBitCast(V, IntTy); |
| Value *Shl1 = Builder.CreateShl(IntV, 1); |
| const llvm::fltSemantics &Semantics = Ty->getFltSemantics(); |
| APInt ExpMask = APFloat::getInf(Semantics).bitcastToAPInt(); |
| Value *ExpMaskShl1 = llvm::ConstantInt::get(IntTy, ExpMask.shl(1)); |
| if (BuiltinID == Builtin::BI__builtin_isinf) |
| V = Builder.CreateICmpEQ(Shl1, ExpMaskShl1); |
| else |
| V = Builder.CreateICmpULT(Shl1, ExpMaskShl1); |
| return RValue::get(Builder.CreateZExt(V, ConvertType(E->getType()))); |
| } |
| |
| case Builtin::BI__builtin_isinf_sign: { |
| // isinf_sign(x) -> fabs(x) == infinity ? (signbit(x) ? -1 : 1) : 0 |
| CodeGenFunction::CGFPOptionsRAII FPOptsRAII(*this, E); |
| // FIXME: for strictfp/IEEE-754 we need to not trap on SNaN here. |
| Value *Arg = EmitScalarExpr(E->getArg(0)); |
| Value *AbsArg = EmitFAbs(*this, Arg); |
| Value *IsInf = Builder.CreateFCmpOEQ( |
| AbsArg, ConstantFP::getInfinity(Arg->getType()), "isinf"); |
| Value *IsNeg = EmitSignBit(*this, Arg); |
| |
| llvm::Type *IntTy = ConvertType(E->getType()); |
| Value *Zero = Constant::getNullValue(IntTy); |
| Value *One = ConstantInt::get(IntTy, 1); |
| Value *NegativeOne = ConstantInt::get(IntTy, -1); |
| Value *SignResult = Builder.CreateSelect(IsNeg, NegativeOne, One); |
| Value *Result = Builder.CreateSelect(IsInf, SignResult, Zero); |
| return RValue::get(Result); |
| } |
| |
| case Builtin::BI__builtin_isnormal: { |
| // isnormal(x) --> x == x && fabsf(x) < infinity && fabsf(x) >= float_min |
| CodeGenFunction::CGFPOptionsRAII FPOptsRAII(*this, E); |
| // FIXME: for strictfp/IEEE-754 we need to not trap on SNaN here. |
| Value *V = EmitScalarExpr(E->getArg(0)); |
| Value *Eq = Builder.CreateFCmpOEQ(V, V, "iseq"); |
| |
| Value *Abs = EmitFAbs(*this, V); |
| Value *IsLessThanInf = |
| Builder.CreateFCmpULT(Abs, ConstantFP::getInfinity(V->getType()),"isinf"); |
| APFloat Smallest = APFloat::getSmallestNormalized( |
| getContext().getFloatTypeSemantics(E->getArg(0)->getType())); |
| Value *IsNormal = |
| Builder.CreateFCmpUGE(Abs, ConstantFP::get(V->getContext(), Smallest), |
| "isnormal"); |
| V = Builder.CreateAnd(Eq, IsLessThanInf, "and"); |
| V = Builder.CreateAnd(V, IsNormal, "and"); |
| return RValue::get(Builder.CreateZExt(V, ConvertType(E->getType()))); |
| } |
| |
| case Builtin::BI__builtin_flt_rounds: { |
| Function *F = CGM.getIntrinsic(Intrinsic::flt_rounds); |
| |
| llvm::Type *ResultType = ConvertType(E->getType()); |
| Value *Result = Builder.CreateCall(F); |
| if (Result->getType() != ResultType) |
| Result = Builder.CreateIntCast(Result, ResultType, /*isSigned*/true, |
| "cast"); |
| return RValue::get(Result); |
| } |
| |
| case Builtin::BI__builtin_fpclassify: { |
| CodeGenFunction::CGFPOptionsRAII FPOptsRAII(*this, E); |
| // FIXME: for strictfp/IEEE-754 we need to not trap on SNaN here. |
| Value *V = EmitScalarExpr(E->getArg(5)); |
| llvm::Type *Ty = ConvertType(E->getArg(5)->getType()); |
| |
| // Create Result |
| BasicBlock *Begin = Builder.GetInsertBlock(); |
| BasicBlock *End = createBasicBlock("fpclassify_end", this->CurFn); |
| Builder.SetInsertPoint(End); |
| PHINode *Result = |
| Builder.CreatePHI(ConvertType(E->getArg(0)->getType()), 4, |
| "fpclassify_result"); |
| |
| // if (V==0) return FP_ZERO |
| Builder.SetInsertPoint(Begin); |
| Value *IsZero = Builder.CreateFCmpOEQ(V, Constant::getNullValue(Ty), |
| "iszero"); |
| Value *ZeroLiteral = EmitScalarExpr(E->getArg(4)); |
| BasicBlock *NotZero = createBasicBlock("fpclassify_not_zero", this->CurFn); |
| Builder.CreateCondBr(IsZero, End, NotZero); |
| Result->addIncoming(ZeroLiteral, Begin); |
| |
| // if (V != V) return FP_NAN |
| Builder.SetInsertPoint(NotZero); |
| Value *IsNan = Builder.CreateFCmpUNO(V, V, "cmp"); |
| Value *NanLiteral = EmitScalarExpr(E->getArg(0)); |
| BasicBlock *NotNan = createBasicBlock("fpclassify_not_nan", this->CurFn); |
| Builder.CreateCondBr(IsNan, End, NotNan); |
| Result->addIncoming(NanLiteral, NotZero); |
| |
| // if (fabs(V) == infinity) return FP_INFINITY |
| Builder.SetInsertPoint(NotNan); |
| Value *VAbs = EmitFAbs(*this, V); |
| Value *IsInf = |
| Builder.CreateFCmpOEQ(VAbs, ConstantFP::getInfinity(V->getType()), |
| "isinf"); |
| Value *InfLiteral = EmitScalarExpr(E->getArg(1)); |
| BasicBlock *NotInf = createBasicBlock("fpclassify_not_inf", this->CurFn); |
| Builder.CreateCondBr(IsInf, End, NotInf); |
| Result->addIncoming(InfLiteral, NotNan); |
| |
| // if (fabs(V) >= MIN_NORMAL) return FP_NORMAL else FP_SUBNORMAL |
| Builder.SetInsertPoint(NotInf); |
| APFloat Smallest = APFloat::getSmallestNormalized( |
| getContext().getFloatTypeSemantics(E->getArg(5)->getType())); |
| Value *IsNormal = |
| Builder.CreateFCmpUGE(VAbs, ConstantFP::get(V->getContext(), Smallest), |
| "isnormal"); |
| Value *NormalResult = |
| Builder.CreateSelect(IsNormal, EmitScalarExpr(E->getArg(2)), |
| EmitScalarExpr(E->getArg(3))); |
| Builder.CreateBr(End); |
| Result->addIncoming(NormalResult, NotInf); |
| |
| // return Result |
| Builder.SetInsertPoint(End); |
| return RValue::get(Result); |
| } |
| |
| case Builtin::BIalloca: |
| case Builtin::BI_alloca: |
| case Builtin::BI__builtin_alloca: { |
| Value *Size = EmitScalarExpr(E->getArg(0)); |
| const TargetInfo &TI = getContext().getTargetInfo(); |
| // The alignment of the alloca should correspond to __BIGGEST_ALIGNMENT__. |
| const Align SuitableAlignmentInBytes = |
| CGM.getContext() |
| .toCharUnitsFromBits(TI.getSuitableAlign()) |
| .getAsAlign(); |
| AllocaInst *AI = Builder.CreateAlloca(Builder.getInt8Ty(), Size); |
| AI->setAlignment(SuitableAlignmentInBytes); |
| initializeAlloca(*this, AI, Size, SuitableAlignmentInBytes); |
| return RValue::get(AI); |
| } |
| |
| case Builtin::BI__builtin_alloca_with_align: { |
| Value *Size = EmitScalarExpr(E->getArg(0)); |
| Value *AlignmentInBitsValue = EmitScalarExpr(E->getArg(1)); |
| auto *AlignmentInBitsCI = cast<ConstantInt>(AlignmentInBitsValue); |
| unsigned AlignmentInBits = AlignmentInBitsCI->getZExtValue(); |
| const Align AlignmentInBytes = |
| CGM.getContext().toCharUnitsFromBits(AlignmentInBits).getAsAlign(); |
| AllocaInst *AI = Builder.CreateAlloca(Builder.getInt8Ty(), Size); |
| AI->setAlignment(AlignmentInBytes); |
| initializeAlloca(*this, AI, Size, AlignmentInBytes); |
| return RValue::get(AI); |
| } |
| |
| case Builtin::BIbzero: |
| case Builtin::BI__builtin_bzero: { |
| Address Dest = EmitPointerWithAlignment(E->getArg(0)); |
| Value *SizeVal = EmitScalarExpr(E->getArg(1)); |
| EmitNonNullArgCheck(RValue::get(Dest.getPointer()), E->getArg(0)->getType(), |
| E->getArg(0)->getExprLoc(), FD, 0); |
| Builder.CreateMemSet(Dest, Builder.getInt8(0), SizeVal, false); |
| return RValue::get(nullptr); |
| } |
| case Builtin::BImemcpy: |
| case Builtin::BI__builtin_memcpy: |
| case Builtin::BImempcpy: |
| case Builtin::BI__builtin_mempcpy: { |
| Address Dest = EmitPointerWithAlignment(E->getArg(0)); |
| Address Src = EmitPointerWithAlignment(E->getArg(1)); |
| Value *SizeVal = EmitScalarExpr(E->getArg(2)); |
| EmitNonNullArgCheck(RValue::get(Dest.getPointer()), E->getArg(0)->getType(), |
| E->getArg(0)->getExprLoc(), FD, 0); |
| EmitNonNullArgCheck(RValue::get(Src.getPointer()), E->getArg(1)->getType(), |
| E->getArg(1)->getExprLoc(), FD, 1); |
| Builder.CreateMemCpy(Dest, Src, SizeVal, false); |
| if (BuiltinID == Builtin::BImempcpy || |
| BuiltinID == Builtin::BI__builtin_mempcpy) |
| return RValue::get(Builder.CreateInBoundsGEP(Dest.getElementType(), |
| Dest.getPointer(), SizeVal)); |
| else |
| return RValue::get(Dest.getPointer()); |
| } |
| |
| case Builtin::BI__builtin_memcpy_inline: { |
| Address Dest = EmitPointerWithAlignment(E->getArg(0)); |
| Address Src = EmitPointerWithAlignment(E->getArg(1)); |
| uint64_t Size = |
| E->getArg(2)->EvaluateKnownConstInt(getContext()).getZExtValue(); |
| EmitNonNullArgCheck(RValue::get(Dest.getPointer()), E->getArg(0)->getType(), |
| E->getArg(0)->getExprLoc(), FD, 0); |
| EmitNonNullArgCheck(RValue::get(Src.getPointer()), E->getArg(1)->getType(), |
| E->getArg(1)->getExprLoc(), FD, 1); |
| Builder.CreateMemCpyInline(Dest, Src, Size); |
| return RValue::get(nullptr); |
| } |
| |
| case Builtin::BI__builtin_char_memchr: |
| BuiltinID = Builtin::BI__builtin_memchr; |
| break; |
| |
| case Builtin::BI__builtin___memcpy_chk: { |
| // fold __builtin_memcpy_chk(x, y, cst1, cst2) to memcpy iff cst1<=cst2. |
| Expr::EvalResult SizeResult, DstSizeResult; |
| if (!E->getArg(2)->EvaluateAsInt(SizeResult, CGM.getContext()) || |
| !E->getArg(3)->EvaluateAsInt(DstSizeResult, CGM.getContext())) |
| break; |
| llvm::APSInt Size = SizeResult.Val.getInt(); |
| llvm::APSInt DstSize = DstSizeResult.Val.getInt(); |
| if (Size.ugt(DstSize)) |
| break; |
| Address Dest = EmitPointerWithAlignment(E->getArg(0)); |
| Address Src = EmitPointerWithAlignment(E->getArg(1)); |
| Value *SizeVal = llvm::ConstantInt::get(Builder.getContext(), Size); |
| Builder.CreateMemCpy(Dest, Src, SizeVal, false); |
| return RValue::get(Dest.getPointer()); |
| } |
| |
| case Builtin::BI__builtin_objc_memmove_collectable: { |
| Address DestAddr = EmitPointerWithAlignment(E->getArg(0)); |
| Address SrcAddr = EmitPointerWithAlignment(E->getArg(1)); |
| Value *SizeVal = EmitScalarExpr(E->getArg(2)); |
| CGM.getObjCRuntime().EmitGCMemmoveCollectable(*this, |
| DestAddr, SrcAddr, SizeVal); |
| return RValue::get(DestAddr.getPointer()); |
| } |
| |
| case Builtin::BI__builtin___memmove_chk: { |
| // fold __builtin_memmove_chk(x, y, cst1, cst2) to memmove iff cst1<=cst2. |
| Expr::EvalResult SizeResult, DstSizeResult; |
| if (!E->getArg(2)->EvaluateAsInt(SizeResult, CGM.getContext()) || |
| !E->getArg(3)->EvaluateAsInt(DstSizeResult, CGM.getContext())) |
| break; |
| llvm::APSInt Size = SizeResult.Val.getInt(); |
| llvm::APSInt DstSize = DstSizeResult.Val.getInt(); |
| if (Size.ugt(DstSize)) |
| break; |
| Address Dest = EmitPointerWithAlignment(E->getArg(0)); |
| Address Src = EmitPointerWithAlignment(E->getArg(1)); |
| Value *SizeVal = llvm::ConstantInt::get(Builder.getContext(), Size); |
| Builder.CreateMemMove(Dest, Src, SizeVal, false); |
| return RValue::get(Dest.getPointer()); |
| } |
| |
| case Builtin::BImemmove: |
| case Builtin::BI__builtin_memmove: { |
| Address Dest = EmitPointerWithAlignment(E->getArg(0)); |
| Address Src = EmitPointerWithAlignment(E->getArg(1)); |
| Value *SizeVal = EmitScalarExpr(E->getArg(2)); |
| EmitNonNullArgCheck(RValue::get(Dest.getPointer()), E->getArg(0)->getType(), |
| E->getArg(0)->getExprLoc(), FD, 0); |
| EmitNonNullArgCheck(RValue::get(Src.getPointer()), E->getArg(1)->getType(), |
| E->getArg(1)->getExprLoc(), FD, 1); |
| Builder.CreateMemMove(Dest, Src, SizeVal, false); |
| return RValue::get(Dest.getPointer()); |
| } |
| case Builtin::BImemset: |
| case Builtin::BI__builtin_memset: { |
| Address Dest = EmitPointerWithAlignment(E->getArg(0)); |
| Value *ByteVal = Builder.CreateTrunc(EmitScalarExpr(E->getArg(1)), |
| Builder.getInt8Ty()); |
| Value *SizeVal = EmitScalarExpr(E->getArg(2)); |
| EmitNonNullArgCheck(RValue::get(Dest.getPointer()), E->getArg(0)->getType(), |
| E->getArg(0)->getExprLoc(), FD, 0); |
| Builder.CreateMemSet(Dest, ByteVal, SizeVal, false); |
| return RValue::get(Dest.getPointer()); |
| } |
| case Builtin::BI__builtin___memset_chk: { |
| // fold __builtin_memset_chk(x, y, cst1, cst2) to memset iff cst1<=cst2. |
| Expr::EvalResult SizeResult, DstSizeResult; |
| if (!E->getArg(2)->EvaluateAsInt(SizeResult, CGM.getContext()) || |
| !E->getArg(3)->EvaluateAsInt(DstSizeResult, CGM.getContext())) |
| break; |
| llvm::APSInt Size = SizeResult.Val.getInt(); |
| llvm::APSInt DstSize = DstSizeResult.Val.getInt(); |
| if (Size.ugt(DstSize)) |
| break; |
| Address Dest = EmitPointerWithAlignment(E->getArg(0)); |
| Value *ByteVal = Builder.CreateTrunc(EmitScalarExpr(E->getArg(1)), |
| Builder.getInt8Ty()); |
| Value *SizeVal = llvm::ConstantInt::get(Builder.getContext(), Size); |
| Builder.CreateMemSet(Dest, ByteVal, SizeVal, false); |
| return RValue::get(Dest.getPointer()); |
| } |
| case Builtin::BI__builtin_wmemchr: { |
| // The MSVC runtime library does not provide a definition of wmemchr, so we |
| // need an inline implementation. |
| if (!getTarget().getTriple().isOSMSVCRT()) |
| break; |
| |
| llvm::Type *WCharTy = ConvertType(getContext().WCharTy); |
| Value *Str = EmitScalarExpr(E->getArg(0)); |
| Value *Chr = EmitScalarExpr(E->getArg(1)); |
| Value *Size = EmitScalarExpr(E->getArg(2)); |
| |
| BasicBlock *Entry = Builder.GetInsertBlock(); |
| BasicBlock *CmpEq = createBasicBlock("wmemchr.eq"); |
| BasicBlock *Next = createBasicBlock("wmemchr.next"); |
| BasicBlock *Exit = createBasicBlock("wmemchr.exit"); |
| Value *SizeEq0 = Builder.CreateICmpEQ(Size, ConstantInt::get(SizeTy, 0)); |
| Builder.CreateCondBr(SizeEq0, Exit, CmpEq); |
| |
| EmitBlock(CmpEq); |
| PHINode *StrPhi = Builder.CreatePHI(Str->getType(), 2); |
| StrPhi->addIncoming(Str, Entry); |
| PHINode *SizePhi = Builder.CreatePHI(SizeTy, 2); |
| SizePhi->addIncoming(Size, Entry); |
| CharUnits WCharAlign = |
| getContext().getTypeAlignInChars(getContext().WCharTy); |
| Value *StrCh = Builder.CreateAlignedLoad(WCharTy, StrPhi, WCharAlign); |
| Value *FoundChr = Builder.CreateConstInBoundsGEP1_32(WCharTy, StrPhi, 0); |
| Value *StrEqChr = Builder.CreateICmpEQ(StrCh, Chr); |
| Builder.CreateCondBr(StrEqChr, Exit, Next); |
| |
| EmitBlock(Next); |
| Value *NextStr = Builder.CreateConstInBoundsGEP1_32(WCharTy, StrPhi, 1); |
| Value *NextSize = Builder.CreateSub(SizePhi, ConstantInt::get(SizeTy, 1)); |
| Value *NextSizeEq0 = |
| Builder.CreateICmpEQ(NextSize, ConstantInt::get(SizeTy, 0)); |
| Builder.CreateCondBr(NextSizeEq0, Exit, CmpEq); |
| StrPhi->addIncoming(NextStr, Next); |
| SizePhi->addIncoming(NextSize, Next); |
| |
| EmitBlock(Exit); |
| PHINode *Ret = Builder.CreatePHI(Str->getType(), 3); |
| Ret->addIncoming(llvm::Constant::getNullValue(Str->getType()), Entry); |
| Ret->addIncoming(llvm::Constant::getNullValue(Str->getType()), Next); |
| Ret->addIncoming(FoundChr, CmpEq); |
| return RValue::get(Ret); |
| } |
| case Builtin::BI__builtin_wmemcmp: { |
| // The MSVC runtime library does not provide a definition of wmemcmp, so we |
| // need an inline implementation. |
| if (!getTarget().getTriple().isOSMSVCRT()) |
| break; |
| |
| llvm::Type *WCharTy = ConvertType(getContext().WCharTy); |
| |
| Value *Dst = EmitScalarExpr(E->getArg(0)); |
| Value *Src = EmitScalarExpr(E->getArg(1)); |
| Value *Size = EmitScalarExpr(E->getArg(2)); |
| |
| BasicBlock *Entry = Builder.GetInsertBlock(); |
| BasicBlock *CmpGT = createBasicBlock("wmemcmp.gt"); |
| BasicBlock *CmpLT = createBasicBlock("wmemcmp.lt"); |
| BasicBlock *Next = createBasicBlock("wmemcmp.next"); |
| BasicBlock *Exit = createBasicBlock("wmemcmp.exit"); |
| Value *SizeEq0 = Builder.CreateICmpEQ(Size, ConstantInt::get(SizeTy, 0)); |
| Builder.CreateCondBr(SizeEq0, Exit, CmpGT); |
| |
| EmitBlock(CmpGT); |
| PHINode *DstPhi = Builder.CreatePHI(Dst->getType(), 2); |
| DstPhi->addIncoming(Dst, Entry); |
| PHINode *SrcPhi = Builder.CreatePHI(Src->getType(), 2); |
| SrcPhi->addIncoming(Src, Entry); |
| PHINode *SizePhi = Builder.CreatePHI(SizeTy, 2); |
| SizePhi->addIncoming(Size, Entry); |
| CharUnits WCharAlign = |
| getContext().getTypeAlignInChars(getContext().WCharTy); |
| Value *DstCh = Builder.CreateAlignedLoad(WCharTy, DstPhi, WCharAlign); |
| Value *SrcCh = Builder.CreateAlignedLoad(WCharTy, SrcPhi, WCharAlign); |
| Value *DstGtSrc = Builder.CreateICmpUGT(DstCh, SrcCh); |
| Builder.CreateCondBr(DstGtSrc, Exit, CmpLT); |
| |
| EmitBlock(CmpLT); |
| Value *DstLtSrc = Builder.CreateICmpULT(DstCh, SrcCh); |
| Builder.CreateCondBr(DstLtSrc, Exit, Next); |
| |
| EmitBlock(Next); |
| Value *NextDst = Builder.CreateConstInBoundsGEP1_32(WCharTy, DstPhi, 1); |
| Value *NextSrc = Builder.CreateConstInBoundsGEP1_32(WCharTy, SrcPhi, 1); |
| Value *NextSize = Builder.CreateSub(SizePhi, ConstantInt::get(SizeTy, 1)); |
| Value *NextSizeEq0 = |
| Builder.CreateICmpEQ(NextSize, ConstantInt::get(SizeTy, 0)); |
| Builder.CreateCondBr(NextSizeEq0, Exit, CmpGT); |
| DstPhi->addIncoming(NextDst, Next); |
| SrcPhi->addIncoming(NextSrc, Next); |
| SizePhi->addIncoming(NextSize, Next); |
| |
| EmitBlock(Exit); |
| PHINode *Ret = Builder.CreatePHI(IntTy, 4); |
| Ret->addIncoming(ConstantInt::get(IntTy, 0), Entry); |
| Ret->addIncoming(ConstantInt::get(IntTy, 1), CmpGT); |
| Ret->addIncoming(ConstantInt::get(IntTy, -1), CmpLT); |
| Ret->addIncoming(ConstantInt::get(IntTy, 0), Next); |
| return RValue::get(Ret); |
| } |
| case Builtin::BI__builtin_dwarf_cfa: { |
| // The offset in bytes from the first argument to the CFA. |
| // |
| // Why on earth is this in the frontend? Is there any reason at |
| // all that the backend can't reasonably determine this while |
| // lowering llvm.eh.dwarf.cfa()? |
| // |
| // TODO: If there's a satisfactory reason, add a target hook for |
| // this instead of hard-coding 0, which is correct for most targets. |
| int32_t Offset = 0; |
| |
| Function *F = CGM.getIntrinsic(Intrinsic::eh_dwarf_cfa); |
| return RValue::get(Builder.CreateCall(F, |
| llvm::ConstantInt::get(Int32Ty, Offset))); |
| } |
| case Builtin::BI__builtin_return_address: { |
| Value *Depth = ConstantEmitter(*this).emitAbstract(E->getArg(0), |
| getContext().UnsignedIntTy); |
| Function *F = CGM.getIntrinsic(Intrinsic::returnaddress); |
| return RValue::get(Builder.CreateCall(F, Depth)); |
| } |
| case Builtin::BI_ReturnAddress: { |
| Function *F = CGM.getIntrinsic(Intrinsic::returnaddress); |
| return RValue::get(Builder.CreateCall(F, Builder.getInt32(0))); |
| } |
| case Builtin::BI__builtin_frame_address: { |
| Value *Depth = ConstantEmitter(*this).emitAbstract(E->getArg(0), |
| getContext().UnsignedIntTy); |
| Function *F = CGM.getIntrinsic(Intrinsic::frameaddress, AllocaInt8PtrTy); |
| return RValue::get(Builder.CreateCall(F, Depth)); |
| } |
| case Builtin::BI__builtin_extract_return_addr: { |
| Value *Address = EmitScalarExpr(E->getArg(0)); |
| Value *Result = getTargetHooks().decodeReturnAddress(*this, Address); |
| return RValue::get(Result); |
| } |
| case Builtin::BI__builtin_frob_return_addr: { |
| Value *Address = EmitScalarExpr(E->getArg(0)); |
| Value *Result = getTargetHooks().encodeReturnAddress(*this, Address); |
| return RValue::get(Result); |
| } |
| case Builtin::BI__builtin_dwarf_sp_column: { |
| llvm::IntegerType *Ty |
| = cast<llvm::IntegerType>(ConvertType(E->getType())); |
| int Column = getTargetHooks().getDwarfEHStackPointer(CGM); |
| if (Column == -1) { |
| CGM.ErrorUnsupported(E, "__builtin_dwarf_sp_column"); |
| return RValue::get(llvm::UndefValue::get(Ty)); |
| } |
| return RValue::get(llvm::ConstantInt::get(Ty, Column, true)); |
| } |
| case Builtin::BI__builtin_init_dwarf_reg_size_table: { |
| Value *Address = EmitScalarExpr(E->getArg(0)); |
| if (getTargetHooks().initDwarfEHRegSizeTable(*this, Address)) |
| CGM.ErrorUnsupported(E, "__builtin_init_dwarf_reg_size_table"); |
| return RValue::get(llvm::UndefValue::get(ConvertType(E->getType()))); |
| } |
| case Builtin::BI__builtin_eh_return: { |
| Value *Int = EmitScalarExpr(E->getArg(0)); |
| Value *Ptr = EmitScalarExpr(E->getArg(1)); |
| |
| llvm::IntegerType *IntTy = cast<llvm::IntegerType>(Int->getType()); |
| assert((IntTy->getBitWidth() == 32 || IntTy->getBitWidth() == 64) && |
| "LLVM's __builtin_eh_return only supports 32- and 64-bit variants"); |
| Function *F = |
| CGM.getIntrinsic(IntTy->getBitWidth() == 32 ? Intrinsic::eh_return_i32 |
| : Intrinsic::eh_return_i64); |
| Builder.CreateCall(F, {Int, Ptr}); |
| Builder.CreateUnreachable(); |
| |
| // We do need to preserve an insertion point. |
| EmitBlock(createBasicBlock("builtin_eh_return.cont")); |
| |
| return RValue::get(nullptr); |
| } |
| case Builtin::BI__builtin_unwind_init: { |
| Function *F = CGM.getIntrinsic(Intrinsic::eh_unwind_init); |
| return RValue::get(Builder.CreateCall(F)); |
| } |
| case Builtin::BI__builtin_extend_pointer: { |
| // Extends a pointer to the size of an _Unwind_Word, which is |
| // uint64_t on all platforms. Generally this gets poked into a |
| // register and eventually used as an address, so if the |
| // addressing registers are wider than pointers and the platform |
| // doesn't implicitly ignore high-order bits when doing |
| // addressing, we need to make sure we zext / sext based on |
| // the platform's expectations. |
| // |
| // See: http://gcc.gnu.org/ml/gcc-bugs/2002-02/msg00237.html |
| |
| // Cast the pointer to intptr_t. |
| Value *Ptr = EmitScalarExpr(E->getArg(0)); |
| Value *Result = Builder.CreatePtrToInt(Ptr, IntPtrTy, "extend.cast"); |
| |
| // If that's 64 bits, we're done. |
| if (IntPtrTy->getBitWidth() == 64) |
| return RValue::get(Result); |
| |
| // Otherwise, ask the codegen data what to do. |
| if (getTargetHooks().extendPointerWithSExt()) |
| return RValue::get(Builder.CreateSExt(Result, Int64Ty, "extend.sext")); |
| else |
| return RValue::get(Builder.CreateZExt(Result, Int64Ty, "extend.zext")); |
| } |
| case Builtin::BI__builtin_setjmp: { |
| // Buffer is a void**. |
| Address Buf = EmitPointerWithAlignment(E->getArg(0)); |
| |
| // Store the frame pointer to the setjmp buffer. |
| Value *FrameAddr = Builder.CreateCall( |
| CGM.getIntrinsic(Intrinsic::frameaddress, AllocaInt8PtrTy), |
| ConstantInt::get(Int32Ty, 0)); |
| Builder.CreateStore(FrameAddr, Buf); |
| |
| // Store the stack pointer to the setjmp buffer. |
| Value *StackAddr = |
| Builder.CreateCall(CGM.getIntrinsic(Intrinsic::stacksave)); |
| Address StackSaveSlot = Builder.CreateConstInBoundsGEP(Buf, 2); |
| Builder.CreateStore(StackAddr, StackSaveSlot); |
| |
| // Call LLVM's EH setjmp, which is lightweight. |
| Function *F = CGM.getIntrinsic(Intrinsic::eh_sjlj_setjmp); |
| Buf = Builder.CreateBitCast(Buf, Int8PtrTy); |
| return RValue::get(Builder.CreateCall(F, Buf.getPointer())); |
| } |
| case Builtin::BI__builtin_longjmp: { |
| Value *Buf = EmitScalarExpr(E->getArg(0)); |
| Buf = Builder.CreateBitCast(Buf, Int8PtrTy); |
| |
| // Call LLVM's EH longjmp, which is lightweight. |
| Builder.CreateCall(CGM.getIntrinsic(Intrinsic::eh_sjlj_longjmp), Buf); |
| |
| // longjmp doesn't return; mark this as unreachable. |
| Builder.CreateUnreachable(); |
| |
| // We do need to preserve an insertion point. |
| EmitBlock(createBasicBlock("longjmp.cont")); |
| |
| return RValue::get(nullptr); |
| } |
| case Builtin::BI__builtin_launder: { |
| const Expr *Arg = E->getArg(0); |
| QualType ArgTy = Arg->getType()->getPointeeType(); |
| Value *Ptr = EmitScalarExpr(Arg); |
| if (TypeRequiresBuiltinLaunder(CGM, ArgTy)) |
| Ptr = Builder.CreateLaunderInvariantGroup(Ptr); |
| |
| return RValue::get(Ptr); |
| } |
| case Builtin::BI__sync_fetch_and_add: |
| case Builtin::BI__sync_fetch_and_sub: |
| case Builtin::BI__sync_fetch_and_or: |
| case Builtin::BI__sync_fetch_and_and: |
| case Builtin::BI__sync_fetch_and_xor: |
| case Builtin::BI__sync_fetch_and_nand: |
| case Builtin::BI__sync_add_and_fetch: |
| case Builtin::BI__sync_sub_and_fetch: |
| case Builtin::BI__sync_and_and_fetch: |
| case Builtin::BI__sync_or_and_fetch: |
| case Builtin::BI__sync_xor_and_fetch: |
| case Builtin::BI__sync_nand_and_fetch: |
| case Builtin::BI__sync_val_compare_and_swap: |
| case Builtin::BI__sync_bool_compare_and_swap: |
| case Builtin::BI__sync_lock_test_and_set: |
| case Builtin::BI__sync_lock_release: |
| case Builtin::BI__sync_swap: |
| llvm_unreachable("Shouldn't make it through sema"); |
| case Builtin::BI__sync_fetch_and_add_1: |
| case Builtin::BI__sync_fetch_and_add_2: |
| case Builtin::BI__sync_fetch_and_add_4: |
| case Builtin::BI__sync_fetch_and_add_8: |
| case Builtin::BI__sync_fetch_and_add_16: |
| return EmitBinaryAtomic(*this, llvm::AtomicRMWInst::Add, E); |
| case Builtin::BI__sync_fetch_and_sub_1: |
| case Builtin::BI__sync_fetch_and_sub_2: |
| case Builtin::BI__sync_fetch_and_sub_4: |
| case Builtin::BI__sync_fetch_and_sub_8: |
| case Builtin::BI__sync_fetch_and_sub_16: |
| return EmitBinaryAtomic(*this, llvm::AtomicRMWInst::Sub, E); |
| case Builtin::BI__sync_fetch_and_or_1: |
| case Builtin::BI__sync_fetch_and_or_2: |
| case Builtin::BI__sync_fetch_and_or_4: |
| case Builtin::BI__sync_fetch_and_or_8: |
| case Builtin::BI__sync_fetch_and_or_16: |
| return EmitBinaryAtomic(*this, llvm::AtomicRMWInst::Or, E); |
| case Builtin::BI__sync_fetch_and_and_1: |
| case Builtin::BI__sync_fetch_and_and_2: |
| case Builtin::BI__sync_fetch_and_and_4: |
| case Builtin::BI__sync_fetch_and_and_8: |
| case Builtin::BI__sync_fetch_and_and_16: |
| return EmitBinaryAtomic(*this, llvm::AtomicRMWInst::And, E); |
| case Builtin::BI__sync_fetch_and_xor_1: |
| case Builtin::BI__sync_fetch_and_xor_2: |
| case Builtin::BI__sync_fetch_and_xor_4: |
| case Builtin::BI__sync_fetch_and_xor_8: |
| case Builtin::BI__sync_fetch_and_xor_16: |
| return EmitBinaryAtomic(*this, llvm::AtomicRMWInst::Xor, E); |
| case Builtin::BI__sync_fetch_and_nand_1: |
| case Builtin::BI__sync_fetch_and_nand_2: |
| case Builtin::BI__sync_fetch_and_nand_4: |
| case Builtin::BI__sync_fetch_and_nand_8: |
| case Builtin::BI__sync_fetch_and_nand_16: |
| return EmitBinaryAtomic(*this, llvm::AtomicRMWInst::Nand, E); |
| |
| // Clang extensions: not overloaded yet. |
| case Builtin::BI__sync_fetch_and_min: |
| return EmitBinaryAtomic(*this, llvm::AtomicRMWInst::Min, E); |
| case Builtin::BI__sync_fetch_and_max: |
| return EmitBinaryAtomic(*this, llvm::AtomicRMWInst::Max, E); |
| case Builtin::BI__sync_fetch_and_umin: |
| return EmitBinaryAtomic(*this, llvm::AtomicRMWInst::UMin, E); |
| case Builtin::BI__sync_fetch_and_umax: |
| return EmitBinaryAtomic(*this, llvm::AtomicRMWInst::UMax, E); |
| |
| case Builtin::BI__sync_add_and_fetch_1: |
| case Builtin::BI__sync_add_and_fetch_2: |
| case Builtin::BI__sync_add_and_fetch_4: |
| case Builtin::BI__sync_add_and_fetch_8: |
| case Builtin::BI__sync_add_and_fetch_16: |
| return EmitBinaryAtomicPost(*this, llvm::AtomicRMWInst::Add, E, |
| llvm::Instruction::Add); |
| case Builtin::BI__sync_sub_and_fetch_1: |
| case Builtin::BI__sync_sub_and_fetch_2: |
| case Builtin::BI__sync_sub_and_fetch_4: |
| case Builtin::BI__sync_sub_and_fetch_8: |
| case Builtin::BI__sync_sub_and_fetch_16: |
| return EmitBinaryAtomicPost(*this, llvm::AtomicRMWInst::Sub, E, |
| llvm::Instruction::Sub); |
| case Builtin::BI__sync_and_and_fetch_1: |
| case Builtin::BI__sync_and_and_fetch_2: |
| case Builtin::BI__sync_and_and_fetch_4: |
| case Builtin::BI__sync_and_and_fetch_8: |
| case Builtin::BI__sync_and_and_fetch_16: |
| return EmitBinaryAtomicPost(*this, llvm::AtomicRMWInst::And, E, |
| llvm::Instruction::And); |
| case Builtin::BI__sync_or_and_fetch_1: |
| case Builtin::BI__sync_or_and_fetch_2: |
| case Builtin::BI__sync_or_and_fetch_4: |
| case Builtin::BI__sync_or_and_fetch_8: |
| case Builtin::BI__sync_or_and_fetch_16: |
| return EmitBinaryAtomicPost(*this, llvm::AtomicRMWInst::Or, E, |
| llvm::Instruction::Or); |
| case Builtin::BI__sync_xor_and_fetch_1: |
| case Builtin::BI__sync_xor_and_fetch_2: |
| case Builtin::BI__sync_xor_and_fetch_4: |
| case Builtin::BI__sync_xor_and_fetch_8: |
| case Builtin::BI__sync_xor_and_fetch_16: |
| return EmitBinaryAtomicPost(*this, llvm::AtomicRMWInst::Xor, E, |
| llvm::Instruction::Xor); |
| case Builtin::BI__sync_nand_and_fetch_1: |
| case Builtin::BI__sync_nand_and_fetch_2: |
| case Builtin::BI__sync_nand_and_fetch_4: |
| case Builtin::BI__sync_nand_and_fetch_8: |
| case Builtin::BI__sync_nand_and_fetch_16: |
| return EmitBinaryAtomicPost(*this, llvm::AtomicRMWInst::Nand, E, |
| llvm::Instruction::And, true); |
| |
| case Builtin::BI__sync_val_compare_and_swap_1: |
| case Builtin::BI__sync_val_compare_and_swap_2: |
| case Builtin::BI__sync_val_compare_and_swap_4: |
| case Builtin::BI__sync_val_compare_and_swap_8: |
| case Builtin::BI__sync_val_compare_and_swap_16: |
| return RValue::get(MakeAtomicCmpXchgValue(*this, E, false)); |
| |
| case Builtin::BI__sync_bool_compare_and_swap_1: |
| case Builtin::BI__sync_bool_compare_and_swap_2: |
| case Builtin::BI__sync_bool_compare_and_swap_4: |
| case Builtin::BI__sync_bool_compare_and_swap_8: |
| case Builtin::BI__sync_bool_compare_and_swap_16: |
| return RValue::get(MakeAtomicCmpXchgValue(*this, E, true)); |
| |
| case Builtin::BI__sync_swap_1: |
| case Builtin::BI__sync_swap_2: |
| case Builtin::BI__sync_swap_4: |
| case Builtin::BI__sync_swap_8: |
| case Builtin::BI__sync_swap_16: |
| return EmitBinaryAtomic(*this, llvm::AtomicRMWInst::Xchg, E); |
| |
| case Builtin::BI__sync_lock_test_and_set_1: |
| case Builtin::BI__sync_lock_test_and_set_2: |
| case Builtin::BI__sync_lock_test_and_set_4: |
| case Builtin::BI__sync_lock_test_and_set_8: |
| case Builtin::BI__sync_lock_test_and_set_16: |
| return EmitBinaryAtomic(*this, llvm::AtomicRMWInst::Xchg, E); |
| |
| case Builtin::BI__sync_lock_release_1: |
| case Builtin::BI__sync_lock_release_2: |
| case Builtin::BI__sync_lock_release_4: |
| case Builtin::BI__sync_lock_release_8: |
| case Builtin::BI__sync_lock_release_16: { |
| Value *Ptr = EmitScalarExpr(E->getArg(0)); |
| QualType ElTy = E->getArg(0)->getType()->getPointeeType(); |
| CharUnits StoreSize = getContext().getTypeSizeInChars(ElTy); |
| llvm::Type *ITy = llvm::IntegerType::get(getLLVMContext(), |
| StoreSize.getQuantity() * 8); |
| Ptr = Builder.CreateBitCast(Ptr, ITy->getPointerTo()); |
| llvm::StoreInst *Store = |
| Builder.CreateAlignedStore(llvm::Constant::getNullValue(ITy), Ptr, |
| StoreSize); |
| Store->setAtomic(llvm::AtomicOrdering::Release); |
| return RValue::get(nullptr); |
| } |
| |
| case Builtin::BI__sync_synchronize: { |
| // We assume this is supposed to correspond to a C++0x-style |
| // sequentially-consistent fence (i.e. this is only usable for |
| // synchronization, not device I/O or anything like that). This intrinsic |
| // is really badly designed in the sense that in theory, there isn't |
| // any way to safely use it... but in practice, it mostly works |
| // to use it with non-atomic loads and stores to get acquire/release |
| // semantics. |
| Builder.CreateFence(llvm::AtomicOrdering::SequentiallyConsistent); |
| return RValue::get(nullptr); |
| } |
| |
| case Builtin::BI__builtin_nontemporal_load: |
| return RValue::get(EmitNontemporalLoad(*this, E)); |
| case Builtin::BI__builtin_nontemporal_store: |
| return RValue::get(EmitNontemporalStore(*this, E)); |
| case Builtin::BI__c11_atomic_is_lock_free: |
| case Builtin::BI__atomic_is_lock_free: { |
| // Call "bool __atomic_is_lock_free(size_t size, void *ptr)". For the |
| // __c11 builtin, ptr is 0 (indicating a properly-aligned object), since |
| // _Atomic(T) is always properly-aligned. |
| const char *LibCallName = "__atomic_is_lock_free"; |
| CallArgList Args; |
| Args.add(RValue::get(EmitScalarExpr(E->getArg(0))), |
| getContext().getSizeType()); |
| if (BuiltinID == Builtin::BI__atomic_is_lock_free) |
| Args.add(RValue::get(EmitScalarExpr(E->getArg(1))), |
| getContext().VoidPtrTy); |
| else |
| Args.add(RValue::get(llvm::Constant::getNullValue(VoidPtrTy)), |
| getContext().VoidPtrTy); |
| const CGFunctionInfo &FuncInfo = |
| CGM.getTypes().arrangeBuiltinFunctionCall(E->getType(), Args); |
| llvm::FunctionType *FTy = CGM.getTypes().GetFunctionType(FuncInfo); |
| llvm::FunctionCallee Func = CGM.CreateRuntimeFunction(FTy, LibCallName); |
| return EmitCall(FuncInfo, CGCallee::forDirect(Func), |
| ReturnValueSlot(), Args); |
| } |
| |
| case Builtin::BI__atomic_test_and_set: { |
| // Look at the argument type to determine whether this is a volatile |
| // operation. The parameter type is always volatile. |
| QualType PtrTy = E->getArg(0)->IgnoreImpCasts()->getType(); |
| bool Volatile = |
| PtrTy->castAs<PointerType>()->getPointeeType().isVolatileQualified(); |
| |
| Value *Ptr = EmitScalarExpr(E->getArg(0)); |
| unsigned AddrSpace = Ptr->getType()->getPointerAddressSpace(); |
| Ptr = Builder.CreateBitCast(Ptr, Int8Ty->getPointerTo(AddrSpace)); |
| Value *NewVal = Builder.getInt8(1); |
| Value *Order = EmitScalarExpr(E->getArg(1)); |
| if (isa<llvm::ConstantInt>(Order)) { |
| int ord = cast<llvm::ConstantInt>(Order)->getZExtValue(); |
| AtomicRMWInst *Result = nullptr; |
| switch (ord) { |
| case 0: // memory_order_relaxed |
| default: // invalid order |
| Result = Builder.CreateAtomicRMW(llvm::AtomicRMWInst::Xchg, Ptr, NewVal, |
| llvm::AtomicOrdering::Monotonic); |
| break; |
| case 1: // memory_order_consume |
| case 2: // memory_order_acquire |
| Result = Builder.CreateAtomicRMW(llvm::AtomicRMWInst::Xchg, Ptr, NewVal, |
| llvm::AtomicOrdering::Acquire); |
| break; |
| case 3: // memory_order_release |
| Result = Builder.CreateAtomicRMW(llvm::AtomicRMWInst::Xchg, Ptr, NewVal, |
| llvm::AtomicOrdering::Release); |
| break; |
| case 4: // memory_order_acq_rel |
| |
| Result = Builder.CreateAtomicRMW(llvm::AtomicRMWInst::Xchg, Ptr, NewVal, |
| llvm::AtomicOrdering::AcquireRelease); |
| break; |
| case 5: // memory_order_seq_cst |
| Result = Builder.CreateAtomicRMW( |
| llvm::AtomicRMWInst::Xchg, Ptr, NewVal, |
| llvm::AtomicOrdering::SequentiallyConsistent); |
| break; |
| } |
| Result->setVolatile(Volatile); |
| return RValue::get(Builder.CreateIsNotNull(Result, "tobool")); |
| } |
| |
| llvm::BasicBlock *ContBB = createBasicBlock("atomic.continue", CurFn); |
| |
| llvm::BasicBlock *BBs[5] = { |
| createBasicBlock("monotonic", CurFn), |
| createBasicBlock("acquire", CurFn), |
| createBasicBlock("release", CurFn), |
| createBasicBlock("acqrel", CurFn), |
| createBasicBlock("seqcst", CurFn) |
| }; |
| llvm::AtomicOrdering Orders[5] = { |
| llvm::AtomicOrdering::Monotonic, llvm::AtomicOrdering::Acquire, |
| llvm::AtomicOrdering::Release, llvm::AtomicOrdering::AcquireRelease, |
| llvm::AtomicOrdering::SequentiallyConsistent}; |
| |
| Order = Builder.CreateIntCast(Order, Builder.getInt32Ty(), false); |
| llvm::SwitchInst *SI = Builder.CreateSwitch(Order, BBs[0]); |
| |
| Builder.SetInsertPoint(ContBB); |
| PHINode *Result = Builder.CreatePHI(Int8Ty, 5, "was_set"); |
| |
| for (unsigned i = 0; i < 5; ++i) { |
| Builder.SetInsertPoint(BBs[i]); |
| AtomicRMWInst *RMW = Builder.CreateAtomicRMW(llvm::AtomicRMWInst::Xchg, |
| Ptr, NewVal, Orders[i]); |
| RMW->setVolatile(Volatile); |
| Result->addIncoming(RMW, BBs[i]); |
| Builder.CreateBr(ContBB); |
| } |
| |
| SI->addCase(Builder.getInt32(0), BBs[0]); |
| SI->addCase(Builder.getInt32(1), BBs[1]); |
| SI->addCase(Builder.getInt32(2), BBs[1]); |
| SI->addCase(Builder.getInt32(3), BBs[2]); |
| SI->addCase(Builder.getInt32(4), BBs[3]); |
| SI->addCase(Builder.getInt32(5), BBs[4]); |
| |
| Builder.SetInsertPoint(ContBB); |
| return RValue::get(Builder.CreateIsNotNull(Result, "tobool")); |
| } |
| |
| case Builtin::BI__atomic_clear: { |
| QualType PtrTy = E->getArg(0)->IgnoreImpCasts()->getType(); |
| bool Volatile = |
| PtrTy->castAs<PointerType>()->getPointeeType().isVolatileQualified(); |
| |
| Address Ptr = EmitPointerWithAlignment(E->getArg(0)); |
| unsigned AddrSpace = Ptr.getPointer()->getType()->getPointerAddressSpace(); |
| Ptr = Builder.CreateBitCast(Ptr, Int8Ty->getPointerTo(AddrSpace)); |
| Value *NewVal = Builder.getInt8(0); |
| Value *Order = EmitScalarExpr(E->getArg(1)); |
| if (isa<llvm::ConstantInt>(Order)) { |
| int ord = cast<llvm::ConstantInt>(Order)->getZExtValue(); |
| StoreInst *Store = Builder.CreateStore(NewVal, Ptr, Volatile); |
| switch (ord) { |
| case 0: // memory_order_relaxed |
| default: // invalid order |
| Store->setOrdering(llvm::AtomicOrdering::Monotonic); |
| break; |
| case 3: // memory_order_release |
| Store->setOrdering(llvm::AtomicOrdering::Release); |
| break; |
| case 5: // memory_order_seq_cst |
| Store->setOrdering(llvm::AtomicOrdering::SequentiallyConsistent); |
| break; |
| } |
| return RValue::get(nullptr); |
| } |
| |
| llvm::BasicBlock *ContBB = createBasicBlock("atomic.continue", CurFn); |
| |
| llvm::BasicBlock *BBs[3] = { |
| createBasicBlock("monotonic", CurFn), |
| createBasicBlock("release", CurFn), |
| createBasicBlock("seqcst", CurFn) |
| }; |
| llvm::AtomicOrdering Orders[3] = { |
| llvm::AtomicOrdering::Monotonic, llvm::AtomicOrdering::Release, |
| llvm::AtomicOrdering::SequentiallyConsistent}; |
| |
| Order = Builder.CreateIntCast(Order, Builder.getInt32Ty(), false); |
| llvm::SwitchInst *SI = Builder.CreateSwitch(Order, BBs[0]); |
| |
| for (unsigned i = 0; i < 3; ++i) { |
| Builder.SetInsertPoint(BBs[i]); |
| StoreInst *Store = Builder.CreateStore(NewVal, Ptr, Volatile); |
| Store->setOrdering(Orders[i]); |
| Builder.CreateBr(ContBB); |
| } |
| |
| SI->addCase(Builder.getInt32(0), BBs[0]); |
| SI->addCase(Builder.getInt32(3), BBs[1]); |
| SI->addCase(Builder.getInt32(5), BBs[2]); |
| |
| Builder.SetInsertPoint(ContBB); |
| return RValue::get(nullptr); |
| } |
| |
| case Builtin::BI__atomic_thread_fence: |
| case Builtin::BI__atomic_signal_fence: |
| case Builtin::BI__c11_atomic_thread_fence: |
| case Builtin::BI__c11_atomic_signal_fence: { |
| llvm::SyncScope::ID SSID; |
| if (BuiltinID == Builtin::BI__atomic_signal_fence || |
| BuiltinID == Builtin::BI__c11_atomic_signal_fence) |
| SSID = llvm::SyncScope::SingleThread; |
| else |
| SSID = llvm::SyncScope::System; |
| Value *Order = EmitScalarExpr(E->getArg(0)); |
| if (isa<llvm::ConstantInt>(Order)) { |
| int ord = cast<llvm::ConstantInt>(Order)->getZExtValue(); |
| switch (ord) { |
| case 0: // memory_order_relaxed |
| default: // invalid order |
| break; |
| case 1: // memory_order_consume |
| case 2: // memory_order_acquire |
| Builder.CreateFence(llvm::AtomicOrdering::Acquire, SSID); |
| break; |
| case 3: // memory_order_release |
| Builder.CreateFence(llvm::AtomicOrdering::Release, SSID); |
| break; |
| case 4: // memory_order_acq_rel |
| Builder.CreateFence(llvm::AtomicOrdering::AcquireRelease, SSID); |
| break; |
| case 5: // memory_order_seq_cst |
| Builder.CreateFence(llvm::AtomicOrdering::SequentiallyConsistent, SSID); |
| break; |
| } |
| return RValue::get(nullptr); |
| } |
| |
| llvm::BasicBlock *AcquireBB, *ReleaseBB, *AcqRelBB, *SeqCstBB; |
| AcquireBB = createBasicBlock("acquire", CurFn); |
| ReleaseBB = createBasicBlock("release", CurFn); |
| AcqRelBB = createBasicBlock("acqrel", CurFn); |
| SeqCstBB = createBasicBlock("seqcst", CurFn); |
| llvm::BasicBlock *ContBB = createBasicBlock("atomic.continue", CurFn); |
| |
| Order = Builder.CreateIntCast(Order, Builder.getInt32Ty(), false); |
| llvm::SwitchInst *SI = Builder.CreateSwitch(Order, ContBB); |
| |
| Builder.SetInsertPoint(AcquireBB); |
| Builder.CreateFence(llvm::AtomicOrdering::Acquire, SSID); |
| Builder.CreateBr(ContBB); |
| SI->addCase(Builder.getInt32(1), AcquireBB); |
| SI->addCase(Builder.getInt32(2), AcquireBB); |
| |
| Builder.SetInsertPoint(ReleaseBB); |
| Builder.CreateFence(llvm::AtomicOrdering::Release, SSID); |
| Builder.CreateBr(ContBB); |
| SI->addCase(Builder.getInt32(3), ReleaseBB); |
| |
| Builder.SetInsertPoint(AcqRelBB); |
| Builder.CreateFence(llvm::AtomicOrdering::AcquireRelease, SSID); |
| Builder.CreateBr(ContBB); |
| SI->addCase(Builder.getInt32(4), AcqRelBB); |
| |
| Builder.SetInsertPoint(SeqCstBB); |
| Builder.CreateFence(llvm::AtomicOrdering::SequentiallyConsistent, SSID); |
| Builder.CreateBr(ContBB); |
| SI->addCase(Builder.getInt32(5), SeqCstBB); |
| |
| Builder.SetInsertPoint(ContBB); |
| return RValue::get(nullptr); |
| } |
| |
| case Builtin::BI__builtin_signbit: |
| case Builtin::BI__builtin_signbitf: |
| case Builtin::BI__builtin_signbitl: { |
| return RValue::get( |
| Builder.CreateZExt(EmitSignBit(*this, EmitScalarExpr(E->getArg(0))), |
| ConvertType(E->getType()))); |
| } |
| case Builtin::BI__warn_memset_zero_len: |
| return RValue::getIgnored(); |
| case Builtin::BI__annotation: { |
| // Re-encode each wide string to UTF8 and make an MDString. |
| SmallVector<Metadata *, 1> Strings; |
| for (const Expr *Arg : E->arguments()) { |
| const auto *Str = cast<StringLiteral>(Arg->IgnoreParenCasts()); |
| assert(Str->getCharByteWidth() == 2); |
| StringRef WideBytes = Str->getBytes(); |
| std::string StrUtf8; |
| if (!convertUTF16ToUTF8String( |
| makeArrayRef(WideBytes.data(), WideBytes.size()), StrUtf8)) { |
| CGM.ErrorUnsupported(E, "non-UTF16 __annotation argument"); |
| continue; |
| } |
| Strings.push_back(llvm::MDString::get(getLLVMContext(), StrUtf8)); |
| } |
| |
| // Build and MDTuple of MDStrings and emit the intrinsic call. |
| llvm::Function *F = |
| CGM.getIntrinsic(llvm::Intrinsic::codeview_annotation, {}); |
| MDTuple *StrTuple = MDTuple::get(getLLVMContext(), Strings); |
| Builder.CreateCall(F, MetadataAsValue::get(getLLVMContext(), StrTuple)); |
| return RValue::getIgnored(); |
| } |
| case Builtin::BI__builtin_annotation: { |
| llvm::Value *AnnVal = EmitScalarExpr(E->getArg(0)); |
| llvm::Function *F = CGM.getIntrinsic(llvm::Intrinsic::annotation, |
| AnnVal->getType()); |
| |
| // Get the annotation string, go through casts. Sema requires this to be a |
| // non-wide string literal, potentially casted, so the cast<> is safe. |
| const Expr *AnnotationStrExpr = E->getArg(1)->IgnoreParenCasts(); |
| StringRef Str = cast<StringLiteral>(AnnotationStrExpr)->getString(); |
| return RValue::get( |
| EmitAnnotationCall(F, AnnVal, Str, E->getExprLoc(), nullptr)); |
| } |
| case Builtin::BI__builtin_addcb: |
| case Builtin::BI__builtin_addcs: |
| case Builtin::BI__builtin_addc: |
| case Builtin::BI__builtin_addcl: |
| case Builtin::BI__builtin_addcll: |
| case Builtin::BI__builtin_subcb: |
| case Builtin::BI__builtin_subcs: |
| case Builtin::BI__builtin_subc: |
| case Builtin::BI__builtin_subcl: |
| case Builtin::BI__builtin_subcll: { |
| |
| // We translate all of these builtins from expressions of the form: |
| // int x = ..., y = ..., carryin = ..., carryout, result; |
| // result = __builtin_addc(x, y, carryin, &carryout); |
| // |
| // to LLVM IR of the form: |
| // |
| // %tmp1 = call {i32, i1} @llvm.uadd.with.overflow.i32(i32 %x, i32 %y) |
| // %tmpsum1 = extractvalue {i32, i1} %tmp1, 0 |
| // %carry1 = extractvalue {i32, i1} %tmp1, 1 |
| // %tmp2 = call {i32, i1} @llvm.uadd.with.overflow.i32(i32 %tmpsum1, |
| // i32 %carryin) |
| // %result = extractvalue {i32, i1} %tmp2, 0 |
| // %carry2 = extractvalue {i32, i1} %tmp2, 1 |
| // %tmp3 = or i1 %carry1, %carry2 |
| // %tmp4 = zext i1 %tmp3 to i32 |
| // store i32 %tmp4, i32* %carryout |
| |
| // Scalarize our inputs. |
| llvm::Value *X = EmitScalarExpr(E->getArg(0)); |
| llvm::Value *Y = EmitScalarExpr(E->getArg(1)); |
| llvm::Value *Carryin = EmitScalarExpr(E->getArg(2)); |
| Address CarryOutPtr = EmitPointerWithAlignment(E->getArg(3)); |
| |
| // Decide if we are lowering to a uadd.with.overflow or usub.with.overflow. |
| llvm::Intrinsic::ID IntrinsicId; |
| switch (BuiltinID) { |
| default: llvm_unreachable("Unknown multiprecision builtin id."); |
| case Builtin::BI__builtin_addcb: |
| case Builtin::BI__builtin_addcs: |
| case Builtin::BI__builtin_addc: |
| case Builtin::BI__builtin_addcl: |
| case Builtin::BI__builtin_addcll: |
| IntrinsicId = llvm::Intrinsic::uadd_with_overflow; |
| break; |
| case Builtin::BI__builtin_subcb: |
| case Builtin::BI__builtin_subcs: |
| case Builtin::BI__builtin_subc: |
| case Builtin::BI__builtin_subcl: |
| case Builtin::BI__builtin_subcll: |
| IntrinsicId = llvm::Intrinsic::usub_with_overflow; |
| break; |
| } |
| |
| // Construct our resulting LLVM IR expression. |
| llvm::Value *Carry1; |
| llvm::Value *Sum1 = EmitOverflowIntrinsic(*this, IntrinsicId, |
| X, Y, Carry1); |
| llvm::Value *Carry2; |
| llvm::Value *Sum2 = EmitOverflowIntrinsic(*this, IntrinsicId, |
| Sum1, Carryin, Carry2); |
| llvm::Value *CarryOut = Builder.CreateZExt(Builder.CreateOr(Carry1, Carry2), |
| X->getType()); |
| Builder.CreateStore(CarryOut, CarryOutPtr); |
| return RValue::get(Sum2); |
| } |
| |
| case Builtin::BI__builtin_add_overflow: |
| case Builtin::BI__builtin_sub_overflow: |
| case Builtin::BI__builtin_mul_overflow: { |
| const clang::Expr *LeftArg = E->getArg(0); |
| const clang::Expr *RightArg = E->getArg(1); |
| const clang::Expr *ResultArg = E->getArg(2); |
| |
| clang::QualType ResultQTy = |
| ResultArg->getType()->castAs<PointerType>()->getPointeeType(); |
| |
| WidthAndSignedness LeftInfo = |
| getIntegerWidthAndSignedness(CGM.getContext(), LeftArg->getType()); |
| WidthAndSignedness RightInfo = |
| getIntegerWidthAndSignedness(CGM.getContext(), RightArg->getType()); |
| WidthAndSignedness ResultInfo = |
| getIntegerWidthAndSignedness(CGM.getContext(), ResultQTy); |
| |
| // Handle mixed-sign multiplication as a special case, because adding |
| // runtime or backend support for our generic irgen would be too expensive. |
| if (isSpecialMixedSignMultiply(BuiltinID, LeftInfo, RightInfo, ResultInfo)) |
| return EmitCheckedMixedSignMultiply(*this, LeftArg, LeftInfo, RightArg, |
| RightInfo, ResultArg, ResultQTy, |
| ResultInfo); |
| |
| if (isSpecialUnsignedMultiplySignedResult(BuiltinID, LeftInfo, RightInfo, |
| ResultInfo)) |
| return EmitCheckedUnsignedMultiplySignedResult( |
| *this, LeftArg, LeftInfo, RightArg, RightInfo, ResultArg, ResultQTy, |
| ResultInfo); |
| |
| WidthAndSignedness EncompassingInfo = |
| EncompassingIntegerType({LeftInfo, RightInfo, ResultInfo}); |
| |
| llvm::Type *EncompassingLLVMTy = |
| llvm::IntegerType::get(CGM.getLLVMContext(), EncompassingInfo.Width); |
| |
| llvm::Type *ResultLLVMTy = CGM.getTypes().ConvertType(ResultQTy); |
| |
| llvm::Intrinsic::ID IntrinsicId; |
| switch (BuiltinID) { |
| default: |
| llvm_unreachable("Unknown overflow builtin id."); |
| case Builtin::BI__builtin_add_overflow: |
| IntrinsicId = EncompassingInfo.Signed |
| ? llvm::Intrinsic::sadd_with_overflow |
| : llvm::Intrinsic::uadd_with_overflow; |
| break; |
| case Builtin::BI__builtin_sub_overflow: |
| IntrinsicId = EncompassingInfo.Signed |
| ? llvm::Intrinsic::ssub_with_overflow |
| : llvm::Intrinsic::usub_with_overflow; |
| break; |
| case Builtin::BI__builtin_mul_overflow: |
| IntrinsicId = EncompassingInfo.Signed |
| ? llvm::Intrinsic::smul_with_overflow |
| : llvm::Intrinsic::umul_with_overflow; |
| break; |
| } |
| |
| llvm::Value *Left = EmitScalarExpr(LeftArg); |
| llvm::Value *Right = EmitScalarExpr(RightArg); |
| Address ResultPtr = EmitPointerWithAlignment(ResultArg); |
| |
| // Extend each operand to the encompassing type. |
| Left = Builder.CreateIntCast(Left, EncompassingLLVMTy, LeftInfo.Signed); |
| Right = Builder.CreateIntCast(Right, EncompassingLLVMTy, RightInfo.Signed); |
| |
| // Perform the operation on the extended values. |
| llvm::Value *Overflow, *Result; |
| Result = EmitOverflowIntrinsic(*this, IntrinsicId, Left, Right, Overflow); |
| |
| if (EncompassingInfo.Width > ResultInfo.Width) { |
| // The encompassing type is wider than the result type, so we need to |
| // truncate it. |
| llvm::Value *ResultTrunc = Builder.CreateTrunc(Result, ResultLLVMTy); |
| |
| // To see if the truncation caused an overflow, we will extend |
| // the result and then compare it to the original result. |
| llvm::Value *ResultTruncExt = Builder.CreateIntCast( |
| ResultTrunc, EncompassingLLVMTy, ResultInfo.Signed); |
| llvm::Value *TruncationOverflow = |
| Builder.CreateICmpNE(Result, ResultTruncExt); |
| |
| Overflow = Builder.CreateOr(Overflow, TruncationOverflow); |
| Result = ResultTrunc; |
| } |
| |
| // Finally, store the result using the pointer. |
| bool isVolatile = |
| ResultArg->getType()->getPointeeType().isVolatileQualified(); |
| Builder.CreateStore(EmitToMemory(Result, ResultQTy), ResultPtr, isVolatile); |
| |
| return RValue::get(Overflow); |
| } |
| |
| case Builtin::BI__builtin_uadd_overflow: |
| case Builtin::BI__builtin_uaddl_overflow: |
| case Builtin::BI__builtin_uaddll_overflow: |
| case Builtin::BI__builtin_usub_overflow: |
| case Builtin::BI__builtin_usubl_overflow: |
| case Builtin::BI__builtin_usubll_overflow: |
| case Builtin::BI__builtin_umul_overflow: |
| case Builtin::BI__builtin_umull_overflow: |
| case Builtin::BI__builtin_umulll_overflow: |
| case Builtin::BI__builtin_sadd_overflow: |
| case Builtin::BI__builtin_saddl_overflow: |
| case Builtin::BI__builtin_saddll_overflow: |
| case Builtin::BI__builtin_ssub_overflow: |
| case Builtin::BI__builtin_ssubl_overflow: |
| case Builtin::BI__builtin_ssubll_overflow: |
| case Builtin::BI__builtin_smul_overflow: |
| case Builtin::BI__builtin_smull_overflow: |
| case Builtin::BI__builtin_smulll_overflow: { |
| |
| // We translate all of these builtins directly to the relevant llvm IR node. |
| |
| // Scalarize our inputs. |
| llvm::Value *X = EmitScalarExpr(E->getArg(0)); |
| llvm::Value *Y = EmitScalarExpr(E->getArg(1)); |
| Address SumOutPtr = EmitPointerWithAlignment(E->getArg(2)); |
| |
| // Decide which of the overflow intrinsics we are lowering to: |
| llvm::Intrinsic::ID IntrinsicId; |
| switch (BuiltinID) { |
| default: llvm_unreachable("Unknown overflow builtin id."); |
| case Builtin::BI__builtin_uadd_overflow: |
| case Builtin::BI__builtin_uaddl_overflow: |
| case Builtin::BI__builtin_uaddll_overflow: |
| IntrinsicId = llvm::Intrinsic::uadd_with_overflow; |
| break; |
| case Builtin::BI__builtin_usub_overflow: |
| case Builtin::BI__builtin_usubl_overflow: |
| case Builtin::BI__builtin_usubll_overflow: |
| IntrinsicId = llvm::Intrinsic::usub_with_overflow; |
| break; |
| case Builtin::BI__builtin_umul_overflow: |
| case Builtin::BI__builtin_umull_overflow: |
| case Builtin::BI__builtin_umulll_overflow: |
| IntrinsicId = llvm::Intrinsic::umul_with_overflow; |
| break; |
| case Builtin::BI__builtin_sadd_overflow: |
| case Builtin::BI__builtin_saddl_overflow: |
| case Builtin::BI__builtin_saddll_overflow: |
| IntrinsicId = llvm::Intrinsic::sadd_with_overflow; |
| break; |
| case Builtin::BI__builtin_ssub_overflow: |
| case Builtin::BI__builtin_ssubl_overflow: |
| case Builtin::BI__builtin_ssubll_overflow: |
| IntrinsicId = llvm::Intrinsic::ssub_with_overflow; |
| break; |
| case Builtin::BI__builtin_smul_overflow: |
| case Builtin::BI__builtin_smull_overflow: |
| case Builtin::BI__builtin_smulll_overflow: |
| IntrinsicId = llvm::Intrinsic::smul_with_overflow; |
| break; |
| } |
| |
| |
| llvm::Value *Carry; |
| llvm::Value *Sum = EmitOverflowIntrinsic(*this, IntrinsicId, X, Y, Carry); |
| Builder.CreateStore(Sum, SumOutPtr); |
| |
| return RValue::get(Carry); |
| } |
| case Builtin::BI__builtin_addressof: |
| return RValue::get(EmitLValue(E->getArg(0)).getPointer(*this)); |
| case Builtin::BI__builtin_operator_new: |
| return EmitBuiltinNewDeleteCall( |
| E->getCallee()->getType()->castAs<FunctionProtoType>(), E, false); |
| case Builtin::BI__builtin_operator_delete: |
| return EmitBuiltinNewDeleteCall( |
| E->getCallee()->getType()->castAs<FunctionProtoType>(), E, true); |
| |
| case Builtin::BI__builtin_is_aligned: |
| return EmitBuiltinIsAligned(E); |
| case Builtin::BI__builtin_align_up: |
| return EmitBuiltinAlignTo(E, true); |
| case Builtin::BI__builtin_align_down: |
| return EmitBuiltinAlignTo(E, false); |
| |
| case Builtin::BI__noop: |
| // __noop always evaluates to an integer literal zero. |
| return RValue::get(ConstantInt::get(IntTy, 0)); |
| case Builtin::BI__builtin_call_with_static_chain: { |
| const CallExpr *Call = cast<CallExpr>(E->getArg(0)); |
| const Expr *Chain = E->getArg(1); |
| return EmitCall(Call->getCallee()->getType(), |
| EmitCallee(Call->getCallee()), Call, ReturnValue, |
| EmitScalarExpr(Chain)); |
| } |
| case Builtin::BI_InterlockedExchange8: |
| case Builtin::BI_InterlockedExchange16: |
| case Builtin::BI_InterlockedExchange: |
| case Builtin::BI_InterlockedExchangePointer: |
| return RValue::get( |
| EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedExchange, E)); |
| case Builtin::BI_InterlockedCompareExchangePointer: |
| case Builtin::BI_InterlockedCompareExchangePointer_nf: { |
| llvm::Type *RTy; |
| llvm::IntegerType *IntType = |
| IntegerType::get(getLLVMContext(), |
| getContext().getTypeSize(E->getType())); |
| llvm::Type *IntPtrType = IntType->getPointerTo(); |
| |
| llvm::Value *Destination = |
| Builder.CreateBitCast(EmitScalarExpr(E->getArg(0)), IntPtrType); |
| |
| llvm::Value *Exchange = EmitScalarExpr(E->getArg(1)); |
| RTy = Exchange->getType(); |
| Exchange = Builder.CreatePtrToInt(Exchange, IntType); |
| |
| llvm::Value *Comparand = |
| Builder.CreatePtrToInt(EmitScalarExpr(E->getArg(2)), IntType); |
| |
| auto Ordering = |
| BuiltinID == Builtin::BI_InterlockedCompareExchangePointer_nf ? |
| AtomicOrdering::Monotonic : AtomicOrdering::SequentiallyConsistent; |
| |
| auto Result = Builder.CreateAtomicCmpXchg(Destination, Comparand, Exchange, |
| Ordering, Ordering); |
| Result->setVolatile(true); |
| |
| return RValue::get(Builder.CreateIntToPtr(Builder.CreateExtractValue(Result, |
| 0), |
| RTy)); |
| } |
| case Builtin::BI_InterlockedCompareExchange8: |
| case Builtin::BI_InterlockedCompareExchange16: |
| case Builtin::BI_InterlockedCompareExchange: |
| case Builtin::BI_InterlockedCompareExchange64: |
| return RValue::get(EmitAtomicCmpXchgForMSIntrin(*this, E)); |
| case Builtin::BI_InterlockedIncrement16: |
| case Builtin::BI_InterlockedIncrement: |
| return RValue::get( |
| EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedIncrement, E)); |
| case Builtin::BI_InterlockedDecrement16: |
| case Builtin::BI_InterlockedDecrement: |
| return RValue::get( |
| EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedDecrement, E)); |
| case Builtin::BI_InterlockedAnd8: |
| case Builtin::BI_InterlockedAnd16: |
| case Builtin::BI_InterlockedAnd: |
| return RValue::get(EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedAnd, E)); |
| case Builtin::BI_InterlockedExchangeAdd8: |
| case Builtin::BI_InterlockedExchangeAdd16: |
| case Builtin::BI_InterlockedExchangeAdd: |
| return RValue::get( |
| EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedExchangeAdd, E)); |
| case Builtin::BI_InterlockedExchangeSub8: |
| case Builtin::BI_InterlockedExchangeSub16: |
| case Builtin::BI_InterlockedExchangeSub: |
| return RValue::get( |
| EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedExchangeSub, E)); |
| case Builtin::BI_InterlockedOr8: |
| case Builtin::BI_InterlockedOr16: |
| case Builtin::BI_InterlockedOr: |
| return RValue::get(EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedOr, E)); |
| case Builtin::BI_InterlockedXor8: |
| case Builtin::BI_InterlockedXor16: |
| case Builtin::BI_InterlockedXor: |
| return RValue::get(EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedXor, E)); |
| |
| case Builtin::BI_bittest64: |
| case Builtin::BI_bittest: |
| case Builtin::BI_bittestandcomplement64: |
| case Builtin::BI_bittestandcomplement: |
| case Builtin::BI_bittestandreset64: |
| case Builtin::BI_bittestandreset: |
| case Builtin::BI_bittestandset64: |
| case Builtin::BI_bittestandset: |
| case Builtin::BI_interlockedbittestandreset: |
| case Builtin::BI_interlockedbittestandreset64: |
| case Builtin::BI_interlockedbittestandset64: |
| case Builtin::BI_interlockedbittestandset: |
| case Builtin::BI_interlockedbittestandset_acq: |
| case Builtin::BI_interlockedbittestandset_rel: |
| case Builtin::BI_interlockedbittestandset_nf: |
| case Builtin::BI_interlockedbittestandreset_acq: |
| case Builtin::BI_interlockedbittestandreset_rel: |
| case Builtin::BI_interlockedbittestandreset_nf: |
| return RValue::get(EmitBitTestIntrinsic(*this, BuiltinID, E)); |
| |
| // These builtins exist to emit regular volatile loads and stores not |
| // affected by the -fms-volatile setting. |
| case Builtin::BI__iso_volatile_load8: |
| case Builtin::BI__iso_volatile_load16: |
| case Builtin::BI__iso_volatile_load32: |
| case Builtin::BI__iso_volatile_load64: |
| return RValue::get(EmitISOVolatileLoad(*this, E)); |
| case Builtin::BI__iso_volatile_store8: |
| case Builtin::BI__iso_volatile_store16: |
| case Builtin::BI__iso_volatile_store32: |
| case Builtin::BI__iso_volatile_store64: |
| return RValue::get(EmitISOVolatileStore(*this, E)); |
| |
| case Builtin::BI__exception_code: |
| case Builtin::BI_exception_code: |
| return RValue::get(EmitSEHExceptionCode()); |
| case Builtin::BI__exception_info: |
| case Builtin::BI_exception_info: |
| return RValue::get(EmitSEHExceptionInfo()); |
| case Builtin::BI__abnormal_termination: |
| case Builtin::BI_abnormal_termination: |
| return RValue::get(EmitSEHAbnormalTermination()); |
| case Builtin::BI_setjmpex: |
| if (getTarget().getTriple().isOSMSVCRT() && E->getNumArgs() == 1 && |
| E->getArg(0)->getType()->isPointerType()) |
| return EmitMSVCRTSetJmp(*this, MSVCSetJmpKind::_setjmpex, E); |
| break; |
| case Builtin::BI_setjmp: |
| if (getTarget().getTriple().isOSMSVCRT() && E->getNumArgs() == 1 && |
| E->getArg(0)->getType()->isPointerType()) { |
| if (getTarget().getTriple().getArch() == llvm::Triple::x86) |
| return EmitMSVCRTSetJmp(*this, MSVCSetJmpKind::_setjmp3, E); |
| else if (getTarget().getTriple().getArch() == llvm::Triple::aarch64) |
| return EmitMSVCRTSetJmp(*this, MSVCSetJmpKind::_setjmpex, E); |
| return EmitMSVCRTSetJmp(*this, MSVCSetJmpKind::_setjmp, E); |
| } |
| break; |
| |
| case Builtin::BI__GetExceptionInfo: { |
| if (llvm::GlobalVariable *GV = |
| CGM.getCXXABI().getThrowInfo(FD->getParamDecl(0)->getType())) |
| return RValue::get(llvm::ConstantExpr::getBitCast(GV, CGM.Int8PtrTy)); |
| break; |
| } |
| |
| case Builtin::BI__fastfail: |
| return RValue::get(EmitMSVCBuiltinExpr(MSVCIntrin::__fastfail, E)); |
| |
| case Builtin::BI__builtin_coro_size: { |
| auto & Context = getContext(); |
| auto SizeTy = Context.getSizeType(); |
| auto T = Builder.getIntNTy(Context.getTypeSize(SizeTy)); |
| Function *F = CGM.getIntrinsic(Intrinsic::coro_size, T); |
| return RValue::get(Builder.CreateCall(F)); |
| } |
| |
| case Builtin::BI__builtin_coro_id: |
| return EmitCoroutineIntrinsic(E, Intrinsic::coro_id); |
| case Builtin::BI__builtin_coro_promise: |
| return EmitCoroutineIntrinsic(E, Intrinsic::coro_promise); |
| case Builtin::BI__builtin_coro_resume: |
| return EmitCoroutineIntrinsic(E, Intrinsic::coro_resume); |
| case Builtin::BI__builtin_coro_frame: |
| return EmitCoroutineIntrinsic(E, Intrinsic::coro_frame); |
| case Builtin::BI__builtin_coro_noop: |
| return EmitCoroutineIntrinsic(E, Intrinsic::coro_noop); |
| case Builtin::BI__builtin_coro_free: |
| return EmitCoroutineIntrinsic(E, Intrinsic::coro_free); |
| case Builtin::BI__builtin_coro_destroy: |
| return EmitCoroutineIntrinsic(E, Intrinsic::coro_destroy); |
| case Builtin::BI__builtin_coro_done: |
| return EmitCoroutineIntrinsic(E, Intrinsic::coro_done); |
| case Builtin::BI__builtin_coro_alloc: |
| return EmitCoroutineIntrinsic(E, Intrinsic::coro_alloc); |
| case Builtin::BI__builtin_coro_begin: |
| return EmitCoroutineIntrinsic(E, Intrinsic::coro_begin); |
| case Builtin::BI__builtin_coro_end: |
| return EmitCoroutineIntrinsic(E, Intrinsic::coro_end); |
| case Builtin::BI__builtin_coro_suspend: |
| return EmitCoroutineIntrinsic(E, Intrinsic::coro_suspend); |
| case Builtin::BI__builtin_coro_param: |
| return EmitCoroutineIntrinsic(E, Intrinsic::coro_param); |
| |
| // OpenCL v2.0 s6.13.16.2, Built-in pipe read and write functions |
| case Builtin::BIread_pipe: |
| case Builtin::BIwrite_pipe: { |
| Value *Arg0 = EmitScalarExpr(E->getArg(0)), |
| *Arg1 = EmitScalarExpr(E->getArg(1)); |
| CGOpenCLRuntime OpenCLRT(CGM); |
| Value *PacketSize = OpenCLRT.getPipeElemSize(E->getArg(0)); |
| Value *PacketAlign = OpenCLRT.getPipeElemAlign(E->getArg(0)); |
| |
| // Type of the generic packet parameter. |
| unsigned GenericAS = |
| getContext().getTargetAddressSpace(LangAS::opencl_generic); |
| llvm::Type *I8PTy = llvm::PointerType::get( |
| llvm::Type::getInt8Ty(getLLVMContext()), GenericAS); |
| |
| // Testing which overloaded version we should generate the call for. |
| if (2U == E->getNumArgs()) { |
| const char *Name = (BuiltinID == Builtin::BIread_pipe) ? "__read_pipe_2" |
| : "__write_pipe_2"; |
| // Creating a generic function type to be able to call with any builtin or |
| // user defined type. |
| llvm::Type *ArgTys[] = {Arg0->getType(), I8PTy, Int32Ty, Int32Ty}; |
| llvm::FunctionType *FTy = llvm::FunctionType::get( |
| Int32Ty, llvm::ArrayRef<llvm::Type *>(ArgTys), false); |
| Value *BCast = Builder.CreatePointerCast(Arg1, I8PTy); |
| return RValue::get( |
| EmitRuntimeCall(CGM.CreateRuntimeFunction(FTy, Name), |
| {Arg0, BCast, PacketSize, PacketAlign})); |
| } else { |
| assert(4 == E->getNumArgs() && |
| "Illegal number of parameters to pipe function"); |
| const char *Name = (BuiltinID == Builtin::BIread_pipe) ? "__read_pipe_4" |
| : "__write_pipe_4"; |
| |
| llvm::Type *ArgTys[] = {Arg0->getType(), Arg1->getType(), Int32Ty, I8PTy, |
| Int32Ty, Int32Ty}; |
| Value *Arg2 = EmitScalarExpr(E->getArg(2)), |
| *Arg3 = EmitScalarExpr(E->getArg(3)); |
| llvm::FunctionType *FTy = llvm::FunctionType::get( |
| Int32Ty, llvm::ArrayRef<llvm::Type *>(ArgTys), false); |
| Value *BCast = Builder.CreatePointerCast(Arg3, I8PTy); |
| // We know the third argument is an integer type, but we may need to cast |
| // it to i32. |
| if (Arg2->getType() != Int32Ty) |
| Arg2 = Builder.CreateZExtOrTrunc(Arg2, Int32Ty); |
| return RValue::get( |
| EmitRuntimeCall(CGM.CreateRuntimeFunction(FTy, Name), |
| {Arg0, Arg1, Arg2, BCast, PacketSize, PacketAlign})); |
| } |
| } |
| // OpenCL v2.0 s6.13.16 ,s9.17.3.5 - Built-in pipe reserve read and write |
| // functions |
| case Builtin::BIreserve_read_pipe: |
| case Builtin::BIreserve_write_pipe: |
| case Builtin::BIwork_group_reserve_read_pipe: |
| case Builtin::BIwork_group_reserve_write_pipe: |
| case Builtin::BIsub_group_reserve_read_pipe: |
| case Builtin::BIsub_group_reserve_write_pipe: { |
| // Composing the mangled name for the function. |
| const char *Name; |
| if (BuiltinID == Builtin::BIreserve_read_pipe) |
| Name = "__reserve_read_pipe"; |
| else if (BuiltinID == Builtin::BIreserve_write_pipe) |
| Name = "__reserve_write_pipe"; |
| else if (BuiltinID == Builtin::BIwork_group_reserve_read_pipe) |
| Name = "__work_group_reserve_read_pipe"; |
| else if (BuiltinID == Builtin::BIwork_group_reserve_write_pipe) |
| Name = "__work_group_reserve_write_pipe"; |
| else if (BuiltinID == Builtin::BIsub_group_reserve_read_pipe) |
| Name = "__sub_group_reserve_read_pipe"; |
| else |
| Name = "__sub_group_reserve_write_pipe"; |
| |
| Value *Arg0 = EmitScalarExpr(E->getArg(0)), |
| *Arg1 = EmitScalarExpr(E->getArg(1)); |
| llvm::Type *ReservedIDTy = ConvertType(getContext().OCLReserveIDTy); |
| CGOpenCLRuntime OpenCLRT(CGM); |
| Value *PacketSize = OpenCLRT.getPipeElemSize(E->getArg(0)); |
| Value *PacketAlign = OpenCLRT.getPipeElemAlign(E->getArg(0)); |
| |
| // Building the generic function prototype. |
| llvm::Type *ArgTys[] = {Arg0->getType(), Int32Ty, Int32Ty, Int32Ty}; |
| llvm::FunctionType *FTy = llvm::FunctionType::get( |
| ReservedIDTy, llvm::ArrayRef<llvm::Type *>(ArgTys), false); |
| // We know the second argument is an integer type, but we may need to cast |
| // it to i32. |
| if (Arg1->getType() != Int32Ty) |
| Arg1 = Builder.CreateZExtOrTrunc(Arg1, Int32Ty); |
| return RValue::get(EmitRuntimeCall(CGM.CreateRuntimeFunction(FTy, Name), |
| {Arg0, Arg1, PacketSize, PacketAlign})); |
| } |
| // OpenCL v2.0 s6.13.16, s9.17.3.5 - Built-in pipe commit read and write |
| // functions |
| case Builtin::BIcommit_read_pipe: |
| case Builtin::BIcommit_write_pipe: |
| case Builtin::BIwork_group_commit_read_pipe: |
| case Builtin::BIwork_group_commit_write_pipe: |
| case Builtin::BIsub_group_commit_read_pipe: |
| case Builtin::BIsub_group_commit_write_pipe: { |
| const char *Name; |
| if (BuiltinID == Builtin::BIcommit_read_pipe) |
| Name = "__commit_read_pipe"; |
| else if (BuiltinID == Builtin::BIcommit_write_pipe) |
| Name = "__commit_write_pipe"; |
| else if (BuiltinID == Builtin::BIwork_group_commit_read_pipe) |
| Name = "__work_group_commit_read_pipe"; |
| else if (BuiltinID == Builtin::BIwork_group_commit_write_pipe) |
| Name = "__work_group_commit_write_pipe"; |
| else if (BuiltinID == Builtin::BIsub_group_commit_read_pipe) |
| Name = "__sub_group_commit_read_pipe"; |
| else |
| Name = "__sub_group_commit_write_pipe"; |
| |
| Value *Arg0 = EmitScalarExpr(E->getArg(0)), |
| *Arg1 = EmitScalarExpr(E->getArg(1)); |
| CGOpenCLRuntime OpenCLRT(CGM); |
| Value *PacketSize = OpenCLRT.getPipeElemSize(E->getArg(0)); |
| Value *PacketAlign = OpenCLRT.getPipeElemAlign(E->getArg(0)); |
| |
| // Building the generic function prototype. |
| llvm::Type *ArgTys[] = {Arg0->getType(), Arg1->getType(), Int32Ty, Int32Ty}; |
| llvm::FunctionType *FTy = |
| llvm::FunctionType::get(llvm::Type::getVoidTy(getLLVMContext()), |
| llvm::ArrayRef<llvm::Type *>(ArgTys), false); |
| |
| return RValue::get(EmitRuntimeCall(CGM.CreateRuntimeFunction(FTy, Name), |
| {Arg0, Arg1, PacketSize, PacketAlign})); |
| } |
| // OpenCL v2.0 s6.13.16.4 Built-in pipe query functions |
| case Builtin::BIget_pipe_num_packets: |
| case Builtin::BIget_pipe_max_packets: { |
| const char *BaseName; |
| const auto *PipeTy = E->getArg(0)->getType()->castAs<PipeType>(); |
| if (BuiltinID == Builtin::BIget_pipe_num_packets) |
| BaseName = "__get_pipe_num_packets"; |
| else |
| BaseName = "__get_pipe_max_packets"; |
| std::string Name = std::string(BaseName) + |
| std::string(PipeTy->isReadOnly() ? "_ro" : "_wo"); |
| |
| // Building the generic function prototype. |
| Value *Arg0 = EmitScalarExpr(E->getArg(0)); |
| CGOpenCLRuntime OpenCLRT(CGM); |
| Value *PacketSize = OpenCLRT.getPipeElemSize(E->getArg(0)); |
| Value *PacketAlign = OpenCLRT.getPipeElemAlign(E->getArg(0)); |
| llvm::Type *ArgTys[] = {Arg0->getType(), Int32Ty, Int32Ty}; |
| llvm::FunctionType *FTy = llvm::FunctionType::get( |
| Int32Ty, llvm::ArrayRef<llvm::Type *>(ArgTys), false); |
| |
| return RValue::get(EmitRuntimeCall(CGM.CreateRuntimeFunction(FTy, Name), |
| {Arg0, PacketSize, PacketAlign})); |
| } |
| |
| // OpenCL v2.0 s6.13.9 - Address space qualifier functions. |
| case Builtin::BIto_global: |
| case Builtin::BIto_local: |
| case Builtin::BIto_private: { |
| auto Arg0 = EmitScalarExpr(E->getArg(0)); |
| auto NewArgT = llvm::PointerType::get(Int8Ty, |
| CGM.getContext().getTargetAddressSpace(LangAS::opencl_generic)); |
| auto NewRetT = llvm::PointerType::get(Int8Ty, |
| CGM.getContext().getTargetAddressSpace( |
| E->getType()->getPointeeType().getAddressSpace())); |
| auto FTy = llvm::FunctionType::get(NewRetT, {NewArgT}, false); |
| llvm::Value *NewArg; |
| if (Arg0->getType()->getPointerAddressSpace() != |
| NewArgT->getPointerAddressSpace()) |
| NewArg = Builder.CreateAddrSpaceCast(Arg0, NewArgT); |
| else |
| NewArg = Builder.CreateBitOrPointerCast(Arg0, NewArgT); |
| auto NewName = std::string("__") + E->getDirectCallee()->getName().str(); |
| auto NewCall = |
| EmitRuntimeCall(CGM.CreateRuntimeFunction(FTy, NewName), {NewArg}); |
| return RValue::get(Builder.CreateBitOrPointerCast(NewCall, |
| ConvertType(E->getType()))); |
| } |
| |
| // OpenCL v2.0, s6.13.17 - Enqueue kernel function. |
| // It contains four different overload formats specified in Table 6.13.17.1. |
| case Builtin::BIenqueue_kernel: { |
| StringRef Name; // Generated function call name |
| unsigned NumArgs = E->getNumArgs(); |
| |
| llvm::Type *QueueTy = ConvertType(getContext().OCLQueueTy); |
| llvm::Type *GenericVoidPtrTy = Builder.getInt8PtrTy( |
| getContext().getTargetAddressSpace(LangAS::opencl_generic)); |
| |
| llvm::Value *Queue = EmitScalarExpr(E->getArg(0)); |
| llvm::Value *Flags = EmitScalarExpr(E->getArg(1)); |
| LValue NDRangeL = EmitAggExprToLValue(E->getArg(2)); |
| llvm::Value *Range = NDRangeL.getAddress(*this).getPointer(); |
| llvm::Type *RangeTy = NDRangeL.getAddress(*this).getType(); |
| |
| if (NumArgs == 4) { |
| // The most basic form of the call with parameters: |
| // queue_t, kernel_enqueue_flags_t, ndrange_t, block(void) |
| Name = "__enqueue_kernel_basic"; |
| llvm::Type *ArgTys[] = {QueueTy, Int32Ty, RangeTy, GenericVoidPtrTy, |
| GenericVoidPtrTy}; |
| llvm::FunctionType *FTy = llvm::FunctionType::get( |
| Int32Ty, llvm::ArrayRef<llvm::Type *>(ArgTys), false); |
| |
| auto Info = |
| CGM.getOpenCLRuntime().emitOpenCLEnqueuedBlock(*this, E->getArg(3)); |
| llvm::Value *Kernel = |
| Builder.CreatePointerCast(Info.Kernel, GenericVoidPtrTy); |
| llvm::Value *Block = |
| Builder.CreatePointerCast(Info.BlockArg, GenericVoidPtrTy); |
| |
| AttrBuilder B; |
| B.addByValAttr(NDRangeL.getAddress(*this).getElementType()); |
| llvm::AttributeList ByValAttrSet = |
| llvm::AttributeList::get(CGM.getModule().getContext(), 3U, B); |
| |
| auto RTCall = |
| EmitRuntimeCall(CGM.CreateRuntimeFunction(FTy, Name, ByValAttrSet), |
| {Queue, Flags, Range, Kernel, Block}); |
| RTCall->setAttributes(ByValAttrSet); |
| return RValue::get(RTCall); |
| } |
| assert(NumArgs >= 5 && "Invalid enqueue_kernel signature"); |
| |
| // Create a temporary array to hold the sizes of local pointer arguments |
| // for the block. \p First is the position of the first size argument. |
| auto CreateArrayForSizeVar = [=](unsigned First) |
| -> std::tuple<llvm::Value *, llvm::Value *, llvm::Value *> { |
| llvm::APInt ArraySize(32, NumArgs - First); |
| QualType SizeArrayTy = getContext().getConstantArrayType( |
| getContext().getSizeType(), ArraySize, nullptr, ArrayType::Normal, |
| /*IndexTypeQuals=*/0); |
| auto Tmp = CreateMemTemp(SizeArrayTy, "block_sizes"); |
| llvm::Value *TmpPtr = Tmp.getPointer(); |
| llvm::Value *TmpSize = EmitLifetimeStart( |
| CGM.getDataLayout().getTypeAllocSize(Tmp.getElementType()), TmpPtr); |
| llvm::Value *ElemPtr; |
| // Each of the following arguments specifies the size of the corresponding |
| // argument passed to the enqueued block. |
| auto *Zero = llvm::ConstantInt::get(IntTy, 0); |
| for (unsigned I = First; I < NumArgs; ++I) { |
| auto *Index = llvm::ConstantInt::get(IntTy, I - First); |
| auto *GEP = Builder.CreateGEP(Tmp.getElementType(), TmpPtr, |
| {Zero, Index}); |
| if (I == First) |
| ElemPtr = GEP; |
| auto *V = |
| Builder.CreateZExtOrTrunc(EmitScalarExpr(E->getArg(I)), SizeTy); |
| Builder.CreateAlignedStore( |
| V, GEP, CGM.getDataLayout().getPrefTypeAlign(SizeTy)); |
| } |
| return std::tie(ElemPtr, TmpSize, TmpPtr); |
| }; |
| |
| // Could have events and/or varargs. |
| if (E->getArg(3)->getType()->isBlockPointerType()) { |
| // No events passed, but has variadic arguments. |
| Name = "__enqueue_kernel_varargs"; |
| auto Info = |
| CGM.getOpenCLRuntime().emitOpenCLEnqueuedBlock(*this, E->getArg(3)); |
| llvm::Value *Kernel = |
| Builder.CreatePointerCast(Info.Kernel, GenericVoidPtrTy); |
| auto *Block = Builder.CreatePointerCast(Info.BlockArg, GenericVoidPtrTy); |
| llvm::Value *ElemPtr, *TmpSize, *TmpPtr; |
| std::tie(ElemPtr, TmpSize, TmpPtr) = CreateArrayForSizeVar(4); |
| |
| // Create a vector of the arguments, as well as a constant value to |
| // express to the runtime the number of variadic arguments. |
| llvm::Value *const Args[] = {Queue, Flags, |
| Range, Kernel, |
| Block, ConstantInt::get(IntTy, NumArgs - 4), |
| ElemPtr}; |
| llvm::Type *const ArgTys[] = { |
| QueueTy, IntTy, RangeTy, GenericVoidPtrTy, |
| GenericVoidPtrTy, IntTy, ElemPtr->getType()}; |
| |
| llvm::FunctionType *FTy = llvm::FunctionType::get(Int32Ty, ArgTys, false); |
| auto Call = RValue::get( |
| EmitRuntimeCall(CGM.CreateRuntimeFunction(FTy, Name), Args)); |
| if (TmpSize) |
| EmitLifetimeEnd(TmpSize, TmpPtr); |
| return Call; |
| } |
| // Any calls now have event arguments passed. |
| if (NumArgs >= 7) { |
| llvm::Type *EventTy = ConvertType(getContext().OCLClkEventTy); |
| llvm::PointerType *EventPtrTy = EventTy->getPointerTo( |
| CGM.getContext().getTargetAddressSpace(LangAS::opencl_generic)); |
| |
| llvm::Value *NumEvents = |
| Builder.CreateZExtOrTrunc(EmitScalarExpr(E->getArg(3)), Int32Ty); |
| |
| // Since SemaOpenCLBuiltinEnqueueKernel allows fifth and sixth arguments |
| // to be a null pointer constant (including `0` literal), we can take it |
| // into account and emit null pointer directly. |
| llvm::Value *EventWaitList = nullptr; |
| if (E->getArg(4)->isNullPointerConstant( |
| getContext(), Expr::NPC_ValueDependentIsNotNull)) { |
| EventWaitList = llvm::ConstantPointerNull::get(EventPtrTy); |
| } else { |
| EventWaitList = E->getArg(4)->getType()->isArrayType() |
| ? EmitArrayToPointerDecay(E->getArg(4)).getPointer() |
| : EmitScalarExpr(E->getArg(4)); |
| // Convert to generic address space. |
| EventWaitList = Builder.CreatePointerCast(EventWaitList, EventPtrTy); |
| } |
| llvm::Value *EventRet = nullptr; |
| if (E->getArg(5)->isNullPointerConstant( |
| getContext(), Expr::NPC_ValueDependentIsNotNull)) { |
| EventRet = llvm::ConstantPointerNull::get(EventPtrTy); |
| } else { |
| EventRet = |
| Builder.CreatePointerCast(EmitScalarExpr(E->getArg(5)), EventPtrTy); |
| } |
| |
| auto Info = |
| CGM.getOpenCLRuntime().emitOpenCLEnqueuedBlock(*this, E->getArg(6)); |
| llvm::Value *Kernel = |
| Builder.CreatePointerCast(Info.Kernel, GenericVoidPtrTy); |
| llvm::Value *Block = |
| Builder.CreatePointerCast(Info.BlockArg, GenericVoidPtrTy); |
| |
| std::vector<llvm::Type *> ArgTys = { |
| QueueTy, Int32Ty, RangeTy, Int32Ty, |
| EventPtrTy, EventPtrTy, GenericVoidPtrTy, GenericVoidPtrTy}; |
| |
| std::vector<llvm::Value *> Args = {Queue, Flags, Range, |
| NumEvents, EventWaitList, EventRet, |
| Kernel, Block}; |
| |
| if (NumArgs == 7) { |
| // Has events but no variadics. |
| Name = "__enqueue_kernel_basic_events"; |
| llvm::FunctionType *FTy = llvm::FunctionType::get( |
| Int32Ty, llvm::ArrayRef<llvm::Type *>(ArgTys), false); |
| return RValue::get( |
| EmitRuntimeCall(CGM.CreateRuntimeFunction(FTy, Name), |
| llvm::ArrayRef<llvm::Value *>(Args))); |
| } |
| // Has event info and variadics |
| // Pass the number of variadics to the runtime function too. |
| Args.push_back(ConstantInt::get(Int32Ty, NumArgs - 7)); |
| ArgTys.push_back(Int32Ty); |
| Name = "__enqueue_kernel_events_varargs"; |
| |
| llvm::Value *ElemPtr, *TmpSize, *TmpPtr; |
| std::tie(ElemPtr, TmpSize, TmpPtr) = CreateArrayForSizeVar(7); |
| Args.push_back(ElemPtr); |
| ArgTys.push_back(ElemPtr->getType()); |
| |
| llvm::FunctionType *FTy = llvm::FunctionType::get( |
| Int32Ty, llvm::ArrayRef<llvm::Type *>(ArgTys), false); |
| auto Call = |
| RValue::get(EmitRuntimeCall(CGM.CreateRuntimeFunction(FTy, Name), |
| llvm::ArrayRef<llvm::Value *>(Args))); |
| if (TmpSize) |
| EmitLifetimeEnd(TmpSize, TmpPtr); |
| return Call; |
| } |
| LLVM_FALLTHROUGH; |
| } |
| // OpenCL v2.0 s6.13.17.6 - Kernel query functions need bitcast of block |
| // parameter. |
| case Builtin::BIget_kernel_work_group_size: { |
| llvm::Type *GenericVoidPtrTy = Builder.getInt8PtrTy( |
| getContext().getTargetAddressSpace(LangAS::opencl_generic)); |
| auto Info = |
| CGM.getOpenCLRuntime().emitOpenCLEnqueuedBlock(*this, E->getArg(0)); |
| Value *Kernel = Builder.CreatePointerCast(Info.Kernel, GenericVoidPtrTy); |
| Value *Arg = Builder.CreatePointerCast(Info.BlockArg, GenericVoidPtrTy); |
| return RValue::get(EmitRuntimeCall( |
| CGM.CreateRuntimeFunction( |
| llvm::FunctionType::get(IntTy, {GenericVoidPtrTy, GenericVoidPtrTy}, |
| false), |
| "__get_kernel_work_group_size_impl"), |
| {Kernel, Arg})); |
| } |
| case Builtin::BIget_kernel_preferred_work_group_size_multiple: { |
| llvm::Type *GenericVoidPtrTy = Builder.getInt8PtrTy( |
| getContext().getTargetAddressSpace(LangAS::opencl_generic)); |
| auto Info = |
| CGM.getOpenCLRuntime().emitOpenCLEnqueuedBlock(*this, E->getArg(0)); |
| Value *Kernel = Builder.CreatePointerCast(Info.Kernel, GenericVoidPtrTy); |
| Value *Arg = Builder.CreatePointerCast(Info.BlockArg, GenericVoidPtrTy); |
| return RValue::get(EmitRuntimeCall( |
| CGM.CreateRuntimeFunction( |
| llvm::FunctionType::get(IntTy, {GenericVoidPtrTy, GenericVoidPtrTy}, |
| false), |
| "__get_kernel_preferred_work_group_size_multiple_impl"), |
| {Kernel, Arg})); |
| } |
| case Builtin::BIget_kernel_max_sub_group_size_for_ndrange: |
| case Builtin::BIget_kernel_sub_group_count_for_ndrange: { |
| llvm::Type *GenericVoidPtrTy = Builder.getInt8PtrTy( |
| getContext().getTargetAddressSpace(LangAS::opencl_generic)); |
| LValue NDRangeL = EmitAggExprToLValue(E->getArg(0)); |
| llvm::Value *NDRange = NDRangeL.getAddress(*this).getPointer(); |
| auto Info = |
| CGM.getOpenCLRuntime().emitOpenCLEnqueuedBlock(*this, E->getArg(1)); |
| Value *Kernel = Builder.CreatePointerCast(Info.Kernel, GenericVoidPtrTy); |
| Value *Block = Builder.CreatePointerCast(Info.BlockArg, GenericVoidPtrTy); |
| const char *Name = |
| BuiltinID == Builtin::BIget_kernel_max_sub_group_size_for_ndrange |
| ? "__get_kernel_max_sub_group_size_for_ndrange_impl" |
| : "__get_kernel_sub_group_count_for_ndrange_impl"; |
| return RValue::get(EmitRuntimeCall( |
| CGM.CreateRuntimeFunction( |
| llvm::FunctionType::get( |
| IntTy, {NDRange->getType(), GenericVoidPtrTy, GenericVoidPtrTy}, |
| false), |
| Name), |
| {NDRange, Kernel, Block})); |
| } |
| |
| case Builtin::BI__builtin_store_half: |
| case Builtin::BI__builtin_store_halff: { |
| Value *Val = EmitScalarExpr(E->getArg(0)); |
| Address Address = EmitPointerWithAlignment(E->getArg(1)); |
| Value *HalfVal = Builder.CreateFPTrunc(Val, Builder.getHalfTy()); |
| return RValue::get(Builder.CreateStore(HalfVal, Address)); |
| } |
| case Builtin::BI__builtin_load_half: { |
| Address Address = EmitPointerWithAlignment(E->getArg(0)); |
| Value *HalfVal = Builder.CreateLoad(Address); |
| return RValue::get(Builder.CreateFPExt(HalfVal, Builder.getDoubleTy())); |
| } |
| case Builtin::BI__builtin_load_halff: { |
| Address Address = EmitPointerWithAlignment(E->getArg(0)); |
| Value *HalfVal = Builder.CreateLoad(Address); |
| return RValue::get(Builder.CreateFPExt(HalfVal, Builder.getFloatTy())); |
| } |
| case Builtin::BIprintf: |
| if (getTarget().getTriple().isNVPTX() || |
| getTarget().getTriple().isAMDGCN()) { |
| if (getLangOpts().OpenMPIsDevice) |
| return EmitOpenMPDevicePrintfCallExpr(E); |
| if (getTarget().getTriple().isNVPTX()) |
| return EmitNVPTXDevicePrintfCallExpr(E); |
| if (getTarget().getTriple().isAMDGCN() && getLangOpts().HIP) |
| return EmitAMDGPUDevicePrintfCallExpr(E); |
| } |
| |
| break; |
| case Builtin::BI__builtin_canonicalize: |
| case Builtin::BI__builtin_canonicalizef: |
| case Builtin::BI__builtin_canonicalizef16: |
| case Builtin::BI__builtin_canonicalizel: |
| return RValue::get(emitUnaryBuiltin(*this, E, Intrinsic::canonicalize)); |
| |
| case Builtin::BI__builtin_thread_pointer: { |
| if (!getContext().getTargetInfo().isTLSSupported()) |
| CGM.ErrorUnsupported(E, "__builtin_thread_pointer"); |
| // Fall through - it's already mapped to the intrinsic by GCCBuiltin. |
| break; |
| } |
| case Builtin::BI__builtin_os_log_format: |
| return emitBuiltinOSLogFormat(*E); |
| |
| case Builtin::BI__xray_customevent: { |
| if (!ShouldXRayInstrumentFunction()) |
| return RValue::getIgnored(); |
| |
| if (!CGM.getCodeGenOpts().XRayInstrumentationBundle.has( |
| XRayInstrKind::Custom)) |
| return RValue::getIgnored(); |
| |
| if (const auto *XRayAttr = CurFuncDecl->getAttr<XRayInstrumentAttr>()) |
| if (XRayAttr->neverXRayInstrument() && !AlwaysEmitXRayCustomEvents()) |
| return RValue::getIgnored(); |
| |
| Function *F = CGM.getIntrinsic(Intrinsic::xray_customevent); |
| auto FTy = F->getFunctionType(); |
| auto Arg0 = E->getArg(0); |
| auto Arg0Val = EmitScalarExpr(Arg0); |
| auto Arg0Ty = Arg0->getType(); |
| auto PTy0 = FTy->getParamType(0); |
| if (PTy0 != Arg0Val->getType()) { |
| if (Arg0Ty->isArrayType()) |
| Arg0Val = EmitArrayToPointerDecay(Arg0).getPointer(); |
| else |
| Arg0Val = Builder.CreatePointerCast(Arg0Val, PTy0); |
| } |
| auto Arg1 = EmitScalarExpr(E->getArg(1)); |
| auto PTy1 = FTy->getParamType(1); |
| if (PTy1 != Arg1->getType()) |
| Arg1 = Builder.CreateTruncOrBitCast(Arg1, PTy1); |
| return RValue::get(Builder.CreateCall(F, {Arg0Val, Arg1})); |
| } |
| |
| case Builtin::BI__xray_typedevent: { |
| // TODO: There should be a way to always emit events even if the current |
| // function is not instrumented. Losing events in a stream can cripple |
| // a trace. |
| if (!ShouldXRayInstrumentFunction()) |
| return RValue::getIgnored(); |
| |
| if (!CGM.getCodeGenOpts().XRayInstrumentationBundle.has( |
| XRayInstrKind::Typed)) |
| return RValue::getIgnored(); |
| |
| if (const auto *XRayAttr = CurFuncDecl->getAttr<XRayInstrumentAttr>()) |
| if (XRayAttr->neverXRayInstrument() && !AlwaysEmitXRayTypedEvents()) |
| return RValue::getIgnored(); |
| |
| Function *F = CGM.getIntrinsic(Intrinsic::xray_typedevent); |
| auto FTy = F->getFunctionType(); |
| auto Arg0 = EmitScalarExpr(E->getArg(0)); |
| auto PTy0 = FTy->getParamType(0); |
| if (PTy0 != Arg0->getType()) |
| Arg0 = Builder.CreateTruncOrBitCast(Arg0, PTy0); |
| auto Arg1 = E->getArg(1); |
| auto Arg1Val = EmitScalarExpr(Arg1); |
| auto Arg1Ty = Arg1->getType(); |
| auto PTy1 = FTy->getParamType(1); |
| if (PTy1 != Arg1Val->getType()) { |
| if (Arg1Ty->isArrayType()) |
| Arg1Val = EmitArrayToPointerDecay(Arg1).getPointer(); |
| else |
| Arg1Val = Builder.CreatePointerCast(Arg1Val, PTy1); |
| } |
| auto Arg2 = EmitScalarExpr(E->getArg(2)); |
| auto PTy2 = FTy->getParamType(2); |
| if (PTy2 != Arg2->getType()) |
| Arg2 = Builder.CreateTruncOrBitCast(Arg2, PTy2); |
| return RValue::get(Builder.CreateCall(F, {Arg0, Arg1Val, Arg2})); |
| } |
| |
| case Builtin::BI__builtin_ms_va_start: |
| case Builtin::BI__builtin_ms_va_end: |
| return RValue::get( |
| EmitVAStartEnd(EmitMSVAListRef(E->getArg(0)).getPointer(), |
| BuiltinID == Builtin::BI__builtin_ms_va_start)); |
| |
| case Builtin::BI__builtin_ms_va_copy: { |
| // Lower this manually. We can't reliably determine whether or not any |
| // given va_copy() is for a Win64 va_list from the calling convention |
| // alone, because it's legal to do this from a System V ABI function. |
| // With opaque pointer types, we won't have enough information in LLVM |
| // IR to determine this from the argument types, either. Best to do it |
| // now, while we have enough information. |
| Address DestAddr = EmitMSVAListRef(E->getArg(0)); |
| Address SrcAddr = EmitMSVAListRef(E->getArg(1)); |
| |
| llvm::Type *BPP = Int8PtrPtrTy; |
| |
| DestAddr = Address(Builder.CreateBitCast(DestAddr.getPointer(), BPP, "cp"), |
| DestAddr.getAlignment()); |
| SrcAddr = Address(Builder.CreateBitCast(SrcAddr.getPointer(), BPP, "ap"), |
| SrcAddr.getAlignment()); |
| |
| Value *ArgPtr = Builder.CreateLoad(SrcAddr, "ap.val"); |
| return RValue::get(Builder.CreateStore(ArgPtr, DestAddr)); |
| } |
| |
| case Builtin::BI__builtin_get_device_side_mangled_name: { |
| auto Name = CGM.getCUDARuntime().getDeviceSideName( |
| cast<DeclRefExpr>(E->getArg(0)->IgnoreImpCasts())->getDecl()); |
| auto Str = CGM.GetAddrOfConstantCString(Name, ""); |
| llvm::Constant *Zeros[] = {llvm::ConstantInt::get(SizeTy, 0), |
| llvm::ConstantInt::get(SizeTy, 0)}; |
| auto *Ptr = llvm::ConstantExpr::getGetElementPtr(Str.getElementType(), |
| Str.getPointer(), Zeros); |
| return RValue::get(Ptr); |
| } |
| } |
| |
| // If this is an alias for a lib function (e.g. __builtin_sin), emit |
| // the call using the normal call path, but using the unmangled |
| // version of the function name. |
| if (getContext().BuiltinInfo.isLibFunction(BuiltinID)) |
| return emitLibraryCall(*this, FD, E, |
| CGM.getBuiltinLibFunction(FD, BuiltinID)); |
| |
| // If this is a predefined lib function (e.g. malloc), emit the call |
| // using exactly the normal call path. |
| if (getContext().BuiltinInfo.isPredefinedLibFunction(BuiltinID)) |
| return emitLibraryCall(*this, FD, E, |
| cast<llvm::Constant>(EmitScalarExpr(E->getCallee()))); |
| |
| // Check that a call to a target specific builtin has the correct target |
| // features. |
| // This is down here to avoid non-target specific builtins, however, if |
| // generic builtins start to require generic target features then we |
| // can move this up to the beginning of the function. |
| checkTargetFeatures(E, FD); |
| |
| if (unsigned VectorWidth = getContext().BuiltinInfo.getRequiredVectorWidth(BuiltinID)) |
| LargestVectorWidth = std::max(LargestVectorWidth, VectorWidth); |
| |
| // See if we have a target specific intrinsic. |
| const char *Name = getContext().BuiltinInfo.getName(BuiltinID); |
| Intrinsic::ID IntrinsicID = Intrinsic::not_intrinsic; |
| StringRef Prefix = |
| llvm::Triple::getArchTypePrefix(getTarget().getTriple().getArch()); |
| if (!Prefix.empty()) { |
| IntrinsicID = Intrinsic::getIntrinsicForGCCBuiltin(Prefix.data(), Name); |
| // NOTE we don't need to perform a compatibility flag check here since the |
| // intrinsics are declared in Builtins*.def via LANGBUILTIN which filter the |
| // MS builtins via ALL_MS_LANGUAGES and are filtered earlier. |
| if (IntrinsicID == Intrinsic::not_intrinsic) |
| IntrinsicID = Intrinsic::getIntrinsicForMSBuiltin(Prefix.data(), Name); |
| } |
| |
| if (IntrinsicID != Intrinsic::not_intrinsic) { |
| SmallVector<Value*, 16> Args; |
| |
| // Find out if any arguments are required to be integer constant |
| // expressions. |
| unsigned ICEArguments = 0; |
| ASTContext::GetBuiltinTypeError Error; |
| getContext().GetBuiltinType(BuiltinID, Error, &ICEArguments); |
| assert(Error == ASTContext::GE_None && "Should not codegen an error"); |
| |
| Function *F = CGM.getIntrinsic(IntrinsicID); |
| llvm::FunctionType *FTy = F->getFunctionType(); |
| |
| for (unsigned i = 0, e = E->getNumArgs(); i != e; ++i) { |
| Value *ArgValue; |
| // If this is a normal argument, just emit it as a scalar. |
| if ((ICEArguments & (1 << i)) == 0) { |
| ArgValue = EmitScalarExpr(E->getArg(i)); |
| } else { |
| // If this is required to be a constant, constant fold it so that we |
| // know that the generated intrinsic gets a ConstantInt. |
| ArgValue = llvm::ConstantInt::get( |
| getLLVMContext(), |
| *E->getArg(i)->getIntegerConstantExpr(getContext())); |
| } |
| |
| // If the intrinsic arg type is different from the builtin arg type |
| // we need to do a bit cast. |
| llvm::Type *PTy = FTy->getParamType(i); |
| if (PTy != ArgValue->getType()) { |
| // XXX - vector of pointers? |
| if (auto *PtrTy = dyn_cast<llvm::PointerType>(PTy)) { |
| if (PtrTy->getAddressSpace() != |
| ArgValue->getType()->getPointerAddressSpace()) { |
| ArgValue = Builder.CreateAddrSpaceCast( |
| ArgValue, |
| ArgValue->getType()->getPointerTo(PtrTy->getAddressSpace())); |
| } |
| } |
| |
| assert(PTy->canLosslesslyBitCastTo(FTy->getParamType(i)) && |
| "Must be able to losslessly bit cast to param"); |
| ArgValue = Builder.CreateBitCast(ArgValue, PTy); |
| } |
| |
| Args.push_back(ArgValue); |
| } |
| |
| Value *V = Builder.CreateCall(F, Args); |
| QualType BuiltinRetType = E->getType(); |
| |
| llvm::Type *RetTy = VoidTy; |
| if (!BuiltinRetType->isVoidType()) |
| RetTy = ConvertType(BuiltinRetType); |
| |
| if (RetTy != V->getType()) { |
| // XXX - vector of pointers? |
| if (auto *PtrTy = dyn_cast<llvm::PointerType>(RetTy)) { |
| if (PtrTy->getAddressSpace() != V->getType()->getPointerAddressSpace()) { |
| V = Builder.CreateAddrSpaceCast( |
| V, V->getType()->getPointerTo(PtrTy->getAddressSpace())); |
| } |
| } |
| |
| assert(V->getType()->canLosslesslyBitCastTo(RetTy) && |
| "Must be able to losslessly bit cast result type"); |
| V = Builder.CreateBitCast(V, RetTy); |
| } |
| |
| return RValue::get(V); |
| } |
| |
| // Some target-specific builtins can have aggregate return values, e.g. |
| // __builtin_arm_mve_vld2q_u32. So if the result is an aggregate, force |
| // ReturnValue to be non-null, so that the target-specific emission code can |
| // always just emit into it. |
| TypeEvaluationKind EvalKind = getEvaluationKind(E->getType()); |
| if (EvalKind == TEK_Aggregate && ReturnValue.isNull()) { |
| Address DestPtr = CreateMemTemp(E->getType(), "agg.tmp"); |
| ReturnValue = ReturnValueSlot(DestPtr, false); |
| } |
| |
| // Now see if we can emit a target-specific builtin. |
| if (Value *V = EmitTargetBuiltinExpr(BuiltinID, E, ReturnValue)) { |
| switch (EvalKind) { |
| case TEK_Scalar: |
| return RValue::get(V); |
| case TEK_Aggregate: |
| return RValue::getAggregate(ReturnValue.getValue(), |
| ReturnValue.isVolatile()); |
| case TEK_Complex: |
| llvm_unreachable("No current target builtin returns complex"); |
| } |
| llvm_unreachable("Bad evaluation kind in EmitBuiltinExpr"); |
| } |
| |
| ErrorUnsupported(E, "builtin function"); |
| |
| // Unknown builtin, for now just dump it out and return undef. |
| return GetUndefRValue(E->getType()); |
| } |
| |
| static Value *EmitTargetArchBuiltinExpr(CodeGenFunction *CGF, |
| unsigned BuiltinID, const CallExpr *E, |
| ReturnValueSlot ReturnValue, |
| llvm::Triple::ArchType Arch) { |
| switch (Arch) { |
| case llvm::Triple::arm: |
| case llvm::Triple::armeb: |
| case llvm::Triple::thumb: |
| case llvm::Triple::thumbeb: |
| return CGF->EmitARMBuiltinExpr(BuiltinID, E, ReturnValue, Arch); |
| case llvm::Triple::aarch64: |
| case llvm::Triple::aarch64_32: |
| case llvm::Triple::aarch64_be: |
| return CGF->EmitAArch64BuiltinExpr(BuiltinID, E, Arch); |
| case llvm::Triple::bpfeb: |
| case llvm::Triple::bpfel: |
| return CGF->EmitBPFBuiltinExpr(BuiltinID, E); |
| case llvm::Triple::x86: |
| case llvm::Triple::x86_64: |
| return CGF->EmitX86BuiltinExpr(BuiltinID, E); |
| case llvm::Triple::ppc: |
| case llvm::Triple::ppcle: |
| case llvm::Triple::ppc64: |
| case llvm::Triple::ppc64le: |
| return CGF->EmitPPCBuiltinExpr(BuiltinID, E); |
| case llvm::Triple::r600: |
| case llvm::Triple::amdgcn: |
| return CGF->EmitAMDGPUBuiltinExpr(BuiltinID, E); |
| case llvm::Triple::systemz: |
| return CGF->EmitSystemZBuiltinExpr(BuiltinID, E); |
| case llvm::Triple::nvptx: |
| case llvm::Triple::nvptx64: |
| return CGF->EmitNVPTXBuiltinExpr(BuiltinID, E); |
| case llvm::Triple::wasm32: |
| case llvm::Triple::wasm64: |
| return CGF->EmitWebAssemblyBuiltinExpr(BuiltinID, E); |
| case llvm::Triple::hexagon: |
| return CGF->EmitHexagonBuiltinExpr(BuiltinID, E); |
| case llvm::Triple::riscv32: |
| case llvm::Triple::riscv64: |
| return CGF->EmitRISCVBuiltinExpr(BuiltinID, E, ReturnValue); |
| default: |
| return nullptr; |
| } |
| } |
| |
| Value *CodeGenFunction::EmitTargetBuiltinExpr(unsigned BuiltinID, |
| const CallExpr *E, |
| ReturnValueSlot ReturnValue) { |
| if (getContext().BuiltinInfo.isAuxBuiltinID(BuiltinID)) { |
| assert(getContext().getAuxTargetInfo() && "Missing aux target info"); |
| return EmitTargetArchBuiltinExpr( |
| this, getContext().BuiltinInfo.getAuxBuiltinID(BuiltinID), E, |
| ReturnValue, getContext().getAuxTargetInfo()->getTriple().getArch()); |
| } |
| |
| return EmitTargetArchBuiltinExpr(this, BuiltinID, E, ReturnValue, |
| getTarget().getTriple().getArch()); |
| } |
| |
| static llvm::FixedVectorType *GetNeonType(CodeGenFunction *CGF, |
| NeonTypeFlags TypeFlags, |
| bool HasLegalHalfType = true, |
| bool V1Ty = false, |
| bool AllowBFloatArgsAndRet = true) { |
| int IsQuad = TypeFlags.isQuad(); |
| switch (TypeFlags.getEltType()) { |
| case NeonTypeFlags::Int8: |
| case NeonTypeFlags::Poly8: |
| return llvm::FixedVectorType::get(CGF->Int8Ty, V1Ty ? 1 : (8 << IsQuad)); |
| case NeonTypeFlags::Int16: |
| case NeonTypeFlags::Poly16: |
| return llvm::FixedVectorType::get(CGF->Int16Ty, V1Ty ? 1 : (4 << IsQuad)); |
| case NeonTypeFlags::BFloat16: |
| if (AllowBFloatArgsAndRet) |
| return llvm::FixedVectorType::get(CGF->BFloatTy, V1Ty ? 1 : (4 << IsQuad)); |
| else |
| return llvm::FixedVectorType::get(CGF->Int16Ty, V1Ty ? 1 : (4 << IsQuad)); |
| case NeonTypeFlags::Float16: |
| if (HasLegalHalfType) |
| return llvm::FixedVectorType::get(CGF->HalfTy, V1Ty ? 1 : (4 << IsQuad)); |
| else |
| return llvm::FixedVectorType::get(CGF->Int16Ty, V1Ty ? 1 : (4 << IsQuad)); |
| case NeonTypeFlags::Int32: |
| return llvm::FixedVectorType::get(CGF->Int32Ty, V1Ty ? 1 : (2 << IsQuad)); |
| case NeonTypeFlags::Int64: |
| case NeonTypeFlags::Poly64: |
| return llvm::FixedVectorType::get(CGF->Int64Ty, V1Ty ? 1 : (1 << IsQuad)); |
| case NeonTypeFlags::Poly128: |
| // FIXME: i128 and f128 doesn't get fully support in Clang and llvm. |
| // There is a lot of i128 and f128 API missing. |
| // so we use v16i8 to represent poly128 and get pattern matched. |
| return llvm::FixedVectorType::get(CGF->Int8Ty, 16); |
| case NeonTypeFlags::Float32: |
| return llvm::FixedVectorType::get(CGF->FloatTy, V1Ty ? 1 : (2 << IsQuad)); |
| case NeonTypeFlags::Float64: |
| return llvm::FixedVectorType::get(CGF->DoubleTy, V1Ty ? 1 : (1 << IsQuad)); |
| } |
| llvm_unreachable("Unknown vector element type!"); |
| } |
| |
| static llvm::VectorType *GetFloatNeonType(CodeGenFunction *CGF, |
| NeonTypeFlags IntTypeFlags) { |
| int IsQuad = IntTypeFlags.isQuad(); |
| switch (IntTypeFlags.getEltType()) { |
| case NeonTypeFlags::Int16: |
| return llvm::FixedVectorType::get(CGF->HalfTy, (4 << IsQuad)); |
| case NeonTypeFlags::Int32: |
| return llvm::FixedVectorType::get(CGF->FloatTy, (2 << IsQuad)); |
| case NeonTypeFlags::Int64: |
| return llvm::FixedVectorType::get(CGF->DoubleTy, (1 << IsQuad)); |
| default: |
| llvm_unreachable("Type can't be converted to floating-point!"); |
| } |
| } |
| |
| Value *CodeGenFunction::EmitNeonSplat(Value *V, Constant *C, |
| const ElementCount &Count) { |
| Value *SV = llvm::ConstantVector::getSplat(Count, C); |
| return Builder.CreateShuffleVector(V, V, SV, "lane"); |
| } |
| |
| Value *CodeGenFunction::EmitNeonSplat(Value *V, Constant *C) { |
| ElementCount EC = cast<llvm::VectorType>(V->getType())->getElementCount(); |
| return EmitNeonSplat(V, C, EC); |
| } |
| |
| Value *CodeGenFunction::EmitNeonCall(Function *F, SmallVectorImpl<Value*> &Ops, |
| const char *name, |
| unsigned shift, bool rightshift) { |
| unsigned j = 0; |
| for (Function::const_arg_iterator ai = F->arg_begin(), ae = F->arg_end(); |
| ai != ae; ++ai, ++j) { |
| if (F->isConstrainedFPIntrinsic()) |
| if (ai->getType()->isMetadataTy()) |
| continue; |
| if (shift > 0 && shift == j) |
| Ops[j] = EmitNeonShiftVector(Ops[j], ai->getType(), rightshift); |
| else |
| Ops[j] = Builder.CreateBitCast(Ops[j], ai->getType(), name); |
| } |
| |
| if (F->isConstrainedFPIntrinsic()) |
| return Builder.CreateConstrainedFPCall(F, Ops, name); |
| else |
| return Builder.CreateCall(F, Ops, name); |
| } |
| |
| Value *CodeGenFunction::EmitNeonShiftVector(Value *V, llvm::Type *Ty, |
| bool neg) { |
| int SV = cast<ConstantInt>(V)->getSExtValue(); |
| return ConstantInt::get(Ty, neg ? -SV : SV); |
| } |
| |
| // Right-shift a vector by a constant. |
| Value *CodeGenFunction::EmitNeonRShiftImm(Value *Vec, Value *Shift, |
| llvm::Type *Ty, bool usgn, |
| const char *name) { |
| llvm::VectorType *VTy = cast<llvm::VectorType>(Ty); |
| |
| int ShiftAmt = cast<ConstantInt>(Shift)->getSExtValue(); |
| int EltSize = VTy->getScalarSizeInBits(); |
| |
| Vec = Builder.CreateBitCast(Vec, Ty); |
| |
| // lshr/ashr are undefined when the shift amount is equal to the vector |
| // element size. |
| if (ShiftAmt == EltSize) { |
| if (usgn) { |
| // Right-shifting an unsigned value by its size yields 0. |
| return llvm::ConstantAggregateZero::get(VTy); |
| } else { |
| // Right-shifting a signed value by its size is equivalent |
| // to a shift of size-1. |
| --ShiftAmt; |
| Shift = ConstantInt::get(VTy->getElementType(), ShiftAmt); |
| } |
| } |
| |
| Shift = EmitNeonShiftVector(Shift, Ty, false); |
| if (usgn) |
| return Builder.CreateLShr(Vec, Shift, name); |
| else |
| return Builder.CreateAShr(Vec, Shift, name); |
| } |
| |
| enum { |
| AddRetType = (1 << 0), |
| Add1ArgType = (1 << 1), |
| Add2ArgTypes = (1 << 2), |
| |
| VectorizeRetType = (1 << 3), |
| VectorizeArgTypes = (1 << 4), |
| |
| InventFloatType = (1 << 5), |
| UnsignedAlts = (1 << 6), |
| |
| Use64BitVectors = (1 << 7), |
| Use128BitVectors = (1 << 8), |
| |
| Vectorize1ArgType = Add1ArgType | VectorizeArgTypes, |
| VectorRet = AddRetType | VectorizeRetType, |
| VectorRetGetArgs01 = |
| AddRetType | Add2ArgTypes | VectorizeRetType | VectorizeArgTypes, |
| FpCmpzModifiers = |
| AddRetType | VectorizeRetType | Add1ArgType | InventFloatType |
| }; |
| |
| namespace { |
| struct ARMVectorIntrinsicInfo { |
| const char *NameHint; |
| unsigned BuiltinID; |
| unsigned LLVMIntrinsic; |
| unsigned AltLLVMIntrinsic; |
| uint64_t TypeModifier; |
| |
| bool operator<(unsigned RHSBuiltinID) const { |
| return BuiltinID < RHSBuiltinID; |
| } |
| bool operator<(const ARMVectorIntrinsicInfo &TE) const { |
| return BuiltinID < TE.BuiltinID; |
| } |
| }; |
| } // end anonymous namespace |
| |
| #define NEONMAP0(NameBase) \ |
| { #NameBase, NEON::BI__builtin_neon_ ## NameBase, 0, 0, 0 } |
| |
| #define NEONMAP1(NameBase, LLVMIntrinsic, TypeModifier) \ |
| { #NameBase, NEON:: BI__builtin_neon_ ## NameBase, \ |
| Intrinsic::LLVMIntrinsic, 0, TypeModifier } |
| |
| #define NEONMAP2(NameBase, LLVMIntrinsic, AltLLVMIntrinsic, TypeModifier) \ |
| { #NameBase, NEON:: BI__builtin_neon_ ## NameBase, \ |
| Intrinsic::LLVMIntrinsic, Intrinsic::AltLLVMIntrinsic, \ |
| TypeModifier } |
| |
| static const ARMVectorIntrinsicInfo ARMSIMDIntrinsicMap [] = { |
| NEONMAP1(__a32_vcvt_bf16_v, arm_neon_vcvtfp2bf, 0), |
| NEONMAP0(splat_lane_v), |
| NEONMAP0(splat_laneq_v), |
| NEONMAP0(splatq_lane_v), |
| NEONMAP0(splatq_laneq_v), |
| NEONMAP2(vabd_v, arm_neon_vabdu, arm_neon_vabds, Add1ArgType | UnsignedAlts), |
| NEONMAP2(vabdq_v, arm_neon_vabdu, arm_neon_vabds, Add1ArgType | UnsignedAlts), |
| NEONMAP1(vabs_v, arm_neon_vabs, 0), |
| NEONMAP1(vabsq_v, arm_neon_vabs, 0), |
| NEONMAP0(vadd_v), |
| NEONMAP0(vaddhn_v), |
| NEONMAP0(vaddq_v), |
| NEONMAP1(vaesdq_v, arm_neon_aesd, 0), |
| NEONMAP1(vaeseq_v, arm_neon_aese, 0), |
| NEONMAP1(vaesimcq_v, arm_neon_aesimc, 0), |
| NEONMAP1(vaesmcq_v, arm_neon_aesmc, 0), |
| NEONMAP1(vbfdot_v, arm_neon_bfdot, 0), |
| NEONMAP1(vbfdotq_v, arm_neon_bfdot, 0), |
| NEONMAP1(vbfmlalbq_v, arm_neon_bfmlalb, 0), |
| NEONMAP1(vbfmlaltq_v, arm_neon_bfmlalt, 0), |
| NEONMAP1(vbfmmlaq_v, arm_neon_bfmmla, 0), |
| NEONMAP1(vbsl_v, arm_neon_vbsl, AddRetType), |
| NEONMAP1(vbslq_v, arm_neon_vbsl, AddRetType), |
| NEONMAP1(vcadd_rot270_v, arm_neon_vcadd_rot270, Add1ArgType), |
| NEONMAP1(vcadd_rot90_v, arm_neon_vcadd_rot90, Add1ArgType), |
| NEONMAP1(vcaddq_rot270_v, arm_neon_vcadd_rot270, Add1ArgType), |
| NEONMAP1(vcaddq_rot90_v, arm_neon_vcadd_rot90, Add1ArgType), |
| NEONMAP1(vcage_v, arm_neon_vacge, 0), |
| NEONMAP1(vcageq_v, arm_neon_vacge, 0), |
| NEONMAP1(vcagt_v, arm_neon_vacgt, 0), |
| NEONMAP1(vcagtq_v, arm_neon_vacgt, 0), |
| NEONMAP1(vcale_v, arm_neon_vacge, 0), |
| NEONMAP1(vcaleq_v, arm_neon_vacge, 0), |
| NEONMAP1(vcalt_v, arm_neon_vacgt, 0), |
| NEONMAP1(vcaltq_v, arm_neon_vacgt, 0), |
| NEONMAP0(vceqz_v), |
| NEONMAP0(vceqzq_v), |
| NEONMAP0(vcgez_v), |
| NEONMAP0(vcgezq_v), |
| NEONMAP0(vcgtz_v), |
| NEONMAP0(vcgtzq_v), |
| NEONMAP0(vclez_v), |
| NEONMAP0(vclezq_v), |
| NEONMAP1(vcls_v, arm_neon_vcls, Add1ArgType), |
| NEONMAP1(vclsq_v, arm_neon_vcls, Add1ArgType), |
| NEONMAP0(vcltz_v), |
| NEONMAP0(vcltzq_v), |
| NEONMAP1(vclz_v, ctlz, Add1ArgType), |
| NEONMAP1(vclzq_v, ctlz, Add1ArgType), |
| NEONMAP1(vcnt_v, ctpop, Add1ArgType), |
| NEONMAP1(vcntq_v, ctpop, Add1ArgType), |
| NEONMAP1(vcvt_f16_f32, arm_neon_vcvtfp2hf, 0), |
| NEONMAP0(vcvt_f16_v), |
| NEONMAP1(vcvt_f32_f16, arm_neon_vcvthf2fp, 0), |
| NEONMAP0(vcvt_f32_v), |
| NEONMAP2(vcvt_n_f16_v, arm_neon_vcvtfxu2fp, arm_neon_vcvtfxs2fp, 0), |
| NEONMAP2(vcvt_n_f32_v, arm_neon_vcvtfxu2fp, arm_neon_vcvtfxs2fp, 0), |
| NEONMAP1(vcvt_n_s16_v, arm_neon_vcvtfp2fxs, 0), |
| NEONMAP1(vcvt_n_s32_v, arm_neon_vcvtfp2fxs, 0), |
| NEONMAP1(vcvt_n_s64_v, arm_neon_vcvtfp2fxs, 0), |
| NEONMAP1(vcvt_n_u16_v, arm_neon_vcvtfp2fxu, 0), |
| NEONMAP1(vcvt_n_u32_v, arm_neon_vcvtfp2fxu, 0), |
| NEONMAP1(vcvt_n_u64_v, arm_neon_vcvtfp2fxu, 0), |
| NEONMAP0(vcvt_s16_v), |
| NEONMAP0(vcvt_s32_v), |
| NEONMAP0(vcvt_s64_v), |
| NEONMAP0(vcvt_u16_v), |
| NEONMAP0(vcvt_u32_v), |
| NEONMAP0(vcvt_u64_v), |
| NEONMAP1(vcvta_s16_v, arm_neon_vcvtas, 0), |
| NEONMAP1(vcvta_s32_v, arm_neon_vcvtas, 0), |
| NEONMAP1(vcvta_s64_v, arm_neon_vcvtas, 0), |
| NEONMAP1(vcvta_u16_v, arm_neon_vcvtau, 0), |
| NEONMAP1(vcvta_u32_v, arm_neon_vcvtau, 0), |
| NEONMAP1(vcvta_u64_v, arm_neon_vcvtau, 0), |
| NEONMAP1(vcvtaq_s16_v, arm_neon_vcvtas, 0), |
| NEONMAP1(vcvtaq_s32_v, arm_neon_vcvtas, 0), |
| NEONMAP1(vcvtaq_s64_v, arm_neon_vcvtas, 0), |
| NEONMAP1(vcvtaq_u16_v, arm_neon_vcvtau, 0), |
| NEONMAP1(vcvtaq_u32_v, arm_neon_vcvtau, 0), |
| NEONMAP1(vcvtaq_u64_v, arm_neon_vcvtau, 0), |
| NEONMAP1(vcvth_bf16_f32, arm_neon_vcvtbfp2bf, 0), |
| NEONMAP1(vcvtm_s16_v, arm_neon_vcvtms, 0), |
| NEONMAP1(vcvtm_s32_v, arm_neon_vcvtms, 0), |
| NEONMAP1(vcvtm_s64_v, arm_neon_vcvtms, 0), |
| NEONMAP1(vcvtm_u16_v, arm_neon_vcvtmu, 0), |
| NEONMAP1(vcvtm_u32_v, arm_neon_vcvtmu, 0), |
| NEONMAP1(vcvtm_u64_v, arm_neon_vcvtmu, 0), |
| NEONMAP1(vcvtmq_s16_v, arm_neon_vcvtms, 0), |
| NEONMAP1(vcvtmq_s32_v, arm_neon_vcvtms, 0), |
| NEONMAP1(vcvtmq_s64_v, arm_neon_vcvtms, 0), |
| NEONMAP1(vcvtmq_u16_v, arm_neon_vcvtmu, 0), |
| NEONMAP1(vcvtmq_u32_v, arm_neon_vcvtmu, 0), |
| NEONMAP1(vcvtmq_u64_v, arm_neon_vcvtmu, 0), |
| NEONMAP1(vcvtn_s16_v, arm_neon_vcvtns, 0), |
| NEONMAP1(vcvtn_s32_v, arm_neon_vcvtns, 0), |
| NEONMAP1(vcvtn_s64_v, arm_neon_vcvtns, 0), |
| NEONMAP1(vcvtn_u16_v, arm_neon_vcvtnu, 0), |
| NEONMAP1(vcvtn_u32_v, arm_neon_vcvtnu, 0), |
| NEONMAP1(vcvtn_u64_v, arm_neon_vcvtnu, 0), |
| NEONMAP1(vcvtnq_s16_v, arm_neon_vcvtns, 0), |
| NEONMAP1(vcvtnq_s32_v, arm_neon_vcvtns, 0), |
| NEONMAP1(vcvtnq_s64_v, arm_neon_vcvtns, 0), |
| NEONMAP1(vcvtnq_u16_v, arm_neon_vcvtnu, 0), |
| NEONMAP1(vcvtnq_u32_v, arm_neon_vcvtnu, 0), |
| NEONMAP1(vcvtnq_u64_v, arm_neon_vcvtnu, 0), |
| NEONMAP1(vcvtp_s16_v, arm_neon_vcvtps, 0), |
| NEONMAP1(vcvtp_s32_v, arm_neon_vcvtps, 0), |
| NEONMAP1(vcvtp_s64_v, arm_neon_vcvtps, 0), |
| NEONMAP1(vcvtp_u16_v, arm_neon_vcvtpu, 0), |
| NEONMAP1(vcvtp_u32_v, arm_neon_vcvtpu, 0), |
| NEONMAP1(vcvtp_u64_v, arm_neon_vcvtpu, 0), |
| NEONMAP1(vcvtpq_s16_v, arm_neon_vcvtps, 0), |
| NEONMAP1(vcvtpq_s32_v, arm_neon_vcvtps, 0), |
| NEONMAP1(vcvtpq_s64_v, arm_neon_vcvtps, 0), |
| NEONMAP1(vcvtpq_u16_v, arm_neon_vcvtpu, 0), |
| NEONMAP1(vcvtpq_u32_v, arm_neon_vcvtpu, 0), |
| NEONMAP1(vcvtpq_u64_v, arm_neon_vcvtpu, 0), |
| NEONMAP0(vcvtq_f16_v), |
| NEONMAP0(vcvtq_f32_v), |
| NEONMAP2(vcvtq_n_f16_v, arm_neon_vcvtfxu2fp, arm_neon_vcvtfxs2fp, 0), |
| NEONMAP2(vcvtq_n_f32_v, arm_neon_vcvtfxu2fp, arm_neon_vcvtfxs2fp, 0), |
| NEONMAP1(vcvtq_n_s16_v, arm_neon_vcvtfp2fxs, 0), |
| NEONMAP1(vcvtq_n_s32_v, arm_neon_vcvtfp2fxs, 0), |
| NEONMAP1(vcvtq_n_s64_v, arm_neon_vcvtfp2fxs, 0), |
| NEONMAP1(vcvtq_n_u16_v, arm_neon_vcvtfp2fxu, 0), |
| NEONMAP1(vcvtq_n_u32_v, arm_neon_vcvtfp2fxu, 0), |
| NEONMAP1(vcvtq_n_u64_v, arm_neon_vcvtfp2fxu, 0), |
| NEONMAP0(vcvtq_s16_v), |
| NEONMAP0(vcvtq_s32_v), |
| NEONMAP0(vcvtq_s64_v), |
| NEONMAP0(vcvtq_u16_v), |
| NEONMAP0(vcvtq_u32_v), |
| NEONMAP0(vcvtq_u64_v), |
| NEONMAP2(vdot_v, arm_neon_udot, arm_neon_sdot, 0), |
| NEONMAP2(vdotq_v, arm_neon_udot, arm_neon_sdot, 0), |
| NEONMAP0(vext_v), |
| NEONMAP0(vextq_v), |
| NEONMAP0(vfma_v), |
| NEONMAP0(vfmaq_v), |
| NEONMAP2(vhadd_v, arm_neon_vhaddu, arm_neon_vhadds, Add1ArgType | UnsignedAlts), |
| NEONMAP2(vhaddq_v, arm_neon_vhaddu, arm_neon_vhadds, Add1ArgType | UnsignedAlts), |
| NEONMAP2(vhsub_v, arm_neon_vhsubu, arm_neon_vhsubs, Add1ArgType | UnsignedAlts), |
| NEONMAP2(vhsubq_v, arm_neon_vhsubu, arm_neon_vhsubs, Add1ArgType | UnsignedAlts), |
| NEONMAP0(vld1_dup_v), |
| NEONMAP1(vld1_v, arm_neon_vld1, 0), |
| NEONMAP1(vld1_x2_v, arm_neon_vld1x2, 0), |
| NEONMAP1(vld1_x3_v, arm_neon_vld1x3, 0), |
| NEONMAP1(vld1_x4_v, arm_neon_vld1x4, 0), |
| NEONMAP0(vld1q_dup_v), |
| NEONMAP1(vld1q_v, arm_neon_vld1, 0), |
| NEONMAP1(vld1q_x2_v, arm_neon_vld1x2, 0), |
| NEONMAP1(vld1q_x3_v, arm_neon_vld1x3, 0), |
| NEONMAP1(vld1q_x4_v, arm_neon_vld1x4, 0), |
| NEONMAP1(vld2_dup_v, arm_neon_vld2dup, 0), |
| NEONMAP1(vld2_lane_v, arm_neon_vld2lane, 0), |
| NEONMAP1(vld2_v, arm_neon_vld2, 0), |
| NEONMAP1(vld2q_dup_v, arm_neon_vld2dup, 0), |
| NEONMAP1(vld2q_lane_v, arm_neon_vld2lane, 0), |
| NEONMAP1(vld2q_v, arm_neon_vld2, 0), |
| NEONMAP1(vld3_dup_v, arm_neon_vld3dup, 0), |
| NEONMAP1(vld3_lane_v, arm_neon_vld3lane, 0), |
| NEONMAP1(vld3_v, arm_neon_vld3, 0), |
| NEONMAP1(vld3q_dup_v, arm_neon_vld3dup, 0), |
| NEONMAP1(vld3q_lane_v, arm_neon_vld3lane, 0), |
| NEONMAP1(vld3q_v, arm_neon_vld3, 0), |
| NEONMAP1(vld4_dup_v, arm_neon_vld4dup, 0), |
| NEONMAP1(vld4_lane_v, arm_neon_vld4lane, 0), |
| NEONMAP1(vld4_v, arm_neon_vld4, 0), |
| NEONMAP1(vld4q_dup_v, arm_neon_vld4dup, 0), |
| NEONMAP1(vld4q_lane_v, arm_neon_vld4lane, 0), |
| NEONMAP1(vld4q_v, arm_neon_vld4, 0), |
| NEONMAP2(vmax_v, arm_neon_vmaxu, arm_neon_vmaxs, Add1ArgType | UnsignedAlts), |
| NEONMAP1(vmaxnm_v, arm_neon_vmaxnm, Add1ArgType), |
| NEONMAP1(vmaxnmq_v, arm_neon_vmaxnm, Add1ArgType), |
| NEONMAP2(vmaxq_v, arm_neon_vmaxu, arm_neon_vmaxs, Add1ArgType | UnsignedAlts), |
| NEONMAP2(vmin_v, arm_neon_vminu, arm_neon_vmins, Add1ArgType | UnsignedAlts), |
| NEONMAP1(vminnm_v, arm_neon_vminnm, Add1ArgType), |
| NEONMAP1(vminnmq_v, arm_neon_vminnm, Add1ArgType), |
| NEONMAP2(vminq_v, arm_neon_vminu, arm_neon_vmins, Add1ArgType | UnsignedAlts), |
| NEONMAP2(vmmlaq_v, arm_neon_ummla, arm_neon_smmla, 0), |
| NEONMAP0(vmovl_v), |
| NEONMAP0(vmovn_v), |
| NEONMAP1(vmul_v, arm_neon_vmulp, Add1ArgType), |
| NEONMAP0(vmull_v), |
| NEONMAP1(vmulq_v, arm_neon_vmulp, Add1ArgType), |
| NEONMAP2(vpadal_v, arm_neon_vpadalu, arm_neon_vpadals, UnsignedAlts), |
| NEONMAP2(vpadalq_v, arm_neon_vpadalu, arm_neon_vpadals, UnsignedAlts), |
| NEONMAP1(vpadd_v, arm_neon_vpadd, Add1ArgType), |
| NEONMAP2(vpaddl_v, arm_neon_vpaddlu, arm_neon_vpaddls, UnsignedAlts), |
| NEONMAP2(vpaddlq_v, arm_neon_vpaddlu, arm_neon_vpaddls, UnsignedAlts), |
| NEONMAP1(vpaddq_v, arm_neon_vpadd, Add1ArgType), |
| NEONMAP2(vpmax_v, arm_neon_vpmaxu, arm_neon_vpmaxs, Add1ArgType | UnsignedAlts), |
| NEONMAP2(vpmin_v, arm_neon_vpminu, arm_neon_vpmins, Add1ArgType | UnsignedAlts), |
| NEONMAP1(vqabs_v, arm_neon_vqabs, Add1ArgType), |
| NEONMAP1(vqabsq_v, arm_neon_vqabs, Add1ArgType), |
| NEONMAP2(vqadd_v, uadd_sat, sadd_sat, Add1ArgType | UnsignedAlts), |
| NEONMAP2(vqaddq_v, uadd_sat, sadd_sat, Add1ArgType | UnsignedAlts), |
| NEONMAP2(vqdmlal_v, arm_neon_vqdmull, sadd_sat, 0), |
| NEONMAP2(vqdmlsl_v, arm_neon_vqdmull, ssub_sat, 0), |
| NEONMAP1(vqdmulh_v, arm_neon_vqdmulh, Add1ArgType), |
| NEONMAP1(vqdmulhq_v, arm_neon_vqdmulh, Add1ArgType), |
| NEONMAP1(vqdmull_v, arm_neon_vqdmull, Add1ArgType), |
| NEONMAP2(vqmovn_v, arm_neon_vqmovnu, arm_neon_vqmovns, Add1ArgType | UnsignedAlts), |
| NEONMAP1(vqmovun_v, arm_neon_vqmovnsu, Add1ArgType), |
| NEONMAP1(vqneg_v, arm_neon_vqneg, Add1ArgType), |
| NEONMAP1(vqnegq_v, arm_neon_vqneg, Add1ArgType), |
| NEONMAP1(vqrdmulh_v, arm_neon_vqrdmulh, Add1ArgType), |
| NEONMAP1(vqrdmulhq_v, arm_neon_vqrdmulh, Add1ArgType), |
| NEONMAP2(vqrshl_v, arm_neon_vqrshiftu, arm_neon_vqrshifts, Add1ArgType | UnsignedAlts), |
| NEONMAP2(vqrshlq_v, arm_neon_vqrshiftu, arm_neon_vqrshifts, Add1ArgType | UnsignedAlts), |
| NEONMAP2(vqshl_n_v, arm_neon_vqshiftu, arm_neon_vqshifts, UnsignedAlts), |
| NEONMAP2(vqshl_v, arm_neon_vqshiftu, arm_neon_vqshifts, Add1ArgType | UnsignedAlts), |
| NEONMAP2(vqshlq_n_v, arm_neon_vqshiftu, arm_neon_vqshifts, UnsignedAlts), |
| NEONMAP2(vqshlq_v, arm_neon_vqshiftu, arm_neon_vqshifts, Add1ArgType | UnsignedAlts), |
| NEONMAP1(vqshlu_n_v, arm_neon_vqshiftsu, 0), |
| NEONMAP1(vqshluq_n_v, arm_neon_vqshiftsu, 0), |
| NEONMAP2(vqsub_v, usub_sat, ssub_sat, Add1ArgType | UnsignedAlts), |
| NEONMAP2(vqsubq_v, usub_sat, ssub_sat, Add1ArgType | UnsignedAlts), |
| NEONMAP1(vraddhn_v, arm_neon_vraddhn, Add1ArgType), |
| NEONMAP2(vrecpe_v, arm_neon_vrecpe, arm_neon_vrecpe, 0), |
| NEONMAP2(vrecpeq_v, arm_neon_vrecpe, arm_neon_vrecpe, 0), |
| NEONMAP1(vrecps_v, arm_neon_vrecps, Add1ArgType), |
| NEONMAP1(vrecpsq_v, arm_neon_vrecps, Add1ArgType), |
| NEONMAP2(vrhadd_v, arm_neon_vrhaddu, arm_neon_vrhadds, Add1ArgType | UnsignedAlts), |
| NEONMAP2(vrhaddq_v, arm_neon_vrhaddu, arm_neon_vrhadds, Add1ArgType | UnsignedAlts), |
| NEONMAP1(vrnd_v, arm_neon_vrintz, Add1ArgType), |
| NEONMAP1(vrnda_v, arm_neon_vrinta, Add1ArgType), |
| NEONMAP1(vrndaq_v, arm_neon_vrinta, Add1ArgType), |
| NEONMAP0(vrndi_v), |
| NEONMAP0(vrndiq_v), |
| NEONMAP1(vrndm_v, arm_neon_vrintm, Add1ArgType), |
| NEONMAP1(vrndmq_v, arm_neon_vrintm, Add1ArgType), |
| NEONMAP1(vrndn_v, arm_neon_vrintn, Add1ArgType), |
| NEONMAP1(vrndnq_v, arm_neon_vrintn, Add1ArgType), |
| NEONMAP1(vrndp_v, arm_neon_vrintp, Add1ArgType), |
| NEONMAP1(vrndpq_v, arm_neon_vrintp, Add1ArgType), |
| NEONMAP1(vrndq_v, arm_neon_vrintz, Add1ArgType), |
| NEONMAP1(vrndx_v, arm_neon_vrintx, Add1ArgType), |
| NEONMAP1(vrndxq_v, arm_neon_vrintx, Add1ArgType), |
| NEONMAP2(vrshl_v, arm_neon_vrshiftu, arm_neon_vrshifts, Add1ArgType | UnsignedAlts), |
| NEONMAP2(vrshlq_v, arm_neon_vrshiftu, arm_neon_vrshifts, Add1ArgType | UnsignedAlts), |
| NEONMAP2(vrshr_n_v, arm_neon_vrshiftu, arm_neon_vrshifts, UnsignedAlts), |
| NEONMAP2(vrshrq_n_v, arm_neon_vrshiftu, arm_neon_vrshifts, UnsignedAlts), |
| NEONMAP2(vrsqrte_v, arm_neon_vrsqrte, arm_neon_vrsqrte, 0), |
| NEONMAP2(vrsqrteq_v, arm_neon_vrsqrte, arm_neon_vrsqrte, 0), |
| NEONMAP1(vrsqrts_v, arm_neon_vrsqrts, Add1ArgType), |
| NEONMAP1(vrsqrtsq_v, arm_neon_vrsqrts, Add1ArgType), |
| NEONMAP1(vrsubhn_v, arm_neon_vrsubhn, Add1ArgType), |
| NEONMAP1(vsha1su0q_v, arm_neon_sha1su0, 0), |
| NEONMAP1(vsha1su1q_v, arm_neon_sha1su1, 0), |
| NEONMAP1(vsha256h2q_v, arm_neon_sha256h2, 0), |
| NEONMAP1(vsha256hq_v, arm_neon_sha256h, 0), |
| NEONMAP1(vsha256su0q_v, arm_neon_sha256su0, 0), |
| NEONMAP1(vsha256su1q_v, arm_neon_sha256su1, 0), |
| NEONMAP0(vshl_n_v), |
| NEONMAP2(vshl_v, arm_neon_vshiftu, arm_neon_vshifts, Add1ArgType | UnsignedAlts), |
| NEONMAP0(vshll_n_v), |
| NEONMAP0(vshlq_n_v), |
| NEONMAP2(vshlq_v, arm_neon_vshiftu, arm_neon_vshifts, Add1ArgType | UnsignedAlts), |
| NEONMAP0(vshr_n_v), |
| NEONMAP0(vshrn_n_v), |
| NEONMAP0(vshrq_n_v), |
| NEONMAP1(vst1_v, arm_neon_vst1, 0), |
| NEONMAP1(vst1_x2_v, arm_neon_vst1x2, 0), |
| NEONMAP1(vst1_x3_v, arm_neon_vst1x3, 0), |
| NEONMAP1(vst1_x4_v, arm_neon_vst1x4, 0), |
| NEONMAP1(vst1q_v, arm_neon_vst1, 0), |
| NEONMAP1(vst1q_x2_v, arm_neon_vst1x2, 0), |
| NEONMAP1(vst1q_x3_v, arm_neon_vst1x3, 0), |
| NEONMAP1(vst1q_x4_v, arm_neon_vst1x4, 0), |
| NEONMAP1(vst2_lane_v, arm_neon_vst2lane, 0), |
| NEONMAP1(vst2_v, arm_neon_vst2, 0), |
| NEONMAP1(vst2q_lane_v, arm_neon_vst2lane, 0), |
| NEONMAP1(vst2q_v, arm_neon_vst2, 0), |
| NEONMAP1(vst3_lane_v, arm_neon_vst3lane, 0), |
| NEONMAP1(vst3_v, arm_neon_vst3, 0), |
| NEONMAP1(vst3q_lane_v, arm_neon_vst3lane, 0), |
| NEONMAP1(vst3q_v, arm_neon_vst3, 0), |
| NEONMAP1(vst4_lane_v, arm_neon_vst4lane, 0), |
| NEONMAP1(vst4_v, arm_neon_vst4, 0), |
| NEONMAP1(vst4q_lane_v, arm_neon_vst4lane, 0), |
| NEONMAP1(vst4q_v, arm_neon_vst4, 0), |
| NEONMAP0(vsubhn_v), |
| NEONMAP0(vtrn_v), |
| NEONMAP0(vtrnq_v), |
| NEONMAP0(vtst_v), |
| NEONMAP0(vtstq_v), |
| NEONMAP1(vusdot_v, arm_neon_usdot, 0), |
| NEONMAP1(vusdotq_v, arm_neon_usdot, 0), |
| NEONMAP1(vusmmlaq_v, arm_neon_usmmla, 0), |
| NEONMAP0(vuzp_v), |
| NEONMAP0(vuzpq_v), |
| NEONMAP0(vzip_v), |
| NEONMAP0(vzipq_v) |
| }; |
| |
| static const ARMVectorIntrinsicInfo AArch64SIMDIntrinsicMap[] = { |
| NEONMAP1(__a64_vcvtq_low_bf16_v, aarch64_neon_bfcvtn, 0), |
| NEONMAP0(splat_lane_v), |
| NEONMAP0(splat_laneq_v), |
| NEONMAP0(splatq_lane_v), |
| NEONMAP0(splatq_laneq_v), |
| NEONMAP1(vabs_v, aarch64_neon_abs, 0), |
| NEONMAP1(vabsq_v, aarch64_neon_abs, 0), |
| NEONMAP0(vadd_v), |
| NEONMAP0(vaddhn_v), |
| NEONMAP0(vaddq_p128), |
| NEONMAP0(vaddq_v), |
| NEONMAP1(vaesdq_v, aarch64_crypto_aesd, 0), |
| NEONMAP1(vaeseq_v, aarch64_crypto_aese, 0), |
| NEONMAP1(vaesimcq_v, aarch64_crypto_aesimc, 0), |
| NEONMAP1(vaesmcq_v, aarch64_crypto_aesmc, 0), |
| NEONMAP2(vbcaxq_v, aarch64_crypto_bcaxu, aarch64_crypto_bcaxs, Add1ArgType | UnsignedAlts), |
| NEONMAP1(vbfdot_v, aarch64_neon_bfdot, 0), |
| NEONMAP1(vbfdotq_v, aarch64_neon_bfdot, 0), |
| NEONMAP1(vbfmlalbq_v, aarch64_neon_bfmlalb, 0), |
| NEONMAP1(vbfmlaltq_v, aarch64_neon_bfmlalt, 0), |
| NEONMAP1(vbfmmlaq_v, aarch64_neon_bfmmla, 0), |
| NEONMAP1(vcadd_rot270_v, aarch64_neon_vcadd_rot270, Add1ArgType), |
| NEONMAP1(vcadd_rot90_v, aarch64_neon_vcadd_rot90, Add1ArgType), |
| NEONMAP1(vcaddq_rot270_v, aarch64_neon_vcadd_rot270, Add1ArgType), |
| NEONMAP1(vcaddq_rot90_v, aarch64_neon_vcadd_rot90, Add1ArgType), |
| NEONMAP1(vcage_v, aarch64_neon_facge, 0), |
| NEONMAP1(vcageq_v, aarch64_neon_facge, 0), |
| NEONMAP1(vcagt_v, aarch64_neon_facgt, 0), |
| NEONMAP1(vcagtq_v, aarch64_neon_facgt, 0), |
| NEONMAP1(vcale_v, aarch64_neon_facge, 0), |
| NEONMAP1(vcaleq_v, aarch64_neon_facge, 0), |
| NEONMAP1(vcalt_v, aarch64_neon_facgt, 0), |
| NEONMAP1(vcaltq_v, aarch64_neon_facgt, 0), |
| NEONMAP0(vceqz_v), |
| NEONMAP0(vceqzq_v), |
| NEONMAP0(vcgez_v), |
| NEONMAP0(vcgezq_v), |
| NEONMAP0(vcgtz_v), |
| NEONMAP0(vcgtzq_v), |
| NEONMAP0(vclez_v), |
| NEONMAP0(vclezq_v), |
| NEONMAP1(vcls_v, aarch64_neon_cls, Add1ArgType), |
| NEONMAP1(vclsq_v, aarch64_neon_cls, Add1ArgType), |
| NEONMAP0(vcltz_v), |
| NEONMAP0(vcltzq_v), |
| NEONMAP1(vclz_v, ctlz, Add1ArgType), |
| NEONMAP1(vclzq_v, ctlz, Add1ArgType), |
| NEONMAP1(vcmla_rot180_v, aarch64_neon_vcmla_rot180, Add1ArgType), |
| NEONMAP1(vcmla_rot270_v, aarch64_neon_vcmla_rot270, Add1ArgType), |
| NEONMAP1(vcmla_rot90_v, aarch64_neon_vcmla_rot90, Add1ArgType), |
| NEONMAP1(vcmla_v, aarch64_neon_vcmla_rot0, Add1ArgType), |
| NEONMAP1(vcmlaq_rot180_v, aarch64_neon_vcmla_rot180, Add1ArgType), |
| NEONMAP1(vcmlaq_rot270_v, aarch64_neon_vcmla_rot270, Add1ArgType), |
| NEONMAP1(vcmlaq_rot90_v, aarch64_neon_vcmla_rot90, Add1ArgType), |
| NEONMAP1(vcmlaq_v, aarch64_neon_vcmla_rot0, Add1ArgType), |
| NEONMAP1(vcnt_v, ctpop, Add1ArgType), |
| NEONMAP1(vcntq_v, ctpop, Add1ArgType), |
| NEONMAP1(vcvt_f16_f32, aarch64_neon_vcvtfp2hf, 0), |
| NEONMAP0(vcvt_f16_v), |
| NEONMAP1(vcvt_f32_f16, aarch64_neon_vcvthf2fp, 0), |
| NEONMAP0(vcvt_f32_v), |
| NEONMAP2(vcvt_n_f16_v, aarch64_neon_vcvtfxu2fp, aarch64_neon_vcvtfxs2fp, 0), |
| NEONMAP2(vcvt_n_f32_v, aarch64_neon_vcvtfxu2fp, aarch64_neon_vcvtfxs2fp, 0), |
| NEONMAP2(vcvt_n_f64_v, aarch64_neon_vcvtfxu2fp, aarch64_neon_vcvtfxs2fp, 0), |
| NEONMAP1(vcvt_n_s16_v, aarch64_neon_vcvtfp2fxs, 0), |
| NEONMAP1(vcvt_n_s32_v, aarch64_neon_vcvtfp2fxs, 0), |
| NEONMAP1(vcvt_n_s64_v, aarch64_neon_vcvtfp2fxs, 0), |
| NEONMAP1(vcvt_n_u16_v, aarch64_neon_vcvtfp2fxu, 0), |
| NEONMAP1(vcvt_n_u32_v, aarch64_neon_vcvtfp2fxu, 0), |
| NEONMAP1(vcvt_n_u64_v, aarch64_neon_vcvtfp2fxu, 0), |
| NEONMAP0(vcvtq_f16_v), |
| NEONMAP0(vcvtq_f32_v), |
| NEONMAP1(vcvtq_high_bf16_v, aarch64_neon_bfcvtn2, 0), |
| NEONMAP2(vcvtq_n_f16_v, aarch64_neon_vcvtfxu2fp, aarch64_neon_vcvtfxs2fp, 0), |
| NEONMAP2(vcvtq_n_f32_v, aarch64_neon_vcvtfxu2fp, aarch64_neon_vcvtfxs2fp, 0), |
| NEONMAP2(vcvtq_n_f64_v, aarch64_neon_vcvtfxu2fp, aarch64_neon_vcvtfxs2fp, 0), |
| NEONMAP1(vcvtq_n_s16_v, aarch64_neon_vcvtfp2fxs, 0), |
| NEONMAP1(vcvtq_n_s32_v, aarch64_neon_vcvtfp2fxs, 0), |
| NEONMAP1(vcvtq_n_s64_v, aarch64_neon_vcvtfp2fxs, 0), |
| NEONMAP1(vcvtq_n_u16_v, aarch64_neon_vcvtfp2fxu, 0), |
| NEONMAP1(vcvtq_n_u32_v, aarch64_neon_vcvtfp2fxu, 0), |
| NEONMAP1(vcvtq_n_u64_v, aarch64_neon_vcvtfp2fxu, 0), |
| NEONMAP1(vcvtx_f32_v, aarch64_neon_fcvtxn, AddRetType | Add1ArgType), |
| NEONMAP2(vdot_v, aarch64_neon_udot, aarch64_neon_sdot, 0), |
| NEONMAP2(vdotq_v, aarch64_neon_udot, aarch64_neon_sdot, 0), |
| NEONMAP2(veor3q_v, aarch64_crypto_eor3u, aarch64_crypto_eor3s, Add1ArgType | UnsignedAlts), |
| NEONMAP0(vext_v), |
| NEONMAP0(vextq_v), |
| NEONMAP0(vfma_v), |
| NEONMAP0(vfmaq_v), |
| NEONMAP1(vfmlal_high_v, aarch64_neon_fmlal2, 0), |
| NEONMAP1(vfmlal_low_v, aarch64_neon_fmlal, 0), |
| NEONMAP1(vfmlalq_high_v, aarch64_neon_fmlal2, 0), |
| NEONMAP1(vfmlalq_low_v, aarch64_neon_fmlal, 0), |
| NEONMAP1(vfmlsl_high_v, aarch64_neon_fmlsl2, 0), |
| NEONMAP1(vfmlsl_low_v, aarch64_neon_fmlsl, 0), |
| NEONMAP1(vfmlslq_high_v, aarch64_neon_fmlsl2, 0), |
| NEONMAP1(vfmlslq_low_v, aarch64_neon_fmlsl, 0), |
| NEONMAP2(vhadd_v, aarch64_neon_uhadd, aarch64_neon_shadd, Add1ArgType | UnsignedAlts), |
| NEONMAP2(vhaddq_v, aarch64_neon_uhadd, aarch64_neon_shadd, Add1ArgType | UnsignedAlts), |
| NEONMAP2(vhsub_v, aarch64_neon_uhsub, aarch64_neon_shsub, Add1ArgType | UnsignedAlts), |
| NEONMAP2(vhsubq_v, aarch64_neon_uhsub, aarch64_neon_shsub, Add1ArgType | UnsignedAlts), |
| NEONMAP1(vld1_x2_v, aarch64_neon_ld1x2, 0), |
| NEONMAP1(vld1_x3_v, aarch64_neon_ld1x3, 0), |
| NEONMAP1(vld1_x4_v, aarch64_neon_ld1x4, 0), |
| NEONMAP1(vld1q_x2_v, aarch64_neon_ld1x2, 0), |
| NEONMAP1(vld1q_x3_v, aarch64_neon_ld1x3, 0), |
| NEONMAP1(vld1q_x4_v, aarch64_neon_ld1x4, 0), |
| NEONMAP2(vmmlaq_v, aarch64_neon_ummla, aarch64_neon_smmla, 0), |
| NEONMAP0(vmovl_v), |
| NEONMAP0(vmovn_v), |
| NEONMAP1(vmul_v, aarch64_neon_pmul, Add1ArgType), |
| NEONMAP1(vmulq_v, aarch64_neon_pmul, Add1ArgType), |
| NEONMAP1(vpadd_v, aarch64_neon_addp, Add1ArgType), |
| NEONMAP2(vpaddl_v, aarch64_neon_uaddlp, aarch64_neon_saddlp, UnsignedAlts), |
| NEONMAP2(vpaddlq_v, aarch64_neon_uaddlp, aarch64_neon_saddlp, UnsignedAlts), |
| NEONMAP1(vpaddq_v, aarch64_neon_addp, Add1ArgType), |
| NEONMAP1(vqabs_v, aarch64_neon_sqabs, Add1ArgType), |
| NEONMAP1(vqabsq_v, aarch64_neon_sqabs, Add1ArgType), |
| NEONMAP2(vqadd_v, aarch64_neon_uqadd, aarch64_neon_sqadd, Add1ArgType | UnsignedAlts), |
| NEONMAP2(vqaddq_v, aarch64_neon_uqadd, aarch64_neon_sqadd, Add1ArgType | UnsignedAlts), |
| NEONMAP2(vqdmlal_v, aarch64_neon_sqdmull, aarch64_neon_sqadd, 0), |
| NEONMAP2(vqdmlsl_v, aarch64_neon_sqdmull, aarch64_neon_sqsub, 0), |
| NEONMAP1(vqdmulh_lane_v, aarch64_neon_sqdmulh_lane, 0), |
| NEONMAP1(vqdmulh_laneq_v, aarch64_neon_sqdmulh_laneq, 0), |
| NEONMAP1(vqdmulh_v, aarch64_neon_sqdmulh, Add1ArgType), |
| NEONMAP1(vqdmulhq_lane_v, aarch64_neon_sqdmulh_lane, 0), |
| NEONMAP1(vqdmulhq_laneq_v, aarch64_neon_sqdmulh_laneq, 0), |
| NEONMAP1(vqdmulhq_v, aarch64_neon_sqdmulh, Add1ArgType), |
| NEONMAP1(vqdmull_v, aarch64_neon_sqdmull, Add1ArgType), |
| NEONMAP2(vqmovn_v, aarch64_neon_uqxtn, aarch64_neon_sqxtn, Add1ArgType | UnsignedAlts), |
| NEONMAP1(vqmovun_v, aarch64_neon_sqxtun, Add1ArgType), |
| NEONMAP1(vqneg_v, aarch64_neon_sqneg, Add1ArgType), |
| NEONMAP1(vqnegq_v, aarch64_neon_sqneg, Add1ArgType), |
| NEONMAP1(vqrdmulh_lane_v, aarch64_neon_sqrdmulh_lane, 0), |
| NEONMAP1(vqrdmulh_laneq_v, aarch64_neon_sqrdmulh_laneq, 0), |
| NEONMAP1(vqrdmulh_v, aarch64_neon_sqrdmulh, Add1ArgType), |
| NEONMAP1(vqrdmulhq_lane_v, aarch64_neon_sqrdmulh_lane, 0), |
| NEONMAP1(vqrdmulhq_laneq_v, aarch64_neon_sqrdmulh_laneq, 0), |
| NEONMAP1(vqrdmulhq_v, aarch64_neon_sqrdmulh, Add1ArgType), |
| NEONMAP2(vqrshl_v, aarch64_neon_uqrshl, aarch64_neon_sqrshl, Add1ArgType | UnsignedAlts), |
| NEONMAP2(vqrshlq_v, aarch64_neon_uqrshl, aarch64_neon_sqrshl, Add1ArgType | UnsignedAlts), |
| NEONMAP2(vqshl_n_v, aarch64_neon_uqshl, aarch64_neon_sqshl, UnsignedAlts), |
| NEONMAP2(vqshl_v, aarch64_neon_uqshl, aarch64_neon_sqshl, Add1ArgType | UnsignedAlts), |
| NEONMAP2(vqshlq_n_v, aarch64_neon_uqshl, aarch64_neon_sqshl,UnsignedAlts), |
| NEONMAP2(vqshlq_v, aarch64_neon_uqshl, aarch64_neon_sqshl, Add1ArgType | UnsignedAlts), |
| NEONMAP1(vqshlu_n_v, aarch64_neon_sqshlu, 0), |
| NEONMAP1(vqshluq_n_v, aarch64_neon_sqshlu, 0), |
| NEONMAP2(vqsub_v, aarch64_neon_uqsub, aarch64_neon_sqsub, Add1ArgType | UnsignedAlts), |
| NEONMAP2(vqsubq_v, aarch64_neon_uqsub, aarch64_neon_sqsub, Add1ArgType | UnsignedAlts), |
| NEONMAP1(vraddhn_v, aarch64_neon_raddhn, Add1ArgType), |
| NEONMAP1(vrax1q_v, aarch64_crypto_rax1, 0), |
| NEONMAP2(vrecpe_v, aarch64_neon_frecpe, aarch64_neon_urecpe, 0), |
| NEONMAP2(vrecpeq_v, aarch64_neon_frecpe, aarch64_neon_urecpe, 0), |
| NEONMAP1(vrecps_v, aarch64_neon_frecps, Add1ArgType), |
| NEONMAP1(vrecpsq_v, aarch64_neon_frecps, Add1ArgType), |
| NEONMAP2(vrhadd_v, aarch64_neon_urhadd, aarch64_neon_srhadd, Add1ArgType | UnsignedAlts), |
| NEONMAP2(vrhaddq_v, aarch64_neon_urhadd, aarch64_neon_srhadd, Add1ArgType | UnsignedAlts), |
| NEONMAP1(vrnd32x_v, aarch64_neon_frint32x, Add1ArgType), |
| NEONMAP1(vrnd32xq_v, aarch64_neon_frint32x, Add1ArgType), |
| NEONMAP1(vrnd32z_v, aarch64_neon_frint32z, Add1ArgType), |
| NEONMAP1(vrnd32zq_v, aarch64_neon_frint32z, Add1ArgType), |
| NEONMAP1(vrnd64x_v, aarch64_neon_frint64x, Add1ArgType), |
| NEONMAP1(vrnd64xq_v, aarch64_neon_frint64x, Add1ArgType), |
| NEONMAP1(vrnd64z_v, aarch64_neon_frint64z, Add1ArgType), |
| NEONMAP1(vrnd64zq_v, aarch64_neon_frint64z, Add1ArgType), |
| NEONMAP0(vrndi_v), |
| NEONMAP0(vrndiq_v), |
| NEONMAP2(vrshl_v, aarch64_neon_urshl, aarch64_neon_srshl, Add1ArgType | UnsignedAlts), |
| NEONMAP2(vrshlq_v, aarch64_neon_urshl, aarch64_neon_srshl, Add1ArgType | UnsignedAlts), |
| NEONMAP2(vrshr_n_v, aarch64_neon_urshl, aarch64_neon_srshl, UnsignedAlts), |
| NEONMAP2(vrshrq_n_v, aarch64_neon_urshl, aarch64_neon_srshl, UnsignedAlts), |
| NEONMAP2(vrsqrte_v, aarch64_neon_frsqrte, aarch64_neon_ursqrte, 0), |
| NEONMAP2(vrsqrteq_v, aarch64_neon_frsqrte, aarch64_neon_ursqrte, 0), |
| NEONMAP1(vrsqrts_v, aarch64_neon_frsqrts, Add1ArgType), |
| NEONMAP1(vrsqrtsq_v, aarch64_neon_frsqrts, Add1ArgType), |
| NEONMAP1(vrsubhn_v, aarch64_neon_rsubhn, Add1ArgType), |
| NEONMAP1(vsha1su0q_v, aarch64_crypto_sha1su0, 0), |
| NEONMAP1(vsha1su1q_v, aarch64_crypto_sha1su1, 0), |
| NEONMAP1(vsha256h2q_v, aarch64_crypto_sha256h2, 0), |
| NEONMAP1(vsha256hq_v, aarch64_crypto_sha256h, 0), |
| NEONMAP1(vsha256su0q_v, aarch64_crypto_sha256su0, 0), |
| NEONMAP1(vsha256su1q_v, aarch64_crypto_sha256su1, 0), |
| NEONMAP1(vsha512h2q_v, aarch64_crypto_sha512h2, 0), |
| NEONMAP1(vsha512hq_v, aarch64_crypto_sha512h, 0), |
| NEONMAP1(vsha512su0q_v, aarch64_crypto_sha512su0, 0), |
| NEONMAP1(vsha512su1q_v, aarch64_crypto_sha512su1, 0), |
| NEONMAP0(vshl_n_v), |
| NEONMAP2(vshl_v, aarch64_neon_ushl, aarch64_neon_sshl, Add1ArgType | UnsignedAlts), |
| NEONMAP0(vshll_n_v), |
| NEONMAP0(vshlq_n_v), |
| NEONMAP2(vshlq_v, aarch64_neon_ushl, aarch64_neon_sshl, Add1ArgType | UnsignedAlts), |
| NEONMAP0(vshr_n_v), |
| NEONMAP0(vshrn_n_v), |
| NEONMAP0(vshrq_n_v), |
| NEONMAP1(vsm3partw1q_v, aarch64_crypto_sm3partw1, 0), |
| NEONMAP1(vsm3partw2q_v, aarch64_crypto_sm3partw2, 0), |
| NEONMAP1(vsm3ss1q_v, aarch64_crypto_sm3ss1, 0), |
| NEONMAP1(vsm3tt1aq_v, aarch64_crypto_sm3tt1a, 0), |
| NEONMAP1(vsm3tt1bq_v, aarch64_crypto_sm3tt1b, 0), |
| NEONMAP1(vsm3tt2aq_v, aarch64_crypto_sm3tt2a, 0), |
| NEONMAP1(vsm3tt2bq_v, aarch64_crypto_sm3tt2b, 0), |
| NEONMAP1(vsm4ekeyq_v, aarch64_crypto_sm4ekey, 0), |
| NEONMAP1(vsm4eq_v, aarch64_crypto_sm4e, 0), |
| NEONMAP1(vst1_x2_v, aarch64_neon_st1x2, 0), |
| NEONMAP1(vst1_x3_v, aarch64_neon_st1x3, 0), |
| NEONMAP1(vst1_x4_v, aarch64_neon_st1x4, 0), |
| NEONMAP1(vst1q_x2_v, aarch64_neon_st1x2, 0), |
| NEONMAP1(vst1q_x3_v, aarch64_neon_st1x3, 0), |
| NEONMAP1(vst1q_x4_v, aarch64_neon_st1x4, 0), |
| NEONMAP0(vsubhn_v), |
| NEONMAP0(vtst_v), |
| NEONMAP0(vtstq_v), |
| NEONMAP1(vusdot_v, aarch64_neon_usdot, 0), |
| NEONMAP1(vusdotq_v, aarch64_neon_usdot, 0), |
| NEONMAP1(vusmmlaq_v, aarch64_neon_usmmla, 0), |
| NEONMAP1(vxarq_v, aarch64_crypto_xar, 0), |
| }; |
| |
| static const ARMVectorIntrinsicInfo AArch64SISDIntrinsicMap[] = { |
| NEONMAP1(vabdd_f64, aarch64_sisd_fabd, Add1ArgType), |
| NEONMAP1(vabds_f32, aarch64_sisd_fabd, Add1ArgType), |
| NEONMAP1(vabsd_s64, aarch64_neon_abs, Add1ArgType), |
| NEONMAP1(vaddlv_s32, aarch64_neon_saddlv, AddRetType | Add1ArgType), |
| NEONMAP1(vaddlv_u32, aarch64_neon_uaddlv, AddRetType | Add1ArgType), |
| NEONMAP1(vaddlvq_s32, aarch64_neon_saddlv, AddRetType | Add1ArgType), |
| NEONMAP1(vaddlvq_u32, aarch64_neon_uaddlv, AddRetType | Add1ArgType), |
| NEONMAP1(vaddv_f32, aarch64_neon_faddv, AddRetType | Add1ArgType), |
| NEONMAP1(vaddv_s32, aarch64_neon_saddv, AddRetType | Add1ArgType), |
| NEONMAP1(vaddv_u32, aarch64_neon_uaddv, AddRetType | Add1ArgType), |
| NEONMAP1(vaddvq_f32, aarch64_neon_faddv, AddRetType | Add1ArgType), |
| NEONMAP1(vaddvq_f64, aarch64_neon_faddv, AddRetType | Add1ArgType), |
| NEONMAP1(vaddvq_s32, aarch64_neon_saddv, AddRetType | Add1ArgType), |
| NEONMAP1(vaddvq_s64, aarch64_neon_saddv, AddRetType | Add1ArgType), |
| NEONMAP1(vaddvq_u32, aarch64_neon_uaddv, AddRetType | Add1ArgType), |
| NEONMAP1(vaddvq_u64, aarch64_neon_uaddv, AddRetType | Add1ArgType), |
| NEONMAP1(vcaged_f64, aarch64_neon_facge, AddRetType | Add1ArgType), |
| NEONMAP1(vcages_f32, aarch64_neon_facge, AddRetType | Add1ArgType), |
| NEONMAP1(vcagtd_f64, aarch64_neon_facgt, AddRetType | Add1ArgType), |
| NEONMAP1(vcagts_f32, aarch64_neon_facgt, AddRetType | Add1ArgType), |
| NEONMAP1(vcaled_f64, aarch64_neon_facge, AddRetType | Add1ArgType), |
| NEONMAP1(vcales_f32, aarch64_neon_facge, AddRetType | Add1ArgType), |
| NEONMAP1(vcaltd_f64, aarch64_neon_facgt, AddRetType | Add1ArgType), |
| NEONMAP1(vcalts_f32, aarch64_neon_facgt, AddRetType | Add1ArgType), |
| NEONMAP1(vcvtad_s64_f64, aarch64_neon_fcvtas, AddRetType | Add1ArgType), |
| NEONMAP1(vcvtad_u64_f64, aarch64_neon_fcvtau, AddRetType | Add1ArgType), |
| NEONMAP1(vcvtas_s32_f32, aarch64_neon_fcvtas, AddRetType | Add1ArgType), |
| NEONMAP1(vcvtas_u32_f32, aarch64_neon_fcvtau, AddRetType | Add1ArgType), |
| NEONMAP1(vcvtd_n_f64_s64, aarch64_neon_vcvtfxs2fp, AddRetType | Add1ArgType), |
| NEONMAP1(vcvtd_n_f64_u64, aarch64_neon_vcvtfxu2fp, AddRetType | Add1ArgType), |
| NEONMAP1(vcvtd_n_s64_f64, aarch64_neon_vcvtfp2fxs, AddRetType | Add1ArgType), |
| NEONMAP1(vcvtd_n_u64_f64, aarch64_neon_vcvtfp2fxu, AddRetType | Add1ArgType), |
| NEONMAP1(vcvtd_s64_f64, aarch64_neon_fcvtzs, AddRetType | Add1ArgType), |
| NEONMAP1(vcvtd_u64_f64, aarch64_neon_fcvtzu, AddRetType | Add1ArgType), |
| NEONMAP1(vcvth_bf16_f32, aarch64_neon_bfcvt, 0), |
| NEONMAP1(vcvtmd_s64_f64, aarch64_neon_fcvtms, AddRetType | Add1ArgType), |
| NEONMAP1(vcvtmd_u64_f64, aarch64_neon_fcvtmu, AddRetType | Add1ArgType), |
| NEONMAP1(vcvtms_s32_f32, aarch64_neon_fcvtms, AddRetType | Add1ArgType), |
| NEONMAP1(vcvtms_u32_f32, aarch64_neon_fcvtmu, AddRetType | Add1ArgType), |
| NEONMAP1(vcvtnd_s64_f64, aarch64_neon_fcvtns, AddRetType | Add1ArgType), |
| NEONMAP1(vcvtnd_u64_f64, aarch64_neon_fcvtnu, AddRetType | Add1ArgType), |
| NEONMAP1(vcvtns_s32_f32, aarch64_neon_fcvtns, AddRetType | Add1ArgType), |
| NEONMAP1(vcvtns_u32_f32, aarch64_neon_fcvtnu, AddRetType | Add1ArgType), |
| NEONMAP1(vcvtpd_s64_f64, aarch64_neon_fcvtps, AddRetType | Add1ArgType), |
| NEONMAP1(vcvtpd_u64_f64, aarch64_neon_fcvtpu, AddRetType | Add1ArgType), |
| NEONMAP1(vcvtps_s32_f32, aarch64_neon_fcvtps, AddRetType | Add1ArgType), |
| NEONMAP1(vcvtps_u32_f32, aarch64_neon_fcvtpu, AddRetType | Add1ArgType), |
| NEONMAP1(vcvts_n_f32_s32, aarch64_neon_vcvtfxs2fp, AddRetType | Add1ArgType), |
| NEONMAP1(vcvts_n_f32_u32, aarch64_neon_vcvtfxu2fp, AddRetType | Add1ArgType), |
| NEONMAP1(vcvts_n_s32_f32, aarch64_neon_vcvtfp2fxs, AddRetType | Add1ArgType), |
| NEONMAP1(vcvts_n_u32_f32, aarch64_neon_vcvtfp2fxu, AddRetType | Add1ArgType), |
| NEONMAP1(vcvts_s32_f32, aarch64_neon_fcvtzs, AddRetType | Add1ArgType), |
| NEONMAP1(vcvts_u32_f32, aarch64_neon_fcvtzu, AddRetType | Add1ArgType), |
| NEONMAP1(vcvtxd_f32_f64, aarch64_sisd_fcvtxn, 0), |
| NEONMAP1(vmaxnmv_f32, aarch64_neon_fmaxnmv, AddRetType | Add1ArgType), |
| NEONMAP1(vmaxnmvq_f32, aarch64_neon_fmaxnmv, AddRetType | Add1ArgType), |
| NEONMAP1(vmaxnmvq_f64, aarch64_neon_fmaxnmv, AddRetType | Add1ArgType), |
| NEONMAP1(vmaxv_f32, aarch64_neon_fmaxv, AddRetType | Add1ArgType), |
| NEONMAP1(vmaxv_s32, aarch64_neon_smaxv, AddRetType | Add1ArgType), |
| NEONMAP1(vmaxv_u32, aarch64_neon_umaxv, AddRetType | Add1ArgType), |
| NEONMAP1(vmaxvq_f32, aarch64_neon_fmaxv, AddRetType | Add1ArgType), |
| NEONMAP1(vmaxvq_f64, aarch64_neon_fmaxv, AddRetType | Add1ArgType), |
| NEONMAP1(vmaxvq_s32, aarch64_neon_smaxv, AddRetType | Add1ArgType), |
| NEONMAP1(vmaxvq_u32, aarch64_neon_umaxv, AddRetType | Add1ArgType), |
| NEONMAP1(vminnmv_f32, aarch64_neon_fminnmv, AddRetType | Add1ArgType), |
| NEONMAP1(vminnmvq_f32, aarch64_neon_fminnmv, AddRetType | Add1ArgType), |
| NEONMAP1(vminnmvq_f64, aarch64_neon_fminnmv, AddRetType | Add1ArgType), |
| NEONMAP1(vminv_f32, aarch64_neon_fminv, AddRetType | Add1ArgType), |
| NEONMAP1(vminv_s32, aarch64_neon_sminv, AddRetType | Add1ArgType), |
| NEONMAP1(vminv_u32, aarch64_neon_uminv, AddRetType | Add1ArgType), |
| NEONMAP1(vminvq_f32, aarch64_neon_fminv, AddRetType | Add1ArgType), |
| NEONMAP1(vminvq_f64, aarch64_neon_fminv, AddRetType | Add1ArgType), |
| NEONMAP1(vminvq_s32, aarch64_neon_sminv, AddRetType | Add1ArgType), |
| NEONMAP1(vminvq_u32, aarch64_neon_uminv, AddRetType | Add1ArgType), |
| NEONMAP1(vmull_p64, aarch64_neon_pmull64, 0), |
| NEONMAP1(vmulxd_f64, aarch64_neon_fmulx, Add1ArgType), |
| NEONMAP1(vmulxs_f32, aarch64_neon_fmulx, Add1ArgType), |
| NEONMAP1(vpaddd_s64, aarch64_neon_uaddv, AddRetType | Add1ArgType), |
| NEONMAP1(vpaddd_u64, aarch64_neon_uaddv, AddRetType | Add1ArgType), |
| NEONMAP1(vpmaxnmqd_f64, aarch64_neon_fmaxnmv, AddRetType | Add1ArgType), |
| NEONMAP1(vpmaxnms_f32, aarch64_neon_fmaxnmv, AddRetType | Add1ArgType), |
| NEONMAP1(vpmaxqd_f64, aarch64_neon_fmaxv, AddRetType | Add1ArgType), |
| NEONMAP1(vpmaxs_f32, aarch64_neon_fmaxv, AddRetType | Add1ArgType), |
| NEONMAP1(vpminnmqd_f64, aarch64_neon_fminnmv, AddRetType | Add1ArgType), |
| NEONMAP1(vpminnms_f32, aarch64_neon_fminnmv, AddRetType | Add1ArgType), |
| NEONMAP1(vpminqd_f64, aarch64_neon_fminv, AddRetType | Add1ArgType), |
| NEONMAP1(vpmins_f32, aarch64_neon_fminv, AddRetType | Add1ArgType), |
| NEONMAP1(vqabsb_s8, aarch64_neon_sqabs, Vectorize1ArgType | Use64BitVectors), |
| NEONMAP1(vqabsd_s64, aarch64_neon_sqabs, Add1ArgType), |
| NEONMAP1(vqabsh_s16, aarch64_neon_sqabs, Vectorize1ArgType | Use64BitVectors), |
| NEONMAP1(vqabss_s32, aarch64_neon_sqabs, Add1ArgType), |
| NEONMAP1(vqaddb_s8, aarch64_neon_sqadd, Vectorize1ArgType | Use64BitVectors), |
| NEONMAP1(vqaddb_u8, aarch64_neon_uqadd, Vectorize1ArgType | Use64BitVectors), |
| NEONMAP1(vqaddd_s64, aarch64_neon_sqadd, Add1ArgType), |
| NEONMAP1(vqaddd_u64, aarch64_neon_uqadd, Add1ArgType), |
| NEONMAP1(vqaddh_s16, aarch64_neon_sqadd, Vectorize1ArgType | Use64BitVectors), |
| NEONMAP1(vqaddh_u16, aarch64_neon_uqadd, Vectorize1ArgType | Use64BitVectors), |
| NEONMAP1(vqadds_s32, aarch64_neon_sqadd, Add1ArgType), |
| NEONMAP1(vqadds_u32, aarch64_neon_uqadd, Add1ArgType), |
| NEONMAP1(vqdmulhh_s16, aarch64_neon_sqdmulh, Vectorize1ArgType | Use64BitVectors), |
| NEONMAP1(vqdmulhs_s32, aarch64_neon_sqdmulh, Add1ArgType), |
| NEONMAP1(vqdmullh_s16, aarch64_neon_sqdmull, VectorRet | Use128BitVectors), |
| NEONMAP1(vqdmulls_s32, aarch64_neon_sqdmulls_scalar, 0), |
| NEONMAP1(vqmovnd_s64, aarch64_neon_scalar_sqxtn, AddRetType | Add1ArgType), |
| NEONMAP1(vqmovnd_u64, aarch64_neon_scalar_uqxtn, AddRetType | Add1ArgType), |
| NEONMAP1(vqmovnh_s16, aarch64_neon_sqxtn, VectorRet | Use64BitVectors), |
| NEONMAP1(vqmovnh_u16, aarch64_neon_uqxtn, VectorRet | Use64BitVectors), |
| NEONMAP1(vqmovns_s32, aarch64_neon_sqxtn, VectorRet | Use64BitVectors), |
| NEONMAP1(vqmovns_u32, aarch64_neon_uqxtn, VectorRet | Use64BitVectors), |
| NEONMAP1(vqmovund_s64, aarch64_neon_scalar_sqxtun, AddRetType | Add1ArgType), |
| NEONMAP1(vqmovunh_s16, aarch64_neon_sqxtun, VectorRet | Use64BitVectors), |
| NEONMAP1(vqmovuns_s32, aarch64_neon_sqxtun, VectorRet | Use64BitVectors), |
| NEONMAP1(vqnegb_s8, aarch64_neon_sqneg, Vectorize1ArgType | Use64BitVectors), |
| NEONMAP1(vqnegd_s64, aarch64_neon_sqneg, Add1ArgType), |
| NEONMAP1(vqnegh_s16, aarch64_neon_sqneg, Vectorize1ArgType | Use64BitVectors), |
| NEONMAP1(vqnegs_s32, aarch64_neon_sqneg, Add1ArgType), |
| NEONMAP1(vqrdmulhh_s16, aarch64_neon_sqrdmulh, Vectorize1ArgType | Use64BitVectors), |
| NEONMAP1(vqrdmulhs_s32, aarch64_neon_sqrdmulh, Add1ArgType), |
| NEONMAP1(vqrshlb_s8, aarch64_neon_sqrshl, Vectorize1ArgType | Use64BitVectors), |
| NEONMAP1(vqrshlb_u8, aarch64_neon_uqrshl, Vectorize1ArgType | Use64BitVectors), |
| NEONMAP1(vqrshld_s64, aarch64_neon_sqrshl, Add1ArgType), |
| NEONMAP1(vqrshld_u64, aarch64_neon_uqrshl, Add1ArgType), |
| NEONMAP1(vqrshlh_s16, aarch64_neon_sqrshl, Vectorize1ArgType | Use64BitVectors), |
| NEONMAP1(vqrshlh_u16, aarch64_neon_uqrshl, Vectorize1ArgType | Use64BitVectors), |
| NEONMAP1(vqrshls_s32, aarch64_neon_sqrshl, Add1ArgType), |
| NEONMAP1(vqrshls_u32, aarch64_neon_uqrshl, Add1ArgType), |
| NEONMAP1(vqrshrnd_n_s64, aarch64_neon_sqrshrn, AddRetType), |
| NEONMAP1(vqrshrnd_n_u64, aarch64_neon_uqrshrn, AddRetType), |
| NEONMAP1(vqrshrnh_n_s16, aarch64_neon_sqrshrn, VectorRet | Use64BitVectors), |
| NEONMAP1(vqrshrnh_n_u16, aarch64_neon_uqrshrn, VectorRet | Use64BitVectors), |
| NEONMAP1(vqrshrns_n_s32, aarch64_neon_sqrshrn, VectorRet | Use64BitVectors), |
| NEONMAP1(vqrshrns_n_u32, aarch64_neon_uqrshrn, VectorRet | Use64BitVectors), |
| NEONMAP1(vqrshrund_n_s64, aarch64_neon_sqrshrun, AddRetType), |
| NEONMAP1(vqrshrunh_n_s16, aarch64_neon_sqrshrun, VectorRet | Use64BitVectors), |
| NEONMAP1(vqrshruns_n_s32, aarch64_neon_sqrshrun, VectorRet | Use64BitVectors), |
| NEONMAP1(vqshlb_n_s8, aarch64_neon_sqshl, Vectorize1ArgType | Use64BitVectors), |
| NEONMAP1(vqshlb_n_u8, aarch64_neon_uqshl, Vectorize1ArgType | Use64BitVectors), |
| NEONMAP1(vqshlb_s8, aarch64_neon_sqshl, Vectorize1ArgType | Use64BitVectors), |
| NEONMAP1(vqshlb_u8, aarch64_neon_uqshl, Vectorize1ArgType | Use64BitVectors), |
| NEONMAP1(vqshld_s64, aarch64_neon_sqshl, Add1ArgType), |
| NEONMAP1(vqshld_u64, aarch64_neon_uqshl, Add1ArgType), |
| NEONMAP1(vqshlh_n_s16, aarch64_neon_sqshl, Vectorize1ArgType | Use64BitVectors), |
| NEONMAP1(vqshlh_n_u16, aarch64_neon_uqshl, Vectorize1ArgType | Use64BitVectors), |
| NEONMAP1(vqshlh_s16, aarch64_neon_sqshl, Vectorize1ArgType | Use64BitVectors), |
| NEONMAP1(vqshlh_u16, aarch64_neon_uqshl, Vectorize1ArgType | Use64BitVectors), |
| NEONMAP1(vqshls_n_s32, aarch64_neon_sqshl, Add1ArgType), |
| NEONMAP1(vqshls_n_u32, aarch64_neon_uqshl, Add1ArgType), |
| NEONMAP1(vqshls_s32, aarch64_neon_sqshl, Add1ArgType), |
| NEONMAP1(vqshls_u32, aarch64_neon_uqshl, Add1ArgType), |
| NEONMAP1(vqshlub_n_s8, aarch64_neon_sqshlu, Vectorize1ArgType | Use64BitVectors), |
| NEONMAP1(vqshluh_n_s16, aarch64_neon_sqshlu, Vectorize1ArgType | Use64BitVectors), |
| NEONMAP1(vqshlus_n_s32, aarch64_neon_sqshlu, Add1ArgType), |
| NEONMAP1(vqshrnd_n_s64, aarch64_neon_sqshrn, AddRetType), |
| NEONMAP1(vqshrnd_n_u64, aarch64_neon_uqshrn, AddRetType), |
| NEONMAP1(vqshrnh_n_s16, aarch64_neon_sqshrn, VectorRet | Use64BitVectors), |
| NEONMAP1(vqshrnh_n_u16, aarch64_neon_uqshrn, VectorRet | Use64BitVectors), |
| NEONMAP1(vqshrns_n_s32, aarch64_neon_sqshrn, VectorRet | Use64BitVectors), |
| NEONMAP1(vqshrns_n_u32, aarch64_neon_uqshrn, VectorRet | Use64BitVectors), |
| NEONMAP1(vqshrund_n_s64, aarch64_neon_sqshrun, AddRetType), |
| NEONMAP1(vqshrunh_n_s16, aarch64_neon_sqshrun, VectorRet | Use64BitVectors), |
| NEONMAP1(vqshruns_n_s32, aarch64_neon_sqshrun, VectorRet | Use64BitVectors), |
| NEONMAP1(vqsubb_s8, aarch64_neon_sqsub, Vectorize1ArgType | Use64BitVectors), |
| NEONMAP1(vqsubb_u8, aarch64_neon_uqsub, Vectorize1ArgType | Use64BitVectors), |
| NEONMAP1(vqsubd_s64, aarch64_neon_sqsub, Add1ArgType), |
| NEONMAP1(vqsubd_u64, aarch64_neon_uqsub, Add1ArgType), |
| NEONMAP1(vqsubh_s16, aarch64_neon_sqsub, Vectorize1ArgType | Use64BitVectors), |
| NEONMAP1(vqsubh_u16, aarch64_neon_uqsub, Vectorize1ArgType | Use64BitVectors), |
| NEONMAP1(vqsubs_s32, aarch64_neon_sqsub, Add1ArgType), |
| NEONMAP1(vqsubs_u32, aarch64_neon_uqsub, Add1ArgType), |
| NEONMAP1(vrecped_f64, aarch64_neon_frecpe, Add1ArgType), |
| NEONMAP1(vrecpes_f32, aarch64_neon_frecpe, Add1ArgType), |
| NEONMAP1(vrecpxd_f64, aarch64_neon_frecpx, Add1ArgType), |
| NEONMAP1(vrecpxs_f32, aarch64_neon_frecpx, Add1ArgType), |
| NEONMAP1(vrshld_s64, aarch64_neon_srshl, Add1ArgType), |
| NEONMAP1(vrshld_u64, aarch64_neon_urshl, Add1ArgType), |
| NEONMAP1(vrsqrted_f64, aarch64_neon_frsqrte, Add1ArgType), |
| NEONMAP1(vrsqrtes_f32, aarch64_neon_frsqrte, Add1ArgType), |
| NEONMAP1(vrsqrtsd_f64, aarch64_neon_frsqrts, Add1ArgType), |
| NEONMAP1(vrsqrtss_f32, aarch64_neon_frsqrts, Add1ArgType), |
| NEONMAP1(vsha1cq_u32, aarch64_crypto_sha1c, 0), |
| NEONMAP1(vsha1h_u32, aarch64_crypto_sha1h, 0), |
| NEONMAP1(vsha1mq_u32, aarch64_crypto_sha1m, 0), |
| NEONMAP1(vsha1pq_u32, aarch64_crypto_sha1p, 0), |
| NEONMAP1(vshld_s64, aarch64_neon_sshl, Add1ArgType), |
| NEONMAP1(vshld_u64, aarch64_neon_ushl, Add1ArgType), |
| NEONMAP1(vslid_n_s64, aarch64_neon_vsli, Vectorize1ArgType), |
| NEONMAP1(vslid_n_u64, aarch64_neon_vsli, Vectorize1ArgType), |
| NEONMAP1(vsqaddb_u8, aarch64_neon_usqadd, Vectorize1ArgType | Use64BitVectors), |
| NEONMAP1(vsqaddd_u64, aarch64_neon_usqadd, Add1ArgType), |
| NEONMAP1(vsqaddh_u16, aarch64_neon_usqadd, Vectorize1ArgType | Use64BitVectors), |
| NEONMAP1(vsqadds_u32, aarch64_neon_usqadd, Add1ArgType), |
| NEONMAP1(vsrid_n_s64, aarch64_neon_vsri, Vectorize1ArgType), |
| NEONMAP1(vsrid_n_u64, aarch64_neon_vsri, Vectorize1ArgType), |
| NEONMAP1(vuqaddb_s8, aarch64_neon_suqadd, Vectorize1ArgType | Use64BitVectors), |
| NEONMAP1(vuqaddd_s64, aarch64_neon_suqadd, Add1ArgType), |
| NEONMAP1(vuqaddh_s16, aarch64_neon_suqadd, Vectorize1ArgType | Use64BitVectors), |
| NEONMAP1(vuqadds_s32, aarch64_neon_suqadd, Add1ArgType), |
| // FP16 scalar intrinisics go here. |
| NEONMAP1(vabdh_f16, aarch64_sisd_fabd, Add1ArgType), |
| NEONMAP1(vcvtah_s32_f16, aarch64_neon_fcvtas, AddRetType | Add1ArgType), |
| NEONMAP1(vcvtah_s64_f16, aarch64_neon_fcvtas, AddRetType | Add1ArgType), |
| NEONMAP1(vcvtah_u32_f16, aarch64_neon_fcvtau, AddRetType | Add1ArgType), |
| NEONMAP1(vcvtah_u64_f16, aarch64_neon_fcvtau, AddRetType | Add1ArgType), |
| NEONMAP1(vcvth_n_f16_s32, aarch64_neon_vcvtfxs2fp, AddRetType | Add1ArgType), |
| NEONMAP1(vcvth_n_f16_s64, aarch64_neon_vcvtfxs2fp, AddRetType | Add1ArgType), |
| NEONMAP1(vcvth_n_f16_u32, aarch64_neon_vcvtfxu2fp, AddRetType | Add1ArgType), |
| NEONMAP1(vcvth_n_f16_u64, aarch64_neon_vcvtfxu2fp, AddRetType | Add1ArgType), |
| NEONMAP1(vcvth_n_s32_f16, aarch64_neon_vcvtfp2fxs, AddRetType | Add1ArgType), |
| NEONMAP1(vcvth_n_s64_f16, aarch64_neon_vcvtfp2fxs, AddRetType | Add1ArgType), |
| NEONMAP1(vcvth_n_u32_f16, aarch64_neon_vcvtfp2fxu, AddRetType | Add1ArgType), |
| NEONMAP1(vcvth_n_u64_f16, aarch64_neon_vcvtfp2fxu, AddRetType | Add1ArgType), |
| NEONMAP1(vcvth_s32_f16, aarch64_neon_fcvtzs, AddRetType | Add1ArgType), |
| NEONMAP1(vcvth_s64_f16, aarch64_neon_fcvtzs, AddRetType | Add1ArgType), |
| NEONMAP1(vcvth_u32_f16, aarch64_neon_fcvtzu, AddRetType | Add1ArgType), |
| NEONMAP1(vcvth_u64_f16, aarch64_neon_fcvtzu, AddRetType | Add1ArgType), |
| NEONMAP1(vcvtmh_s32_f16, aarch64_neon_fcvtms, AddRetType | Add1ArgType), |
| NEONMAP1(vcvtmh_s64_f16, aarch64_neon_fcvtms, AddRetType | Add1ArgType), |
| NEONMAP1(vcvtmh_u32_f16, aarch64_neon_fcvtmu, AddRetType | Add1ArgType), |
| NEONMAP1(vcvtmh_u64_f16, aarch64_neon_fcvtmu, AddRetType | Add1ArgType), |
| NEONMAP1(vcvtnh_s32_f16, aarch64_neon_fcvtns, AddRetType | Add1ArgType), |
| NEONMAP1(vcvtnh_s64_f16, aarch64_neon_fcvtns, AddRetType | Add1ArgType), |
| NEONMAP1(vcvtnh_u32_f16, aarch64_neon_fcvtnu, AddRetType | Add1ArgType), |
| NEONMAP1(vcvtnh_u64_f16, aarch64_neon_fcvtnu, AddRetType | Add1ArgType), |
| NEONMAP1(vcvtph_s32_f16, aarch64_neon_fcvtps, AddRetType | Add1ArgType), |
| NEONMAP1(vcvtph_s64_f16, aarch64_neon_fcvtps, AddRetType | Add1ArgType), |
| NEONMAP1(vcvtph_u32_f16, aarch64_neon_fcvtpu, AddRetType | Add1ArgType), |
| NEONMAP1(vcvtph_u64_f16, aarch64_neon_fcvtpu, AddRetType | Add1ArgType), |
| NEONMAP1(vmulxh_f16, aarch64_neon_fmulx, Add1ArgType), |
| NEONMAP1(vrecpeh_f16, aarch64_neon_frecpe, Add1ArgType), |
| NEONMAP1(vrecpxh_f16, aarch64_neon_frecpx, Add1ArgType), |
| NEONMAP1(vrsqrteh_f16, aarch64_neon_frsqrte, Add1ArgType), |
| NEONMAP1(vrsqrtsh_f16, aarch64_neon_frsqrts, Add1ArgType), |
| }; |
| |
| #undef NEONMAP0 |
| #undef NEONMAP1 |
| #undef NEONMAP2 |
| |
| #define SVEMAP1(NameBase, LLVMIntrinsic, TypeModifier) \ |
| { \ |
| #NameBase, SVE::BI__builtin_sve_##NameBase, Intrinsic::LLVMIntrinsic, 0, \ |
| TypeModifier \ |
| } |
| |
| #define SVEMAP2(NameBase, TypeModifier) \ |
| { #NameBase, SVE::BI__builtin_sve_##NameBase, 0, 0, TypeModifier } |
| static const ARMVectorIntrinsicInfo AArch64SVEIntrinsicMap[] = { |
| #define GET_SVE_LLVM_INTRINSIC_MAP |
| #include "clang/Basic/arm_sve_builtin_cg.inc" |
| #undef GET_SVE_LLVM_INTRINSIC_MAP |
| }; |
| |
| #undef SVEMAP1 |
| #undef SVEMAP2 |
| |
| static bool NEONSIMDIntrinsicsProvenSorted = false; |
| |
| static bool AArch64SIMDIntrinsicsProvenSorted = false; |
| static bool AArch64SISDIntrinsicsProvenSorted = false; |
| static bool AArch64SVEIntrinsicsProvenSorted = false; |
| |
| static const ARMVectorIntrinsicInfo * |
| findARMVectorIntrinsicInMap(ArrayRef<ARMVectorIntrinsicInfo> IntrinsicMap, |
| unsigned BuiltinID, bool &MapProvenSorted) { |
| |
| #ifndef NDEBUG |
| if (!MapProvenSorted) { |
| assert(llvm::is_sorted(IntrinsicMap)); |
| MapProvenSorted = true; |
| } |
| #endif |
| |
| const ARMVectorIntrinsicInfo *Builtin = |
| llvm::lower_bound(IntrinsicMap, BuiltinID); |
| |
| if (Builtin != IntrinsicMap.end() && Builtin->BuiltinID == BuiltinID) |
| return Builtin; |
| |
| return nullptr; |
| } |
| |
| Function *CodeGenFunction::LookupNeonLLVMIntrinsic(unsigned IntrinsicID, |
| unsigned Modifier, |
| llvm::Type *ArgType, |
| const CallExpr *E) { |
| int VectorSize = 0; |
| if (Modifier & Use64BitVectors) |
| VectorSize = 64; |
| else if (Modifier & Use128BitVectors) |
| VectorSize = 128; |
| |
| // Return type. |
| SmallVector<llvm::Type *, 3> Tys; |
| if (Modifier & AddRetType) { |
| llvm::Type *Ty = ConvertType(E->getCallReturnType(getContext())); |
| if (Modifier & VectorizeRetType) |
| Ty = llvm::FixedVectorType::get( |
| Ty, VectorSize ? VectorSize / Ty->getPrimitiveSizeInBits() : 1); |
| |
| Tys.push_back(Ty); |
| } |
| |
| // Arguments. |
| if (Modifier & VectorizeArgTypes) { |
| int Elts = VectorSize ? VectorSize / ArgType->getPrimitiveSizeInBits() : 1; |
| ArgType = llvm::FixedVectorType::get(ArgType, Elts); |
| } |
| |
| if (Modifier & (Add1ArgType | Add2ArgTypes)) |
| Tys.push_back(ArgType); |
| |
| if (Modifier & Add2ArgTypes) |
| Tys.push_back(ArgType); |
| |
| if (Modifier & InventFloatType) |
| Tys.push_back(FloatTy); |
| |
| return CGM.getIntrinsic(IntrinsicID, Tys); |
| } |
| |
| static Value *EmitCommonNeonSISDBuiltinExpr( |
| CodeGenFunction &CGF, const ARMVectorIntrinsicInfo &SISDInfo, |
| SmallVectorImpl<Value *> &Ops, const CallExpr *E) { |
| unsigned BuiltinID = SISDInfo.BuiltinID; |
| unsigned int Int = SISDInfo.LLVMIntrinsic; |
| unsigned Modifier = SISDInfo.TypeModifier; |
| const char *s = SISDInfo.NameHint; |
| |
| switch (BuiltinID) { |
| case NEON::BI__builtin_neon_vcled_s64: |
| case NEON::BI__builtin_neon_vcled_u64: |
| case NEON::BI__builtin_neon_vcles_f32: |
| case NEON::BI__builtin_neon_vcled_f64: |
| case NEON::BI__builtin_neon_vcltd_s64: |
| case NEON::BI__builtin_neon_vcltd_u64: |
| case NEON::BI__builtin_neon_vclts_f32: |
| case NEON::BI__builtin_neon_vcltd_f64: |
| case NEON::BI__builtin_neon_vcales_f32: |
| case NEON::BI__builtin_neon_vcaled_f64: |
| case NEON::BI__builtin_neon_vcalts_f32: |
| case NEON::BI__builtin_neon_vcaltd_f64: |
| // Only one direction of comparisons actually exist, cmle is actually a cmge |
| // with swapped operands. The table gives us the right intrinsic but we |
| // still need to do the swap. |
| std::swap(Ops[0], Ops[1]); |
| break; |
| } |
| |
| assert(Int && "Generic code assumes a valid intrinsic"); |
| |
| // Determine the type(s) of this overloaded AArch64 intrinsic. |
| const Expr *Arg = E->getArg(0); |
| llvm::Type *ArgTy = CGF.ConvertType(Arg->getType()); |
| Function *F = CGF.LookupNeonLLVMIntrinsic(Int, Modifier, ArgTy, E); |
| |
| int j = 0; |
| ConstantInt *C0 = ConstantInt::get(CGF.SizeTy, 0); |
| for (Function::const_arg_iterator ai = F->arg_begin(), ae = F->arg_end(); |
| ai != ae; ++ai, ++j) { |
| llvm::Type *ArgTy = ai->getType(); |
| if (Ops[j]->getType()->getPrimitiveSizeInBits() == |
| ArgTy->getPrimitiveSizeInBits()) |
| continue; |
| |
| assert(ArgTy->isVectorTy() && !Ops[j]->getType()->isVectorTy()); |
| // The constant argument to an _n_ intrinsic always has Int32Ty, so truncate |
| // it before inserting. |
| Ops[j] = CGF.Builder.CreateTruncOrBitCast( |
| Ops[j], cast<llvm::VectorType>(ArgTy)->getElementType()); |
| Ops[j] = |
| CGF.Builder.CreateInsertElement(UndefValue::get(ArgTy), Ops[j], C0); |
| } |
| |
| Value *Result = CGF.EmitNeonCall(F, Ops, s); |
| llvm::Type *ResultType = CGF.ConvertType(E->getType()); |
| if (ResultType->getPrimitiveSizeInBits().getFixedSize() < |
| Result->getType()->getPrimitiveSizeInBits().getFixedSize()) |
| return CGF.Builder.CreateExtractElement(Result, C0); |
| |
| return CGF.Builder.CreateBitCast(Result, ResultType, s); |
| } |
| |
| Value *CodeGenFunction::EmitCommonNeonBuiltinExpr( |
| unsigned BuiltinID, unsigned LLVMIntrinsic, unsigned AltLLVMIntrinsic, |
| const char *NameHint, unsigned Modifier, const CallExpr *E, |
| SmallVectorImpl<llvm::Value *> &Ops, Address PtrOp0, Address PtrOp1, |
| llvm::Triple::ArchType Arch) { |
| // Get the last argument, which specifies the vector type. |
| const Expr *Arg = E->getArg(E->getNumArgs() - 1); |
| Optional<llvm::APSInt> NeonTypeConst = |
| Arg->getIntegerConstantExpr(getContext()); |
| if (!NeonTypeConst) |
| return nullptr; |
| |
| // Determine the type of this overloaded NEON intrinsic. |
| NeonTypeFlags Type(NeonTypeConst->getZExtValue()); |
| bool Usgn = Type.isUnsigned(); |
| bool Quad = Type.isQuad(); |
| const bool HasLegalHalfType = getTarget().hasLegalHalfType(); |
| const bool AllowBFloatArgsAndRet = |
| getTargetHooks().getABIInfo().allowBFloatArgsAndRet(); |
| |
| llvm::FixedVectorType *VTy = |
| GetNeonType(this, Type, HasLegalHalfType, false, AllowBFloatArgsAndRet); |
| llvm::Type *Ty = VTy; |
| if (!Ty) |
| return nullptr; |
| |
| auto getAlignmentValue32 = [&](Address addr) -> Value* { |
| return Builder.getInt32(addr.getAlignment().getQuantity()); |
| }; |
| |
| unsigned Int = LLVMIntrinsic; |
| if ((Modifier & UnsignedAlts) && !Usgn) |
| Int = AltLLVMIntrinsic; |
| |
| switch (BuiltinID) { |
| default: break; |
| case NEON::BI__builtin_neon_splat_lane_v: |
| case NEON::BI__builtin_neon_splat_laneq_v: |
| case NEON::BI__builtin_neon_splatq_lane_v: |
| case NEON::BI__builtin_neon_splatq_laneq_v: { |
| auto NumElements = VTy->getElementCount(); |
| if (BuiltinID == NEON::BI__builtin_neon_splatq_lane_v) |
| NumElements = NumElements * 2; |
| if (BuiltinID == NEON::BI__builtin_neon_splat_laneq_v) |
| NumElements = NumElements.divideCoefficientBy(2); |
| |
| Ops[0] = Builder.CreateBitCast(Ops[0], VTy); |
| return EmitNeonSplat(Ops[0], cast<ConstantInt>(Ops[1]), NumElements); |
| } |
| case NEON::BI__builtin_neon_vpadd_v: |
| case NEON::BI__builtin_neon_vpaddq_v: |
| // We don't allow fp/int overloading of intrinsics. |
| if (VTy->getElementType()->isFloatingPointTy() && |
| Int == Intrinsic::aarch64_neon_addp) |
| Int = Intrinsic::aarch64_neon_faddp; |
| break; |
| case NEON::BI__builtin_neon_vabs_v: |
| case NEON::BI__builtin_neon_vabsq_v: |
| if (VTy->getElementType()->isFloatingPointTy()) |
| return EmitNeonCall(CGM.getIntrinsic(Intrinsic::fabs, Ty), Ops, "vabs"); |
| return EmitNeonCall(CGM.getIntrinsic(LLVMIntrinsic, Ty), Ops, "vabs"); |
| case NEON::BI__builtin_neon_vadd_v: |
| case NEON::BI__builtin_neon_vaddq_v: { |
| llvm::Type *VTy = llvm::FixedVectorType::get(Int8Ty, Quad ? 16 : 8); |
| Ops[0] = Builder.CreateBitCast(Ops[0], VTy); |
| Ops[1] = Builder.CreateBitCast(Ops[1], VTy); |
| Ops[0] = Builder.CreateXor(Ops[0], Ops[1]); |
| return Builder.CreateBitCast(Ops[0], Ty); |
| } |
| case NEON::BI__builtin_neon_vaddhn_v: { |
| llvm::FixedVectorType *SrcTy = |
| llvm::FixedVectorType::getExtendedElementVectorType(VTy); |
| |
| // %sum = add <4 x i32> %lhs, %rhs |
| Ops[0] = Builder.CreateBitCast(Ops[0], SrcTy); |
| Ops[1] = Builder.CreateBitCast(Ops[1], SrcTy); |
| Ops[0] = Builder.CreateAdd(Ops[0], Ops[1], "vaddhn"); |
| |
| // %high = lshr <4 x i32> %sum, <i32 16, i32 16, i32 16, i32 16> |
| Constant *ShiftAmt = |
| ConstantInt::get(SrcTy, SrcTy->getScalarSizeInBits() / 2); |
| Ops[0] = Builder.CreateLShr(Ops[0], ShiftAmt, "vaddhn"); |
| |
| // %res = trunc <4 x i32> %high to <4 x i16> |
| return Builder.CreateTrunc(Ops[0], VTy, "vaddhn"); |
| } |
| case NEON::BI__builtin_neon_vcale_v: |
| case NEON::BI__builtin_neon_vcaleq_v: |
| case NEON::BI__builtin_neon_vcalt_v: |
| case NEON::BI__builtin_neon_vcaltq_v: |
| std::swap(Ops[0], Ops[1]); |
| LLVM_FALLTHROUGH; |
| case NEON::BI__builtin_neon_vcage_v: |
| case NEON::BI__builtin_neon_vcageq_v: |
| case NEON::BI__builtin_neon_vcagt_v: |
| case NEON::BI__builtin_neon_vcagtq_v: { |
| llvm::Type *Ty; |
| switch (VTy->getScalarSizeInBits()) { |
| default: llvm_unreachable("unexpected type"); |
| case 32: |
| Ty = FloatTy; |
| break; |
| case 64: |
| Ty = DoubleTy; |
| break; |
| case 16: |
| Ty = HalfTy; |
| break; |
| } |
| auto *VecFlt = llvm::FixedVectorType::get(Ty, VTy->getNumElements()); |
| llvm::Type *Tys[] = { VTy, VecFlt }; |
| Function *F = CGM.getIntrinsic(LLVMIntrinsic, Tys); |
| return EmitNeonCall(F, Ops, NameHint); |
| } |
| case NEON::BI__builtin_neon_vceqz_v: |
| case NEON::BI__builtin_neon_vceqzq_v: |
| return EmitAArch64CompareBuiltinExpr(Ops[0], Ty, ICmpInst::FCMP_OEQ, |
| ICmpInst::ICMP_EQ, "vceqz"); |
| case NEON::BI__builtin_neon_vcgez_v: |
| case NEON::BI__builtin_neon_vcgezq_v: |
| return EmitAArch64CompareBuiltinExpr(Ops[0], Ty, ICmpInst::FCMP_OGE, |
| ICmpInst::ICMP_SGE, "vcgez"); |
| case NEON::BI__builtin_neon_vclez_v: |
| case NEON::BI__builtin_neon_vclezq_v: |
| return EmitAArch64CompareBuiltinExpr(Ops[0], Ty, ICmpInst::FCMP_OLE, |
| ICmpInst::ICMP_SLE, "vclez"); |
| case NEON::BI__builtin_neon_vcgtz_v: |
| case NEON::BI__builtin_neon_vcgtzq_v: |
| return EmitAArch64CompareBuiltinExpr(Ops[0], Ty, ICmpInst::FCMP_OGT, |
| ICmpInst::ICMP_SGT, "vcgtz"); |
| case NEON::BI__builtin_neon_vcltz_v: |
| case NEON::BI__builtin_neon_vcltzq_v: |
| return EmitAArch64CompareBuiltinExpr(Ops[0], Ty, ICmpInst::FCMP_OLT, |
| ICmpInst::ICMP_SLT, "vcltz"); |
| case NEON::BI__builtin_neon_vclz_v: |
| case NEON::BI__builtin_neon_vclzq_v: |
| // We generate target-independent intrinsic, which needs a second argument |
| // for whether or not clz of zero is undefined; on ARM it isn't. |
| Ops.push_back(Builder.getInt1(getTarget().isCLZForZeroUndef())); |
| break; |
| case NEON::BI__builtin_neon_vcvt_f32_v: |
| case NEON::BI__builtin_neon_vcvtq_f32_v: |
| Ops[0] = Builder.CreateBitCast(Ops[0], Ty); |
| Ty = GetNeonType(this, NeonTypeFlags(NeonTypeFlags::Float32, false, Quad), |
| HasLegalHalfType); |
| return Usgn ? Builder.CreateUIToFP(Ops[0], Ty, "vcvt") |
| : Builder.CreateSIToFP(Ops[0], Ty, "vcvt"); |
| case NEON::BI__builtin_neon_vcvt_f16_v: |
| case NEON::BI__builtin_neon_vcvtq_f16_v: |
| Ops[0] = Builder.CreateBitCast(Ops[0], Ty); |
| Ty = GetNeonType(this, NeonTypeFlags(NeonTypeFlags::Float16, false, Quad), |
| HasLegalHalfType); |
| return Usgn ? Builder.CreateUIToFP(Ops[0], Ty, "vcvt") |
| : Builder.CreateSIToFP(Ops[0], Ty, "vcvt"); |
| case NEON::BI__builtin_neon_vcvt_n_f16_v: |
| case NEON::BI__builtin_neon_vcvt_n_f32_v: |
| case NEON::BI__builtin_neon_vcvt_n_f64_v: |
| case NEON::BI__builtin_neon_vcvtq_n_f16_v: |
| case NEON::BI__builtin_neon_vcvtq_n_f32_v: |
| case NEON::BI__builtin_neon_vcvtq_n_f64_v: { |
| llvm::Type *Tys[2] = { GetFloatNeonType(this, Type), Ty }; |
| Int = Usgn ? LLVMIntrinsic : AltLLVMIntrinsic; |
| Function *F = CGM.getIntrinsic(Int, Tys); |
| return EmitNeonCall(F, Ops, "vcvt_n"); |
| } |
| case NEON::BI__builtin_neon_vcvt_n_s16_v: |
| case NEON::BI__builtin_neon_vcvt_n_s32_v: |
| case NEON::BI__builtin_neon_vcvt_n_u16_v: |
| case NEON::BI__builtin_neon_vcvt_n_u32_v: |
| case NEON::BI__builtin_neon_vcvt_n_s64_v: |
| case NEON::BI__builtin_neon_vcvt_n_u64_v: |
| case NEON::BI__builtin_neon_vcvtq_n_s16_v: |
| case NEON::BI__builtin_neon_vcvtq_n_s32_v: |
| case NEON::BI__builtin_neon_vcvtq_n_u16_v: |
| case NEON::BI__builtin_neon_vcvtq_n_u32_v: |
| case NEON::BI__builtin_neon_vcvtq_n_s64_v: |
| case NEON::BI__builtin_neon_vcvtq_n_u64_v: { |
| llvm::Type *Tys[2] = { Ty, GetFloatNeonType(this, Type) }; |
| Function *F = CGM.getIntrinsic(LLVMIntrinsic, Tys); |
| return EmitNeonCall(F, Ops, "vcvt_n"); |
| } |
| case NEON::BI__builtin_neon_vcvt_s32_v: |
| case NEON::BI__builtin_neon_vcvt_u32_v: |
| case NEON::BI__builtin_neon_vcvt_s64_v: |
| case NEON::BI__builtin_neon_vcvt_u64_v: |
| case NEON::BI__builtin_neon_vcvt_s16_v: |
| case NEON::BI__builtin_neon_vcvt_u16_v: |
| case NEON::BI__builtin_neon_vcvtq_s32_v: |
| case NEON::BI__builtin_neon_vcvtq_u32_v: |
| case NEON::BI__builtin_neon_vcvtq_s64_v: |
| case NEON::BI__builtin_neon_vcvtq_u64_v: |
| case NEON::BI__builtin_neon_vcvtq_s16_v: |
| case NEON::BI__builtin_neon_vcvtq_u16_v: { |
| Ops[0] = Builder.CreateBitCast(Ops[0], GetFloatNeonType(this, Type)); |
| return Usgn ? Builder.CreateFPToUI(Ops[0], Ty, "vcvt") |
| : Builder.CreateFPToSI(Ops[0], Ty, "vcvt"); |
| } |
| case NEON::BI__builtin_neon_vcvta_s16_v: |
| case NEON::BI__builtin_neon_vcvta_s32_v: |
| case NEON::BI__builtin_neon_vcvta_s64_v: |
| case NEON::BI__builtin_neon_vcvta_u16_v: |
| case NEON::BI__builtin_neon_vcvta_u32_v: |
| case NEON::BI__builtin_neon_vcvta_u64_v: |
| case NEON::BI__builtin_neon_vcvtaq_s16_v: |
| case NEON::BI__builtin_neon_vcvtaq_s32_v: |
| case NEON::BI__builtin_neon_vcvtaq_s64_v: |
| case NEON::BI__builtin_neon_vcvtaq_u16_v: |
| case NEON::BI__builtin_neon_vcvtaq_u32_v: |
| case NEON::BI__builtin_neon_vcvtaq_u64_v: |
| case NEON::BI__builtin_neon_vcvtn_s16_v: |
| case NEON::BI__builtin_neon_vcvtn_s32_v: |
| case NEON::BI__builtin_neon_vcvtn_s64_v: |
| case NEON::BI__builtin_neon_vcvtn_u16_v: |
| case NEON::BI__builtin_neon_vcvtn_u32_v: |
| case NEON::BI__builtin_neon_vcvtn_u64_v: |
| case NEON::BI__builtin_neon_vcvtnq_s16_v: |
| case NEON::BI__builtin_neon_vcvtnq_s32_v: |
| case NEON::BI__builtin_neon_vcvtnq_s64_v: |
| case NEON::BI__builtin_neon_vcvtnq_u16_v: |
| case NEON::BI__builtin_neon_vcvtnq_u32_v: |
| case NEON::BI__builtin_neon_vcvtnq_u64_v: |
| case NEON::BI__builtin_neon_vcvtp_s16_v: |
| case NEON::BI__builtin_neon_vcvtp_s32_v: |
| case NEON::BI__builtin_neon_vcvtp_s64_v: |
| case NEON::BI__builtin_neon_vcvtp_u16_v: |
| case NEON::BI__builtin_neon_vcvtp_u32_v: |
| case NEON::BI__builtin_neon_vcvtp_u64_v: |
| case NEON::BI__builtin_neon_vcvtpq_s16_v: |
| case NEON::BI__builtin_neon_vcvtpq_s32_v: |
| case NEON::BI__builtin_neon_vcvtpq_s64_v: |
| case NEON::BI__builtin_neon_vcvtpq_u16_v: |
| case NEON::BI__builtin_neon_vcvtpq_u32_v: |
| case NEON::BI__builtin_neon_vcvtpq_u64_v: |
| case NEON::BI__builtin_neon_vcvtm_s16_v: |
| case NEON::BI__builtin_neon_vcvtm_s32_v: |
| case NEON::BI__builtin_neon_vcvtm_s64_v: |
| case NEON::BI__builtin_neon_vcvtm_u16_v: |
| case NEON::BI__builtin_neon_vcvtm_u32_v: |
| case NEON::BI__builtin_neon_vcvtm_u64_v: |
| case NEON::BI__builtin_neon_vcvtmq_s16_v: |
| case NEON::BI__builtin_neon_vcvtmq_s32_v: |
| case NEON::BI__builtin_neon_vcvtmq_s64_v: |
| case NEON::BI__builtin_neon_vcvtmq_u16_v: |
| case NEON::BI__builtin_neon_vcvtmq_u32_v: |
| case NEON::BI__builtin_neon_vcvtmq_u64_v: { |
| llvm::Type *Tys[2] = { Ty, GetFloatNeonType(this, Type) }; |
| return EmitNeonCall(CGM.getIntrinsic(LLVMIntrinsic, Tys), Ops, NameHint); |
| } |
| case NEON::BI__builtin_neon_vcvtx_f32_v: { |
| llvm::Type *Tys[2] = { VTy->getTruncatedElementVectorType(VTy), Ty}; |
| return EmitNeonCall(CGM.getIntrinsic(LLVMIntrinsic, Tys), Ops, NameHint); |
| |
| } |
| case NEON::BI__builtin_neon_vext_v: |
| case NEON::BI__builtin_neon_vextq_v: { |
| int CV = cast<ConstantInt>(Ops[2])->getSExtValue(); |
| SmallVector<int, 16> Indices; |
| for (unsigned i = 0, e = VTy->getNumElements(); i != e; ++i) |
| Indices.push_back(i+CV); |
| |
| Ops[0] = Builder.CreateBitCast(Ops[0], Ty); |
| Ops[1] = Builder.CreateBitCast(Ops[1], Ty); |
| return Builder.CreateShuffleVector(Ops[0], Ops[1], Indices, "vext"); |
| } |
| case NEON::BI__builtin_neon_vfma_v: |
| case NEON::BI__builtin_neon_vfmaq_v: { |
| Ops[0] = Builder.CreateBitCast(Ops[0], Ty); |
| Ops[1] = Builder.CreateBitCast(Ops[1], Ty); |
| Ops[2] = Builder.CreateBitCast(Ops[2], Ty); |
| |
| // NEON intrinsic puts accumulator first, unlike the LLVM fma. |
| return emitCallMaybeConstrainedFPBuiltin( |
| *this, Intrinsic::fma, Intrinsic::experimental_constrained_fma, Ty, |
| {Ops[1], Ops[2], Ops[0]}); |
| } |
| case NEON::BI__builtin_neon_vld1_v: |
| case NEON::BI__builtin_neon_vld1q_v: { |
| llvm::Type *Tys[] = {Ty, Int8PtrTy}; |
| Ops.push_back(getAlignmentValue32(PtrOp0)); |
| return EmitNeonCall(CGM.getIntrinsic(LLVMIntrinsic, Tys), Ops, "vld1"); |
| } |
| case NEON::BI__builtin_neon_vld1_x2_v: |
| case NEON::BI__builtin_neon_vld1q_x2_v: |
| case NEON::BI__builtin_neon_vld1_x3_v: |
| case NEON::BI__builtin_neon_vld1q_x3_v: |
| case NEON::BI__builtin_neon_vld1_x4_v: |
| case NEON::BI__builtin_neon_vld1q_x4_v: { |
| llvm::Type *PTy = llvm::PointerType::getUnqual(VTy->getElementType()); |
| Ops[1] = Builder.CreateBitCast(Ops[1], PTy); |
| llvm::Type *Tys[2] = { VTy, PTy }; |
| Function *F = CGM.getIntrinsic(LLVMIntrinsic, Tys); |
| Ops[1] = Builder.CreateCall(F, Ops[1], "vld1xN"); |
| Ty = llvm::PointerType::getUnqual(Ops[1]->getType()); |
| Ops[0] = Builder.CreateBitCast(Ops[0], Ty); |
| return Builder.CreateDefaultAlignedStore(Ops[1], Ops[0]); |
| } |
| case NEON::BI__builtin_neon_vld2_v: |
| case NEON::BI__builtin_neon_vld2q_v: |
| case NEON::BI__builtin_neon_vld3_v: |
| case NEON::BI__builtin_neon_vld3q_v: |
| case NEON::BI__builtin_neon_vld4_v: |
| case NEON::BI__builtin_neon_vld4q_v: |
| case NEON::BI__builtin_neon_vld2_dup_v: |
| case NEON::BI__builtin_neon_vld2q_dup_v: |
| case NEON::BI__builtin_neon_vld3_dup_v: |
| case NEON::BI__builtin_neon_vld3q_dup_v: |
| case NEON::BI__builtin_neon_vld4_dup_v: |
| case NEON::BI__builtin_neon_vld4q_dup_v: { |
| llvm::Type *Tys[] = {Ty, Int8PtrTy}; |
| Function *F = CGM.getIntrinsic(LLVMIntrinsic, Tys); |
| Value *Align = getAlignmentValue32(PtrOp1); |
| Ops[1] = Builder.CreateCall(F, {Ops[1], Align}, NameHint); |
| Ty = llvm::PointerType::getUnqual(Ops[1]->getType()); |
| Ops[0] = Builder.CreateBitCast(Ops[0], Ty); |
| return Builder.CreateDefaultAlignedStore(Ops[1], Ops[0]); |
| } |
| case NEON::BI__builtin_neon_vld1_dup_v: |
| case NEON::BI__builtin_neon_vld1q_dup_v: { |
| Value *V = UndefValue::get(Ty); |
| Ty = llvm::PointerType::getUnqual(VTy->getElementType()); |
| PtrOp0 = Builder.CreateBitCast(PtrOp0, Ty); |
| LoadInst *Ld = Builder.CreateLoad(PtrOp0); |
| llvm::Constant *CI = ConstantInt::get(SizeTy, 0); |
| Ops[0] = Builder.CreateInsertElement(V, Ld, CI); |
| return EmitNeonSplat(Ops[0], CI); |
| } |
| case NEON::BI__builtin_neon_vld2_lane_v: |
| case NEON::BI__builtin_neon_vld2q_lane_v: |
| case NEON::BI__builtin_neon_vld3_lane_v: |
| case NEON::BI__builtin_neon_vld3q_lane_v: |
| case NEON::BI__builtin_neon_vld4_lane_v: |
| case NEON::BI__builtin_neon_vld4q_lane_v: { |
| llvm::Type *Tys[] = {Ty, Int8PtrTy}; |
| Function *F = CGM.getIntrinsic(LLVMIntrinsic, Tys); |
| for (unsigned I = 2; I < Ops.size() - 1; ++I) |
| Ops[I] = Builder.CreateBitCast(Ops[I], Ty); |
| Ops.push_back(getAlignmentValue32(PtrOp1)); |
| Ops[1] = Builder.CreateCall(F, makeArrayRef(Ops).slice(1), NameHint); |
| Ty = llvm::PointerType::getUnqual(Ops[1]->getType()); |
| Ops[0] = Builder.CreateBitCast(Ops[0], Ty); |
| return Builder.CreateDefaultAlignedStore(Ops[1], Ops[0]); |
| } |
| case NEON::BI__builtin_neon_vmovl_v: { |
| llvm::FixedVectorType *DTy = |
| llvm::FixedVectorType::getTruncatedElementVectorType(VTy); |
| Ops[0] = Builder.CreateBitCast(Ops[0], DTy); |
| if (Usgn) |
| return Builder.CreateZExt(Ops[0], Ty, "vmovl"); |
| return Builder.CreateSExt(Ops[0], Ty, "vmovl"); |
| } |
| case NEON::BI__builtin_neon_vmovn_v: { |
| llvm::FixedVectorType *QTy = |
| llvm::FixedVectorType::getExtendedElementVectorType(VTy); |
| Ops[0] = Builder.CreateBitCast(Ops[0], QTy); |
| return Builder.CreateTrunc(Ops[0], Ty, "vmovn"); |
| } |
| case NEON::BI__builtin_neon_vmull_v: |
| // FIXME: the integer vmull operations could be emitted in terms of pure |
| // LLVM IR (2 exts followed by a mul). Unfortunately LLVM has a habit of |
| // hoisting the exts outside loops. Until global ISel comes along that can |
| // see through such movement this leads to bad CodeGen. So we need an |
| // intrinsic for now. |
| Int = Usgn ? Intrinsic::arm_neon_vmullu : Intrinsic::arm_neon_vmulls; |
| Int = Type.isPoly() ? (unsigned)Intrinsic::arm_neon_vmullp : Int; |
| return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vmull"); |
| case NEON::BI__builtin_neon_vpadal_v: |
| case NEON::BI__builtin_neon_vpadalq_v: { |
| // The source operand type has twice as many elements of half the size. |
| unsigned EltBits = VTy->getElementType()->getPrimitiveSizeInBits(); |
| llvm::Type *EltTy = |
| llvm::IntegerType::get(getLLVMContext(), EltBits / 2); |
| auto *NarrowTy = |
| llvm::FixedVectorType::get(EltTy, VTy->getNumElements() * 2); |
| llvm::Type *Tys[2] = { Ty, NarrowTy }; |
| return EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, NameHint); |
| } |
| case NEON::BI__builtin_neon_vpaddl_v: |
| case NEON::BI__builtin_neon_vpaddlq_v: { |
| // The source operand type has twice as many elements of half the size. |
| unsigned EltBits = VTy->getElementType()->getPrimitiveSizeInBits(); |
| llvm::Type *EltTy = llvm::IntegerType::get(getLLVMContext(), EltBits / 2); |
| auto *NarrowTy = |
| llvm::FixedVectorType::get(EltTy, VTy->getNumElements() * 2); |
| llvm::Type *Tys[2] = { Ty, NarrowTy }; |
| return EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vpaddl"); |
| } |
| case NEON::BI__builtin_neon_vqdmlal_v: |
| case NEON::BI__builtin_neon_vqdmlsl_v: { |
| SmallVector<Value *, 2> MulOps(Ops.begin() + 1, Ops.end()); |
| Ops[1] = |
| EmitNeonCall(CGM.getIntrinsic(LLVMIntrinsic, Ty), MulOps, "vqdmlal"); |
| Ops.resize(2); |
| return EmitNeonCall(CGM.getIntrinsic(AltLLVMIntrinsic, Ty), Ops, NameHint); |
| } |
| case NEON::BI__builtin_neon_vqdmulhq_lane_v: |
| case NEON::BI__builtin_neon_vqdmulh_lane_v: |
| case NEON::BI__builtin_neon_vqrdmulhq_lane_v: |
| case NEON::BI__builtin_neon_vqrdmulh_lane_v: { |
| auto *RTy = cast<llvm::FixedVectorType>(Ty); |
| if (BuiltinID == NEON::BI__builtin_neon_vqdmulhq_lane_v || |
| BuiltinID == NEON::BI__builtin_neon_vqrdmulhq_lane_v) |
| RTy = llvm::FixedVectorType::get(RTy->getElementType(), |
| RTy->getNumElements() * 2); |
| llvm::Type *Tys[2] = { |
| RTy, GetNeonType(this, NeonTypeFlags(Type.getEltType(), false, |
| /*isQuad*/ false))}; |
| return EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, NameHint); |
| } |
| case NEON::BI__builtin_neon_vqdmulhq_laneq_v: |
| case NEON::BI__builtin_neon_vqdmulh_laneq_v: |
| case NEON::BI__builtin_neon_vqrdmulhq_laneq_v: |
| case NEON::BI__builtin_neon_vqrdmulh_laneq_v: { |
| llvm::Type *Tys[2] = { |
| Ty, GetNeonType(this, NeonTypeFlags(Type.getEltType(), false, |
| /*isQuad*/ true))}; |
| return EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, NameHint); |
| } |
| case NEON::BI__builtin_neon_vqshl_n_v: |
| case NEON::BI__builtin_neon_vqshlq_n_v: |
| return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vqshl_n", |
| 1, false); |
| case NEON::BI__builtin_neon_vqshlu_n_v: |
| case NEON::BI__builtin_neon_vqshluq_n_v: |
| return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vqshlu_n", |
| 1, false); |
| case NEON::BI__builtin_neon_vrecpe_v: |
| case NEON::BI__builtin_neon_vrecpeq_v: |
| case NEON::BI__builtin_neon_vrsqrte_v: |
| case NEON::BI__builtin_neon_vrsqrteq_v: |
| Int = Ty->isFPOrFPVectorTy() ? LLVMIntrinsic : AltLLVMIntrinsic; |
| return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, NameHint); |
| case NEON::BI__builtin_neon_vrndi_v: |
| case NEON::BI__builtin_neon_vrndiq_v: |
| Int = Builder.getIsFPConstrained() |
| ? Intrinsic::experimental_constrained_nearbyint |
| : Intrinsic::nearbyint; |
| return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, NameHint); |
| case NEON::BI__builtin_neon_vrshr_n_v: |
| case NEON::BI__builtin_neon_vrshrq_n_v: |
| return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vrshr_n", |
| 1, true); |
| case NEON::BI__builtin_neon_vsha512hq_v: |
| case NEON::BI__builtin_neon_vsha512h2q_v: |
| case NEON::BI__builtin_neon_vsha512su0q_v: |
| case NEON::BI__builtin_neon_vsha512su1q_v: { |
| Function *F = CGM.getIntrinsic(Int); |
| return EmitNeonCall(F, Ops, ""); |
| } |
| case NEON::BI__builtin_neon_vshl_n_v: |
| case NEON::BI__builtin_neon_vshlq_n_v: |
| Ops[1] = EmitNeonShiftVector(Ops[1], Ty, false); |
| return Builder.CreateShl(Builder.CreateBitCast(Ops[0],Ty), Ops[1], |
| "vshl_n"); |
| case NEON::BI__builtin_neon_vshll_n_v: { |
| llvm::FixedVectorType *SrcTy = |
| llvm::FixedVectorType::getTruncatedElementVectorType(VTy); |
| Ops[0] = Builder.CreateBitCast(Ops[0], SrcTy); |
| if (Usgn) |
| Ops[0] = Builder.CreateZExt(Ops[0], VTy); |
| else |
| Ops[0] = Builder.CreateSExt(Ops[0], VTy); |
| Ops[1] = EmitNeonShiftVector(Ops[1], VTy, false); |
| return Builder.CreateShl(Ops[0], Ops[1], "vshll_n"); |
| } |
| case NEON::BI__builtin_neon_vshrn_n_v: { |
| llvm::FixedVectorType *SrcTy = |
| llvm::FixedVectorType::getExtendedElementVectorType(VTy); |
| Ops[0] = Builder.CreateBitCast(Ops[0], SrcTy); |
| Ops[1] = EmitNeonShiftVector(Ops[1], SrcTy, false); |
| if (Usgn) |
| Ops[0] = Builder.CreateLShr(Ops[0], Ops[1]); |
| else |
| Ops[0] = Builder.CreateAShr(Ops[0], Ops[1]); |
| return Builder.CreateTrunc(Ops[0], Ty, "vshrn_n"); |
| } |
| case NEON::BI__builtin_neon_vshr_n_v: |
| case NEON::BI__builtin_neon_vshrq_n_v: |
| return EmitNeonRShiftImm(Ops[0], Ops[1], Ty, Usgn, "vshr_n"); |
| case NEON::BI__builtin_neon_vst1_v: |
| case NEON::BI__builtin_neon_vst1q_v: |
| case NEON::BI__builtin_neon_vst2_v: |
| case NEON::BI__builtin_neon_vst2q_v: |
| case NEON::BI__builtin_neon_vst3_v: |
| case NEON::BI__builtin_neon_vst3q_v: |
| case NEON::BI__builtin_neon_vst4_v: |
| case NEON::BI__builtin_neon_vst4q_v: |
| case NEON::BI__builtin_neon_vst2_lane_v: |
| case NEON::BI__builtin_neon_vst2q_lane_v: |
| case NEON::BI__builtin_neon_vst3_lane_v: |
| case NEON::BI__builtin_neon_vst3q_lane_v: |
| case NEON::BI__builtin_neon_vst4_lane_v: |
| case NEON::BI__builtin_neon_vst4q_lane_v: { |
| llvm::Type *Tys[] = {Int8PtrTy, Ty}; |
| Ops.push_back(getAlignmentValue32(PtrOp0)); |
| return EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, ""); |
| } |
| case NEON::BI__builtin_neon_vsm3partw1q_v: |
| case NEON::BI__builtin_neon_vsm3partw2q_v: |
| case NEON::BI__builtin_neon_vsm3ss1q_v: |
| case NEON::BI__builtin_neon_vsm4ekeyq_v: |
| case NEON::BI__builtin_neon_vsm4eq_v: { |
| Function *F = CGM.getIntrinsic(Int); |
| return EmitNeonCall(F, Ops, ""); |
| } |
| case NEON::BI__builtin_neon_vsm3tt1aq_v: |
| case NEON::BI__builtin_neon_vsm3tt1bq_v: |
| case NEON::BI__builtin_neon_vsm3tt2aq_v: |
| case NEON::BI__builtin_neon_vsm3tt2bq_v: { |
| Function *F = CGM.getIntrinsic(Int); |
| Ops[3] = Builder.CreateZExt(Ops[3], Int64Ty); |
| return EmitNeonCall(F, Ops, ""); |
| } |
| case NEON::BI__builtin_neon_vst1_x2_v: |
| case NEON::BI__builtin_neon_vst1q_x2_v: |
| case NEON::BI__builtin_neon_vst1_x3_v: |
| case NEON::BI__builtin_neon_vst1q_x3_v: |
| case NEON::BI__builtin_neon_vst1_x4_v: |
| case NEON::BI__builtin_neon_vst1q_x4_v: { |
| llvm::Type *PTy = llvm::PointerType::getUnqual(VTy->getElementType()); |
| // TODO: Currently in AArch32 mode the pointer operand comes first, whereas |
| // in AArch64 it comes last. We may want to stick to one or another. |
| if (Arch == llvm::Triple::aarch64 || Arch == llvm::Triple::aarch64_be || |
| Arch == llvm::Triple::aarch64_32) { |
| llvm::Type *Tys[2] = { VTy, PTy }; |
| std::rotate(Ops.begin(), Ops.begin() + 1, Ops.end()); |
| return EmitNeonCall(CGM.getIntrinsic(LLVMIntrinsic, Tys), Ops, ""); |
| } |
| llvm::Type *Tys[2] = { PTy, VTy }; |
| return EmitNeonCall(CGM.getIntrinsic(LLVMIntrinsic, Tys), Ops, ""); |
| } |
| case NEON::BI__builtin_neon_vsubhn_v: { |
| llvm::FixedVectorType *SrcTy = |
| llvm::FixedVectorType::getExtendedElementVectorType(VTy); |
| |
| // %sum = add <4 x i32> %lhs, %rhs |
| Ops[0] = Builder.CreateBitCast(Ops[0], SrcTy); |
| Ops[1] = Builder.CreateBitCast(Ops[1], SrcTy); |
| Ops[0] = Builder.CreateSub(Ops[0], Ops[1], "vsubhn"); |
| |
| // %high = lshr <4 x i32> %sum, <i32 16, i32 16, i32 16, i32 16> |
| Constant *ShiftAmt = |
| ConstantInt::get(SrcTy, SrcTy->getScalarSizeInBits() / 2); |
| Ops[0] = Builder.CreateLShr(Ops[0], ShiftAmt, "vsubhn"); |
| |
| // %res = trunc <4 x i32> %high to <4 x i16> |
| return Builder.CreateTrunc(Ops[0], VTy, "vsubhn"); |
| } |
| case NEON::BI__builtin_neon_vtrn_v: |
| case NEON::BI__builtin_neon_vtrnq_v: { |
| Ops[0] = Builder.CreateBitCast(Ops[0], llvm::PointerType::getUnqual(Ty)); |
| Ops[1] = Builder.CreateBitCast(Ops[1], Ty); |
| Ops[2] = Builder.CreateBitCast(Ops[2], Ty); |
| Value *SV = nullptr; |
| |
| for (unsigned vi = 0; vi != 2; ++vi) { |
| SmallVector<int, 16> Indices; |
| for (unsigned i = 0, e = VTy->getNumElements(); i != e; i += 2) { |
| Indices.push_back(i+vi); |
| Indices.push_back(i+e+vi); |
| } |
| Value *Addr = Builder.CreateConstInBoundsGEP1_32(Ty, Ops[0], vi); |
| SV = Builder.CreateShuffleVector(Ops[1], Ops[2], Indices, "vtrn"); |
| SV = Builder.CreateDefaultAlignedStore(SV, Addr); |
| } |
| return SV; |
| } |
| case NEON::BI__builtin_neon_vtst_v: |
| case NEON::BI__builtin_neon_vtstq_v: { |
| Ops[0] = Builder.CreateBitCast(Ops[0], Ty); |
| Ops[1] = Builder.CreateBitCast(Ops[1], Ty); |
| Ops[0] = Builder.CreateAnd(Ops[0], Ops[1]); |
| Ops[0] = Builder.CreateICmp(ICmpInst::ICMP_NE, Ops[0], |
| ConstantAggregateZero::get(Ty)); |
| return Builder.CreateSExt(Ops[0], Ty, "vtst"); |
| } |
| case NEON::BI__builtin_neon_vuzp_v: |
| case NEON::BI__builtin_neon_vuzpq_v: { |
| Ops[0] = Builder.CreateBitCast(Ops[0], llvm::PointerType::getUnqual(Ty)); |
| Ops[1] = Builder.CreateBitCast(Ops[1], Ty); |
| Ops[2] = Builder.CreateBitCast(Ops[2], Ty); |
| Value *SV = nullptr; |
| |
| for (unsigned vi = 0; vi != 2; ++vi) { |
| SmallVector<int, 16> Indices; |
| for (unsigned i = 0, e = VTy->getNumElements(); i != e; ++i) |
| Indices.push_back(2*i+vi); |
| |
| Value *Addr = Builder.CreateConstInBoundsGEP1_32(Ty, Ops[0], vi); |
| SV = Builder.CreateShuffleVector(Ops[1], Ops[2], Indices, "vuzp"); |
| SV = Builder.CreateDefaultAlignedStore(SV, Addr); |
| } |
| return SV; |
| } |
| case NEON::BI__builtin_neon_vxarq_v: { |
| Function *F = CGM.getIntrinsic(Int); |
| Ops[2] = Builder.CreateZExt(Ops[2], Int64Ty); |
| return EmitNeonCall(F, Ops, ""); |
| } |
| case NEON::BI__builtin_neon_vzip_v: |
| case NEON::BI__builtin_neon_vzipq_v: { |
| Ops[0] = Builder.CreateBitCast(Ops[0], llvm::PointerType::getUnqual(Ty)); |
| Ops[1] = Builder.CreateBitCast(Ops[1], Ty); |
| Ops[2] = Builder.CreateBitCast(Ops[2], Ty); |
| Value *SV = nullptr; |
| |
| for (unsigned vi = 0; vi != 2; ++vi) { |
| SmallVector<int, 16> Indices; |
| for (unsigned i = 0, e = VTy->getNumElements(); i != e; i += 2) { |
| Indices.push_back((i + vi*e) >> 1); |
| Indices.push_back(((i + vi*e) >> 1)+e); |
| } |
| Value *Addr = Builder.CreateConstInBoundsGEP1_32(Ty, Ops[0], vi); |
| SV = Builder.CreateShuffleVector(Ops[1], Ops[2], Indices, "vzip"); |
| SV = Builder.CreateDefaultAlignedStore(SV, Addr); |
| } |
| return SV; |
| } |
| case NEON::BI__builtin_neon_vdot_v: |
| case NEON::BI__builtin_neon_vdotq_v: { |
| auto *InputTy = |
| llvm::FixedVectorType::get(Int8Ty, Ty->getPrimitiveSizeInBits() / 8); |
| llvm::Type *Tys[2] = { Ty, InputTy }; |
| Int = Usgn ? LLVMIntrinsic : AltLLVMIntrinsic; |
| return EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vdot"); |
| } |
| case NEON::BI__builtin_neon_vfmlal_low_v: |
| case NEON::BI__builtin_neon_vfmlalq_low_v: { |
| auto *InputTy = |
| llvm::FixedVectorType::get(HalfTy, Ty->getPrimitiveSizeInBits() / 16); |
| llvm::Type *Tys[2] = { Ty, InputTy }; |
| return EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vfmlal_low"); |
| } |
| case NEON::BI__builtin_neon_vfmlsl_low_v: |
| case NEON::BI__builtin_neon_vfmlslq_low_v: { |
| auto *InputTy = |
| llvm::FixedVectorType::get(HalfTy, Ty->getPrimitiveSizeInBits() / 16); |
| llvm::Type *Tys[2] = { Ty, InputTy }; |
| return EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vfmlsl_low"); |
| } |
| case NEON::BI__builtin_neon_vfmlal_high_v: |
| case NEON::BI__builtin_neon_vfmlalq_high_v: { |
| auto *InputTy = |
| llvm::FixedVectorType::get(HalfTy, Ty->getPrimitiveSizeInBits() / 16); |
| llvm::Type *Tys[2] = { Ty, InputTy }; |
| return EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vfmlal_high"); |
| } |
| case NEON::BI__builtin_neon_vfmlsl_high_v: |
| case NEON::BI__builtin_neon_vfmlslq_high_v: { |
| auto *InputTy = |
| llvm::FixedVectorType::get(HalfTy, Ty->getPrimitiveSizeInBits() / 16); |
| llvm::Type *Tys[2] = { Ty, InputTy }; |
| return EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vfmlsl_high"); |
| } |
| case NEON::BI__builtin_neon_vmmlaq_v: { |
| auto *InputTy = |
| llvm::FixedVectorType::get(Int8Ty, Ty->getPrimitiveSizeInBits() / 8); |
| llvm::Type *Tys[2] = { Ty, InputTy }; |
| Int = Usgn ? LLVMIntrinsic : AltLLVMIntrinsic; |
| return EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vmmla"); |
| } |
| case NEON::BI__builtin_neon_vusmmlaq_v: { |
| auto *InputTy = |
| llvm::FixedVectorType::get(Int8Ty, Ty->getPrimitiveSizeInBits() / 8); |
| llvm::Type *Tys[2] = { Ty, InputTy }; |
| return EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vusmmla"); |
| } |
| case NEON::BI__builtin_neon_vusdot_v: |
| case NEON::BI__builtin_neon_vusdotq_v: { |
| auto *InputTy = |
| llvm::FixedVectorType::get(Int8Ty, Ty->getPrimitiveSizeInBits() / 8); |
| llvm::Type *Tys[2] = { Ty, InputTy }; |
| return EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vusdot"); |
| } |
| case NEON::BI__builtin_neon_vbfdot_v: |
| case NEON::BI__builtin_neon_vbfdotq_v: { |
| llvm::Type *InputTy = |
| llvm::FixedVectorType::get(BFloatTy, Ty->getPrimitiveSizeInBits() / 16); |
| llvm::Type *Tys[2] = { Ty, InputTy }; |
| return EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vbfdot"); |
| } |
| case NEON::BI__builtin_neon___a32_vcvt_bf16_v: { |
| llvm::Type *Tys[1] = { Ty }; |
| Function *F = CGM.getIntrinsic(Int, Tys); |
| return EmitNeonCall(F, Ops, "vcvtfp2bf"); |
| } |
| |
| } |
| |
| assert(Int && "Expected valid intrinsic number"); |
| |
| // Determine the type(s) of this overloaded AArch64 intrinsic. |
| Function *F = LookupNeonLLVMIntrinsic(Int, Modifier, Ty, E); |
| |
| Value *Result = EmitNeonCall(F, Ops, NameHint); |
| llvm::Type *ResultType = ConvertType(E->getType()); |
| // AArch64 intrinsic one-element vector type cast to |
| // scalar type expected by the builtin |
| return Builder.CreateBitCast(Result, ResultType, NameHint); |
| } |
| |
| Value *CodeGenFunction::EmitAArch64CompareBuiltinExpr( |
| Value *Op, llvm::Type *Ty, const CmpInst::Predicate Fp, |
| const CmpInst::Predicate Ip, const Twine &Name) { |
| llvm::Type *OTy = Op->getType(); |
| |
| // FIXME: this is utterly horrific. We should not be looking at previous |
| // codegen context to find out what needs doing. Unfortunately TableGen |
| // currently gives us exactly the same calls for vceqz_f32 and vceqz_s32 |
| // (etc). |
| if (BitCastInst *BI = dyn_cast<BitCastInst>(Op)) |
| OTy = BI->getOperand(0)->getType(); |
| |
| Op = Builder.CreateBitCast(Op, OTy); |
| if (OTy->getScalarType()->isFloatingPointTy()) { |
| Op = Builder.CreateFCmp(Fp, Op, Constant::getNullValue(OTy)); |
| } else { |
| Op = Builder.CreateICmp(Ip, Op, Constant::getNullValue(OTy)); |
| } |
| return Builder.CreateSExt(Op, Ty, Name); |
| } |
| |
| static Value *packTBLDVectorList(CodeGenFunction &CGF, ArrayRef<Value *> Ops, |
| Value *ExtOp, Value *IndexOp, |
| llvm::Type *ResTy, unsigned IntID, |
| const char *Name) { |
| SmallVector<Value *, 2> TblOps; |
| if (ExtOp) |
| TblOps.push_back(ExtOp); |
| |
| // Build a vector containing sequential number like (0, 1, 2, ..., 15) |
| SmallVector<int, 16> Indices; |
| auto *TblTy = cast<llvm::FixedVectorType>(Ops[0]->getType()); |
| for (unsigned i = 0, e = TblTy->getNumElements(); i != e; ++i) { |
| Indices.push_back(2*i); |
| Indices.push_back(2*i+1); |
| } |
| |
| int PairPos = 0, End = Ops.size() - 1; |
| while (PairPos < End) { |
| TblOps.push_back(CGF.Builder.CreateShuffleVector(Ops[PairPos], |
| Ops[PairPos+1], Indices, |
| Name)); |
| PairPos += 2; |
| } |
| |
| // If there's an odd number of 64-bit lookup table, fill the high 64-bit |
| // of the 128-bit lookup table with zero. |
| if (PairPos == End) { |
| Value *ZeroTbl = ConstantAggregateZero::get(TblTy); |
| TblOps.push_back(CGF.Builder.CreateShuffleVector(Ops[PairPos], |
| ZeroTbl, Indices, Name)); |
| } |
| |
| Function *TblF; |
| TblOps.push_back(IndexOp); |
| TblF = CGF.CGM.getIntrinsic(IntID, ResTy); |
| |
| return CGF.EmitNeonCall(TblF, TblOps, Name); |
| } |
| |
| Value *CodeGenFunction::GetValueForARMHint(unsigned BuiltinID) { |
| unsigned Value; |
| switch (BuiltinID) { |
| default: |
| return nullptr; |
| case ARM::BI__builtin_arm_nop: |
| Value = 0; |
| break; |
| case ARM::BI__builtin_arm_yield: |
| case ARM::BI__yield: |
| Value = 1; |
| break; |
| case ARM::BI__builtin_arm_wfe: |
| case ARM::BI__wfe: |
| Value = 2; |
| break; |
| case ARM::BI__builtin_arm_wfi: |
| case ARM::BI__wfi: |
| Value = 3; |
| break; |
| case ARM::BI__builtin_arm_sev: |
| case ARM::BI__sev: |
| Value = 4; |
| break; |
| case ARM::BI__builtin_arm_sevl: |
| case ARM::BI__sevl: |
| Value = 5; |
| break; |
| } |
| |
| return Builder.CreateCall(CGM.getIntrinsic(Intrinsic::arm_hint), |
| llvm::ConstantInt::get(Int32Ty, Value)); |
| } |
| |
| enum SpecialRegisterAccessKind { |
| NormalRead, |
| VolatileRead, |
| Write, |
| }; |
| |
| // Generates the IR for the read/write special register builtin, |
| // ValueType is the type of the value that is to be written or read, |
| // RegisterType is the type of the register being written to or read from. |
| static Value *EmitSpecialRegisterBuiltin(CodeGenFunction &CGF, |
| const CallExpr *E, |
| llvm::Type *RegisterType, |
| llvm::Type *ValueType, |
| SpecialRegisterAccessKind AccessKind, |
| StringRef SysReg = "") { |
| // write and register intrinsics only support 32 and 64 bit operations. |
| assert((RegisterType->isIntegerTy(32) || RegisterType->isIntegerTy(64)) |
| && "Unsupported size for register."); |
| |
| CodeGen::CGBuilderTy &Builder = CGF.Builder; |
| CodeGen::CodeGenModule &CGM = CGF.CGM; |
| LLVMContext &Context = CGM.getLLVMContext(); |
| |
| if (SysReg.empty()) { |
| const Expr *SysRegStrExpr = E->getArg(0)->IgnoreParenCasts(); |
| SysReg = cast<clang::StringLiteral>(SysRegStrExpr)->getString(); |
| } |
| |
| llvm::Metadata *Ops[] = { llvm::MDString::get(Context, SysReg) }; |
| llvm::MDNode *RegName = llvm::MDNode::get(Context, Ops); |
| llvm::Value *Metadata = llvm::MetadataAsValue::get(Context, RegName); |
| |
| llvm::Type *Types[] = { RegisterType }; |
| |
| bool MixedTypes = RegisterType->isIntegerTy(64) && ValueType->isIntegerTy(32); |
| assert(!(RegisterType->isIntegerTy(32) && ValueType->isIntegerTy(64)) |
| && "Can't fit 64-bit value in 32-bit register"); |
| |
| if (AccessKind != Write) { |
| assert(AccessKind == NormalRead || AccessKind == VolatileRead); |
| llvm::Function *F = CGM.getIntrinsic( |
| AccessKind == VolatileRead ? llvm::Intrinsic::read_volatile_register |
| : llvm::Intrinsic::read_register, |
| Types); |
| llvm::Value *Call = Builder.CreateCall(F, Metadata); |
| |
| if (MixedTypes) |
| // Read into 64 bit register and then truncate result to 32 bit. |
| return Builder.CreateTrunc(Call, ValueType); |
| |
| if (ValueType->isPointerTy()) |
| // Have i32/i64 result (Call) but want to return a VoidPtrTy (i8*). |
| return Builder.CreateIntToPtr(Call, ValueType); |
| |
| return Call; |
| } |
| |
| llvm::Function *F = CGM.getIntrinsic(llvm::Intrinsic::write_register, Types); |
| llvm::Value *ArgValue = CGF.EmitScalarExpr(E->getArg(1)); |
| if (MixedTypes) { |
| // Extend 32 bit write value to 64 bit to pass to write. |
| ArgValue = Builder.CreateZExt(ArgValue, RegisterType); |
| return Builder.CreateCall(F, { Metadata, ArgValue }); |
| } |
| |
| if (ValueType->isPointerTy()) { |
| // Have VoidPtrTy ArgValue but want to return an i32/i64. |
| ArgValue = Builder.CreatePtrToInt(ArgValue, RegisterType); |
| return Builder.CreateCall(F, { Metadata, ArgValue }); |
| } |
| |
| return Builder.CreateCall(F, { Metadata, ArgValue }); |
| } |
| |
| /// Return true if BuiltinID is an overloaded Neon intrinsic with an extra |
| /// argument that specifies the vector type. |
| static bool HasExtraNeonArgument(unsigned BuiltinID) { |
| switch (BuiltinID) { |
| default: break; |
| case NEON::BI__builtin_neon_vget_lane_i8: |
| case NEON::BI__builtin_neon_vget_lane_i16: |
| case NEON::BI__builtin_neon_vget_lane_bf16: |
| case NEON::BI__builtin_neon_vget_lane_i32: |
| case NEON::BI__builtin_neon_vget_lane_i64: |
| case NEON::BI__builtin_neon_vget_lane_f32: |
| case NEON::BI__builtin_neon_vgetq_lane_i8: |
| case NEON::BI__builtin_neon_vgetq_lane_i16: |
| case NEON::BI__builtin_neon_vgetq_lane_bf16: |
| case NEON::BI__builtin_neon_vgetq_lane_i32: |
| case NEON::BI__builtin_neon_vgetq_lane_i64: |
| case NEON::BI__builtin_neon_vgetq_lane_f32: |
| case NEON::BI__builtin_neon_vduph_lane_bf16: |
| case NEON::BI__builtin_neon_vduph_laneq_bf16: |
| case NEON::BI__builtin_neon_vset_lane_i8: |
| case NEON::BI__builtin_neon_vset_lane_i16: |
| case NEON::BI__builtin_neon_vset_lane_bf16: |
| case NEON::BI__builtin_neon_vset_lane_i32: |
| case NEON::BI__builtin_neon_vset_lane_i64: |
| case NEON::BI__builtin_neon_vset_lane_f32: |
| case NEON::BI__builtin_neon_vsetq_lane_i8: |
| case NEON::BI__builtin_neon_vsetq_lane_i16: |
| case NEON::BI__builtin_neon_vsetq_lane_bf16: |
| case NEON::BI__builtin_neon_vsetq_lane_i32: |
| case NEON::BI__builtin_neon_vsetq_lane_i64: |
| case NEON::BI__builtin_neon_vsetq_lane_f32: |
| case NEON::BI__builtin_neon_vsha1h_u32: |
| case NEON::BI__builtin_neon_vsha1cq_u32: |
| case NEON::BI__builtin_neon_vsha1pq_u32: |
| case NEON::BI__builtin_neon_vsha1mq_u32: |
| case NEON::BI__builtin_neon_vcvth_bf16_f32: |
| case clang::ARM::BI_MoveToCoprocessor: |
| case clang::ARM::BI_MoveToCoprocessor2: |
| return false; |
| } |
| return true; |
| } |
| |
| Value *CodeGenFunction::EmitARMBuiltinExpr(unsigned BuiltinID, |
| const CallExpr *E, |
| ReturnValueSlot ReturnValue, |
| llvm::Triple::ArchType Arch) { |
| if (auto Hint = GetValueForARMHint(BuiltinID)) |
| return Hint; |
| |
| if (BuiltinID == ARM::BI__emit) { |
| bool IsThumb = getTarget().getTriple().getArch() == llvm::Triple::thumb; |
| llvm::FunctionType *FTy = |
| llvm::FunctionType::get(VoidTy, /*Variadic=*/false); |
| |
| Expr::EvalResult Result; |
| if (!E->getArg(0)->EvaluateAsInt(Result, CGM.getContext())) |
| llvm_unreachable("Sema will ensure that the parameter is constant"); |
| |
| llvm::APSInt Value = Result.Val.getInt(); |
| uint64_t ZExtValue = Value.zextOrTrunc(IsThumb ? 16 : 32).getZExtValue(); |
| |
| llvm::InlineAsm *Emit = |
| IsThumb ? InlineAsm::get(FTy, ".inst.n 0x" + utohexstr(ZExtValue), "", |
| /*hasSideEffects=*/true) |
| : InlineAsm::get(FTy, ".inst 0x" + utohexstr(ZExtValue), "", |
| /*hasSideEffects=*/true); |
| |
| return Builder.CreateCall(Emit); |
| } |
| |
| if (BuiltinID == ARM::BI__builtin_arm_dbg) { |
| Value *Option = EmitScalarExpr(E->getArg(0)); |
| return Builder.CreateCall(CGM.getIntrinsic(Intrinsic::arm_dbg), Option); |
| } |
| |
| if (BuiltinID == ARM::BI__builtin_arm_prefetch) { |
| Value *Address = EmitScalarExpr(E->getArg(0)); |
| Value *RW = EmitScalarExpr(E->getArg(1)); |
| Value *IsData = EmitScalarExpr(E->getArg(2)); |
| |
| // Locality is not supported on ARM target |
| Value *Locality = llvm::ConstantInt::get(Int32Ty, 3); |
| |
| Function *F = CGM.getIntrinsic(Intrinsic::prefetch, Address->getType()); |
| return Builder.CreateCall(F, {Address, RW, Locality, IsData}); |
| } |
| |
| if (BuiltinID == ARM::BI__builtin_arm_rbit) { |
| llvm::Value *Arg = EmitScalarExpr(E->getArg(0)); |
| return Builder.CreateCall( |
| CGM.getIntrinsic(Intrinsic::bitreverse, Arg->getType()), Arg, "rbit"); |
| } |
| |
| if (BuiltinID == ARM::BI__builtin_arm_cls) { |
| llvm::Value *Arg = EmitScalarExpr(E->getArg(0)); |
| return Builder.CreateCall(CGM.getIntrinsic(Intrinsic::arm_cls), Arg, "cls"); |
| } |
| if (BuiltinID == ARM::BI__builtin_arm_cls64) { |
| llvm::Value *Arg = EmitScalarExpr(E->getArg(0)); |
| return Builder.CreateCall(CGM.getIntrinsic(Intrinsic::arm_cls64), Arg, |
| "cls"); |
| } |
| |
| if (BuiltinID == ARM::BI__clear_cache) { |
| assert(E->getNumArgs() == 2 && "__clear_cache takes 2 arguments"); |
| const FunctionDecl *FD = E->getDirectCallee(); |
| Value *Ops[2]; |
| for (unsigned i = 0; i < 2; i++) |
| Ops[i] = EmitScalarExpr(E->getArg(i)); |
| llvm::Type *Ty = CGM.getTypes().ConvertType(FD->getType()); |
| llvm::FunctionType *FTy = cast<llvm::FunctionType>(Ty); |
| StringRef Name = FD->getName(); |
| return EmitNounwindRuntimeCall(CGM.CreateRuntimeFunction(FTy, Name), Ops); |
| } |
| |
| if (BuiltinID == ARM::BI__builtin_arm_mcrr || |
| BuiltinID == ARM::BI__builtin_arm_mcrr2) { |
| Function *F; |
| |
| switch (BuiltinID) { |
| default: llvm_unreachable("unexpected builtin"); |
| case ARM::BI__builtin_arm_mcrr: |
| F = CGM.getIntrinsic(Intrinsic::arm_mcrr); |
| break; |
| case ARM::BI__builtin_arm_mcrr2: |
| F = CGM.getIntrinsic(Intrinsic::arm_mcrr2); |
| break; |
| } |
| |
| // MCRR{2} instruction has 5 operands but |
| // the intrinsic has 4 because Rt and Rt2 |
| // are represented as a single unsigned 64 |
| // bit integer in the intrinsic definition |
| // but internally it's represented as 2 32 |
| // bit integers. |
| |
| Value *Coproc = EmitScalarExpr(E->getArg(0)); |
| Value *Opc1 = EmitScalarExpr(E->getArg(1)); |
| Value *RtAndRt2 = EmitScalarExpr(E->getArg(2)); |
| Value *CRm = EmitScalarExpr(E->getArg(3)); |
| |
| Value *C1 = llvm::ConstantInt::get(Int64Ty, 32); |
| Value *Rt = Builder.CreateTruncOrBitCast(RtAndRt2, Int32Ty); |
| Value *Rt2 = Builder.CreateLShr(RtAndRt2, C1); |
| Rt2 = Builder.CreateTruncOrBitCast(Rt2, Int32Ty); |
| |
| return Builder.CreateCall(F, {Coproc, Opc1, Rt, Rt2, CRm}); |
| } |
| |
| if (BuiltinID == ARM::BI__builtin_arm_mrrc || |
| BuiltinID == ARM::BI__builtin_arm_mrrc2) { |
| Function *F; |
| |
| switch (BuiltinID) { |
| default: llvm_unreachable("unexpected builtin"); |
| case ARM::BI__builtin_arm_mrrc: |
| F = CGM.getIntrinsic(Intrinsic::arm_mrrc); |
| break; |
| case ARM::BI__builtin_arm_mrrc2: |
| F = CGM.getIntrinsic(Intrinsic::arm_mrrc2); |
| break; |
| } |
| |
| Value *Coproc = EmitScalarExpr(E->getArg(0)); |
| Value *Opc1 = EmitScalarExpr(E->getArg(1)); |
| Value *CRm = EmitScalarExpr(E->getArg(2)); |
| Value *RtAndRt2 = Builder.CreateCall(F, {Coproc, Opc1, CRm}); |
| |
| // Returns an unsigned 64 bit integer, represented |
| // as two 32 bit integers. |
| |
| Value *Rt = Builder.CreateExtractValue(RtAndRt2, 1); |
| Value *Rt1 = Builder.CreateExtractValue(RtAndRt2, 0); |
| Rt = Builder.CreateZExt(Rt, Int64Ty); |
| Rt1 = Builder.CreateZExt(Rt1, Int64Ty); |
| |
| Value *ShiftCast = llvm::ConstantInt::get(Int64Ty, 32); |
| RtAndRt2 = Builder.CreateShl(Rt, ShiftCast, "shl", true); |
| RtAndRt2 = Builder.CreateOr(RtAndRt2, Rt1); |
| |
| return Builder.CreateBitCast(RtAndRt2, ConvertType(E->getType())); |
| } |
| |
| if (BuiltinID == ARM::BI__builtin_arm_ldrexd || |
| ((BuiltinID == ARM::BI__builtin_arm_ldrex || |
| BuiltinID == ARM::BI__builtin_arm_ldaex) && |
| getContext().getTypeSize(E->getType()) == 64) || |
| BuiltinID == ARM::BI__ldrexd) { |
| Function *F; |
| |
| switch (BuiltinID) { |
| default: llvm_unreachable("unexpected builtin"); |
| case ARM::BI__builtin_arm_ldaex: |
| F = CGM.getIntrinsic(Intrinsic::arm_ldaexd); |
| break; |
| case ARM::BI__builtin_arm_ldrexd: |
| case ARM::BI__builtin_arm_ldrex: |
| case ARM::BI__ldrexd: |
| F = CGM.getIntrinsic(Intrinsic::arm_ldrexd); |
| break; |
| } |
| |
| Value *LdPtr = EmitScalarExpr(E->getArg(0)); |
| Value *Val = Builder.CreateCall(F, Builder.CreateBitCast(LdPtr, Int8PtrTy), |
| "ldrexd"); |
| |
| Value *Val0 = Builder.CreateExtractValue(Val, 1); |
| Value *Val1 = Builder.CreateExtractValue(Val, 0); |
| Val0 = Builder.CreateZExt(Val0, Int64Ty); |
| Val1 = Builder.CreateZExt(Val1, Int64Ty); |
| |
| Value *ShiftCst = llvm::ConstantInt::get(Int64Ty, 32); |
| Val = Builder.CreateShl(Val0, ShiftCst, "shl", true /* nuw */); |
| Val = Builder.CreateOr(Val, Val1); |
| return Builder.CreateBitCast(Val, ConvertType(E->getType())); |
| } |
| |
| if (BuiltinID == ARM::BI__builtin_arm_ldrex || |
| BuiltinID == ARM::BI__builtin_arm_ldaex) { |
| Value *LoadAddr = EmitScalarExpr(E->getArg(0)); |
| |
| QualType Ty = E->getType(); |
| llvm::Type *RealResTy = ConvertType(Ty); |
| llvm::Type *PtrTy = llvm::IntegerType::get( |
| getLLVMContext(), getContext().getTypeSize(Ty))->getPointerTo(); |
| LoadAddr = Builder.CreateBitCast(LoadAddr, PtrTy); |
| |
| Function *F = CGM.getIntrinsic(BuiltinID == ARM::BI__builtin_arm_ldaex |
| ? Intrinsic::arm_ldaex |
| : Intrinsic::arm_ldrex, |
| PtrTy); |
| Value *Val = Builder.CreateCall(F, LoadAddr, "ldrex"); |
| |
| if (RealResTy->isPointerTy()) |
| return Builder.CreateIntToPtr(Val, RealResTy); |
| else { |
| llvm::Type *IntResTy = llvm::IntegerType::get( |
| getLLVMContext(), CGM.getDataLayout().getTypeSizeInBits(RealResTy)); |
| Val = Builder.CreateTruncOrBitCast(Val, IntResTy); |
| return Builder.CreateBitCast(Val, RealResTy); |
| } |
| } |
| |
| if (BuiltinID == ARM::BI__builtin_arm_strexd || |
| ((BuiltinID == ARM::BI__builtin_arm_stlex || |
| BuiltinID == ARM::BI__builtin_arm_strex) && |
| getContext().getTypeSize(E->getArg(0)->getType()) == 64)) { |
| Function *F = CGM.getIntrinsic(BuiltinID == ARM::BI__builtin_arm_stlex |
| ? Intrinsic::arm_stlexd |
| : Intrinsic::arm_strexd); |
| llvm::Type *STy = llvm::StructType::get(Int32Ty, Int32Ty); |
| |
| Address Tmp = CreateMemTemp(E->getArg(0)->getType()); |
| Value *Val = EmitScalarExpr(E->getArg(0)); |
| Builder.CreateStore(Val, Tmp); |
| |
| Address LdPtr = Builder.CreateBitCast(Tmp,llvm::PointerType::getUnqual(STy)); |
| Val = Builder.CreateLoad(LdPtr); |
| |
| Value *Arg0 = Builder.CreateExtractValue(Val, 0); |
| Value *Arg1 = Builder.CreateExtractValue(Val, 1); |
| Value *StPtr = Builder.CreateBitCast(EmitScalarExpr(E->getArg(1)), Int8PtrTy); |
| return Builder.CreateCall(F, {Arg0, Arg1, StPtr}, "strexd"); |
| } |
| |
| if (BuiltinID == ARM::BI__builtin_arm_strex || |
| BuiltinID == ARM::BI__builtin_arm_stlex) { |
| Value *StoreVal = EmitScalarExpr(E->getArg(0)); |
| Value *StoreAddr = EmitScalarExpr(E->getArg(1)); |
| |
| QualType Ty = E->getArg(0)->getType(); |
| llvm::Type *StoreTy = llvm::IntegerType::get(getLLVMContext(), |
| getContext().getTypeSize(Ty)); |
| StoreAddr = Builder.CreateBitCast(StoreAddr, StoreTy->getPointerTo()); |
| |
| if (StoreVal->getType()->isPointerTy()) |
| StoreVal = Builder.CreatePtrToInt(StoreVal, Int32Ty); |
| else { |
| llvm::Type *IntTy = llvm::IntegerType::get( |
| getLLVMContext(), |
| CGM.getDataLayout().getTypeSizeInBits(StoreVal->getType())); |
| StoreVal = Builder.CreateBitCast(StoreVal, IntTy); |
| StoreVal = Builder.CreateZExtOrBitCast(StoreVal, Int32Ty); |
| } |
| |
| Function *F = CGM.getIntrinsic(BuiltinID == ARM::BI__builtin_arm_stlex |
| ? Intrinsic::arm_stlex |
| : Intrinsic::arm_strex, |
| StoreAddr->getType()); |
| return Builder.CreateCall(F, {StoreVal, StoreAddr}, "strex"); |
| } |
| |
| if (BuiltinID == ARM::BI__builtin_arm_clrex) { |
| Function *F = CGM.getIntrinsic(Intrinsic::arm_clrex); |
| return Builder.CreateCall(F); |
| } |
| |
| // CRC32 |
| Intrinsic::ID CRCIntrinsicID = Intrinsic::not_intrinsic; |
| switch (BuiltinID) { |
| case ARM::BI__builtin_arm_crc32b: |
| CRCIntrinsicID = Intrinsic::arm_crc32b; break; |
| case ARM::BI__builtin_arm_crc32cb: |
| CRCIntrinsicID = Intrinsic::arm_crc32cb; break; |
| case ARM::BI__builtin_arm_crc32h: |
| CRCIntrinsicID = Intrinsic::arm_crc32h; break; |
| case ARM::BI__builtin_arm_crc32ch: |
| CRCIntrinsicID = Intrinsic::arm_crc32ch; break; |
| case ARM::BI__builtin_arm_crc32w: |
| case ARM::BI__builtin_arm_crc32d: |
| CRCIntrinsicID = Intrinsic::arm_crc32w; break; |
| case ARM::BI__builtin_arm_crc32cw: |
| case ARM::BI__builtin_arm_crc32cd: |
| CRCIntrinsicID = Intrinsic::arm_crc32cw; break; |
| } |
| |
| if (CRCIntrinsicID != Intrinsic::not_intrinsic) { |
| Value *Arg0 = EmitScalarExpr(E->getArg(0)); |
| Value *Arg1 = EmitScalarExpr(E->getArg(1)); |
| |
| // crc32{c,}d intrinsics are implemnted as two calls to crc32{c,}w |
| // intrinsics, hence we need different codegen for these cases. |
| if (BuiltinID == ARM::BI__builtin_arm_crc32d || |
| BuiltinID == ARM::BI__builtin_arm_crc32cd) { |
| Value *C1 = llvm::ConstantInt::get(Int64Ty, 32); |
| Value *Arg1a = Builder.CreateTruncOrBitCast(Arg1, Int32Ty); |
| Value *Arg1b = Builder.CreateLShr(Arg1, C1); |
| Arg1b = Builder.CreateTruncOrBitCast(Arg1b, Int32Ty); |
| |
| Function *F = CGM.getIntrinsic(CRCIntrinsicID); |
| Value *Res = Builder.CreateCall(F, {Arg0, Arg1a}); |
| return Builder.CreateCall(F, {Res, Arg1b}); |
| } else { |
| Arg1 = Builder.CreateZExtOrBitCast(Arg1, Int32Ty); |
| |
| Function *F = CGM.getIntrinsic(CRCIntrinsicID); |
| return Builder.CreateCall(F, {Arg0, Arg1}); |
| } |
| } |
| |
| if (BuiltinID == ARM::BI__builtin_arm_rsr || |
| BuiltinID == ARM::BI__builtin_arm_rsr64 || |
| BuiltinID == ARM::BI__builtin_arm_rsrp || |
| BuiltinID == ARM::BI__builtin_arm_wsr || |
| BuiltinID == ARM::BI__builtin_arm_wsr64 || |
| BuiltinID == ARM::BI__builtin_arm_wsrp) { |
| |
| SpecialRegisterAccessKind AccessKind = Write; |
| if (BuiltinID == ARM::BI__builtin_arm_rsr || |
| BuiltinID == ARM::BI__builtin_arm_rsr64 || |
| BuiltinID == ARM::BI__builtin_arm_rsrp) |
| AccessKind = VolatileRead; |
| |
| bool IsPointerBuiltin = BuiltinID == ARM::BI__builtin_arm_rsrp || |
| BuiltinID == ARM::BI__builtin_arm_wsrp; |
| |
| bool Is64Bit = BuiltinID == ARM::BI__builtin_arm_rsr64 || |
| BuiltinID == ARM::BI__builtin_arm_wsr64; |
| |
| llvm::Type *ValueType; |
| llvm::Type *RegisterType; |
| if (IsPointerBuiltin) { |
| ValueType = VoidPtrTy; |
| RegisterType = Int32Ty; |
| } else if (Is64Bit) { |
| ValueType = RegisterType = Int64Ty; |
| } else { |
| ValueType = RegisterType = Int32Ty; |
| } |
| |
| return EmitSpecialRegisterBuiltin(*this, E, RegisterType, ValueType, |
| AccessKind); |
| } |
| |
| // Handle MSVC intrinsics before argument evaluation to prevent double |
| // evaluation. |
| if (Optional<MSVCIntrin> MsvcIntId = translateArmToMsvcIntrin(BuiltinID)) |
| return EmitMSVCBuiltinExpr(*MsvcIntId, E); |
| |
| // Deal with MVE builtins |
| if (Value *Result = EmitARMMVEBuiltinExpr(BuiltinID, E, ReturnValue, Arch)) |
| return Result; |
| // Handle CDE builtins |
| if (Value *Result = EmitARMCDEBuiltinExpr(BuiltinID, E, ReturnValue, Arch)) |
| return Result; |
| |
| // Find out if any arguments are required to be integer constant |
| // expressions. |
| unsigned ICEArguments = 0; |
| ASTContext::GetBuiltinTypeError Error; |
| getContext().GetBuiltinType(BuiltinID, Error, &ICEArguments); |
| assert(Error == ASTContext::GE_None && "Should not codegen an error"); |
| |
| auto getAlignmentValue32 = [&](Address addr) -> Value* { |
| return Builder.getInt32(addr.getAlignment().getQuantity()); |
| }; |
| |
| Address PtrOp0 = Address::invalid(); |
| Address PtrOp1 = Address::invalid(); |
| SmallVector<Value*, 4> Ops; |
| bool HasExtraArg = HasExtraNeonArgument(BuiltinID); |
| unsigned NumArgs = E->getNumArgs() - (HasExtraArg ? 1 : 0); |
| for (unsigned i = 0, e = NumArgs; i != e; i++) { |
| if (i == 0) { |
| switch (BuiltinID) { |
| case NEON::BI__builtin_neon_vld1_v: |
| case NEON::BI__builtin_neon_vld1q_v: |
| case NEON::BI__builtin_neon_vld1q_lane_v: |
| case NEON::BI__builtin_neon_vld1_lane_v: |
| case NEON::BI__builtin_neon_vld1_dup_v: |
| case NEON::BI__builtin_neon_vld1q_dup_v: |
| case NEON::BI__builtin_neon_vst1_v: |
| case NEON::BI__builtin_neon_vst1q_v: |
| case NEON::BI__builtin_neon_vst1q_lane_v: |
| case NEON::BI__builtin_neon_vst1_lane_v: |
| case NEON::BI__builtin_neon_vst2_v: |
| case NEON::BI__builtin_neon_vst2q_v: |
| case NEON::BI__builtin_neon_vst2_lane_v: |
| case NEON::BI__builtin_neon_vst2q_lane_v: |
| case NEON::BI__builtin_neon_vst3_v: |
| case NEON::BI__builtin_neon_vst3q_v: |
| case NEON::BI__builtin_neon_vst3_lane_v: |
| case NEON::BI__builtin_neon_vst3q_lane_v: |
| case NEON::BI__builtin_neon_vst4_v: |
| case NEON::BI__builtin_neon_vst4q_v: |
| case NEON::BI__builtin_neon_vst4_lane_v: |
| case NEON::BI__builtin_neon_vst4q_lane_v: |
| // Get the alignment for the argument in addition to the value; |
| // we'll use it later. |
| PtrOp0 = EmitPointerWithAlignment(E->getArg(0)); |
| Ops.push_back(PtrOp0.getPointer()); |
| continue; |
| } |
| } |
| if (i == 1) { |
| switch (BuiltinID) { |
| case NEON::BI__builtin_neon_vld2_v: |
| case NEON::BI__builtin_neon_vld2q_v: |
| case NEON::BI__builtin_neon_vld3_v: |
| case NEON::BI__builtin_neon_vld3q_v: |
| case NEON::BI__builtin_neon_vld4_v: |
| case NEON::BI__builtin_neon_vld4q_v: |
| case NEON::BI__builtin_neon_vld2_lane_v: |
| case NEON::BI__builtin_neon_vld2q_lane_v: |
| case NEON::BI__builtin_neon_vld3_lane_v: |
| case NEON::BI__builtin_neon_vld3q_lane_v: |
| case NEON::BI__builtin_neon_vld4_lane_v: |
| case NEON::BI__builtin_neon_vld4q_lane_v: |
| case NEON::BI__builtin_neon_vld2_dup_v: |
| case NEON::BI__builtin_neon_vld2q_dup_v: |
| case NEON::BI__builtin_neon_vld3_dup_v: |
| case NEON::BI__builtin_neon_vld3q_dup_v: |
| case NEON::BI__builtin_neon_vld4_dup_v: |
| case NEON::BI__builtin_neon_vld4q_dup_v: |
| // Get the alignment for the argument in addition to the value; |
| // we'll use it later. |
| PtrOp1 = EmitPointerWithAlignment(E->getArg(1)); |
| Ops.push_back(PtrOp1.getPointer()); |
| continue; |
| } |
| } |
| |
| if ((ICEArguments & (1 << i)) == 0) { |
| Ops.push_back(EmitScalarExpr(E->getArg(i))); |
| } else { |
| // If this is required to be a constant, constant fold it so that we know |
| // that the generated intrinsic gets a ConstantInt. |
| Ops.push_back(llvm::ConstantInt::get( |
| getLLVMContext(), |
| *E->getArg(i)->getIntegerConstantExpr(getContext()))); |
| } |
| } |
| |
| switch (BuiltinID) { |
| default: break; |
| |
| case NEON::BI__builtin_neon_vget_lane_i8: |
| case NEON::BI__builtin_neon_vget_lane_i16: |
| case NEON::BI__builtin_neon_vget_lane_i32: |
| case NEON::BI__builtin_neon_vget_lane_i64: |
| case NEON::BI__builtin_neon_vget_lane_bf16: |
| case NEON::BI__builtin_neon_vget_lane_f32: |
| case NEON::BI__builtin_neon_vgetq_lane_i8: |
| case NEON::BI__builtin_neon_vgetq_lane_i16: |
| case NEON::BI__builtin_neon_vgetq_lane_i32: |
| case NEON::BI__builtin_neon_vgetq_lane_i64: |
| case NEON::BI__builtin_neon_vgetq_lane_bf16: |
| case NEON::BI__builtin_neon_vgetq_lane_f32: |
| case NEON::BI__builtin_neon_vduph_lane_bf16: |
| case NEON::BI__builtin_neon_vduph_laneq_bf16: |
| return Builder.CreateExtractElement(Ops[0], Ops[1], "vget_lane"); |
| |
| case NEON::BI__builtin_neon_vrndns_f32: { |
| Value *Arg = EmitScalarExpr(E->getArg(0)); |
| llvm::Type *Tys[] = {Arg->getType()}; |
| Function *F = CGM.getIntrinsic(Intrinsic::arm_neon_vrintn, Tys); |
| return Builder.CreateCall(F, {Arg}, "vrndn"); } |
| |
| case NEON::BI__builtin_neon_vset_lane_i8: |
| case NEON::BI__builtin_neon_vset_lane_i16: |
| case NEON::BI__builtin_neon_vset_lane_i32: |
| case NEON::BI__builtin_neon_vset_lane_i64: |
| case NEON::BI__builtin_neon_vset_lane_bf16: |
| case NEON::BI__builtin_neon_vset_lane_f32: |
| case NEON::BI__builtin_neon_vsetq_lane_i8: |
| case NEON::BI__builtin_neon_vsetq_lane_i16: |
| case NEON::BI__builtin_neon_vsetq_lane_i32: |
| case NEON::BI__builtin_neon_vsetq_lane_i64: |
| case NEON::BI__builtin_neon_vsetq_lane_bf16: |
| case NEON::BI__builtin_neon_vsetq_lane_f32: |
| return Builder.CreateInsertElement(Ops[1], Ops[0], Ops[2], "vset_lane"); |
| |
| case NEON::BI__builtin_neon_vsha1h_u32: |
| return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_sha1h), Ops, |
| "vsha1h"); |
| case NEON::BI__builtin_neon_vsha1cq_u32: |
| return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_sha1c), Ops, |
| "vsha1h"); |
| case NEON::BI__builtin_neon_vsha1pq_u32: |
| return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_sha1p), Ops, |
| "vsha1h"); |
| case NEON::BI__builtin_neon_vsha1mq_u32: |
| return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_sha1m), Ops, |
| "vsha1h"); |
| |
| case NEON::BI__builtin_neon_vcvth_bf16_f32: { |
| return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vcvtbfp2bf), Ops, |
| "vcvtbfp2bf"); |
| } |
| |
| // The ARM _MoveToCoprocessor builtins put the input register value as |
| // the first argument, but the LLVM intrinsic expects it as the third one. |
| case ARM::BI_MoveToCoprocessor: |
| case ARM::BI_MoveToCoprocessor2: { |
| Function *F = CGM.getIntrinsic(BuiltinID == ARM::BI_MoveToCoprocessor ? |
| Intrinsic::arm_mcr : Intrinsic::arm_mcr2); |
| return Builder.CreateCall(F, {Ops[1], Ops[2], Ops[0], |
| Ops[3], Ops[4], Ops[5]}); |
| } |
| } |
| |
| // Get the last argument, which specifies the vector type. |
| assert(HasExtraArg); |
| const Expr *Arg = E->getArg(E->getNumArgs()-1); |
| Optional<llvm::APSInt> Result = Arg->getIntegerConstantExpr(getContext()); |
| if (!Result) |
| return nullptr; |
| |
| if (BuiltinID == ARM::BI__builtin_arm_vcvtr_f || |
| BuiltinID == ARM::BI__builtin_arm_vcvtr_d) { |
| // Determine the overloaded type of this builtin. |
| llvm::Type *Ty; |
| if (BuiltinID == ARM::BI__builtin_arm_vcvtr_f) |
| Ty = FloatTy; |
| else |
| Ty = DoubleTy; |
| |
| // Determine whether this is an unsigned conversion or not. |
| bool usgn = Result->getZExtValue() == 1; |
| unsigned Int = usgn ? Intrinsic::arm_vcvtru : Intrinsic::arm_vcvtr; |
| |
| // Call the appropriate intrinsic. |
| Function *F = CGM.getIntrinsic(Int, Ty); |
| return Builder.CreateCall(F, Ops, "vcvtr"); |
| } |
| |
| // Determine the type of this overloaded NEON intrinsic. |
| NeonTypeFlags Type = Result->getZExtValue(); |
| bool usgn = Type.isUnsigned(); |
| bool rightShift = false; |
| |
| llvm::FixedVectorType *VTy = |
| GetNeonType(this, Type, getTarget().hasLegalHalfType(), false, |
| getTarget().hasBFloat16Type()); |
| llvm::Type *Ty = VTy; |
| if (!Ty) |
| return nullptr; |
| |
| // Many NEON builtins have identical semantics and uses in ARM and |
| // AArch64. Emit these in a single function. |
| auto IntrinsicMap = makeArrayRef(ARMSIMDIntrinsicMap); |
| const ARMVectorIntrinsicInfo *Builtin = findARMVectorIntrinsicInMap( |
| IntrinsicMap, BuiltinID, NEONSIMDIntrinsicsProvenSorted); |
| if (Builtin) |
| return EmitCommonNeonBuiltinExpr( |
| Builtin->BuiltinID, Builtin->LLVMIntrinsic, Builtin->AltLLVMIntrinsic, |
| Builtin->NameHint, Builtin->TypeModifier, E, Ops, PtrOp0, PtrOp1, Arch); |
| |
| unsigned Int; |
| switch (BuiltinID) { |
| default: return nullptr; |
| case NEON::BI__builtin_neon_vld1q_lane_v: |
| // Handle 64-bit integer elements as a special case. Use shuffles of |
| // one-element vectors to avoid poor code for i64 in the backend. |
| if (VTy->getElementType()->isIntegerTy(64)) { |
| // Extract the other lane. |
| Ops[1] = Builder.CreateBitCast(Ops[1], Ty); |
| int Lane = cast<ConstantInt>(Ops[2])->getZExtValue(); |
| Value *SV = llvm::ConstantVector::get(ConstantInt::get(Int32Ty, 1-Lane)); |
| Ops[1] = Builder.CreateShuffleVector(Ops[1], Ops[1], SV); |
| // Load the value as a one-element vector. |
| Ty = llvm::FixedVectorType::get(VTy->getElementType(), 1); |
| llvm::Type *Tys[] = {Ty, Int8PtrTy}; |
| Function *F = CGM.getIntrinsic(Intrinsic::arm_neon_vld1, Tys); |
| Value *Align = getAlignmentValue32(PtrOp0); |
| Value *Ld = Builder.CreateCall(F, {Ops[0], Align}); |
| // Combine them. |
| int Indices[] = {1 - Lane, Lane}; |
| return Builder.CreateShuffleVector(Ops[1], Ld, Indices, "vld1q_lane"); |
| } |
| LLVM_FALLTHROUGH; |
| case NEON::BI__builtin_neon_vld1_lane_v: { |
| Ops[1] = Builder.CreateBitCast(Ops[1], Ty); |
| PtrOp0 = Builder.CreateElementBitCast(PtrOp0, VTy->getElementType()); |
| Value *Ld = Builder.CreateLoad(PtrOp0); |
| return Builder.CreateInsertElement(Ops[1], Ld, Ops[2], "vld1_lane"); |
| } |
| case NEON::BI__builtin_neon_vqrshrn_n_v: |
| Int = |
| usgn ? Intrinsic::arm_neon_vqrshiftnu : Intrinsic::arm_neon_vqrshiftns; |
| return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vqrshrn_n", |
| 1, true); |
| case NEON::BI__builtin_neon_vqrshrun_n_v: |
| return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vqrshiftnsu, Ty), |
| Ops, "vqrshrun_n", 1, true); |
| case NEON::BI__builtin_neon_vqshrn_n_v: |
| Int = usgn ? Intrinsic::arm_neon_vqshiftnu : Intrinsic::arm_neon_vqshiftns; |
| return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vqshrn_n", |
| 1, true); |
| case NEON::BI__builtin_neon_vqshrun_n_v: |
| return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vqshiftnsu, Ty), |
| Ops, "vqshrun_n", 1, true); |
| case NEON::BI__builtin_neon_vrecpe_v: |
| case NEON::BI__builtin_neon_vrecpeq_v: |
| return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vrecpe, Ty), |
| Ops, "vrecpe"); |
| case NEON::BI__builtin_neon_vrshrn_n_v: |
| return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vrshiftn, Ty), |
| Ops, "vrshrn_n", 1, true); |
| case NEON::BI__builtin_neon_vrsra_n_v: |
| case NEON::BI__builtin_neon_vrsraq_n_v: |
| Ops[0] = Builder.CreateBitCast(Ops[0], Ty); |
| Ops[1] = Builder.CreateBitCast(Ops[1], Ty); |
| Ops[2] = EmitNeonShiftVector(Ops[2], Ty, true); |
| Int = usgn ? Intrinsic::arm_neon_vrshiftu : Intrinsic::arm_neon_vrshifts; |
| Ops[1] = Builder.CreateCall(CGM.getIntrinsic(Int, Ty), {Ops[1], Ops[2]}); |
| return Builder.CreateAdd(Ops[0], Ops[1], "vrsra_n"); |
| case NEON::BI__builtin_neon_vsri_n_v: |
| case NEON::BI__builtin_neon_vsriq_n_v: |
| rightShift = true; |
| LLVM_FALLTHROUGH; |
| case NEON::BI__builtin_neon_vsli_n_v: |
| case NEON::BI__builtin_neon_vsliq_n_v: |
| Ops[2] = EmitNeonShiftVector(Ops[2], Ty, rightShift); |
| return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vshiftins, Ty), |
| Ops, "vsli_n"); |
| case NEON::BI__builtin_neon_vsra_n_v: |
| case NEON::BI__builtin_neon_vsraq_n_v: |
| Ops[0] = Builder.CreateBitCast(Ops[0], Ty); |
| Ops[1] = EmitNeonRShiftImm(Ops[1], Ops[2], Ty, usgn, "vsra_n"); |
| return Builder.CreateAdd(Ops[0], Ops[1]); |
| case NEON::BI__builtin_neon_vst1q_lane_v: |
| // Handle 64-bit integer elements as a special case. Use a shuffle to get |
| // a one-element vector and avoid poor code for i64 in the backend. |
| if (VTy->getElementType()->isIntegerTy(64)) { |
| Ops[1] = Builder.CreateBitCast(Ops[1], Ty); |
| Value *SV = llvm::ConstantVector::get(cast<llvm::Constant>(Ops[2])); |
| Ops[1] = Builder.CreateShuffleVector(Ops[1], Ops[1], SV); |
| Ops[2] = getAlignmentValue32(PtrOp0); |
| llvm::Type *Tys[] = {Int8PtrTy, Ops[1]->getType()}; |
| return Builder.CreateCall(CGM.getIntrinsic(Intrinsic::arm_neon_vst1, |
| Tys), Ops); |
| } |
| LLVM_FALLTHROUGH; |
| case NEON::BI__builtin_neon_vst1_lane_v: { |
| Ops[1] = Builder.CreateBitCast(Ops[1], Ty); |
| Ops[1] = Builder.CreateExtractElement(Ops[1], Ops[2]); |
| Ty = llvm::PointerType::getUnqual(Ops[1]->getType()); |
| auto St = Builder.CreateStore(Ops[1], Builder.CreateBitCast(PtrOp0, Ty)); |
| return St; |
| } |
| case NEON::BI__builtin_neon_vtbl1_v: |
| return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vtbl1), |
| Ops, "vtbl1"); |
| case NEON::BI__builtin_neon_vtbl2_v: |
| return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vtbl2), |
| Ops, "vtbl2"); |
| case NEON::BI__builtin_neon_vtbl3_v: |
| return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vtbl3), |
| Ops, "vtbl3"); |
| case NEON::BI__builtin_neon_vtbl4_v: |
| return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vtbl4), |
| Ops, "vtbl4"); |
| case NEON::BI__builtin_neon_vtbx1_v: |
| return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vtbx1), |
| Ops, "vtbx1"); |
| case NEON::BI__builtin_neon_vtbx2_v: |
| return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vtbx2), |
| Ops, "vtbx2"); |
| case NEON::BI__builtin_neon_vtbx3_v: |
| return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vtbx3), |
| Ops, "vtbx3"); |
| case NEON::BI__builtin_neon_vtbx4_v: |
| return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vtbx4), |
| Ops, "vtbx4"); |
| } |
| } |
| |
| template<typename Integer> |
| static Integer GetIntegerConstantValue(const Expr *E, ASTContext &Context) { |
| return E->getIntegerConstantExpr(Context)->getExtValue(); |
| } |
| |
| static llvm::Value *SignOrZeroExtend(CGBuilderTy &Builder, llvm::Value *V, |
| llvm::Type *T, bool Unsigned) { |
| // Helper function called by Tablegen-constructed ARM MVE builtin codegen, |
| // which finds it convenient to specify signed/unsigned as a boolean flag. |
| return Unsigned ? Builder.CreateZExt(V, T) : Builder.CreateSExt(V, T); |
| } |
| |
| static llvm::Value *MVEImmediateShr(CGBuilderTy &Builder, llvm::Value *V, |
| uint32_t Shift, bool Unsigned) { |
| // MVE helper function for integer shift right. This must handle signed vs |
| // unsigned, and also deal specially with the case where the shift count is |
| // equal to the lane size. In LLVM IR, an LShr with that parameter would be |
| // undefined behavior, but in MVE it's legal, so we must convert it to code |
| // that is not undefined in IR. |
| unsigned LaneBits = cast<llvm::VectorType>(V->getType()) |
| ->getElementType() |
| ->getPrimitiveSizeInBits(); |
| if (Shift == LaneBits) { |
| // An unsigned shift of the full lane size always generates zero, so we can |
| // simply emit a zero vector. A signed shift of the full lane size does the |
| // same thing as shifting by one bit fewer. |
| if (Unsigned) |
| return llvm::Constant::getNullValue(V->getType()); |
| else |
| --Shift; |
| } |
| return Unsigned ? Builder.CreateLShr(V, Shift) : Builder.CreateAShr(V, Shift); |
| } |
| |
| static llvm::Value *ARMMVEVectorSplat(CGBuilderTy &Builder, llvm::Value *V) { |
| // MVE-specific helper function for a vector splat, which infers the element |
| // count of the output vector by knowing that MVE vectors are all 128 bits |
| // wide. |
| unsigned Elements = 128 / V->getType()->getPrimitiveSizeInBits(); |
| return Builder.CreateVectorSplat(Elements, V); |
| } |
| |
| static llvm::Value *ARMMVEVectorReinterpret(CGBuilderTy &Builder, |
| CodeGenFunction *CGF, |
| llvm::Value *V, |
| llvm::Type *DestType) { |
| // Convert one MVE vector type into another by reinterpreting its in-register |
| // format. |
| // |
| // Little-endian, this is identical to a bitcast (which reinterprets the |
| // memory format). But big-endian, they're not necessarily the same, because |
| // the register and memory formats map to each other differently depending on |
| // the lane size. |
| // |
| // We generate a bitcast whenever we can (if we're little-endian, or if the |
| // lane sizes are the same anyway). Otherwise we fall back to an IR intrinsic |
| // that performs the different kind of reinterpretation. |
| if (CGF->getTarget().isBigEndian() && |
| V->getType()->getScalarSizeInBits() != DestType->getScalarSizeInBits()) { |
| return Builder.CreateCall( |
| CGF->CGM.getIntrinsic(Intrinsic::arm_mve_vreinterpretq, |
| {DestType, V->getType()}), |
| V); |
| } else { |
| return Builder.CreateBitCast(V, DestType); |
| } |
| } |
| |
| static llvm::Value *VectorUnzip(CGBuilderTy &Builder, llvm::Value *V, bool Odd) { |
| // Make a shufflevector that extracts every other element of a vector (evens |
| // or odds, as desired). |
| SmallVector<int, 16> Indices; |
| unsigned InputElements = |
| cast<llvm::FixedVectorType>(V->getType())->getNumElements(); |
| for (unsigned i = 0; i < InputElements; i += 2) |
| Indices.push_back(i + Odd); |
| return Builder.CreateShuffleVector(V, Indices); |
| } |
| |
| static llvm::Value *VectorZip(CGBuilderTy &Builder, llvm::Value *V0, |
| llvm::Value *V1) { |
| // Make a shufflevector that interleaves two vectors element by element. |
| assert(V0->getType() == V1->getType() && "Can't zip different vector types"); |
| SmallVector<int, 16> Indices; |
| unsigned InputElements = |
| cast<llvm::FixedVectorType>(V0->getType())->getNumElements(); |
| for (unsigned i = 0; i < InputElements; i++) { |
| Indices.push_back(i); |
| Indices.push_back(i + InputElements); |
| } |
| return Builder.CreateShuffleVector(V0, V1, Indices); |
| } |
| |
| template<unsigned HighBit, unsigned OtherBits> |
| static llvm::Value *ARMMVEConstantSplat(CGBuilderTy &Builder, llvm::Type *VT) { |
| // MVE-specific helper function to make a vector splat of a constant such as |
| // UINT_MAX or INT_MIN, in which all bits below the highest one are equal. |
| llvm::Type *T = cast<llvm::VectorType>(VT)->getElementType(); |
| unsigned LaneBits = T->getPrimitiveSizeInBits(); |
| uint32_t Value = HighBit << (LaneBits - 1); |
| if (OtherBits) |
| Value |= (1UL << (LaneBits - 1)) - 1; |
| llvm::Value *Lane = llvm::ConstantInt::get(T, Value); |
| return ARMMVEVectorSplat(Builder, Lane); |
| } |
| |
| static llvm::Value *ARMMVEVectorElementReverse(CGBuilderTy &Builder, |
| llvm::Value *V, |
| unsigned ReverseWidth) { |
| // MVE-specific helper function which reverses the elements of a |
| // vector within every (ReverseWidth)-bit collection of lanes. |
| SmallVector<int, 16> Indices; |
| unsigned LaneSize = V->getType()->getScalarSizeInBits(); |
| unsigned Elements = 128 / LaneSize; |
| unsigned Mask = ReverseWidth / LaneSize - 1; |
| for (unsigned i = 0; i < Elements; i++) |
| Indices.push_back(i ^ Mask); |
| return Builder.CreateShuffleVector(V, Indices); |
| } |
| |
| Value *CodeGenFunction::EmitARMMVEBuiltinExpr(unsigned BuiltinID, |
| const CallExpr *E, |
| ReturnValueSlot ReturnValue, |
| llvm::Triple::ArchType Arch) { |
| enum class CustomCodeGen { VLD24, VST24 } CustomCodeGenType; |
| Intrinsic::ID IRIntr; |
| unsigned NumVectors; |
| |
| // Code autogenerated by Tablegen will handle all the simple builtins. |
| switch (BuiltinID) { |
| #include "clang/Basic/arm_mve_builtin_cg.inc" |
| |
| // If we didn't match an MVE builtin id at all, go back to the |
| // main EmitARMBuiltinExpr. |
| default: |
| return nullptr; |
| } |
| |
| // Anything that breaks from that switch is an MVE builtin that |
| // needs handwritten code to generate. |
| |
| switch (CustomCodeGenType) { |
| |
| case CustomCodeGen::VLD24: { |
| llvm::SmallVector<Value *, 4> Ops; |
| llvm::SmallVector<llvm::Type *, 4> Tys; |
| |
| auto MvecCType = E->getType(); |
| auto MvecLType = ConvertType(MvecCType); |
| assert(MvecLType->isStructTy() && |
| "Return type for vld[24]q should be a struct"); |
| assert(MvecLType->getStructNumElements() == 1 && |
| "Return-type struct for vld[24]q should have one element"); |
| auto MvecLTypeInner = MvecLType->getStructElementType(0); |
| assert(MvecLTypeInner->isArrayTy() && |
| "Return-type struct for vld[24]q should contain an array"); |
| assert(MvecLTypeInner->getArrayNumElements() == NumVectors && |
| "Array member of return-type struct vld[24]q has wrong length"); |
| auto VecLType = MvecLTypeInner->getArrayElementType(); |
| |
| Tys.push_back(VecLType); |
| |
| auto Addr = E->getArg(0); |
| Ops.push_back(EmitScalarExpr(Addr)); |
| Tys.push_back(ConvertType(Addr->getType())); |
| |
| Function *F = CGM.getIntrinsic(IRIntr, makeArrayRef(Tys)); |
| Value *LoadResult = Builder.CreateCall(F, Ops); |
| Value *MvecOut = UndefValue::get(MvecLType); |
| for (unsigned i = 0; i < NumVectors; ++i) { |
| Value *Vec = Builder.CreateExtractValue(LoadResult, i); |
| MvecOut = Builder.CreateInsertValue(MvecOut, Vec, {0, i}); |
| } |
| |
| if (ReturnValue.isNull()) |
| return MvecOut; |
| else |
| return Builder.CreateStore(MvecOut, ReturnValue.getValue()); |
| } |
| |
| case CustomCodeGen::VST24: { |
| llvm::SmallVector<Value *, 4> Ops; |
| llvm::SmallVector<llvm::Type *, 4> Tys; |
| |
| auto Addr = E->getArg(0); |
| Ops.push_back(EmitScalarExpr(Addr)); |
| Tys.push_back(ConvertType(Addr->getType())); |
| |
| auto MvecCType = E->getArg(1)->getType(); |
| auto MvecLType = ConvertType(MvecCType); |
| assert(MvecLType->isStructTy() && "Data type for vst2q should be a struct"); |
| assert(MvecLType->getStructNumElements() == 1 && |
| "Data-type struct for vst2q should have one element"); |
| auto MvecLTypeInner = MvecLType->getStructElementType(0); |
| assert(MvecLTypeInner->isArrayTy() && |
| "Data-type struct for vst2q should contain an array"); |
| assert(MvecLTypeInner->getArrayNumElements() == NumVectors && |
| "Array member of return-type struct vld[24]q has wrong length"); |
| auto VecLType = MvecLTypeInner->getArrayElementType(); |
| |
| Tys.push_back(VecLType); |
| |
| AggValueSlot MvecSlot = CreateAggTemp(MvecCType); |
| EmitAggExpr(E->getArg(1), MvecSlot); |
| auto Mvec = Builder.CreateLoad(MvecSlot.getAddress()); |
| for (unsigned i = 0; i < NumVectors; i++) |
| Ops.push_back(Builder.CreateExtractValue(Mvec, {0, i})); |
| |
| Function *F = CGM.getIntrinsic(IRIntr, makeArrayRef(Tys)); |
| Value *ToReturn = nullptr; |
| for (unsigned i = 0; i < NumVectors; i++) { |
| Ops.push_back(llvm::ConstantInt::get(Int32Ty, i)); |
| ToReturn = Builder.CreateCall(F, Ops); |
| Ops.pop_back(); |
| } |
| return ToReturn; |
| } |
| } |
| llvm_unreachable("unknown custom codegen type."); |
| } |
| |
| Value *CodeGenFunction::EmitARMCDEBuiltinExpr(unsigned BuiltinID, |
| const CallExpr *E, |
| ReturnValueSlot ReturnValue, |
| llvm::Triple::ArchType Arch) { |
| switch (BuiltinID) { |
| default: |
| return nullptr; |
| #include "clang/Basic/arm_cde_builtin_cg.inc" |
| } |
| } |
| |
| static Value *EmitAArch64TblBuiltinExpr(CodeGenFunction &CGF, unsigned BuiltinID, |
| const CallExpr *E, |
| SmallVectorImpl<Value *> &Ops, |
| llvm::Triple::ArchType Arch) { |
| unsigned int Int = 0; |
| const char *s = nullptr; |
| |
| switch (BuiltinID) { |
| default: |
| return nullptr; |
| case NEON::BI__builtin_neon_vtbl1_v: |
| case NEON::BI__builtin_neon_vqtbl1_v: |
| case NEON::BI__builtin_neon_vqtbl1q_v: |
| case NEON::BI__builtin_neon_vtbl2_v: |
| case NEON::BI__builtin_neon_vqtbl2_v: |
| case NEON::BI__builtin_neon_vqtbl2q_v: |
| case NEON::BI__builtin_neon_vtbl3_v: |
| case NEON::BI__builtin_neon_vqtbl3_v: |
| case NEON::BI__builtin_neon_vqtbl3q_v: |
| case NEON::BI__builtin_neon_vtbl4_v: |
| case NEON::BI__builtin_neon_vqtbl4_v: |
| case NEON::BI__builtin_neon_vqtbl4q_v: |
| break; |
| case NEON::BI__builtin_neon_vtbx1_v: |
| case NEON::BI__builtin_neon_vqtbx1_v: |
| case NEON::BI__builtin_neon_vqtbx1q_v: |
| case NEON::BI__builtin_neon_vtbx2_v: |
| case NEON::BI__builtin_neon_vqtbx2_v: |
| case NEON::BI__builtin_neon_vqtbx2q_v: |
| case NEON::BI__builtin_neon_vtbx3_v: |
| case NEON::BI__builtin_neon_vqtbx3_v: |
| case NEON::BI__builtin_neon_vqtbx3q_v: |
| case NEON::BI__builtin_neon_vtbx4_v: |
| case NEON::BI__builtin_neon_vqtbx4_v: |
| case NEON::BI__builtin_neon_vqtbx4q_v: |
| break; |
| } |
| |
| assert(E->getNumArgs() >= 3); |
| |
| // Get the last argument, which specifies the vector type. |
| const Expr *Arg = E->getArg(E->getNumArgs() - 1); |
| Optional<llvm::APSInt> Result = Arg->getIntegerConstantExpr(CGF.getContext()); |
| if (!Result) |
| return nullptr; |
| |
| // Determine the type of this overloaded NEON intrinsic. |
| NeonTypeFlags Type = Result->getZExtValue(); |
| llvm::FixedVectorType *Ty = GetNeonType(&CGF, Type); |
| if (!Ty) |
| return nullptr; |
| |
| CodeGen::CGBuilderTy &Builder = CGF.Builder; |
| |
| // AArch64 scalar builtins are not overloaded, they do not have an extra |
| // argument that specifies the vector type, need to handle each case. |
| switch (BuiltinID) { |
| case NEON::BI__builtin_neon_vtbl1_v: { |
| return packTBLDVectorList(CGF, makeArrayRef(Ops).slice(0, 1), nullptr, |
| Ops[1], Ty, Intrinsic::aarch64_neon_tbl1, |
| "vtbl1"); |
| } |
| case NEON::BI__builtin_neon_vtbl2_v: { |
| return packTBLDVectorList(CGF, makeArrayRef(Ops).slice(0, 2), nullptr, |
| Ops[2], Ty, Intrinsic::aarch64_neon_tbl1, |
| "vtbl1"); |
| } |
| case NEON::BI__builtin_neon_vtbl3_v: { |
| return packTBLDVectorList(CGF, makeArrayRef(Ops).slice(0, 3), nullptr, |
| Ops[3], Ty, Intrinsic::aarch64_neon_tbl2, |
| "vtbl2"); |
| } |
| case NEON::BI__builtin_neon_vtbl4_v: { |
| return packTBLDVectorList(CGF, makeArrayRef(Ops).slice(0, 4), nullptr, |
| Ops[4], Ty, Intrinsic::aarch64_neon_tbl2, |
| "vtbl2"); |
| } |
| case NEON::BI__builtin_neon_vtbx1_v: { |
| Value *TblRes = |
| packTBLDVectorList(CGF, makeArrayRef(Ops).slice(1, 1), nullptr, Ops[2], |
| Ty, Intrinsic::aarch64_neon_tbl1, "vtbl1"); |
| |
| llvm::Constant *EightV = ConstantInt::get(Ty, 8); |
| Value *CmpRes = Builder.CreateICmp(ICmpInst::ICMP_UGE, Ops[2], EightV); |
| CmpRes = Builder.CreateSExt(CmpRes, Ty); |
| |
| Value *EltsFromInput = Builder.CreateAnd(CmpRes, Ops[0]); |
| Value *EltsFromTbl = Builder.CreateAnd(Builder.CreateNot(CmpRes), TblRes); |
| return Builder.CreateOr(EltsFromInput, EltsFromTbl, "vtbx"); |
| } |
| case NEON::BI__builtin_neon_vtbx2_v: { |
| return packTBLDVectorList(CGF, makeArrayRef(Ops).slice(1, 2), Ops[0], |
| Ops[3], Ty, Intrinsic::aarch64_neon_tbx1, |
| "vtbx1"); |
| } |
| case NEON::BI__builtin_neon_vtbx3_v: { |
| Value *TblRes = |
| packTBLDVectorList(CGF, makeArrayRef(Ops).slice(1, 3), nullptr, Ops[4], |
| Ty, Intrinsic::aarch64_neon_tbl2, "vtbl2"); |
| |
| llvm::Constant *TwentyFourV = ConstantInt::get(Ty, 24); |
| Value *CmpRes = Builder.CreateICmp(ICmpInst::ICMP_UGE, Ops[4], |
| TwentyFourV); |
| CmpRes = Builder.CreateSExt(CmpRes, Ty); |
| |
| Value *EltsFromInput = Builder.CreateAnd(CmpRes, Ops[0]); |
| Value *EltsFromTbl = Builder.CreateAnd(Builder.CreateNot(CmpRes), TblRes); |
| return Builder.CreateOr(EltsFromInput, EltsFromTbl, "vtbx"); |
| } |
| case NEON::BI__builtin_neon_vtbx4_v: { |
| return packTBLDVectorList(CGF, makeArrayRef(Ops).slice(1, 4), Ops[0], |
| Ops[5], Ty, Intrinsic::aarch64_neon_tbx2, |
| "vtbx2"); |
| } |
| case NEON::BI__builtin_neon_vqtbl1_v: |
| case NEON::BI__builtin_neon_vqtbl1q_v: |
| Int = Intrinsic::aarch64_neon_tbl1; s = "vtbl1"; break; |
| case NEON::BI__builtin_neon_vqtbl2_v: |
| case NEON::BI__builtin_neon_vqtbl2q_v: { |
| Int = Intrinsic::aarch64_neon_tbl2; s = "vtbl2"; break; |
| case NEON::BI__builtin_neon_vqtbl3_v: |
| case NEON::BI__builtin_neon_vqtbl3q_v: |
| Int = Intrinsic::aarch64_neon_tbl3; s = "vtbl3"; break; |
| case NEON::BI__builtin_neon_vqtbl4_v: |
| case NEON::BI__builtin_neon_vqtbl4q_v: |
| Int = Intrinsic::aarch64_neon_tbl4; s = "vtbl4"; break; |
| case NEON::BI__builtin_neon_vqtbx1_v: |
| case NEON::BI__builtin_neon_vqtbx1q_v: |
| Int = Intrinsic::aarch64_neon_tbx1; s = "vtbx1"; break; |
| case NEON::BI__builtin_neon_vqtbx2_v: |
| case NEON::BI__builtin_neon_vqtbx2q_v: |
| Int = Intrinsic::aarch64_neon_tbx2; s = "vtbx2"; break; |
| case NEON::BI__builtin_neon_vqtbx3_v: |
| case NEON::BI__builtin_neon_vqtbx3q_v: |
| Int = Intrinsic::aarch64_neon_tbx3; s = "vtbx3"; break; |
| case NEON::BI__builtin_neon_vqtbx4_v: |
| case NEON::BI__builtin_neon_vqtbx4q_v: |
| Int = Intrinsic::aarch64_neon_tbx4; s = "vtbx4"; break; |
| } |
| } |
| |
| if (!Int) |
| return nullptr; |
| |
| Function *F = CGF.CGM.getIntrinsic(Int, Ty); |
| return CGF.EmitNeonCall(F, Ops, s); |
| } |
| |
| Value *CodeGenFunction::vectorWrapScalar16(Value *Op) { |
| auto *VTy = llvm::FixedVectorType::get(Int16Ty, 4); |
| Op = Builder.CreateBitCast(Op, Int16Ty); |
| Value *V = UndefValue::get(VTy); |
| llvm::Constant *CI = ConstantInt::get(SizeTy, 0); |
| Op = Builder.CreateInsertElement(V, Op, CI); |
| return Op; |
| } |
| |
| /// SVEBuiltinMemEltTy - Returns the memory element type for this memory |
| /// access builtin. Only required if it can't be inferred from the base pointer |
| /// operand. |
| llvm::Type *CodeGenFunction::SVEBuiltinMemEltTy(const SVETypeFlags &TypeFlags) { |
| switch (TypeFlags.getMemEltType()) { |
| case SVETypeFlags::MemEltTyDefault: |
| return getEltType(TypeFlags); |
| case SVETypeFlags::MemEltTyInt8: |
| return Builder.getInt8Ty(); |
| case SVETypeFlags::MemEltTyInt16: |
| return Builder.getInt16Ty(); |
| case SVETypeFlags::MemEltTyInt32: |
| return Builder.getInt32Ty(); |
| case SVETypeFlags::MemEltTyInt64: |
| return Builder.getInt64Ty(); |
| } |
| llvm_unreachable("Unknown MemEltType"); |
| } |
| |
| llvm::Type *CodeGenFunction::getEltType(const SVETypeFlags &TypeFlags) { |
| switch (TypeFlags.getEltType()) { |
| default: |
| llvm_unreachable("Invalid SVETypeFlag!"); |
| |
| case SVETypeFlags::EltTyInt8: |
| return Builder.getInt8Ty(); |
| case SVETypeFlags::EltTyInt16: |
| return Builder.getInt16Ty(); |
| case SVETypeFlags::EltTyInt32: |
| return Builder.getInt32Ty(); |
| case SVETypeFlags::EltTyInt64: |
| return Builder.getInt64Ty(); |
| |
| case SVETypeFlags::EltTyFloat16: |
| return Builder.getHalfTy(); |
| case SVETypeFlags::EltTyFloat32: |
| return Builder.getFloatTy(); |
| case SVETypeFlags::EltTyFloat64: |
| return Builder.getDoubleTy(); |
| |
| case SVETypeFlags::EltTyBFloat16: |
| return Builder.getBFloatTy(); |
| |
| case SVETypeFlags::EltTyBool8: |
| case SVETypeFlags::EltTyBool16: |
| case SVETypeFlags::EltTyBool32: |
| case SVETypeFlags::EltTyBool64: |
| return Builder.getInt1Ty(); |
| } |
| } |
| |
| // Return the llvm predicate vector type corresponding to the specified element |
| // TypeFlags. |
| llvm::ScalableVectorType * |
| CodeGenFunction::getSVEPredType(const SVETypeFlags &TypeFlags) { |
| switch (TypeFlags.getEltType()) { |
| default: llvm_unreachable("Unhandled SVETypeFlag!"); |
| |
| case SVETypeFlags::EltTyInt8: |
| return llvm::ScalableVectorType::get(Builder.getInt1Ty(), 16); |
| case SVETypeFlags::EltTyInt16: |
| return llvm::ScalableVectorType::get(Builder.getInt1Ty(), 8); |
| case SVETypeFlags::EltTyInt32: |
| return llvm::ScalableVectorType::get(Builder.getInt1Ty(), 4); |
| case SVETypeFlags::EltTyInt64: |
| return llvm::ScalableVectorType::get(Builder.getInt1Ty(), 2); |
| |
| case SVETypeFlags::EltTyBFloat16: |
| return llvm::ScalableVectorType::get(Builder.getInt1Ty(), 8); |
| case SVETypeFlags::EltTyFloat16: |
| return llvm::ScalableVectorType::get(Builder.getInt1Ty(), 8); |
| case SVETypeFlags::EltTyFloat32: |
| return llvm::ScalableVectorType::get(Builder.getInt1Ty(), 4); |
| case SVETypeFlags::EltTyFloat64: |
| return llvm::ScalableVectorType::get(Builder.getInt1Ty(), 2); |
| |
| case SVETypeFlags::EltTyBool8: |
| return llvm::ScalableVectorType::get(Builder.getInt1Ty(), 16); |
| case SVETypeFlags::EltTyBool16: |
| return llvm::ScalableVectorType::get(Builder.getInt1Ty(), 8); |
| case SVETypeFlags::EltTyBool32: |
| return llvm::ScalableVectorType::get(Builder.getInt1Ty(), 4); |
| case SVETypeFlags::EltTyBool64: |
| return llvm::ScalableVectorType::get(Builder.getInt1Ty(), 2); |
| } |
| } |
| |
| // Return the llvm vector type corresponding to the specified element TypeFlags. |
| llvm::ScalableVectorType * |
| CodeGenFunction::getSVEType(const SVETypeFlags &TypeFlags) { |
| switch (TypeFlags.getEltType()) { |
| default: |
| llvm_unreachable("Invalid SVETypeFlag!"); |
| |
| case SVETypeFlags::EltTyInt8: |
| return llvm::ScalableVectorType::get(Builder.getInt8Ty(), 16); |
| case SVETypeFlags::EltTyInt16: |
| return llvm::ScalableVectorType::get(Builder.getInt16Ty(), 8); |
| case SVETypeFlags::EltTyInt32: |
| return llvm::ScalableVectorType::get(Builder.getInt32Ty(), 4); |
| case SVETypeFlags::EltTyInt64: |
| return llvm::ScalableVectorType::get(Builder.getInt64Ty(), 2); |
| |
| case SVETypeFlags::EltTyFloat16: |
| return llvm::ScalableVectorType::get(Builder.getHalfTy(), 8); |
| case SVETypeFlags::EltTyBFloat16: |
| return llvm::ScalableVectorType::get(Builder.getBFloatTy(), 8); |
| case SVETypeFlags::EltTyFloat32: |
| return llvm::ScalableVectorType::get(Builder.getFloatTy(), 4); |
| case SVETypeFlags::EltTyFloat64: |
| return llvm::ScalableVectorType::get(Builder.getDoubleTy(), 2); |
| |
| case SVETypeFlags::EltTyBool8: |
| return llvm::ScalableVectorType::get(Builder.getInt1Ty(), 16); |
| case SVETypeFlags::EltTyBool16: |
| return llvm::ScalableVectorType::get(Builder.getInt1Ty(), 8); |
| case SVETypeFlags::EltTyBool32: |
| return llvm::ScalableVectorType::get(Builder.getInt1Ty(), 4); |
| case SVETypeFlags::EltTyBool64: |
| return llvm::ScalableVectorType::get(Builder.getInt1Ty(), 2); |
| } |
| } |
| |
| llvm::Value * |
| CodeGenFunction::EmitSVEAllTruePred(const SVETypeFlags &TypeFlags) { |
| Function *Ptrue = |
| CGM.getIntrinsic(Intrinsic::aarch64_sve_ptrue, getSVEPredType(TypeFlags)); |
| return Builder.CreateCall(Ptrue, {Builder.getInt32(/*SV_ALL*/ 31)}); |
| } |
| |
| constexpr unsigned SVEBitsPerBlock = 128; |
| |
| static llvm::ScalableVectorType *getSVEVectorForElementType(llvm::Type *EltTy) { |
| unsigned NumElts = SVEBitsPerBlock / EltTy->getScalarSizeInBits(); |
| return llvm::ScalableVectorType::get(EltTy, NumElts); |
| } |
| |
| // Reinterpret the input predicate so that it can be used to correctly isolate |
| // the elements of the specified datatype. |
| Value *CodeGenFunction::EmitSVEPredicateCast(Value *Pred, |
| llvm::ScalableVectorType *VTy) { |
| auto *RTy = llvm::VectorType::get(IntegerType::get(getLLVMContext(), 1), VTy); |
| if (Pred->getType() == RTy) |
| return Pred; |
| |
| unsigned IntID; |
| llvm::Type *IntrinsicTy; |
| switch (VTy->getMinNumElements()) { |
| default: |
| llvm_unreachable("unsupported element count!"); |
| case 2: |
| case 4: |
| case 8: |
| IntID = Intrinsic::aarch64_sve_convert_from_svbool; |
| IntrinsicTy = RTy; |
| break; |
| case 16: |
| IntID = Intrinsic::aarch64_sve_convert_to_svbool; |
| IntrinsicTy = Pred->getType(); |
| break; |
| } |
| |
| Function *F = CGM.getIntrinsic(IntID, IntrinsicTy); |
| Value *C = Builder.CreateCall(F, Pred); |
| assert(C->getType() == RTy && "Unexpected return type!"); |
| return C; |
| } |
| |
| Value *CodeGenFunction::EmitSVEGatherLoad(const SVETypeFlags &TypeFlags, |
| SmallVectorImpl<Value *> &Ops, |
| unsigned IntID) { |
| auto *ResultTy = getSVEType(TypeFlags); |
| auto *OverloadedTy = |
| llvm::ScalableVectorType::get(SVEBuiltinMemEltTy(TypeFlags), ResultTy); |
| |
| // At the ACLE level there's only one predicate type, svbool_t, which is |
| // mapped to <n x 16 x i1>. However, this might be incompatible with the |
| // actual type being loaded. For example, when loading doubles (i64) the |
| // predicated should be <n x 2 x i1> instead. At the IR level the type of |
| // the predicate and the data being loaded must match. Cast accordingly. |
| Ops[0] = EmitSVEPredicateCast(Ops[0], OverloadedTy); |
| |
| Function *F = nullptr; |
| if (Ops[1]->getType()->isVectorTy()) |
| // This is the "vector base, scalar offset" case. In order to uniquely |
| // map this built-in to an LLVM IR intrinsic, we need both the return type |
| // and the type of the vector base. |
| F = CGM.getIntrinsic(IntID, {OverloadedTy, Ops[1]->getType()}); |
| else |
| // This is the "scalar base, vector offset case". The type of the offset |
| // is encoded in the name of the intrinsic. We only need to specify the |
| // return type in order to uniquely map this built-in to an LLVM IR |
| // intrinsic. |
| F = CGM.getIntrinsic(IntID, OverloadedTy); |
| |
| // Pass 0 when the offset is missing. This can only be applied when using |
| // the "vector base" addressing mode for which ACLE allows no offset. The |
| // corresponding LLVM IR always requires an offset. |
| if (Ops.size() == 2) { |
| assert(Ops[1]->getType()->isVectorTy() && "Scalar base requires an offset"); |
| Ops.push_back(ConstantInt::get(Int64Ty, 0)); |
| } |
| |
| // For "vector base, scalar index" scale the index so that it becomes a |
| // scalar offset. |
| if (!TypeFlags.isByteIndexed() && Ops[1]->getType()->isVectorTy()) { |
| unsigned BytesPerElt = |
| OverloadedTy->getElementType()->getScalarSizeInBits() / 8; |
| Value *Scale = ConstantInt::get(Int64Ty, BytesPerElt); |
| Ops[2] = Builder.CreateMul(Ops[2], Scale); |
| } |
| |
| Value *Call = Builder.CreateCall(F, Ops); |
| |
| // The following sext/zext is only needed when ResultTy != OverloadedTy. In |
| // other cases it's folded into a nop. |
| return TypeFlags.isZExtReturn() ? Builder.CreateZExt(Call, ResultTy) |
| : Builder.CreateSExt(Call, ResultTy); |
| } |
| |
| Value *CodeGenFunction::EmitSVEScatterStore(const SVETypeFlags &TypeFlags, |
| SmallVectorImpl<Value *> &Ops, |
| unsigned IntID) { |
| auto *SrcDataTy = getSVEType(TypeFlags); |
| auto *OverloadedTy = |
| llvm::ScalableVectorType::get(SVEBuiltinMemEltTy(TypeFlags), SrcDataTy); |
| |
| // In ACLE the source data is passed in the last argument, whereas in LLVM IR |
| // it's the first argument. Move it accordingly. |
| Ops.insert(Ops.begin(), Ops.pop_back_val()); |
| |
| Function *F = nullptr; |
| if (Ops[2]->getType()->isVectorTy()) |
| // This is the "vector base, scalar offset" case. In order to uniquely |
| // map this built-in to an LLVM IR intrinsic, we need both the return type |
| // and the type of the vector base. |
| F = CGM.getIntrinsic(IntID, {OverloadedTy, Ops[2]->getType()}); |
| else |
| // This is the "scalar base, vector offset case". The type of the offset |
| // is encoded in the name of the intrinsic. We only need to specify the |
| // return type in order to uniquely map this built-in to an LLVM IR |
| // intrinsic. |
| F = CGM.getIntrinsic(IntID, OverloadedTy); |
| |
| // Pass 0 when the offset is missing. This can only be applied when using |
| // the "vector base" addressing mode for which ACLE allows no offset. The |
| // corresponding LLVM IR always requires an offset. |
| if (Ops.size() == 3) { |
| assert(Ops[1]->getType()->isVectorTy() && "Scalar base requires an offset"); |
| Ops.push_back(ConstantInt::get(Int64Ty, 0)); |
| } |
| |
| // Truncation is needed when SrcDataTy != OverloadedTy. In other cases it's |
| // folded into a nop. |
| Ops[0] = Builder.CreateTrunc(Ops[0], OverloadedTy); |
| |
| // At the ACLE level there's only one predicate type, svbool_t, which is |
| // mapped to <n x 16 x i1>. However, this might be incompatible with the |
| // actual type being stored. For example, when storing doubles (i64) the |
| // predicated should be <n x 2 x i1> instead. At the IR level the type of |
| // the predicate and the data being stored must match. Cast accordingly. |
| Ops[1] = EmitSVEPredicateCast(Ops[1], OverloadedTy); |
| |
| // For "vector base, scalar index" scale the index so that it becomes a |
| // scalar offset. |
| if (!TypeFlags.isByteIndexed() && Ops[2]->getType()->isVectorTy()) { |
| unsigned BytesPerElt = |
| OverloadedTy->getElementType()->getScalarSizeInBits() / 8; |
| Value *Scale = ConstantInt::get(Int64Ty, BytesPerElt); |
| Ops[3] = Builder.CreateMul(Ops[3], Scale); |
| } |
| |
| return Builder.CreateCall(F, Ops); |
| } |
| |
| Value *CodeGenFunction::EmitSVEGatherPrefetch(const SVETypeFlags &TypeFlags, |
| SmallVectorImpl<Value *> &Ops, |
| unsigned IntID) { |
| // The gather prefetches are overloaded on the vector input - this can either |
| // be the vector of base addresses or vector of offsets. |
| auto *OverloadedTy = dyn_cast<llvm::ScalableVectorType>(Ops[1]->getType()); |
| if (!OverloadedTy) |
| OverloadedTy = cast<llvm::ScalableVectorType>(Ops[2]->getType()); |
| |
| // Cast the predicate from svbool_t to the right number of elements. |
| Ops[0] = EmitSVEPredicateCast(Ops[0], OverloadedTy); |
| |
| // vector + imm addressing modes |
| if (Ops[1]->getType()->isVectorTy()) { |
| if (Ops.size() == 3) { |
| // Pass 0 for 'vector+imm' when the index is omitted. |
| Ops.push_back(ConstantInt::get(Int64Ty, 0)); |
| |
| // The sv_prfop is the last operand in the builtin and IR intrinsic. |
| std::swap(Ops[2], Ops[3]); |
| } else { |
| // Index needs to be passed as scaled offset. |
| llvm::Type *MemEltTy = SVEBuiltinMemEltTy(TypeFlags); |
| unsigned BytesPerElt = MemEltTy->getPrimitiveSizeInBits() / 8; |
| Value *Scale = ConstantInt::get(Int64Ty, BytesPerElt); |
| Ops[2] = Builder.CreateMul(Ops[2], Scale); |
| } |
| } |
| |
| Function *F = CGM.getIntrinsic(IntID, OverloadedTy); |
| return Builder.CreateCall(F, Ops); |
| } |
| |
| Value *CodeGenFunction::EmitSVEStructLoad(const SVETypeFlags &TypeFlags, |
| SmallVectorImpl<Value*> &Ops, |
| unsigned IntID) { |
| llvm::ScalableVectorType *VTy = getSVEType(TypeFlags); |
| auto VecPtrTy = llvm::PointerType::getUnqual(VTy); |
| auto EltPtrTy = llvm::PointerType::getUnqual(VTy->getElementType()); |
| |
| unsigned N; |
| switch (IntID) { |
| case Intrinsic::aarch64_sve_ld2: |
| N = 2; |
| break; |
| case Intrinsic::aarch64_sve_ld3: |
| N = 3; |
| break; |
| case Intrinsic::aarch64_sve_ld4: |
| N = 4; |
| break; |
| default: |
| llvm_unreachable("unknown intrinsic!"); |
| } |
| auto RetTy = llvm::VectorType::get(VTy->getElementType(), |
| VTy->getElementCount() * N); |
| |
| Value *Predicate = EmitSVEPredicateCast(Ops[0], VTy); |
| Value *BasePtr= Builder.CreateBitCast(Ops[1], VecPtrTy); |
| Value *Offset = Ops.size() > 2 ? Ops[2] : Builder.getInt32(0); |
| BasePtr = Builder.CreateGEP(VTy, BasePtr, Offset); |
| BasePtr = Builder.CreateBitCast(BasePtr, EltPtrTy); |
| |
| Function *F = CGM.getIntrinsic(IntID, {RetTy, Predicate->getType()}); |
| return Builder.CreateCall(F, { Predicate, BasePtr }); |
| } |
| |
| Value *CodeGenFunction::EmitSVEStructStore(const SVETypeFlags &TypeFlags, |
| SmallVectorImpl<Value*> &Ops, |
| unsigned IntID) { |
| llvm::ScalableVectorType *VTy = getSVEType(TypeFlags); |
| auto VecPtrTy = llvm::PointerType::getUnqual(VTy); |
| auto EltPtrTy = llvm::PointerType::getUnqual(VTy->getElementType()); |
| |
| unsigned N; |
| switch (IntID) { |
| case Intrinsic::aarch64_sve_st2: |
| N = 2; |
| break; |
| case Intrinsic::aarch64_sve_st3: |
| N = 3; |
| break; |
| case Intrinsic::aarch64_sve_st4: |
| N = 4; |
| break; |
| default: |
| llvm_unreachable("unknown intrinsic!"); |
| } |
| auto TupleTy = |
| llvm::VectorType::get(VTy->getElementType(), VTy->getElementCount() * N); |
| |
| Value *Predicate = EmitSVEPredicateCast(Ops[0], VTy); |
| Value *BasePtr = Builder.CreateBitCast(Ops[1], VecPtrTy); |
| Value *Offset = Ops.size() > 3 ? Ops[2] : Builder.getInt32(0); |
| Value *Val = Ops.back(); |
| BasePtr = Builder.CreateGEP(VTy, BasePtr, Offset); |
| BasePtr = Builder.CreateBitCast(BasePtr, EltPtrTy); |
| |
| // The llvm.aarch64.sve.st2/3/4 intrinsics take legal part vectors, so we |
| // need to break up the tuple vector. |
| SmallVector<llvm::Value*, 5> Operands; |
| Function *FExtr = |
| CGM.getIntrinsic(Intrinsic::aarch64_sve_tuple_get, {VTy, TupleTy}); |
| for (unsigned I = 0; I < N; ++I) |
| Operands.push_back(Builder.CreateCall(FExtr, {Val, Builder.getInt32(I)})); |
| Operands.append({Predicate, BasePtr}); |
| |
| Function *F = CGM.getIntrinsic(IntID, { VTy }); |
| return Builder.CreateCall(F, Operands); |
| } |
| |
| // SVE2's svpmullb and svpmullt builtins are similar to the svpmullb_pair and |
| // svpmullt_pair intrinsics, with the exception that their results are bitcast |
| // to a wider type. |
| Value *CodeGenFunction::EmitSVEPMull(const SVETypeFlags &TypeFlags, |
| SmallVectorImpl<Value *> &Ops, |
| unsigned BuiltinID) { |
| // Splat scalar operand to vector (intrinsics with _n infix) |
| if (TypeFlags.hasSplatOperand()) { |
| unsigned OpNo = TypeFlags.getSplatOperand(); |
| Ops[OpNo] = EmitSVEDupX(Ops[OpNo]); |
| } |
| |
| // The pair-wise function has a narrower overloaded type. |
| Function *F = CGM.getIntrinsic(BuiltinID, Ops[0]->getType()); |
| Value *Call = Builder.CreateCall(F, {Ops[0], Ops[1]}); |
| |
| // Now bitcast to the wider result type. |
| llvm::ScalableVectorType *Ty = getSVEType(TypeFlags); |
| return EmitSVEReinterpret(Call, Ty); |
| } |
| |
| Value *CodeGenFunction::EmitSVEMovl(const SVETypeFlags &TypeFlags, |
| ArrayRef<Value *> Ops, unsigned BuiltinID) { |
| llvm::Type *OverloadedTy = getSVEType(TypeFlags); |
| Function *F = CGM.getIntrinsic(BuiltinID, OverloadedTy); |
| return Builder.CreateCall(F, {Ops[0], Builder.getInt32(0)}); |
| } |
| |
| Value *CodeGenFunction::EmitSVEPrefetchLoad(const SVETypeFlags &TypeFlags, |
| SmallVectorImpl<Value *> &Ops, |
| unsigned BuiltinID) { |
| auto *MemEltTy = SVEBuiltinMemEltTy(TypeFlags); |
| auto *VectorTy = getSVEVectorForElementType(MemEltTy); |
| auto *MemoryTy = llvm::ScalableVectorType::get(MemEltTy, VectorTy); |
| |
| Value *Predicate = EmitSVEPredicateCast(Ops[0], MemoryTy); |
| Value *BasePtr = Ops[1]; |
| |
| // Implement the index operand if not omitted. |
| if (Ops.size() > 3) { |
| BasePtr = Builder.CreateBitCast(BasePtr, MemoryTy->getPointerTo()); |
| BasePtr = Builder.CreateGEP(MemoryTy, BasePtr, Ops[2]); |
| } |
| |
| // Prefetch intriniscs always expect an i8* |
| BasePtr = Builder.CreateBitCast(BasePtr, llvm::PointerType::getUnqual(Int8Ty)); |
| Value *PrfOp = Ops.back(); |
| |
| Function *F = CGM.getIntrinsic(BuiltinID, Predicate->getType()); |
| return Builder.CreateCall(F, {Predicate, BasePtr, PrfOp}); |
| } |
| |
| Value *CodeGenFunction::EmitSVEMaskedLoad(const CallExpr *E, |
| llvm::Type *ReturnTy, |
| SmallVectorImpl<Value *> &Ops, |
| unsigned BuiltinID, |
| bool IsZExtReturn) { |
| QualType LangPTy = E->getArg(1)->getType(); |
| llvm::Type *MemEltTy = CGM.getTypes().ConvertType( |
| LangPTy->castAs<PointerType>()->getPointeeType()); |
| |
| // The vector type that is returned may be different from the |
| // eventual type loaded from memory. |
| auto VectorTy = cast<llvm::ScalableVectorType>(ReturnTy); |
| auto MemoryTy = llvm::ScalableVectorType::get(MemEltTy, VectorTy); |
| |
| Value *Predicate = EmitSVEPredicateCast(Ops[0], MemoryTy); |
| Value *BasePtr = Builder.CreateBitCast(Ops[1], MemoryTy->getPointerTo()); |
| Value *Offset = Ops.size() > 2 ? Ops[2] : Builder.getInt32(0); |
| BasePtr = Builder.CreateGEP(MemoryTy, BasePtr, Offset); |
| |
| BasePtr = Builder.CreateBitCast(BasePtr, MemEltTy->getPointerTo()); |
| Function *F = CGM.getIntrinsic(BuiltinID, MemoryTy); |
| Value *Load = Builder.CreateCall(F, {Predicate, BasePtr}); |
| |
| return IsZExtReturn ? Builder.CreateZExt(Load, VectorTy) |
| : Builder.CreateSExt(Load, VectorTy); |
| } |
| |
| Value *CodeGenFunction::EmitSVEMaskedStore(const CallExpr *E, |
| SmallVectorImpl<Value *> &Ops, |
| unsigned BuiltinID) { |
| QualType LangPTy = E->getArg(1)->getType(); |
| llvm::Type *MemEltTy = CGM.getTypes().ConvertType( |
| LangPTy->castAs<PointerType>()->getPointeeType()); |
| |
| // The vector type that is stored may be different from the |
| // eventual type stored to memory. |
| auto VectorTy = cast<llvm::ScalableVectorType>(Ops.back()->getType()); |
| auto MemoryTy = llvm::ScalableVectorType::get(MemEltTy, VectorTy); |
| |
| Value *Predicate = EmitSVEPredicateCast(Ops[0], MemoryTy); |
| Value *BasePtr = Builder.CreateBitCast(Ops[1], MemoryTy->getPointerTo()); |
| Value *Offset = Ops.size() == 4 ? Ops[2] : Builder.getInt32(0); |
| BasePtr = Builder.CreateGEP(MemoryTy, BasePtr, Offset); |
| |
| // Last value is always the data |
| llvm::Value *Val = Builder.CreateTrunc(Ops.back(), MemoryTy); |
| |
| BasePtr = Builder.CreateBitCast(BasePtr, MemEltTy->getPointerTo()); |
| Function *F = CGM.getIntrinsic(BuiltinID, MemoryTy); |
| return Builder.CreateCall(F, {Val, Predicate, BasePtr}); |
| } |
| |
| // Limit the usage of scalable llvm IR generated by the ACLE by using the |
| // sve dup.x intrinsic instead of IRBuilder::CreateVectorSplat. |
| Value *CodeGenFunction::EmitSVEDupX(Value *Scalar, llvm::Type *Ty) { |
| auto F = CGM.getIntrinsic(Intrinsic::aarch64_sve_dup_x, Ty); |
| return Builder.CreateCall(F, Scalar); |
| } |
| |
| Value *CodeGenFunction::EmitSVEDupX(Value* Scalar) { |
| return EmitSVEDupX(Scalar, getSVEVectorForElementType(Scalar->getType())); |
| } |
| |
| Value *CodeGenFunction::EmitSVEReinterpret(Value *Val, llvm::Type *Ty) { |
| // FIXME: For big endian this needs an additional REV, or needs a separate |
| // intrinsic that is code-generated as a no-op, because the LLVM bitcast |
| // instruction is defined as 'bitwise' equivalent from memory point of |
| // view (when storing/reloading), whereas the svreinterpret builtin |
| // implements bitwise equivalent cast from register point of view. |
| // LLVM CodeGen for a bitcast must add an explicit REV for big-endian. |
| return Builder.CreateBitCast(Val, Ty); |
| } |
| |
| static void InsertExplicitZeroOperand(CGBuilderTy &Builder, llvm::Type *Ty, |
| SmallVectorImpl<Value *> &Ops) { |
| auto *SplatZero = Constant::getNullValue(Ty); |
| Ops.insert(Ops.begin(), SplatZero); |
| } |
| |
| static void InsertExplicitUndefOperand(CGBuilderTy &Builder, llvm::Type *Ty, |
| SmallVectorImpl<Value *> &Ops) { |
| auto *SplatUndef = UndefValue::get(Ty); |
| Ops.insert(Ops.begin(), SplatUndef); |
| } |
| |
| SmallVector<llvm::Type *, 2> |
| CodeGenFunction::getSVEOverloadTypes(const SVETypeFlags &TypeFlags, |
| llvm::Type *ResultType, |
| ArrayRef<Value *> Ops) { |
| if (TypeFlags.isOverloadNone()) |
| return {}; |
| |
| llvm::Type *DefaultType = getSVEType(TypeFlags); |
| |
| if (TypeFlags.isOverloadWhile()) |
| return {DefaultType, Ops[1]->getType()}; |
| |
| if (TypeFlags.isOverloadWhileRW()) |
| return {getSVEPredType(TypeFlags), Ops[0]->getType()}; |
| |
| if (TypeFlags.isOverloadCvt() || TypeFlags.isTupleSet()) |
| return {Ops[0]->getType(), Ops.back()->getType()}; |
| |
| if (TypeFlags.isTupleCreate() || TypeFlags.isTupleGet()) |
| return {ResultType, Ops[0]->getType()}; |
| |
| assert(TypeFlags.isOverloadDefault() && "Unexpected value for overloads"); |
| return {DefaultType}; |
| } |
| |
| Value *CodeGenFunction::EmitAArch64SVEBuiltinExpr(unsigned BuiltinID, |
| const CallExpr *E) { |
| // Find out if any arguments are required to be integer constant expressions. |
| unsigned ICEArguments = 0; |
| ASTContext::GetBuiltinTypeError Error; |
| getContext().GetBuiltinType(BuiltinID, Error, &ICEArguments); |
| assert(Error == ASTContext::GE_None && "Should not codegen an error"); |
| |
| llvm::Type *Ty = ConvertType(E->getType()); |
| if (BuiltinID >= SVE::BI__builtin_sve_reinterpret_s8_s8 && |
| BuiltinID <= SVE::BI__builtin_sve_reinterpret_f64_f64) { |
| Value *Val = EmitScalarExpr(E->getArg(0)); |
| return EmitSVEReinterpret(Val, Ty); |
| } |
| |
| llvm::SmallVector<Value *, 4> Ops; |
| for (unsigned i = 0, e = E->getNumArgs(); i != e; i++) { |
| if ((ICEArguments & (1 << i)) == 0) |
| Ops.push_back(EmitScalarExpr(E->getArg(i))); |
| else { |
| // If this is required to be a constant, constant fold it so that we know |
| // that the generated intrinsic gets a ConstantInt. |
| Optional<llvm::APSInt> Result = |
| E->getArg(i)->getIntegerConstantExpr(getContext()); |
| assert(Result && "Expected argument to be a constant"); |
| |
| // Immediates for SVE llvm intrinsics are always 32bit. We can safely |
| // truncate because the immediate has been range checked and no valid |
| // immediate requires more than a handful of bits. |
| *Result = Result->extOrTrunc(32); |
| Ops.push_back(llvm::ConstantInt::get(getLLVMContext(), *Result)); |
| } |
| } |
| |
| auto *Builtin = findARMVectorIntrinsicInMap(AArch64SVEIntrinsicMap, BuiltinID, |
| AArch64SVEIntrinsicsProvenSorted); |
| SVETypeFlags TypeFlags(Builtin->TypeModifier); |
| if (TypeFlags.isLoad()) |
| return EmitSVEMaskedLoad(E, Ty, Ops, Builtin->LLVMIntrinsic, |
| TypeFlags.isZExtReturn()); |
| else if (TypeFlags.isStore()) |
| return EmitSVEMaskedStore(E, Ops, Builtin->LLVMIntrinsic); |
| else if (TypeFlags.isGatherLoad()) |
| return EmitSVEGatherLoad(TypeFlags, Ops, Builtin->LLVMIntrinsic); |
| else if (TypeFlags.isScatterStore()) |
| return EmitSVEScatterStore(TypeFlags, Ops, Builtin->LLVMIntrinsic); |
| else if (TypeFlags.isPrefetch()) |
| return EmitSVEPrefetchLoad(TypeFlags, Ops, Builtin->LLVMIntrinsic); |
| else if (TypeFlags.isGatherPrefetch()) |
| return EmitSVEGatherPrefetch(TypeFlags, Ops, Builtin->LLVMIntrinsic); |
| else if (TypeFlags.isStructLoad()) |
| return EmitSVEStructLoad(TypeFlags, Ops, Builtin->LLVMIntrinsic); |
| else if (TypeFlags.isStructStore()) |
| return EmitSVEStructStore(TypeFlags, Ops, Builtin->LLVMIntrinsic); |
| else if (TypeFlags.isUndef()) |
| return UndefValue::get(Ty); |
| else if (Builtin->LLVMIntrinsic != 0) { |
| if (TypeFlags.getMergeType() == SVETypeFlags::MergeZeroExp) |
| InsertExplicitZeroOperand(Builder, Ty, Ops); |
| |
| if (TypeFlags.getMergeType() == SVETypeFlags::MergeAnyExp) |
| InsertExplicitUndefOperand(Builder, Ty, Ops); |
| |
| // Some ACLE builtins leave out the argument to specify the predicate |
| // pattern, which is expected to be expanded to an SV_ALL pattern. |
| if (TypeFlags.isAppendSVALL()) |
| Ops.push_back(Builder.getInt32(/*SV_ALL*/ 31)); |
| if (TypeFlags.isInsertOp1SVALL()) |
| Ops.insert(&Ops[1], Builder.getInt32(/*SV_ALL*/ 31)); |
| |
| // Predicates must match the main datatype. |
| for (unsigned i = 0, e = Ops.size(); i != e; ++i) |
| if (auto PredTy = dyn_cast<llvm::VectorType>(Ops[i]->getType())) |
| if (PredTy->getElementType()->isIntegerTy(1)) |
| Ops[i] = EmitSVEPredicateCast(Ops[i], getSVEType(TypeFlags)); |
| |
| // Splat scalar operand to vector (intrinsics with _n infix) |
| if (TypeFlags.hasSplatOperand()) { |
| unsigned OpNo = TypeFlags.getSplatOperand(); |
| Ops[OpNo] = EmitSVEDupX(Ops[OpNo]); |
| } |
| |
| if (TypeFlags.isReverseCompare()) |
| std::swap(Ops[1], Ops[2]); |
| |
| if (TypeFlags.isReverseUSDOT()) |
| std::swap(Ops[1], Ops[2]); |
| |
| // Predicated intrinsics with _z suffix need a select w/ zeroinitializer. |
| if (TypeFlags.getMergeType() == SVETypeFlags::MergeZero) { |
| llvm::Type *OpndTy = Ops[1]->getType(); |
| auto *SplatZero = Constant::getNullValue(OpndTy); |
| Function *Sel = CGM.getIntrinsic(Intrinsic::aarch64_sve_sel, OpndTy); |
| Ops[1] = Builder.CreateCall(Sel, {Ops[0], Ops[1], SplatZero}); |
| } |
| |
| Function *F = CGM.getIntrinsic(Builtin->LLVMIntrinsic, |
| getSVEOverloadTypes(TypeFlags, Ty, Ops)); |
| Value *Call = Builder.CreateCall(F, Ops); |
| |
| // Predicate results must be converted to svbool_t. |
| if (auto PredTy = dyn_cast<llvm::VectorType>(Call->getType())) |
| if (PredTy->getScalarType()->isIntegerTy(1)) |
| Call = EmitSVEPredicateCast(Call, cast<llvm::ScalableVectorType>(Ty)); |
| |
| return Call; |
| } |
| |
| switch (BuiltinID) { |
| default: |
| return nullptr; |
| |
| case SVE::BI__builtin_sve_svmov_b_z: { |
| // svmov_b_z(pg, op) <=> svand_b_z(pg, op, op) |
| SVETypeFlags TypeFlags(Builtin->TypeModifier); |
| llvm::Type* OverloadedTy = getSVEType(TypeFlags); |
| Function *F = CGM.getIntrinsic(Intrinsic::aarch64_sve_and_z, OverloadedTy); |
| return Builder.CreateCall(F, {Ops[0], Ops[1], Ops[1]}); |
| } |
| |
| case SVE::BI__builtin_sve_svnot_b_z: { |
| // svnot_b_z(pg, op) <=> sveor_b_z(pg, op, pg) |
| SVETypeFlags TypeFlags(Builtin->TypeModifier); |
| llvm::Type* OverloadedTy = getSVEType(TypeFlags); |
| Function *F = CGM.getIntrinsic(Intrinsic::aarch64_sve_eor_z, OverloadedTy); |
| return Builder.CreateCall(F, {Ops[0], Ops[1], Ops[0]}); |
| } |
| |
| case SVE::BI__builtin_sve_svmovlb_u16: |
| case SVE::BI__builtin_sve_svmovlb_u32: |
| case SVE::BI__builtin_sve_svmovlb_u64: |
| return EmitSVEMovl(TypeFlags, Ops, Intrinsic::aarch64_sve_ushllb); |
| |
| case SVE::BI__builtin_sve_svmovlb_s16: |
| case SVE::BI__builtin_sve_svmovlb_s32: |
| case SVE::BI__builtin_sve_svmovlb_s64: |
| return EmitSVEMovl(TypeFlags, Ops, Intrinsic::aarch64_sve_sshllb); |
| |
| case SVE::BI__builtin_sve_svmovlt_u16: |
| case SVE::BI__builtin_sve_svmovlt_u32: |
| case SVE::BI__builtin_sve_svmovlt_u64: |
| return EmitSVEMovl(TypeFlags, Ops, Intrinsic::aarch64_sve_ushllt); |
| |
| case SVE::BI__builtin_sve_svmovlt_s16: |
| case SVE::BI__builtin_sve_svmovlt_s32: |
| case SVE::BI__builtin_sve_svmovlt_s64: |
| return EmitSVEMovl(TypeFlags, Ops, Intrinsic::aarch64_sve_sshllt); |
| |
| case SVE::BI__builtin_sve_svpmullt_u16: |
| case SVE::BI__builtin_sve_svpmullt_u64: |
| case SVE::BI__builtin_sve_svpmullt_n_u16: |
| case SVE::BI__builtin_sve_svpmullt_n_u64: |
| return EmitSVEPMull(TypeFlags, Ops, Intrinsic::aarch64_sve_pmullt_pair); |
| |
| case SVE::BI__builtin_sve_svpmullb_u16: |
| case SVE::BI__builtin_sve_svpmullb_u64: |
| case SVE::BI__builtin_sve_svpmullb_n_u16: |
| case SVE::BI__builtin_sve_svpmullb_n_u64: |
| return EmitSVEPMull(TypeFlags, Ops, Intrinsic::aarch64_sve_pmullb_pair); |
| |
| case SVE::BI__builtin_sve_svdup_n_b8: |
| case SVE::BI__builtin_sve_svdup_n_b16: |
| case SVE::BI__builtin_sve_svdup_n_b32: |
| case SVE::BI__builtin_sve_svdup_n_b64: { |
| Value *CmpNE = |
| Builder.CreateICmpNE(Ops[0], Constant::getNullValue(Ops[0]->getType())); |
| llvm::ScalableVectorType *OverloadedTy = getSVEType(TypeFlags); |
| Value *Dup = EmitSVEDupX(CmpNE, OverloadedTy); |
| return EmitSVEPredicateCast(Dup, cast<llvm::ScalableVectorType>(Ty)); |
| } |
| |
| case SVE::BI__builtin_sve_svdupq_n_b8: |
| case SVE::BI__builtin_sve_svdupq_n_b16: |
| case SVE::BI__builtin_sve_svdupq_n_b32: |
| case SVE::BI__builtin_sve_svdupq_n_b64: |
| case SVE::BI__builtin_sve_svdupq_n_u8: |
| case SVE::BI__builtin_sve_svdupq_n_s8: |
| case SVE::BI__builtin_sve_svdupq_n_u64: |
| case SVE::BI__builtin_sve_svdupq_n_f64: |
| case SVE::BI__builtin_sve_svdupq_n_s64: |
| case SVE::BI__builtin_sve_svdupq_n_u16: |
| case SVE::BI__builtin_sve_svdupq_n_f16: |
| case SVE::BI__builtin_sve_svdupq_n_bf16: |
| case SVE::BI__builtin_sve_svdupq_n_s16: |
| case SVE::BI__builtin_sve_svdupq_n_u32: |
| case SVE::BI__builtin_sve_svdupq_n_f32: |
| case SVE::BI__builtin_sve_svdupq_n_s32: { |
| // These builtins are implemented by storing each element to an array and using |
| // ld1rq to materialize a vector. |
| unsigned NumOpnds = Ops.size(); |
| |
| bool IsBoolTy = |
| cast<llvm::VectorType>(Ty)->getElementType()->isIntegerTy(1); |
| |
| // For svdupq_n_b* the element type of is an integer of type 128/numelts, |
| // so that the compare can use the width that is natural for the expected |
| // number of predicate lanes. |
| llvm::Type *EltTy = Ops[0]->getType(); |
| if (IsBoolTy) |
| EltTy = IntegerType::get(getLLVMContext(), SVEBitsPerBlock / NumOpnds); |
| |
| SmallVector<llvm::Value *, 16> VecOps; |
| for (unsigned I = 0; I < NumOpnds; ++I) |
| VecOps.push_back(Builder.CreateZExt(Ops[I], EltTy)); |
| Value *Vec = BuildVector(VecOps); |
| |
| SVETypeFlags TypeFlags(Builtin->TypeModifier); |
| Value *Pred = EmitSVEAllTruePred(TypeFlags); |
| |
| llvm::Type *OverloadedTy = getSVEVectorForElementType(EltTy); |
| Value *InsertSubVec = Builder.CreateInsertVector( |
| OverloadedTy, UndefValue::get(OverloadedTy), Vec, Builder.getInt64(0)); |
| |
| Function *F = |
| CGM.getIntrinsic(Intrinsic::aarch64_sve_dupq_lane, OverloadedTy); |
| Value *DupQLane = |
| Builder.CreateCall(F, {InsertSubVec, Builder.getInt64(0)}); |
| |
| if (!IsBoolTy) |
| return DupQLane; |
| |
| // For svdupq_n_b* we need to add an additional 'cmpne' with '0'. |
| F = CGM.getIntrinsic(NumOpnds == 2 ? Intrinsic::aarch64_sve_cmpne |
| : Intrinsic::aarch64_sve_cmpne_wide, |
| OverloadedTy); |
| Value *Call = Builder.CreateCall( |
| F, {Pred, DupQLane, EmitSVEDupX(Builder.getInt64(0))}); |
| return EmitSVEPredicateCast(Call, cast<llvm::ScalableVectorType>(Ty)); |
| } |
| |
| case SVE::BI__builtin_sve_svpfalse_b: |
| return ConstantInt::getFalse(Ty); |
| |
| case SVE::BI__builtin_sve_svlen_bf16: |
| case SVE::BI__builtin_sve_svlen_f16: |
| case SVE::BI__builtin_sve_svlen_f32: |
| case SVE::BI__builtin_sve_svlen_f64: |
| case SVE::BI__builtin_sve_svlen_s8: |
| case SVE::BI__builtin_sve_svlen_s16: |
| case SVE::BI__builtin_sve_svlen_s32: |
| case SVE::BI__builtin_sve_svlen_s64: |
| case SVE::BI__builtin_sve_svlen_u8: |
| case SVE::BI__builtin_sve_svlen_u16: |
| case SVE::BI__builtin_sve_svlen_u32: |
| case SVE::BI__builtin_sve_svlen_u64: { |
| SVETypeFlags TF(Builtin->TypeModifier); |
| auto VTy = cast<llvm::VectorType>(getSVEType(TF)); |
| auto *NumEls = |
| llvm::ConstantInt::get(Ty, VTy->getElementCount().getKnownMinValue()); |
| |
| Function *F = CGM.getIntrinsic(Intrinsic::vscale, Ty); |
| return Builder.CreateMul(NumEls, Builder.CreateCall(F)); |
| } |
| |
| case SVE::BI__builtin_sve_svtbl2_u8: |
| case SVE::BI__builtin_sve_svtbl2_s8: |
| case SVE::BI__builtin_sve_svtbl2_u16: |
| case SVE::BI__builtin_sve_svtbl2_s16: |
| case SVE::BI__builtin_sve_svtbl2_u32: |
| case SVE::BI__builtin_sve_svtbl2_s32: |
| case SVE::BI__builtin_sve_svtbl2_u64: |
| case SVE::BI__builtin_sve_svtbl2_s64: |
| case SVE::BI__builtin_sve_svtbl2_f16: |
| case SVE::BI__builtin_sve_svtbl2_bf16: |
| case SVE::BI__builtin_sve_svtbl2_f32: |
| case SVE::BI__builtin_sve_svtbl2_f64: { |
| SVETypeFlags TF(Builtin->TypeModifier); |
| auto VTy = cast<llvm::VectorType>(getSVEType(TF)); |
| auto TupleTy = llvm::VectorType::getDoubleElementsVectorType(VTy); |
| Function *FExtr = |
| CGM.getIntrinsic(Intrinsic::aarch64_sve_tuple_get, {VTy, TupleTy}); |
| Value *V0 = Builder.CreateCall(FExtr, {Ops[0], Builder.getInt32(0)}); |
| Value *V1 = Builder.CreateCall(FExtr, {Ops[0], Builder.getInt32(1)}); |
| Function *F = CGM.getIntrinsic(Intrinsic::aarch64_sve_tbl2, VTy); |
| return Builder.CreateCall(F, {V0, V1, Ops[1]}); |
| } |
| } |
| |
| /// Should not happen |
| return nullptr; |
| } |
| |
| Value *CodeGenFunction::EmitAArch64BuiltinExpr(unsigned BuiltinID, |
| const CallExpr *E, |
| llvm::Triple::ArchType Arch) { |
| if (BuiltinID >= AArch64::FirstSVEBuiltin && |
| BuiltinID <= AArch64::LastSVEBuiltin) |
| return EmitAArch64SVEBuiltinExpr(BuiltinID, E); |
| |
| unsigned HintID = static_cast<unsigned>(-1); |
| switch (BuiltinID) { |
| default: break; |
| case AArch64::BI__builtin_arm_nop: |
| HintID = 0; |
| break; |
| case AArch64::BI__builtin_arm_yield: |
| case AArch64::BI__yield: |
| HintID = 1; |
| break; |
| case AArch64::BI__builtin_arm_wfe: |
| case AArch64::BI__wfe: |
| HintID = 2; |
| break; |
| case AArch64::BI__builtin_arm_wfi: |
| case AArch64::BI__wfi: |
| HintID = 3; |
| break; |
| case AArch64::BI__builtin_arm_sev: |
| case AArch64::BI__sev: |
| HintID = 4; |
| break; |
| case AArch64::BI__builtin_arm_sevl: |
| case AArch64::BI__sevl: |
| HintID = 5; |
| break; |
| } |
| |
| if (HintID != static_cast<unsigned>(-1)) { |
| Function *F = CGM.getIntrinsic(Intrinsic::aarch64_hint); |
| return Builder.CreateCall(F, llvm::ConstantInt::get(Int32Ty, HintID)); |
| } |
| |
| if (BuiltinID == AArch64::BI__builtin_arm_prefetch) { |
| Value *Address = EmitScalarExpr(E->getArg(0)); |
| Value *RW = EmitScalarExpr(E->getArg(1)); |
| Value *CacheLevel = EmitScalarExpr(E->getArg(2)); |
| Value *RetentionPolicy = EmitScalarExpr(E->getArg(3)); |
| Value *IsData = EmitScalarExpr(E->getArg(4)); |
| |
| Value *Locality = nullptr; |
| if (cast<llvm::ConstantInt>(RetentionPolicy)->isZero()) { |
| // Temporal fetch, needs to convert cache level to locality. |
| Locality = llvm::ConstantInt::get(Int32Ty, |
| -cast<llvm::ConstantInt>(CacheLevel)->getValue() + 3); |
| } else { |
| // Streaming fetch. |
| Locality = llvm::ConstantInt::get(Int32Ty, 0); |
| } |
| |
| // FIXME: We need AArch64 specific LLVM intrinsic if we want to specify |
| // PLDL3STRM or PLDL2STRM. |
| Function *F = CGM.getIntrinsic(Intrinsic::prefetch, Address->getType()); |
| return Builder.CreateCall(F, {Address, RW, Locality, IsData}); |
| } |
| |
| if (BuiltinID == AArch64::BI__builtin_arm_rbit) { |
| assert((getContext().getTypeSize(E->getType()) == 32) && |
| "rbit of unusual size!"); |
| llvm::Value *Arg = EmitScalarExpr(E->getArg(0)); |
| return Builder.CreateCall( |
| CGM.getIntrinsic(Intrinsic::bitreverse, Arg->getType()), Arg, "rbit"); |
| } |
| if (BuiltinID == AArch64::BI__builtin_arm_rbit64) { |
| assert((getContext().getTypeSize(E->getType()) == 64) && |
| "rbit of unusual size!"); |
| llvm::Value *Arg = EmitScalarExpr(E->getArg(0)); |
| return Builder.CreateCall( |
| CGM.getIntrinsic(Intrinsic::bitreverse, Arg->getType()), Arg, "rbit"); |
| } |
| |
| if (BuiltinID == AArch64::BI__builtin_arm_cls) { |
| llvm::Value *Arg = EmitScalarExpr(E->getArg(0)); |
| return Builder.CreateCall(CGM.getIntrinsic(Intrinsic::aarch64_cls), Arg, |
| "cls"); |
| } |
| if (BuiltinID == AArch64::BI__builtin_arm_cls64) { |
| llvm::Value *Arg = EmitScalarExpr(E->getArg(0)); |
| return Builder.CreateCall(CGM.getIntrinsic(Intrinsic::aarch64_cls64), Arg, |
| "cls"); |
| } |
| |
| if (BuiltinID == AArch64::BI__builtin_arm_frint32zf || |
| BuiltinID == AArch64::BI__builtin_arm_frint32z) { |
| llvm::Value *Arg = EmitScalarExpr(E->getArg(0)); |
| llvm::Type *Ty = Arg->getType(); |
| return Builder.CreateCall(CGM.getIntrinsic(Intrinsic::aarch64_frint32z, Ty), |
| Arg, "frint32z"); |
| } |
| |
| if (BuiltinID == AArch64::BI__builtin_arm_frint64zf || |
| BuiltinID == AArch64::BI__builtin_arm_frint64z) { |
| llvm::Value *Arg = EmitScalarExpr(E->getArg(0)); |
| llvm::Type *Ty = Arg->getType(); |
| return Builder.CreateCall(CGM.getIntrinsic(Intrinsic::aarch64_frint64z, Ty), |
| Arg, "frint64z"); |
| } |
| |
| if (BuiltinID == AArch64::BI__builtin_arm_frint32xf || |
| BuiltinID == AArch64::BI__builtin_arm_frint32x) { |
| llvm::Value *Arg = EmitScalarExpr(E->getArg(0)); |
| llvm::Type *Ty = Arg->getType(); |
| return Builder.CreateCall(CGM.getIntrinsic(Intrinsic::aarch64_frint32x, Ty), |
| Arg, "frint32x"); |
| } |
| |
| if (BuiltinID == AArch64::BI__builtin_arm_frint64xf || |
| BuiltinID == AArch64::BI__builtin_arm_frint64x) { |
| llvm::Value *Arg = EmitScalarExpr(E->getArg(0)); |
| llvm::Type *Ty = Arg->getType(); |
| return Builder.CreateCall(CGM.getIntrinsic(Intrinsic::aarch64_frint64x, Ty), |
| Arg, "frint64x"); |
| } |
| |
| if (BuiltinID == AArch64::BI__builtin_arm_jcvt) { |
| assert((getContext().getTypeSize(E->getType()) == 32) && |
| "__jcvt of unusual size!"); |
| llvm::Value *Arg = EmitScalarExpr(E->getArg(0)); |
| return Builder.CreateCall( |
| CGM.getIntrinsic(Intrinsic::aarch64_fjcvtzs), Arg); |
| } |
| |
| if (BuiltinID == AArch64::BI__builtin_arm_ld64b || |
| BuiltinID == AArch64::BI__builtin_arm_st64b || |
| BuiltinID == AArch64::BI__builtin_arm_st64bv || |
| BuiltinID == AArch64::BI__builtin_arm_st64bv0) { |
| llvm::Value *MemAddr = EmitScalarExpr(E->getArg(0)); |
| llvm::Value *ValPtr = EmitScalarExpr(E->getArg(1)); |
| |
| if (BuiltinID == AArch64::BI__builtin_arm_ld64b) { |
| // Load from the address via an LLVM intrinsic, receiving a |
| // tuple of 8 i64 words, and store each one to ValPtr. |
| Function *F = CGM.getIntrinsic(Intrinsic::aarch64_ld64b); |
| llvm::Value *Val = Builder.CreateCall(F, MemAddr); |
| llvm::Value *ToRet; |
| for (size_t i = 0; i < 8; i++) { |
| llvm::Value *ValOffsetPtr = |
| Builder.CreateGEP(Int64Ty, ValPtr, Builder.getInt32(i)); |
| Address Addr(ValOffsetPtr, CharUnits::fromQuantity(8)); |
| ToRet = Builder.CreateStore(Builder.CreateExtractValue(Val, i), Addr); |
| } |
| return ToRet; |
| } else { |
| // Load 8 i64 words from ValPtr, and store them to the address |
| // via an LLVM intrinsic. |
| SmallVector<llvm::Value *, 9> Args; |
| Args.push_back(MemAddr); |
| for (size_t i = 0; i < 8; i++) { |
| llvm::Value *ValOffsetPtr = |
| Builder.CreateGEP(Int64Ty, ValPtr, Builder.getInt32(i)); |
| Address Addr(ValOffsetPtr, CharUnits::fromQuantity(8)); |
| Args.push_back(Builder.CreateLoad(Addr)); |
| } |
| |
| auto Intr = (BuiltinID == AArch64::BI__builtin_arm_st64b |
| ? Intrinsic::aarch64_st64b |
| : BuiltinID == AArch64::BI__builtin_arm_st64bv |
| ? Intrinsic::aarch64_st64bv |
| : Intrinsic::aarch64_st64bv0); |
| Function *F = CGM.getIntrinsic(Intr); |
| return Builder.CreateCall(F, Args); |
| } |
| } |
| |
| if (BuiltinID == AArch64::BI__builtin_arm_rndr || |
| BuiltinID == AArch64::BI__builtin_arm_rndrrs) { |
| |
| auto Intr = (BuiltinID == AArch64::BI__builtin_arm_rndr |
| ? Intrinsic::aarch64_rndr |
| : Intrinsic::aarch64_rndrrs); |
| Function *F = CGM.getIntrinsic(Intr); |
| llvm::Value *Val = Builder.CreateCall(F); |
| Value *RandomValue = Builder.CreateExtractValue(Val, 0); |
| Value *Status = Builder.CreateExtractValue(Val, 1); |
| |
| Address MemAddress = EmitPointerWithAlignment(E->getArg(0)); |
| Builder.CreateStore(RandomValue, MemAddress); |
| Status = Builder.CreateZExt(Status, Int32Ty); |
| return Status; |
| } |
| |
| if (BuiltinID == AArch64::BI__clear_cache) { |
| assert(E->getNumArgs() == 2 && "__clear_cache takes 2 arguments"); |
| const FunctionDecl *FD = E->getDirectCallee(); |
| Value *Ops[2]; |
| for (unsigned i = 0; i < 2; i++) |
| Ops[i] = EmitScalarExpr(E->getArg(i)); |
| llvm::Type *Ty = CGM.getTypes().ConvertType(FD->getType()); |
| llvm::FunctionType *FTy = cast<llvm::FunctionType>(Ty); |
| StringRef Name = FD->getName(); |
| return EmitNounwindRuntimeCall(CGM.CreateRuntimeFunction(FTy, Name), Ops); |
| } |
| |
| if ((BuiltinID == AArch64::BI__builtin_arm_ldrex || |
| BuiltinID == AArch64::BI__builtin_arm_ldaex) && |
| getContext().getTypeSize(E->getType()) == 128) { |
| Function *F = CGM.getIntrinsic(BuiltinID == AArch64::BI__builtin_arm_ldaex |
| ? Intrinsic::aarch64_ldaxp |
| : Intrinsic::aarch64_ldxp); |
| |
| Value *LdPtr = EmitScalarExpr(E->getArg(0)); |
| Value *Val = Builder.CreateCall(F, Builder.CreateBitCast(LdPtr, Int8PtrTy), |
| "ldxp"); |
| |
| Value *Val0 = Builder.CreateExtractValue(Val, 1); |
| Value *Val1 = Builder.CreateExtractValue(Val, 0); |
| llvm::Type *Int128Ty = llvm::IntegerType::get(getLLVMContext(), 128); |
| Val0 = Builder.CreateZExt(Val0, Int128Ty); |
| Val1 = Builder.CreateZExt(Val1, Int128Ty); |
| |
| Value *ShiftCst = llvm::ConstantInt::get(Int128Ty, 64); |
| Val = Builder.CreateShl(Val0, ShiftCst, "shl", true /* nuw */); |
| Val = Builder.CreateOr(Val, Val1); |
| return Builder.CreateBitCast(Val, ConvertType(E->getType())); |
| } else if (BuiltinID == AArch64::BI__builtin_arm_ldrex || |
| BuiltinID == AArch64::BI__builtin_arm_ldaex) { |
| Value *LoadAddr = EmitScalarExpr(E->getArg(0)); |
| |
| QualType Ty = E->getType(); |
| llvm::Type *RealResTy = ConvertType(Ty); |
| llvm::Type *PtrTy = llvm::IntegerType::get( |
| getLLVMContext(), getContext().getTypeSize(Ty))->getPointerTo(); |
| LoadAddr = Builder.CreateBitCast(LoadAddr, PtrTy); |
| |
| Function *F = CGM.getIntrinsic(BuiltinID == AArch64::BI__builtin_arm_ldaex |
| ? Intrinsic::aarch64_ldaxr |
| : Intrinsic::aarch64_ldxr, |
| PtrTy); |
| Value *Val = Builder.CreateCall(F, LoadAddr, "ldxr"); |
| |
| if (RealResTy->isPointerTy()) |
| return Builder.CreateIntToPtr(Val, RealResTy); |
| |
| llvm::Type *IntResTy = llvm::IntegerType::get( |
| getLLVMContext(), CGM.getDataLayout().getTypeSizeInBits(RealResTy)); |
| Val = Builder.CreateTruncOrBitCast(Val, IntResTy); |
| return Builder.CreateBitCast(Val, RealResTy); |
| } |
| |
| if ((BuiltinID == AArch64::BI__builtin_arm_strex || |
| BuiltinID == AArch64::BI__builtin_arm_stlex) && |
| getContext().getTypeSize(E->getArg(0)->getType()) == 128) { |
| Function *F = CGM.getIntrinsic(BuiltinID == AArch64::BI__builtin_arm_stlex |
| ? Intrinsic::aarch64_stlxp |
| : Intrinsic::aarch64_stxp); |
| llvm::Type *STy = llvm::StructType::get(Int64Ty, Int64Ty); |
| |
| Address Tmp = CreateMemTemp(E->getArg(0)->getType()); |
| EmitAnyExprToMem(E->getArg(0), Tmp, Qualifiers(), /*init*/ true); |
| |
| Tmp = Builder.CreateBitCast(Tmp, llvm::PointerType::getUnqual(STy)); |
| llvm::Value *Val = Builder.CreateLoad(Tmp); |
| |
| Value *Arg0 = Builder.CreateExtractValue(Val, 0); |
| Value *Arg1 = Builder.CreateExtractValue(Val, 1); |
| Value *StPtr = Builder.CreateBitCast(EmitScalarExpr(E->getArg(1)), |
| Int8PtrTy); |
| return Builder.CreateCall(F, {Arg0, Arg1, StPtr}, "stxp"); |
| } |
| |
| if (BuiltinID == AArch64::BI__builtin_arm_strex || |
| BuiltinID == AArch64::BI__builtin_arm_stlex) { |
| Value *StoreVal = EmitScalarExpr(E->getArg(0)); |
| Value *StoreAddr = EmitScalarExpr(E->getArg(1)); |
| |
| QualType Ty = E->getArg(0)->getType(); |
| llvm::Type *StoreTy = llvm::IntegerType::get(getLLVMContext(), |
| getContext().getTypeSize(Ty)); |
| StoreAddr = Builder.CreateBitCast(StoreAddr, StoreTy->getPointerTo()); |
| |
| if (StoreVal->getType()->isPointerTy()) |
| StoreVal = Builder.CreatePtrToInt(StoreVal, Int64Ty); |
| else { |
| llvm::Type *IntTy = llvm::IntegerType::get( |
| getLLVMContext(), |
| CGM.getDataLayout().getTypeSizeInBits(StoreVal->getType())); |
| StoreVal = Builder.CreateBitCast(StoreVal, IntTy); |
| StoreVal = Builder.CreateZExtOrBitCast(StoreVal, Int64Ty); |
| } |
| |
| Function *F = CGM.getIntrinsic(BuiltinID == AArch64::BI__builtin_arm_stlex |
| ? Intrinsic::aarch64_stlxr |
| : Intrinsic::aarch64_stxr, |
| StoreAddr->getType()); |
| return Builder.CreateCall(F, {StoreVal, StoreAddr}, "stxr"); |
| } |
| |
| if (BuiltinID == AArch64::BI__getReg) { |
| Expr::EvalResult Result; |
| if (!E->getArg(0)->EvaluateAsInt(Result, CGM.getContext())) |
| llvm_unreachable("Sema will ensure that the parameter is constant"); |
| |
| llvm::APSInt Value = Result.Val.getInt(); |
| LLVMContext &Context = CGM.getLLVMContext(); |
| std::string Reg = Value == 31 ? "sp" : "x" + toString(Value, 10); |
| |
| llvm::Metadata *Ops[] = {llvm::MDString::get(Context, Reg)}; |
| llvm::MDNode *RegName = llvm::MDNode::get(Context, Ops); |
| llvm::Value *Metadata = llvm::MetadataAsValue::get(Context, RegName); |
| |
| llvm::Function *F = |
| CGM.getIntrinsic(llvm::Intrinsic::read_register, {Int64Ty}); |
| return Builder.CreateCall(F, Metadata); |
| } |
| |
| if (BuiltinID == AArch64::BI__builtin_arm_clrex) { |
| Function *F = CGM.getIntrinsic(Intrinsic::aarch64_clrex); |
| return Builder.CreateCall(F); |
| } |
| |
| if (BuiltinID == AArch64::BI_ReadWriteBarrier) |
| return Builder.CreateFence(llvm::AtomicOrdering::SequentiallyConsistent, |
| llvm::SyncScope::SingleThread); |
| |
| // CRC32 |
| Intrinsic::ID CRCIntrinsicID = Intrinsic::not_intrinsic; |
| switch (BuiltinID) { |
| case AArch64::BI__builtin_arm_crc32b: |
| CRCIntrinsicID = Intrinsic::aarch64_crc32b; break; |
| case AArch64::BI__builtin_arm_crc32cb: |
| CRCIntrinsicID = Intrinsic::aarch64_crc32cb; break; |
| case AArch64::BI__builtin_arm_crc32h: |
| CRCIntrinsicID = Intrinsic::aarch64_crc32h; break; |
| case AArch64::BI__builtin_arm_crc32ch: |
| CRCIntrinsicID = Intrinsic::aarch64_crc32ch; break; |
| case AArch64::BI__builtin_arm_crc32w: |
| CRCIntrinsicID = Intrinsic::aarch64_crc32w; break; |
| case AArch64::BI__builtin_arm_crc32cw: |
| CRCIntrinsicID = Intrinsic::aarch64_crc32cw; break; |
| case AArch64::BI__builtin_arm_crc32d: |
| CRCIntrinsicID = Intrinsic::aarch64_crc32x; break; |
| case AArch64::BI__builtin_arm_crc32cd: |
| CRCIntrinsicID = Intrinsic::aarch64_crc32cx; break; |
| } |
| |
| if (CRCIntrinsicID != Intrinsic::not_intrinsic) { |
| Value *Arg0 = EmitScalarExpr(E->getArg(0)); |
| Value *Arg1 = EmitScalarExpr(E->getArg(1)); |
| Function *F = CGM.getIntrinsic(CRCIntrinsicID); |
| |
| llvm::Type *DataTy = F->getFunctionType()->getParamType(1); |
| Arg1 = Builder.CreateZExtOrBitCast(Arg1, DataTy); |
| |
| return Builder.CreateCall(F, {Arg0, Arg1}); |
| } |
| |
| // Memory Tagging Extensions (MTE) Intrinsics |
| Intrinsic::ID MTEIntrinsicID = Intrinsic::not_intrinsic; |
| switch (BuiltinID) { |
| case AArch64::BI__builtin_arm_irg: |
| MTEIntrinsicID = Intrinsic::aarch64_irg; break; |
| case AArch64::BI__builtin_arm_addg: |
| MTEIntrinsicID = Intrinsic::aarch64_addg; break; |
| case AArch64::BI__builtin_arm_gmi: |
| MTEIntrinsicID = Intrinsic::aarch64_gmi; break; |
| case AArch64::BI__builtin_arm_ldg: |
| MTEIntrinsicID = Intrinsic::aarch64_ldg; break; |
| case AArch64::BI__builtin_arm_stg: |
| MTEIntrinsicID = Intrinsic::aarch64_stg; break; |
| case AArch64::BI__builtin_arm_subp: |
| MTEIntrinsicID = Intrinsic::aarch64_subp; break; |
| } |
| |
| if (MTEIntrinsicID != Intrinsic::not_intrinsic) { |
| llvm::Type *T = ConvertType(E->getType()); |
| |
| if (MTEIntrinsicID == Intrinsic::aarch64_irg) { |
| Value *Pointer = EmitScalarExpr(E->getArg(0)); |
| Value *Mask = EmitScalarExpr(E->getArg(1)); |
| |
| Pointer = Builder.CreatePointerCast(Pointer, Int8PtrTy); |
| Mask = Builder.CreateZExt(Mask, Int64Ty); |
| Value *RV = Builder.CreateCall( |
| CGM.getIntrinsic(MTEIntrinsicID), {Pointer, Mask}); |
| return Builder.CreatePointerCast(RV, T); |
| } |
| if (MTEIntrinsicID == Intrinsic::aarch64_addg) { |
| Value *Pointer = EmitScalarExpr(E->getArg(0)); |
| Value *TagOffset = EmitScalarExpr(E->getArg(1)); |
| |
| Pointer = Builder.CreatePointerCast(Pointer, Int8PtrTy); |
| TagOffset = Builder.CreateZExt(TagOffset, Int64Ty); |
| Value *RV = Builder.CreateCall( |
| CGM.getIntrinsic(MTEIntrinsicID), {Pointer, TagOffset}); |
| return Builder.CreatePointerCast(RV, T); |
| } |
| if (MTEIntrinsicID == Intrinsic::aarch64_gmi) { |
| Value *Pointer = EmitScalarExpr(E->getArg(0)); |
| Value *ExcludedMask = EmitScalarExpr(E->getArg(1)); |
| |
| ExcludedMask = Builder.CreateZExt(ExcludedMask, Int64Ty); |
| Pointer = Builder.CreatePointerCast(Pointer, Int8PtrTy); |
| return Builder.CreateCall( |
| CGM.getIntrinsic(MTEIntrinsicID), {Pointer, ExcludedMask}); |
| } |
| // Although it is possible to supply a different return |
| // address (first arg) to this intrinsic, for now we set |
| // return address same as input address. |
| if (MTEIntrinsicID == Intrinsic::aarch64_ldg) { |
| Value *TagAddress = EmitScalarExpr(E->getArg(0)); |
| TagAddress = Builder.CreatePointerCast(TagAddress, Int8PtrTy); |
| Value *RV = Builder.CreateCall( |
| CGM.getIntrinsic(MTEIntrinsicID), {TagAddress, TagAddress}); |
| return Builder.CreatePointerCast(RV, T); |
| } |
| // Although it is possible to supply a different tag (to set) |
| // to this intrinsic (as first arg), for now we supply |
| // the tag that is in input address arg (common use case). |
| if (MTEIntrinsicID == Intrinsic::aarch64_stg) { |
| Value *TagAddress = EmitScalarExpr(E->getArg(0)); |
| TagAddress = Builder.CreatePointerCast(TagAddress, Int8PtrTy); |
| return Builder.CreateCall( |
| CGM.getIntrinsic(MTEIntrinsicID), {TagAddress, TagAddress}); |
| } |
| if (MTEIntrinsicID == Intrinsic::aarch64_subp) { |
| Value *PointerA = EmitScalarExpr(E->getArg(0)); |
| Value *PointerB = EmitScalarExpr(E->getArg(1)); |
| PointerA = Builder.CreatePointerCast(PointerA, Int8PtrTy); |
| PointerB = Builder.CreatePointerCast(PointerB, Int8PtrTy); |
| return Builder.CreateCall( |
| CGM.getIntrinsic(MTEIntrinsicID), {PointerA, PointerB}); |
| } |
| } |
| |
| if (BuiltinID == AArch64::BI__builtin_arm_rsr || |
| BuiltinID == AArch64::BI__builtin_arm_rsr64 || |
| BuiltinID == AArch64::BI__builtin_arm_rsrp || |
| BuiltinID == AArch64::BI__builtin_arm_wsr || |
| BuiltinID == AArch64::BI__builtin_arm_wsr64 || |
| BuiltinID == AArch64::BI__builtin_arm_wsrp) { |
| |
| SpecialRegisterAccessKind AccessKind = Write; |
| if (BuiltinID == AArch64::BI__builtin_arm_rsr || |
| BuiltinID == AArch64::BI__builtin_arm_rsr64 || |
| BuiltinID == AArch64::BI__builtin_arm_rsrp) |
| AccessKind = VolatileRead; |
| |
| bool IsPointerBuiltin = BuiltinID == AArch64::BI__builtin_arm_rsrp || |
| BuiltinID == AArch64::BI__builtin_arm_wsrp; |
| |
| bool Is64Bit = BuiltinID != AArch64::BI__builtin_arm_rsr && |
| BuiltinID != AArch64::BI__builtin_arm_wsr; |
| |
| llvm::Type *ValueType; |
| llvm::Type *RegisterType = Int64Ty; |
| if (IsPointerBuiltin) { |
| ValueType = VoidPtrTy; |
| } else if (Is64Bit) { |
| ValueType = Int64Ty; |
| } else { |
| ValueType = Int32Ty; |
| } |
| |
| return EmitSpecialRegisterBuiltin(*this, E, RegisterType, ValueType, |
| AccessKind); |
| } |
| |
| if (BuiltinID == AArch64::BI_ReadStatusReg || |
| BuiltinID == AArch64::BI_WriteStatusReg) { |
| LLVMContext &Context = CGM.getLLVMContext(); |
| |
| unsigned SysReg = |
| E->getArg(0)->EvaluateKnownConstInt(getContext()).getZExtValue(); |
| |
| std::string SysRegStr; |
| llvm::raw_string_ostream(SysRegStr) << |
| ((1 << 1) | ((SysReg >> 14) & 1)) << ":" << |
| ((SysReg >> 11) & 7) << ":" << |
| ((SysReg >> 7) & 15) << ":" << |
| ((SysReg >> 3) & 15) << ":" << |
| ( SysReg & 7); |
| |
| llvm::Metadata *Ops[] = { llvm::MDString::get(Context, SysRegStr) }; |
| llvm::MDNode *RegName = llvm::MDNode::get(Context, Ops); |
| llvm::Value *Metadata = llvm::MetadataAsValue::get(Context, RegName); |
| |
| llvm::Type *RegisterType = Int64Ty; |
| llvm::Type *Types[] = { RegisterType }; |
| |
| if (BuiltinID == AArch64::BI_ReadStatusReg) { |
| llvm::Function *F = CGM.getIntrinsic(llvm::Intrinsic::read_register, Types); |
| |
| return Builder.CreateCall(F, Metadata); |
| } |
| |
| llvm::Function *F = CGM.getIntrinsic(llvm::Intrinsic::write_register, Types); |
| llvm::Value *ArgValue = EmitScalarExpr(E->getArg(1)); |
| |
| return Builder.CreateCall(F, { Metadata, ArgValue }); |
| } |
| |
| if (BuiltinID == AArch64::BI_AddressOfReturnAddress) { |
| llvm::Function *F = |
| CGM.getIntrinsic(Intrinsic::addressofreturnaddress, AllocaInt8PtrTy); |
| return Builder.CreateCall(F); |
| } |
| |
| if (BuiltinID == AArch64::BI__builtin_sponentry) { |
| llvm::Function *F = CGM.getIntrinsic(Intrinsic::sponentry, AllocaInt8PtrTy); |
| return Builder.CreateCall(F); |
| } |
| |
| if (BuiltinID == AArch64::BI__mulh || BuiltinID == AArch64::BI__umulh) { |
| llvm::Type *ResType = ConvertType(E->getType()); |
| llvm::Type *Int128Ty = llvm::IntegerType::get(getLLVMContext(), 128); |
| |
| bool IsSigned = BuiltinID == AArch64::BI__mulh; |
| Value *LHS = |
| Builder.CreateIntCast(EmitScalarExpr(E->getArg(0)), Int128Ty, IsSigned); |
| Value *RHS = |
| Builder.CreateIntCast(EmitScalarExpr(E->getArg(1)), Int128Ty, IsSigned); |
| |
| Value *MulResult, *HigherBits; |
| if (IsSigned) { |
| MulResult = Builder.CreateNSWMul(LHS, RHS); |
| HigherBits = Builder.CreateAShr(MulResult, 64); |
| } else { |
| MulResult = Builder.CreateNUWMul(LHS, RHS); |
| HigherBits = Builder.CreateLShr(MulResult, 64); |
| } |
| HigherBits = Builder.CreateIntCast(HigherBits, ResType, IsSigned); |
| |
| return HigherBits; |
| } |
| |
| // Handle MSVC intrinsics before argument evaluation to prevent double |
| // evaluation. |
| if (Optional<MSVCIntrin> MsvcIntId = translateAarch64ToMsvcIntrin(BuiltinID)) |
| return EmitMSVCBuiltinExpr(*MsvcIntId, E); |
| |
| // Find out if any arguments are required to be integer constant |
| // expressions. |
| unsigned ICEArguments = 0; |
| ASTContext::GetBuiltinTypeError Error; |
| getContext().GetBuiltinType(BuiltinID, Error, &ICEArguments); |
| assert(Error == ASTContext::GE_None && "Should not codegen an error"); |
| |
| llvm::SmallVector<Value*, 4> Ops; |
| Address PtrOp0 = Address::invalid(); |
| for (unsigned i = 0, e = E->getNumArgs() - 1; i != e; i++) { |
| if (i == 0) { |
| switch (BuiltinID) { |
| case NEON::BI__builtin_neon_vld1_v: |
| case NEON::BI__builtin_neon_vld1q_v: |
| case NEON::BI__builtin_neon_vld1_dup_v: |
| case NEON::BI__builtin_neon_vld1q_dup_v: |
| case NEON::BI__builtin_neon_vld1_lane_v: |
| case NEON::BI__builtin_neon_vld1q_lane_v: |
| case NEON::BI__builtin_neon_vst1_v: |
| case NEON::BI__builtin_neon_vst1q_v: |
| case NEON::BI__builtin_neon_vst1_lane_v: |
| case NEON::BI__builtin_neon_vst1q_lane_v: |
| // Get the alignment for the argument in addition to the value; |
| // we'll use it later. |
| PtrOp0 = EmitPointerWithAlignment(E->getArg(0)); |
| Ops.push_back(PtrOp0.getPointer()); |
| continue; |
| } |
| } |
| if ((ICEArguments & (1 << i)) == 0) { |
| Ops.push_back(EmitScalarExpr(E->getArg(i))); |
| } else { |
| // If this is required to be a constant, constant fold it so that we know |
| // that the generated intrinsic gets a ConstantInt. |
| Ops.push_back(llvm::ConstantInt::get( |
| getLLVMContext(), |
| *E->getArg(i)->getIntegerConstantExpr(getContext()))); |
| } |
| } |
| |
| auto SISDMap = makeArrayRef(AArch64SISDIntrinsicMap); |
| const ARMVectorIntrinsicInfo *Builtin = findARMVectorIntrinsicInMap( |
| SISDMap, BuiltinID, AArch64SISDIntrinsicsProvenSorted); |
| |
| if (Builtin) { |
| Ops.push_back(EmitScalarExpr(E->getArg(E->getNumArgs() - 1))); |
| Value *Result = EmitCommonNeonSISDBuiltinExpr(*this, *Builtin, Ops, E); |
| assert(Result && "SISD intrinsic should have been handled"); |
| return Result; |
| } |
| |
| const Expr *Arg = E->getArg(E->getNumArgs()-1); |
| NeonTypeFlags Type(0); |
| if (Optional<llvm::APSInt> Result = Arg->getIntegerConstantExpr(getContext())) |
| // Determine the type of this overloaded NEON intrinsic. |
| Type = NeonTypeFlags(Result->getZExtValue()); |
| |
| bool usgn = Type.isUnsigned(); |
| bool quad = Type.isQuad(); |
| |
| // Handle non-overloaded intrinsics first. |
| switch (BuiltinID) { |
| default: break; |
| case NEON::BI__builtin_neon_vabsh_f16: |
| Ops.push_back(EmitScalarExpr(E->getArg(0))); |
| return EmitNeonCall(CGM.getIntrinsic(Intrinsic::fabs, HalfTy), Ops, "vabs"); |
| case NEON::BI__builtin_neon_vaddq_p128: { |
| llvm::Type *Ty = GetNeonType(this, NeonTypeFlags::Poly128); |
| Ops.push_back(EmitScalarExpr(E->getArg(1))); |
| Ops[0] = Builder.CreateBitCast(Ops[0], Ty); |
| Ops[1] = Builder.CreateBitCast(Ops[1], Ty); |
| Ops[0] = Builder.CreateXor(Ops[0], Ops[1]); |
| llvm::Type *Int128Ty = llvm::Type::getIntNTy(getLLVMContext(), 128); |
| return Builder.CreateBitCast(Ops[0], Int128Ty); |
| } |
| case NEON::BI__builtin_neon_vldrq_p128: { |
| llvm::Type *Int128Ty = llvm::Type::getIntNTy(getLLVMContext(), 128); |
| llvm::Type *Int128PTy = llvm::PointerType::get(Int128Ty, 0); |
| Value *Ptr = Builder.CreateBitCast(EmitScalarExpr(E->getArg(0)), Int128PTy); |
| return Builder.CreateAlignedLoad(Int128Ty, Ptr, |
| CharUnits::fromQuantity(16)); |
| } |
| case NEON::BI__builtin_neon_vstrq_p128: { |
| llvm::Type *Int128PTy = llvm::Type::getIntNPtrTy(getLLVMContext(), 128); |
| Value *Ptr = Builder.CreateBitCast(Ops[0], Int128PTy); |
| return Builder.CreateDefaultAlignedStore(EmitScalarExpr(E->getArg(1)), Ptr); |
| } |
| case NEON::BI__builtin_neon_vcvts_f32_u32: |
| case NEON::BI__builtin_neon_vcvtd_f64_u64: |
| usgn = true; |
| LLVM_FALLTHROUGH; |
| case NEON::BI__builtin_neon_vcvts_f32_s32: |
| case NEON::BI__builtin_neon_vcvtd_f64_s64: { |
| Ops.push_back(EmitScalarExpr(E->getArg(0))); |
| bool Is64 = Ops[0]->getType()->getPrimitiveSizeInBits() == 64; |
| llvm::Type *InTy = Is64 ? Int64Ty : Int32Ty; |
| llvm::Type *FTy = Is64 ? DoubleTy : FloatTy; |
| Ops[0] = Builder.CreateBitCast(Ops[0], InTy); |
| if (usgn) |
| return Builder.CreateUIToFP(Ops[0], FTy); |
| return Builder.CreateSIToFP(Ops[0], FTy); |
| } |
| case NEON::BI__builtin_neon_vcvth_f16_u16: |
| case NEON::BI__builtin_neon_vcvth_f16_u32: |
| case NEON::BI__builtin_neon_vcvth_f16_u64: |
| usgn = true; |
| LLVM_FALLTHROUGH; |
| case NEON::BI__builtin_neon_vcvth_f16_s16: |
| case NEON::BI__builtin_neon_vcvth_f16_s32: |
| case NEON::BI__builtin_neon_vcvth_f16_s64: { |
| Ops.push_back(EmitScalarExpr(E->getArg(0))); |
| llvm::Type *FTy = HalfTy; |
| llvm::Type *InTy; |
| if (Ops[0]->getType()->getPrimitiveSizeInBits() == 64) |
| InTy = Int64Ty; |
| else if (Ops[0]->getType()->getPrimitiveSizeInBits() == 32) |
| InTy = Int32Ty; |
| else |
| InTy = Int16Ty; |
| Ops[0] = Builder.CreateBitCast(Ops[0], InTy); |
| if (usgn) |
| return Builder.CreateUIToFP(Ops[0], FTy); |
| return Builder.CreateSIToFP(Ops[0], FTy); |
| } |
| case NEON::BI__builtin_neon_vcvtah_u16_f16: |
| case NEON::BI__builtin_neon_vcvtmh_u16_f16: |
| case NEON::BI__builtin_neon_vcvtnh_u16_f16: |
| case NEON::BI__builtin_neon_vcvtph_u16_f16: |
| case NEON::BI__builtin_neon_vcvth_u16_f16: |
| case NEON::BI__builtin_neon_vcvtah_s16_f16: |
| case NEON::BI__builtin_neon_vcvtmh_s16_f16: |
| case NEON::BI__builtin_neon_vcvtnh_s16_f16: |
| case NEON::BI__builtin_neon_vcvtph_s16_f16: |
| case NEON::BI__builtin_neon_vcvth_s16_f16: { |
| unsigned Int; |
| llvm::Type* InTy = Int32Ty; |
| llvm::Type* FTy = HalfTy; |
| llvm::Type *Tys[2] = {InTy, FTy}; |
| Ops.push_back(EmitScalarExpr(E->getArg(0))); |
| switch (BuiltinID) { |
| default: llvm_unreachable("missing builtin ID in switch!"); |
| case NEON::BI__builtin_neon_vcvtah_u16_f16: |
| Int = Intrinsic::aarch64_neon_fcvtau; break; |
| case NEON::BI__builtin_neon_vcvtmh_u16_f16: |
| Int = Intrinsic::aarch64_neon_fcvtmu; break; |
| case NEON::BI__builtin_neon_vcvtnh_u16_f16: |
| Int = Intrinsic::aarch64_neon_fcvtnu; break; |
| case NEON::BI__builtin_neon_vcvtph_u16_f16: |
| Int = Intrinsic::aarch64_neon_fcvtpu; break; |
| case NEON::BI__builtin_neon_vcvth_u16_f16: |
| Int = Intrinsic::aarch64_neon_fcvtzu; break; |
| case NEON::BI__builtin_neon_vcvtah_s16_f16: |
| Int = Intrinsic::aarch64_neon_fcvtas; break; |
| case NEON::BI__builtin_neon_vcvtmh_s16_f16: |
| Int = Intrinsic::aarch64_neon_fcvtms; break; |
| case NEON::BI__builtin_neon_vcvtnh_s16_f16: |
| Int = Intrinsic::aarch64_neon_fcvtns; break; |
| case NEON::BI__builtin_neon_vcvtph_s16_f16: |
| Int = Intrinsic::aarch64_neon_fcvtps; break; |
| case NEON::BI__builtin_neon_vcvth_s16_f16: |
| Int = Intrinsic::aarch64_neon_fcvtzs; break; |
| } |
| Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "fcvt"); |
| return Builder.CreateTrunc(Ops[0], Int16Ty); |
| } |
| case NEON::BI__builtin_neon_vcaleh_f16: |
| case NEON::BI__builtin_neon_vcalth_f16: |
| case NEON::BI__builtin_neon_vcageh_f16: |
| case NEON::BI__builtin_neon_vcagth_f16: { |
| unsigned Int; |
| llvm::Type* InTy = Int32Ty; |
| llvm::Type* FTy = HalfTy; |
| llvm::Type *Tys[2] = {InTy, FTy}; |
| Ops.push_back(EmitScalarExpr(E->getArg(1))); |
| switch (BuiltinID) { |
| default: llvm_unreachable("missing builtin ID in switch!"); |
| case NEON::BI__builtin_neon_vcageh_f16: |
| Int = Intrinsic::aarch64_neon_facge; break; |
| case NEON::BI__builtin_neon_vcagth_f16: |
| Int = Intrinsic::aarch64_neon_facgt; break; |
| case NEON::BI__builtin_neon_vcaleh_f16: |
| Int = Intrinsic::aarch64_neon_facge; std::swap(Ops[0], Ops[1]); break; |
| case NEON::BI__builtin_neon_vcalth_f16: |
| Int = Intrinsic::aarch64_neon_facgt; std::swap(Ops[0], Ops[1]); break; |
| } |
| Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "facg"); |
| return Builder.CreateTrunc(Ops[0], Int16Ty); |
| } |
| case NEON::BI__builtin_neon_vcvth_n_s16_f16: |
| case NEON::BI__builtin_neon_vcvth_n_u16_f16: { |
| unsigned Int; |
| llvm::Type* InTy = Int32Ty; |
| llvm::Type* FTy = HalfTy; |
| llvm::Type *Tys[2] = {InTy, FTy}; |
| Ops.push_back(EmitScalarExpr(E->getArg(1))); |
| switch (BuiltinID) { |
| default: llvm_unreachable("missing builtin ID in switch!"); |
| case NEON::BI__builtin_neon_vcvth_n_s16_f16: |
| Int = Intrinsic::aarch64_neon_vcvtfp2fxs; break; |
| case NEON::BI__builtin_neon_vcvth_n_u16_f16: |
| Int = Intrinsic::aarch64_neon_vcvtfp2fxu; break; |
| } |
| Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "fcvth_n"); |
| return Builder.CreateTrunc(Ops[0], Int16Ty); |
| } |
| case NEON::BI__builtin_neon_vcvth_n_f16_s16: |
| case NEON::BI__builtin_neon_vcvth_n_f16_u16: { |
| unsigned Int; |
| llvm::Type* FTy = HalfTy; |
| llvm::Type* InTy = Int32Ty; |
| llvm::Type *Tys[2] = {FTy, InTy}; |
| Ops.push_back(EmitScalarExpr(E->getArg(1))); |
| switch (BuiltinID) { |
| default: llvm_unreachable("missing builtin ID in switch!"); |
| case NEON::BI__builtin_neon_vcvth_n_f16_s16: |
| Int = Intrinsic::aarch64_neon_vcvtfxs2fp; |
| Ops[0] = Builder.CreateSExt(Ops[0], InTy, "sext"); |
| break; |
| case NEON::BI__builtin_neon_vcvth_n_f16_u16: |
| Int = Intrinsic::aarch64_neon_vcvtfxu2fp; |
| Ops[0] = Builder.CreateZExt(Ops[0], InTy); |
| break; |
| } |
| return EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "fcvth_n"); |
| } |
| case NEON::BI__builtin_neon_vpaddd_s64: { |
| auto *Ty = llvm::FixedVectorType::get(Int64Ty, 2); |
| Value *Vec = EmitScalarExpr(E->getArg(0)); |
| // The vector is v2f64, so make sure it's bitcast to that. |
| Vec = Builder.CreateBitCast(Vec, Ty, "v2i64"); |
| llvm::Value *Idx0 = llvm::ConstantInt::get(SizeTy, 0); |
| llvm::Value *Idx1 = llvm::ConstantInt::get(SizeTy, 1); |
| Value *Op0 = Builder.CreateExtractElement(Vec, Idx0, "lane0"); |
| Value *Op1 = Builder.CreateExtractElement(Vec, Idx1, "lane1"); |
| // Pairwise addition of a v2f64 into a scalar f64. |
| return Builder.CreateAdd(Op0, Op1, "vpaddd"); |
| } |
| case NEON::BI__builtin_neon_vpaddd_f64: { |
| auto *Ty = llvm::FixedVectorType::get(DoubleTy, 2); |
| Value *Vec = EmitScalarExpr(E->getArg(0)); |
| // The vector is v2f64, so make sure it's bitcast to that. |
| Vec = Builder.CreateBitCast(Vec, Ty, "v2f64"); |
| llvm::Value *Idx0 = llvm::ConstantInt::get(SizeTy, 0); |
| llvm::Value *Idx1 = llvm::ConstantInt::get(SizeTy, 1); |
| Value *Op0 = Builder.CreateExtractElement(Vec, Idx0, "lane0"); |
| Value *Op1 = Builder.CreateExtractElement(Vec, Idx1, "lane1"); |
| // Pairwise addition of a v2f64 into a scalar f64. |
| return Builder.CreateFAdd(Op0, Op1, "vpaddd"); |
| } |
| case NEON::BI__builtin_neon_vpadds_f32: { |
| auto *Ty = llvm::FixedVectorType::get(FloatTy, 2); |
| Value *Vec = EmitScalarExpr(E->getArg(0)); |
| // The vector is v2f32, so make sure it's bitcast to that. |
| Vec = Builder.CreateBitCast(Vec, Ty, "v2f32"); |
| llvm::Value *Idx0 = llvm::ConstantInt::get(SizeTy, 0); |
| llvm::Value *Idx1 = llvm::ConstantInt::get(SizeTy, 1); |
| Value *Op0 = Builder.CreateExtractElement(Vec, Idx0, "lane0"); |
| Value *Op1 = Builder.CreateExtractElement(Vec, Idx1, "lane1"); |
| // Pairwise addition of a v2f32 into a scalar f32. |
| return Builder.CreateFAdd(Op0, Op1, "vpaddd"); |
| } |
| case NEON::BI__builtin_neon_vceqzd_s64: |
| case NEON::BI__builtin_neon_vceqzd_f64: |
| case NEON::BI__builtin_neon_vceqzs_f32: |
| case NEON::BI__builtin_neon_vceqzh_f16: |
| Ops.push_back(EmitScalarExpr(E->getArg(0))); |
| return EmitAArch64CompareBuiltinExpr( |
| Ops[0], ConvertType(E->getCallReturnType(getContext())), |
| ICmpInst::FCMP_OEQ, ICmpInst::ICMP_EQ, "vceqz"); |
| case NEON::BI__builtin_neon_vcgezd_s64: |
| case NEON::BI__builtin_neon_vcgezd_f64: |
| case NEON::BI__builtin_neon_vcgezs_f32: |
| case NEON::BI__builtin_neon_vcgezh_f16: |
| Ops.push_back(EmitScalarExpr(E->getArg(0))); |
| return EmitAArch64CompareBuiltinExpr( |
| Ops[0], ConvertType(E->getCallReturnType(getContext())), |
| ICmpInst::FCMP_OGE, ICmpInst::ICMP_SGE, "vcgez"); |
| case NEON::BI__builtin_neon_vclezd_s64: |
| case NEON::BI__builtin_neon_vclezd_f64: |
| case NEON::BI__builtin_neon_vclezs_f32: |
| case NEON::BI__builtin_neon_vclezh_f16: |
| Ops.push_back(EmitScalarExpr(E->getArg(0))); |
| return EmitAArch64CompareBuiltinExpr( |
| Ops[0], ConvertType(E->getCallReturnType(getContext())), |
| ICmpInst::FCMP_OLE, ICmpInst::ICMP_SLE, "vclez"); |
| case NEON::BI__builtin_neon_vcgtzd_s64: |
| case NEON::BI__builtin_neon_vcgtzd_f64: |
| case NEON::BI__builtin_neon_vcgtzs_f32: |
| case NEON::BI__builtin_neon_vcgtzh_f16: |
| Ops.push_back(EmitScalarExpr(E->getArg(0))); |
| return EmitAArch64CompareBuiltinExpr( |
| Ops[0], ConvertType(E->getCallReturnType(getContext())), |
| ICmpInst::FCMP_OGT, ICmpInst::ICMP_SGT, "vcgtz"); |
| case NEON::BI__builtin_neon_vcltzd_s64: |
| case NEON::BI__builtin_neon_vcltzd_f64: |
| case NEON::BI__builtin_neon_vcltzs_f32: |
| case NEON::BI__builtin_neon_vcltzh_f16: |
| Ops.push_back(EmitScalarExpr(E->getArg(0))); |
| return EmitAArch64CompareBuiltinExpr( |
| Ops[0], ConvertType(E->getCallReturnType(getContext())), |
| ICmpInst::FCMP_OLT, ICmpInst::ICMP_SLT, "vcltz"); |
| |
| case NEON::BI__builtin_neon_vceqzd_u64: { |
| Ops.push_back(EmitScalarExpr(E->getArg(0))); |
| Ops[0] = Builder.CreateBitCast(Ops[0], Int64Ty); |
| Ops[0] = |
| Builder.CreateICmpEQ(Ops[0], llvm::Constant::getNullValue(Int64Ty)); |
| return Builder.CreateSExt(Ops[0], Int64Ty, "vceqzd"); |
| } |
| case NEON::BI__builtin_neon_vceqd_f64: |
| case NEON::BI__builtin_neon_vcled_f64: |
| case NEON::BI__builtin_neon_vcltd_f64: |
| case NEON::BI__builtin_neon_vcged_f64: |
| case NEON::BI__builtin_neon_vcgtd_f64: { |
| llvm::CmpInst::Predicate P; |
| switch (BuiltinID) { |
| default: llvm_unreachable("missing builtin ID in switch!"); |
| case NEON::BI__builtin_neon_vceqd_f64: P = llvm::FCmpInst::FCMP_OEQ; break; |
| case NEON::BI__builtin_neon_vcled_f64: P = llvm::FCmpInst::FCMP_OLE; break; |
| case NEON::BI__builtin_neon_vcltd_f64: P = llvm::FCmpInst::FCMP_OLT; break; |
| case NEON::BI__builtin_neon_vcged_f64: P = llvm::FCmpInst::FCMP_OGE; break; |
| case NEON::BI__builtin_neon_vcgtd_f64: P = llvm::FCmpInst::FCMP_OGT; break; |
| } |
| Ops.push_back(EmitScalarExpr(E->getArg(1))); |
| Ops[0] = Builder.CreateBitCast(Ops[0], DoubleTy); |
| Ops[1] = Builder.CreateBitCast(Ops[1], DoubleTy); |
| Ops[0] = Builder.CreateFCmp(P, Ops[0], Ops[1]); |
| return Builder.CreateSExt(Ops[0], Int64Ty, "vcmpd"); |
| } |
| case NEON::BI__builtin_neon_vceqs_f32: |
| case NEON::BI__builtin_neon_vcles_f32: |
| case NEON::BI__builtin_neon_vclts_f32: |
| case NEON::BI__builtin_neon_vcges_f32: |
| case NEON::BI__builtin_neon_vcgts_f32: { |
| llvm::CmpInst::Predicate P; |
| switch (BuiltinID) { |
| default: llvm_unreachable("missing builtin ID in switch!"); |
| case NEON::BI__builtin_neon_vceqs_f32: P = llvm::FCmpInst::FCMP_OEQ; break; |
| case NEON::BI__builtin_neon_vcles_f32: P = llvm::FCmpInst::FCMP_OLE; break; |
| case NEON::BI__builtin_neon_vclts_f32: P = llvm::FCmpInst::FCMP_OLT; break; |
| case NEON::BI__builtin_neon_vcges_f32: P = llvm::FCmpInst::FCMP_OGE; break; |
| case NEON::BI__builtin_neon_vcgts_f32: P = llvm::FCmpInst::FCMP_OGT; break; |
| } |
| Ops.push_back(EmitScalarExpr(E->getArg(1))); |
| Ops[0] = Builder.CreateBitCast(Ops[0], FloatTy); |
| Ops[1] = Builder.CreateBitCast(Ops[1], FloatTy); |
| Ops[0] = Builder.CreateFCmp(P, Ops[0], Ops[1]); |
| return Builder.CreateSExt(Ops[0], Int32Ty, "vcmpd"); |
| } |
| case NEON::BI__builtin_neon_vceqh_f16: |
| case NEON::BI__builtin_neon_vcleh_f16: |
| case NEON::BI__builtin_neon_vclth_f16: |
| case NEON::BI__builtin_neon_vcgeh_f16: |
| case NEON::BI__builtin_neon_vcgth_f16: { |
| llvm::CmpInst::Predicate P; |
| switch (BuiltinID) { |
| default: llvm_unreachable("missing builtin ID in switch!"); |
| case NEON::BI__builtin_neon_vceqh_f16: P = llvm::FCmpInst::FCMP_OEQ; break; |
| case NEON::BI__builtin_neon_vcleh_f16: P = llvm::FCmpInst::FCMP_OLE; break; |
| case NEON::BI__builtin_neon_vclth_f16: P = llvm::FCmpInst::FCMP_OLT; break; |
| case NEON::BI__builtin_neon_vcgeh_f16: P = llvm::FCmpInst::FCMP_OGE; break; |
| case NEON::BI__builtin_neon_vcgth_f16: P = llvm::FCmpInst::FCMP_OGT; break; |
| } |
| Ops.push_back(EmitScalarExpr(E->getArg(1))); |
| Ops[0] = Builder.CreateBitCast(Ops[0], HalfTy); |
| Ops[1] = Builder.CreateBitCast(Ops[1], HalfTy); |
| Ops[0] = Builder.CreateFCmp(P, Ops[0], Ops[1]); |
| return Builder.CreateSExt(Ops[0], Int16Ty, "vcmpd"); |
| } |
| case NEON::BI__builtin_neon_vceqd_s64: |
| case NEON::BI__builtin_neon_vceqd_u64: |
| case NEON::BI__builtin_neon_vcgtd_s64: |
| case NEON::BI__builtin_neon_vcgtd_u64: |
| case NEON::BI__builtin_neon_vcltd_s64: |
| case NEON::BI__builtin_neon_vcltd_u64: |
| case NEON::BI__builtin_neon_vcged_u64: |
| case NEON::BI__builtin_neon_vcged_s64: |
| case NEON::BI__builtin_neon_vcled_u64: |
| case NEON::BI__builtin_neon_vcled_s64: { |
| llvm::CmpInst::Predicate P; |
| switch (BuiltinID) { |
| default: llvm_unreachable("missing builtin ID in switch!"); |
| case NEON::BI__builtin_neon_vceqd_s64: |
| case NEON::BI__builtin_neon_vceqd_u64:P = llvm::ICmpInst::ICMP_EQ;break; |
| case NEON::BI__builtin_neon_vcgtd_s64:P = llvm::ICmpInst::ICMP_SGT;break; |
| case NEON::BI__builtin_neon_vcgtd_u64:P = llvm::ICmpInst::ICMP_UGT;break; |
| case NEON::BI__builtin_neon_vcltd_s64:P = llvm::ICmpInst::ICMP_SLT;break; |
| case NEON::BI__builtin_neon_vcltd_u64:P = llvm::ICmpInst::ICMP_ULT;break; |
| case NEON::BI__builtin_neon_vcged_u64:P = llvm::ICmpInst::ICMP_UGE;break; |
| case NEON::BI__builtin_neon_vcged_s64:P = llvm::ICmpInst::ICMP_SGE;break; |
| case NEON::BI__builtin_neon_vcled_u64:P = llvm::ICmpInst::ICMP_ULE;break; |
| case NEON::BI__builtin_neon_vcled_s64:P = llvm::ICmpInst::ICMP_SLE;break; |
| } |
| Ops.push_back(EmitScalarExpr(E->getArg(1))); |
| Ops[0] = Builder.CreateBitCast(Ops[0], Int64Ty); |
| Ops[1] = Builder.CreateBitCast(Ops[1], Int64Ty); |
| Ops[0] = Builder.CreateICmp(P, Ops[0], Ops[1]); |
| return Builder.CreateSExt(Ops[0], Int64Ty, "vceqd"); |
| } |
| case NEON::BI__builtin_neon_vtstd_s64: |
| case NEON::BI__builtin_neon_vtstd_u64: { |
| Ops.push_back(EmitScalarExpr(E->getArg(1))); |
| Ops[0] = Builder.CreateBitCast(Ops[0], Int64Ty); |
| Ops[1] = Builder.CreateBitCast(Ops[1], Int64Ty); |
| Ops[0] = Builder.CreateAnd(Ops[0], Ops[1]); |
| Ops[0] = Builder.CreateICmp(ICmpInst::ICMP_NE, Ops[0], |
| llvm::Constant::getNullValue(Int64Ty)); |
| return Builder.CreateSExt(Ops[0], Int64Ty, "vtstd"); |
| } |
| case NEON::BI__builtin_neon_vset_lane_i8: |
| case NEON::BI__builtin_neon_vset_lane_i16: |
| case NEON::BI__builtin_neon_vset_lane_i32: |
| case NEON::BI__builtin_neon_vset_lane_i64: |
| case NEON::BI__builtin_neon_vset_lane_bf16: |
| case NEON::BI__builtin_neon_vset_lane_f32: |
| case NEON::BI__builtin_neon_vsetq_lane_i8: |
| case NEON::BI__builtin_neon_vsetq_lane_i16: |
| case NEON::BI__builtin_neon_vsetq_lane_i32: |
| case NEON::BI__builtin_neon_vsetq_lane_i64: |
| case NEON::BI__builtin_neon_vsetq_lane_bf16: |
| case NEON::BI__builtin_neon_vsetq_lane_f32: |
| Ops.push_back(EmitScalarExpr(E->getArg(2))); |
| return Builder.CreateInsertElement(Ops[1], Ops[0], Ops[2], "vset_lane"); |
| case NEON::BI__builtin_neon_vset_lane_f64: |
| // The vector type needs a cast for the v1f64 variant. |
| Ops[1] = |
| Builder.CreateBitCast(Ops[1], llvm::FixedVectorType::get(DoubleTy, 1)); |
| Ops.push_back(EmitScalarExpr(E->getArg(2))); |
| return Builder.CreateInsertElement(Ops[1], Ops[0], Ops[2], "vset_lane"); |
| case NEON::BI__builtin_neon_vsetq_lane_f64: |
| // The vector type needs a cast for the v2f64 variant. |
| Ops[1] = |
| Builder.CreateBitCast(Ops[1], llvm::FixedVectorType::get(DoubleTy, 2)); |
| Ops.push_back(EmitScalarExpr(E->getArg(2))); |
| return Builder.CreateInsertElement(Ops[1], Ops[0], Ops[2], "vset_lane"); |
| |
| case NEON::BI__builtin_neon_vget_lane_i8: |
| case NEON::BI__builtin_neon_vdupb_lane_i8: |
| Ops[0] = |
| Builder.CreateBitCast(Ops[0], llvm::FixedVectorType::get(Int8Ty, 8)); |
| return Builder.CreateExtractElement(Ops[0], EmitScalarExpr(E->getArg(1)), |
| "vget_lane"); |
| case NEON::BI__builtin_neon_vgetq_lane_i8: |
| case NEON::BI__builtin_neon_vdupb_laneq_i8: |
| Ops[0] = |
| Builder.CreateBitCast(Ops[0], llvm::FixedVectorType::get(Int8Ty, 16)); |
| return Builder.CreateExtractElement(Ops[0], EmitScalarExpr(E->getArg(1)), |
| "vgetq_lane"); |
| case NEON::BI__builtin_neon_vget_lane_i16: |
| case NEON::BI__builtin_neon_vduph_lane_i16: |
| Ops[0] = |
| Builder.CreateBitCast(Ops[0], llvm::FixedVectorType::get(Int16Ty, 4)); |
| return Builder.CreateExtractElement(Ops[0], EmitScalarExpr(E->getArg(1)), |
| "vget_lane"); |
| case NEON::BI__builtin_neon_vgetq_lane_i16: |
| case NEON::BI__builtin_neon_vduph_laneq_i16: |
| Ops[0] = |
| Builder.CreateBitCast(Ops[0], llvm::FixedVectorType::get(Int16Ty, 8)); |
| return Builder.CreateExtractElement(Ops[0], EmitScalarExpr(E->getArg(1)), |
| "vgetq_lane"); |
| case NEON::BI__builtin_neon_vget_lane_i32: |
| case NEON::BI__builtin_neon_vdups_lane_i32: |
| Ops[0] = |
| Builder.CreateBitCast(Ops[0], llvm::FixedVectorType::get(Int32Ty, 2)); |
| return Builder.CreateExtractElement(Ops[0], EmitScalarExpr(E->getArg(1)), |
| "vget_lane"); |
| case NEON::BI__builtin_neon_vdups_lane_f32: |
| Ops[0] = |
| Builder.CreateBitCast(Ops[0], llvm::FixedVectorType::get(FloatTy, 2)); |
| return Builder.CreateExtractElement(Ops[0], EmitScalarExpr(E->getArg(1)), |
| "vdups_lane"); |
| case NEON::BI__builtin_neon_vgetq_lane_i32: |
| case NEON::BI__builtin_neon_vdups_laneq_i32: |
| Ops[0] = |
| Builder.CreateBitCast(Ops[0], llvm::FixedVectorType::get(Int32Ty, 4)); |
| return Builder.CreateExtractElement(Ops[0], EmitScalarExpr(E->getArg(1)), |
| "vgetq_lane"); |
| case NEON::BI__builtin_neon_vget_lane_i64: |
| case NEON::BI__builtin_neon_vdupd_lane_i64: |
| Ops[0] = |
| Builder.CreateBitCast(Ops[0], llvm::FixedVectorType::get(Int64Ty, 1)); |
| return Builder.CreateExtractElement(Ops[0], EmitScalarExpr(E->getArg(1)), |
| "vget_lane"); |
| case NEON::BI__builtin_neon_vdupd_lane_f64: |
| Ops[0] = |
| Builder.CreateBitCast(Ops[0], llvm::FixedVectorType::get(DoubleTy, 1)); |
| return Builder.CreateExtractElement(Ops[0], EmitScalarExpr(E->getArg(1)), |
| "vdupd_lane"); |
| case NEON::BI__builtin_neon_vgetq_lane_i64: |
| case NEON::BI__builtin_neon_vdupd_laneq_i64: |
| Ops[0] = |
| Builder.CreateBitCast(Ops[0], llvm::FixedVectorType::get(Int64Ty, 2)); |
| return Builder.CreateExtractElement(Ops[0], EmitScalarExpr(E->getArg(1)), |
| "vgetq_lane"); |
| case NEON::BI__builtin_neon_vget_lane_f32: |
| Ops[0] = |
| Builder.CreateBitCast(Ops[0], llvm::FixedVectorType::get(FloatTy, 2)); |
| return Builder.CreateExtractElement(Ops[0], EmitScalarExpr(E->getArg(1)), |
| "vget_lane"); |
| case NEON::BI__builtin_neon_vget_lane_f64: |
| Ops[0] = |
| Builder.CreateBitCast(Ops[0], llvm::FixedVectorType::get(DoubleTy, 1)); |
| return Builder.CreateExtractElement(Ops[0], EmitScalarExpr(E->getArg(1)), |
| "vget_lane"); |
| case NEON::BI__builtin_neon_vgetq_lane_f32: |
| case NEON::BI__builtin_neon_vdups_laneq_f32: |
| Ops[0] = |
| Builder.CreateBitCast(Ops[0], llvm::FixedVectorType::get(FloatTy, 4)); |
| return Builder.CreateExtractElement(Ops[0], EmitScalarExpr(E->getArg(1)), |
| "vgetq_lane"); |
| case NEON::BI__builtin_neon_vgetq_lane_f64: |
| case NEON::BI__builtin_neon_vdupd_laneq_f64: |
| Ops[0] = |
| Builder.CreateBitCast(Ops[0], llvm::FixedVectorType::get(DoubleTy, 2)); |
| return Builder.CreateExtractElement(Ops[0], EmitScalarExpr(E->getArg(1)), |
| "vgetq_lane"); |
| case NEON::BI__builtin_neon_vaddh_f16: |
| Ops.push_back(EmitScalarExpr(E->getArg(1))); |
| return Builder.CreateFAdd(Ops[0], Ops[1], "vaddh"); |
| case NEON::BI__builtin_neon_vsubh_f16: |
| Ops.push_back(EmitScalarExpr(E->getArg(1))); |
| return Builder.CreateFSub(Ops[0], Ops[1], "vsubh"); |
| case NEON::BI__builtin_neon_vmulh_f16: |
| Ops.push_back(EmitScalarExpr(E->getArg(1))); |
| return Builder.CreateFMul(Ops[0], Ops[1], "vmulh"); |
| case NEON::BI__builtin_neon_vdivh_f16: |
| Ops.push_back(EmitScalarExpr(E->getArg(1))); |
| return Builder.CreateFDiv(Ops[0], Ops[1], "vdivh"); |
| case NEON::BI__builtin_neon_vfmah_f16: |
| // NEON intrinsic puts accumulator first, unlike the LLVM fma. |
| return emitCallMaybeConstrainedFPBuiltin( |
| *this, Intrinsic::fma, Intrinsic::experimental_constrained_fma, HalfTy, |
| {EmitScalarExpr(E->getArg(1)), EmitScalarExpr(E->getArg(2)), Ops[0]}); |
| case NEON::BI__builtin_neon_vfmsh_f16: { |
| // FIXME: This should be an fneg instruction: |
| Value *Zero = llvm::ConstantFP::getZeroValueForNegation(HalfTy); |
| Value* Sub = Builder.CreateFSub(Zero, EmitScalarExpr(E->getArg(1)), "vsubh"); |
| |
| // NEON intrinsic puts accumulator first, unlike the LLVM fma. |
| return emitCallMaybeConstrainedFPBuiltin( |
| *this, Intrinsic::fma, Intrinsic::experimental_constrained_fma, HalfTy, |
| {Sub, EmitScalarExpr(E->getArg(2)), Ops[0]}); |
| } |
| case NEON::BI__builtin_neon_vaddd_s64: |
| case NEON::BI__builtin_neon_vaddd_u64: |
| return Builder.CreateAdd(Ops[0], EmitScalarExpr(E->getArg(1)), "vaddd"); |
| case NEON::BI__builtin_neon_vsubd_s64: |
| case NEON::BI__builtin_neon_vsubd_u64: |
| return Builder.CreateSub(Ops[0], EmitScalarExpr(E->getArg(1)), "vsubd"); |
| case NEON::BI__builtin_neon_vqdmlalh_s16: |
| case NEON::BI__builtin_neon_vqdmlslh_s16: { |
| SmallVector<Value *, 2> ProductOps; |
| ProductOps.push_back(vectorWrapScalar16(Ops[1])); |
| ProductOps.push_back(vectorWrapScalar16(EmitScalarExpr(E->getArg(2)))); |
| auto *VTy = llvm::FixedVectorType::get(Int32Ty, 4); |
| Ops[1] = EmitNeonCall(CGM.getIntrinsic(Intrinsic::aarch64_neon_sqdmull, VTy), |
| ProductOps, "vqdmlXl"); |
| Constant *CI = ConstantInt::get(SizeTy, 0); |
| Ops[1] = Builder.CreateExtractElement(Ops[1], CI, "lane0"); |
| |
| unsigned AccumInt = BuiltinID == NEON::BI__builtin_neon_vqdmlalh_s16 |
| ? Intrinsic::aarch64_neon_sqadd |
| : Intrinsic::aarch64_neon_sqsub; |
| return EmitNeonCall(CGM.getIntrinsic(AccumInt, Int32Ty), Ops, "vqdmlXl"); |
| } |
| case NEON::BI__builtin_neon_vqshlud_n_s64: { |
| Ops.push_back(EmitScalarExpr(E->getArg(1))); |
| Ops[1] = Builder.CreateZExt(Ops[1], Int64Ty); |
| return EmitNeonCall(CGM.getIntrinsic(Intrinsic::aarch64_neon_sqshlu, Int64Ty), |
| Ops, "vqshlu_n"); |
| } |
| case NEON::BI__builtin_neon_vqshld_n_u64: |
| case NEON::BI__builtin_neon_vqshld_n_s64: { |
| unsigned Int = BuiltinID == NEON::BI__builtin_neon_vqshld_n_u64 |
| ? Intrinsic::aarch64_neon_uqshl |
| : Intrinsic::aarch64_neon_sqshl; |
| Ops.push_back(EmitScalarExpr(E->getArg(1))); |
| Ops[1] = Builder.CreateZExt(Ops[1], Int64Ty); |
| return EmitNeonCall(CGM.getIntrinsic(Int, Int64Ty), Ops, "vqshl_n"); |
| } |
| case NEON::BI__builtin_neon_vrshrd_n_u64: |
| case NEON::BI__builtin_neon_vrshrd_n_s64: { |
| unsigned Int = BuiltinID == NEON::BI__builtin_neon_vrshrd_n_u64 |
| ? Intrinsic::aarch64_neon_urshl |
| : Intrinsic::aarch64_neon_srshl; |
| Ops.push_back(EmitScalarExpr(E->getArg(1))); |
| int SV = cast<ConstantInt>(Ops[1])->getSExtValue(); |
| Ops[1] = ConstantInt::get(Int64Ty, -SV); |
| return EmitNeonCall(CGM.getIntrinsic(Int, Int64Ty), Ops, "vrshr_n"); |
| } |
| case NEON::BI__builtin_neon_vrsrad_n_u64: |
| case NEON::BI__builtin_neon_vrsrad_n_s64: { |
| unsigned Int = BuiltinID == NEON::BI__builtin_neon_vrsrad_n_u64 |
| ? Intrinsic::aarch64_neon_urshl |
| : Intrinsic::aarch64_neon_srshl; |
| Ops[1] = Builder.CreateBitCast(Ops[1], Int64Ty); |
| Ops.push_back(Builder.CreateNeg(EmitScalarExpr(E->getArg(2)))); |
| Ops[1] = Builder.CreateCall(CGM.getIntrinsic(Int, Int64Ty), |
| {Ops[1], Builder.CreateSExt(Ops[2], Int64Ty)}); |
| return Builder.CreateAdd(Ops[0], Builder.CreateBitCast(Ops[1], Int64Ty)); |
| } |
| case NEON::BI__builtin_neon_vshld_n_s64: |
| case NEON::BI__builtin_neon_vshld_n_u64: { |
| llvm::ConstantInt *Amt = cast<ConstantInt>(EmitScalarExpr(E->getArg(1))); |
| return Builder.CreateShl( |
| Ops[0], ConstantInt::get(Int64Ty, Amt->getZExtValue()), "shld_n"); |
| } |
| case NEON::BI__builtin_neon_vshrd_n_s64: { |
| llvm::ConstantInt *Amt = cast<ConstantInt>(EmitScalarExpr(E->getArg(1))); |
| return Builder.CreateAShr( |
| Ops[0], ConstantInt::get(Int64Ty, std::min(static_cast<uint64_t>(63), |
| Amt->getZExtValue())), |
| "shrd_n"); |
| } |
| case NEON::BI__builtin_neon_vshrd_n_u64: { |
| llvm::ConstantInt *Amt = cast<ConstantInt>(EmitScalarExpr(E->getArg(1))); |
| uint64_t ShiftAmt = Amt->getZExtValue(); |
| // Right-shifting an unsigned value by its size yields 0. |
| if (ShiftAmt == 64) |
| return ConstantInt::get(Int64Ty, 0); |
| return Builder.CreateLShr(Ops[0], ConstantInt::get(Int64Ty, ShiftAmt), |
| "shrd_n"); |
| } |
| case NEON::BI__builtin_neon_vsrad_n_s64: { |
| llvm::ConstantInt *Amt = cast<ConstantInt>(EmitScalarExpr(E->getArg(2))); |
| Ops[1] = Builder.CreateAShr( |
| Ops[1], ConstantInt::get(Int64Ty, std::min(static_cast<uint64_t>(63), |
| Amt->getZExtValue())), |
| "shrd_n"); |
| return Builder.CreateAdd(Ops[0], Ops[1]); |
| } |
| case NEON::BI__builtin_neon_vsrad_n_u64: { |
| llvm::ConstantInt *Amt = cast<ConstantInt>(EmitScalarExpr(E->getArg(2))); |
| uint64_t ShiftAmt = Amt->getZExtValue(); |
| // Right-shifting an unsigned value by its size yields 0. |
| // As Op + 0 = Op, return Ops[0] directly. |
| if (ShiftAmt == 64) |
| return Ops[0]; |
| Ops[1] = Builder.CreateLShr(Ops[1], ConstantInt::get(Int64Ty, ShiftAmt), |
| "shrd_n"); |
| return Builder.CreateAdd(Ops[0], Ops[1]); |
| } |
| case NEON::BI__builtin_neon_vqdmlalh_lane_s16: |
| case NEON::BI__builtin_neon_vqdmlalh_laneq_s16: |
| case NEON::BI__builtin_neon_vqdmlslh_lane_s16: |
| case NEON::BI__builtin_neon_vqdmlslh_laneq_s16: { |
| Ops[2] = Builder.CreateExtractElement(Ops[2], EmitScalarExpr(E->getArg(3)), |
| "lane"); |
| SmallVector<Value *, 2> ProductOps; |
| ProductOps.push_back(vectorWrapScalar16(Ops[1])); |
| ProductOps.push_back(vectorWrapScalar16(Ops[2])); |
| auto *VTy = llvm::FixedVectorType::get(Int32Ty, 4); |
| Ops[1] = EmitNeonCall(CGM.getIntrinsic(Intrinsic::aarch64_neon_sqdmull, VTy), |
| ProductOps, "vqdmlXl"); |
| Constant *CI = ConstantInt::get(SizeTy, 0); |
| Ops[1] = Builder.CreateExtractElement(Ops[1], CI, "lane0"); |
| Ops.pop_back(); |
| |
| unsigned AccInt = (BuiltinID == NEON::BI__builtin_neon_vqdmlalh_lane_s16 || |
| BuiltinID == NEON::BI__builtin_neon_vqdmlalh_laneq_s16) |
| ? Intrinsic::aarch64_neon_sqadd |
| : Intrinsic::aarch64_neon_sqsub; |
| return EmitNeonCall(CGM.getIntrinsic(AccInt, Int32Ty), Ops, "vqdmlXl"); |
| } |
| case NEON::BI__builtin_neon_vqdmlals_s32: |
| case NEON::BI__builtin_neon_vqdmlsls_s32: { |
| SmallVector<Value *, 2> ProductOps; |
| ProductOps.push_back(Ops[1]); |
| ProductOps.push_back(EmitScalarExpr(E->getArg(2))); |
| Ops[1] = |
| EmitNeonCall(CGM.getIntrinsic(Intrinsic::aarch64_neon_sqdmulls_scalar), |
| ProductOps, "vqdmlXl"); |
| |
| unsigned AccumInt = BuiltinID == NEON::BI__builtin_neon_vqdmlals_s32 |
| ? Intrinsic::aarch64_neon_sqadd |
| : Intrinsic::aarch64_neon_sqsub; |
| return EmitNeonCall(CGM.getIntrinsic(AccumInt, Int64Ty), Ops, "vqdmlXl"); |
| } |
| case NEON::BI__builtin_neon_vqdmlals_lane_s32: |
| case NEON::BI__builtin_neon_vqdmlals_laneq_s32: |
| case NEON::BI__builtin_neon_vqdmlsls_lane_s32: |
| case NEON::BI__builtin_neon_vqdmlsls_laneq_s32: { |
| Ops[2] = Builder.CreateExtractElement(Ops[2], EmitScalarExpr(E->getArg(3)), |
| "lane"); |
| SmallVector<Value *, 2> ProductOps; |
| ProductOps.push_back(Ops[1]); |
| ProductOps.push_back(Ops[2]); |
| Ops[1] = |
| EmitNeonCall(CGM.getIntrinsic(Intrinsic::aarch64_neon_sqdmulls_scalar), |
| ProductOps, "vqdmlXl"); |
| Ops.pop_back(); |
| |
| unsigned AccInt = (BuiltinID == NEON::BI__builtin_neon_vqdmlals_lane_s32 || |
| BuiltinID == NEON::BI__builtin_neon_vqdmlals_laneq_s32) |
| ? Intrinsic::aarch64_neon_sqadd |
| : Intrinsic::aarch64_neon_sqsub; |
| return EmitNeonCall(CGM.getIntrinsic(AccInt, Int64Ty), Ops, "vqdmlXl"); |
| } |
| case NEON::BI__builtin_neon_vget_lane_bf16: |
| case NEON::BI__builtin_neon_vduph_lane_bf16: |
| case NEON::BI__builtin_neon_vduph_lane_f16: { |
| return Builder.CreateExtractElement(Ops[0], EmitScalarExpr(E->getArg(1)), |
| "vget_lane"); |
| } |
| case NEON::BI__builtin_neon_vgetq_lane_bf16: |
| case NEON::BI__builtin_neon_vduph_laneq_bf16: |
| case NEON::BI__builtin_neon_vduph_laneq_f16: { |
| return Builder.CreateExtractElement(Ops[0], EmitScalarExpr(E->getArg(1)), |
| "vgetq_lane"); |
| } |
| |
| case AArch64::BI_InterlockedAdd: { |
| Value *Arg0 = EmitScalarExpr(E->getArg(0)); |
| Value *Arg1 = EmitScalarExpr(E->getArg(1)); |
| AtomicRMWInst *RMWI = Builder.CreateAtomicRMW( |
| AtomicRMWInst::Add, Arg0, Arg1, |
| llvm::AtomicOrdering::SequentiallyConsistent); |
| return Builder.CreateAdd(RMWI, Arg1); |
| } |
| } |
| |
| llvm::FixedVectorType *VTy = GetNeonType(this, Type); |
| llvm::Type *Ty = VTy; |
| if (!Ty) |
| return nullptr; |
| |
| // Not all intrinsics handled by the common case work for AArch64 yet, so only |
| // defer to common code if it's been added to our special map. |
| Builtin = findARMVectorIntrinsicInMap(AArch64SIMDIntrinsicMap, BuiltinID, |
| AArch64SIMDIntrinsicsProvenSorted); |
| |
| if (Builtin) |
| return EmitCommonNeonBuiltinExpr( |
| Builtin->BuiltinID, Builtin->LLVMIntrinsic, Builtin->AltLLVMIntrinsic, |
| Builtin->NameHint, Builtin->TypeModifier, E, Ops, |
| /*never use addresses*/ Address::invalid(), Address::invalid(), Arch); |
| |
| if (Value *V = EmitAArch64TblBuiltinExpr(*this, BuiltinID, E, Ops, Arch)) |
| return V; |
| |
| unsigned Int; |
| switch (BuiltinID) { |
| default: return nullptr; |
| case NEON::BI__builtin_neon_vbsl_v: |
| case NEON::BI__builtin_neon_vbslq_v: { |
| llvm::Type *BitTy = llvm::VectorType::getInteger(VTy); |
| Ops[0] = Builder.CreateBitCast(Ops[0], BitTy, "vbsl"); |
| Ops[1] = Builder.CreateBitCast(Ops[1], BitTy, "vbsl"); |
| Ops[2] = Builder.CreateBitCast(Ops[2], BitTy, "vbsl"); |
| |
| Ops[1] = Builder.CreateAnd(Ops[0], Ops[1], "vbsl"); |
| Ops[2] = Builder.CreateAnd(Builder.CreateNot(Ops[0]), Ops[2], "vbsl"); |
| Ops[0] = Builder.CreateOr(Ops[1], Ops[2], "vbsl"); |
| return Builder.CreateBitCast(Ops[0], Ty); |
| } |
| case NEON::BI__builtin_neon_vfma_lane_v: |
| case NEON::BI__builtin_neon_vfmaq_lane_v: { // Only used for FP types |
| // The ARM builtins (and instructions) have the addend as the first |
| // operand, but the 'fma' intrinsics have it last. Swap it around here. |
| Value *Addend = Ops[0]; |
| Value *Multiplicand = Ops[1]; |
| Value *LaneSource = Ops[2]; |
| Ops[0] = Multiplicand; |
| Ops[1] = LaneSource; |
| Ops[2] = Addend; |
| |
| // Now adjust things to handle the lane access. |
| auto *SourceTy = BuiltinID == NEON::BI__builtin_neon_vfmaq_lane_v |
| ? llvm::FixedVectorType::get(VTy->getElementType(), |
| VTy->getNumElements() / 2) |
| : VTy; |
| llvm::Constant *cst = cast<Constant>(Ops[3]); |
| Value *SV = llvm::ConstantVector::getSplat(VTy->getElementCount(), cst); |
| Ops[1] = Builder.CreateBitCast(Ops[1], SourceTy); |
| Ops[1] = Builder.CreateShuffleVector(Ops[1], Ops[1], SV, "lane"); |
| |
| Ops.pop_back(); |
| Int = Builder.getIsFPConstrained() ? Intrinsic::experimental_constrained_fma |
| : Intrinsic::fma; |
| return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "fmla"); |
| } |
| case NEON::BI__builtin_neon_vfma_laneq_v: { |
| auto *VTy = cast<llvm::FixedVectorType>(Ty); |
| // v1f64 fma should be mapped to Neon scalar f64 fma |
| if (VTy && VTy->getElementType() == DoubleTy) { |
| Ops[0] = Builder.CreateBitCast(Ops[0], DoubleTy); |
| Ops[1] = Builder.CreateBitCast(Ops[1], DoubleTy); |
| llvm::FixedVectorType *VTy = |
| GetNeonType(this, NeonTypeFlags(NeonTypeFlags::Float64, false, true)); |
| Ops[2] = Builder.CreateBitCast(Ops[2], VTy); |
| Ops[2] = Builder.CreateExtractElement(Ops[2], Ops[3], "extract"); |
| Value *Result; |
| Result = emitCallMaybeConstrainedFPBuiltin( |
| *this, Intrinsic::fma, Intrinsic::experimental_constrained_fma, |
| DoubleTy, {Ops[1], Ops[2], Ops[0]}); |
| return Builder.CreateBitCast(Result, Ty); |
| } |
| Ops[0] = Builder.CreateBitCast(Ops[0], Ty); |
| Ops[1] = Builder.CreateBitCast(Ops[1], Ty); |
| |
| auto *STy = llvm::FixedVectorType::get(VTy->getElementType(), |
| VTy->getNumElements() * 2); |
| Ops[2] = Builder.CreateBitCast(Ops[2], STy); |
| Value *SV = llvm::ConstantVector::getSplat(VTy->getElementCount(), |
| cast<ConstantInt>(Ops[3])); |
| Ops[2] = Builder.CreateShuffleVector(Ops[2], Ops[2], SV, "lane"); |
| |
| return emitCallMaybeConstrainedFPBuiltin( |
| *this, Intrinsic::fma, Intrinsic::experimental_constrained_fma, Ty, |
| {Ops[2], Ops[1], Ops[0]}); |
| } |
| case NEON::BI__builtin_neon_vfmaq_laneq_v: { |
| Ops[0] = Builder.CreateBitCast(Ops[0], Ty); |
| Ops[1] = Builder.CreateBitCast(Ops[1], Ty); |
| |
| Ops[2] = Builder.CreateBitCast(Ops[2], Ty); |
| Ops[2] = EmitNeonSplat(Ops[2], cast<ConstantInt>(Ops[3])); |
| return emitCallMaybeConstrainedFPBuiltin( |
| *this, Intrinsic::fma, Intrinsic::experimental_constrained_fma, Ty, |
| {Ops[2], Ops[1], Ops[0]}); |
| } |
| case NEON::BI__builtin_neon_vfmah_lane_f16: |
| case NEON::BI__builtin_neon_vfmas_lane_f32: |
| case NEON::BI__builtin_neon_vfmah_laneq_f16: |
| case NEON::BI__builtin_neon_vfmas_laneq_f32: |
| case NEON::BI__builtin_neon_vfmad_lane_f64: |
| case NEON::BI__builtin_neon_vfmad_laneq_f64: { |
| Ops.push_back(EmitScalarExpr(E->getArg(3))); |
| llvm::Type *Ty = ConvertType(E->getCallReturnType(getContext())); |
| Ops[2] = Builder.CreateExtractElement(Ops[2], Ops[3], "extract"); |
| return emitCallMaybeConstrainedFPBuiltin( |
| *this, Intrinsic::fma, Intrinsic::experimental_constrained_fma, Ty, |
| {Ops[1], Ops[2], Ops[0]}); |
| } |
| case NEON::BI__builtin_neon_vmull_v: |
| // FIXME: improve sharing scheme to cope with 3 alternative LLVM intrinsics. |
| Int = usgn ? Intrinsic::aarch64_neon_umull : Intrinsic::aarch64_neon_smull; |
| if (Type.isPoly()) Int = Intrinsic::aarch64_neon_pmull; |
| return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vmull"); |
| case NEON::BI__builtin_neon_vmax_v: |
| case NEON::BI__builtin_neon_vmaxq_v: |
| // FIXME: improve sharing scheme to cope with 3 alternative LLVM intrinsics. |
| Int = usgn ? Intrinsic::aarch64_neon_umax : Intrinsic::aarch64_neon_smax; |
| if (Ty->isFPOrFPVectorTy()) Int = Intrinsic::aarch64_neon_fmax; |
| return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vmax"); |
| case NEON::BI__builtin_neon_vmaxh_f16: { |
| Ops.push_back(EmitScalarExpr(E->getArg(1))); |
| Int = Intrinsic::aarch64_neon_fmax; |
| return EmitNeonCall(CGM.getIntrinsic(Int, HalfTy), Ops, "vmax"); |
| } |
| case NEON::BI__builtin_neon_vmin_v: |
| case NEON::BI__builtin_neon_vminq_v: |
| // FIXME: improve sharing scheme to cope with 3 alternative LLVM intrinsics. |
| Int = usgn ? Intrinsic::aarch64_neon_umin : Intrinsic::aarch64_neon_smin; |
| if (Ty->isFPOrFPVectorTy()) Int = Intrinsic::aarch64_neon_fmin; |
| return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vmin"); |
| case NEON::BI__builtin_neon_vminh_f16: { |
| Ops.push_back(EmitScalarExpr(E->getArg(1))); |
| Int = Intrinsic::aarch64_neon_fmin; |
| return EmitNeonCall(CGM.getIntrinsic(Int, HalfTy), Ops, "vmin"); |
| } |
| case NEON::BI__builtin_neon_vabd_v: |
| case NEON::BI__builtin_neon_vabdq_v: |
| // FIXME: improve sharing scheme to cope with 3 alternative LLVM intrinsics. |
| Int = usgn ? Intrinsic::aarch64_neon_uabd : Intrinsic::aarch64_neon_sabd; |
| if (Ty->isFPOrFPVectorTy()) Int = Intrinsic::aarch64_neon_fabd; |
| return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vabd"); |
| case NEON::BI__builtin_neon_vpadal_v: |
| case NEON::BI__builtin_neon_vpadalq_v: { |
| unsigned ArgElts = VTy->getNumElements(); |
| llvm::IntegerType *EltTy = cast<IntegerType>(VTy->getElementType()); |
| unsigned BitWidth = EltTy->getBitWidth(); |
| auto *ArgTy = llvm::FixedVectorType::get( |
| llvm::IntegerType::get(getLLVMContext(), BitWidth / 2), 2 * ArgElts); |
| llvm::Type* Tys[2] = { VTy, ArgTy }; |
| Int = usgn ? Intrinsic::aarch64_neon_uaddlp : Intrinsic::aarch64_neon_saddlp; |
| SmallVector<llvm::Value*, 1> TmpOps; |
| TmpOps.push_back(Ops[1]); |
| Function *F = CGM.getIntrinsic(Int, Tys); |
| llvm::Value *tmp = EmitNeonCall(F, TmpOps, "vpadal"); |
| llvm::Value *addend = Builder.CreateBitCast(Ops[0], tmp->getType()); |
| return Builder.CreateAdd(tmp, addend); |
| } |
| case NEON::BI__builtin_neon_vpmin_v: |
| case NEON::BI__builtin_neon_vpminq_v: |
| // FIXME: improve sharing scheme to cope with 3 alternative LLVM intrinsics. |
| Int = usgn ? Intrinsic::aarch64_neon_uminp : Intrinsic::aarch64_neon_sminp; |
| if (Ty->isFPOrFPVectorTy()) Int = Intrinsic::aarch64_neon_fminp; |
| return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vpmin"); |
| case NEON::BI__builtin_neon_vpmax_v: |
| case NEON::BI__builtin_neon_vpmaxq_v: |
| // FIXME: improve sharing scheme to cope with 3 alternative LLVM intrinsics. |
| Int = usgn ? Intrinsic::aarch64_neon_umaxp : Intrinsic::aarch64_neon_smaxp; |
| if (Ty->isFPOrFPVectorTy()) Int = Intrinsic::aarch64_neon_fmaxp; |
| return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vpmax"); |
| case NEON::BI__builtin_neon_vminnm_v: |
| case NEON::BI__builtin_neon_vminnmq_v: |
| Int = Intrinsic::aarch64_neon_fminnm; |
| return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vminnm"); |
| case NEON::BI__builtin_neon_vminnmh_f16: |
| Ops.push_back(EmitScalarExpr(E->getArg(1))); |
| Int = Intrinsic::aarch64_neon_fminnm; |
| return EmitNeonCall(CGM.getIntrinsic(Int, HalfTy), Ops, "vminnm"); |
| case NEON::BI__builtin_neon_vmaxnm_v: |
| case NEON::BI__builtin_neon_vmaxnmq_v: |
| Int = Intrinsic::aarch64_neon_fmaxnm; |
| return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vmaxnm"); |
| case NEON::BI__builtin_neon_vmaxnmh_f16: |
| Ops.push_back(EmitScalarExpr(E->getArg(1))); |
| Int = Intrinsic::aarch64_neon_fmaxnm; |
| return EmitNeonCall(CGM.getIntrinsic(Int, HalfTy), Ops, "vmaxnm"); |
| case NEON::BI__builtin_neon_vrecpss_f32: { |
| Ops.push_back(EmitScalarExpr(E->getArg(1))); |
| return EmitNeonCall(CGM.getIntrinsic(Intrinsic::aarch64_neon_frecps, FloatTy), |
| Ops, "vrecps"); |
| } |
| case NEON::BI__builtin_neon_vrecpsd_f64: |
| Ops.push_back(EmitScalarExpr(E->getArg(1))); |
| return EmitNeonCall(CGM.getIntrinsic(Intrinsic::aarch64_neon_frecps, DoubleTy), |
| Ops, "vrecps"); |
| case NEON::BI__builtin_neon_vrecpsh_f16: |
| Ops.push_back(EmitScalarExpr(E->getArg(1))); |
| return EmitNeonCall(CGM.getIntrinsic(Intrinsic::aarch64_neon_frecps, HalfTy), |
| Ops, "vrecps"); |
| case NEON::BI__builtin_neon_vqshrun_n_v: |
| Int = Intrinsic::aarch64_neon_sqshrun; |
| return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vqshrun_n"); |
| case NEON::BI__builtin_neon_vqrshrun_n_v: |
| Int = Intrinsic::aarch64_neon_sqrshrun; |
| return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vqrshrun_n"); |
| case NEON::BI__builtin_neon_vqshrn_n_v: |
| Int = usgn ? Intrinsic::aarch64_neon_uqshrn : Intrinsic::aarch64_neon_sqshrn; |
| return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vqshrn_n"); |
| case NEON::BI__builtin_neon_vrshrn_n_v: |
| Int = Intrinsic::aarch64_neon_rshrn; |
| return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vrshrn_n"); |
| case NEON::BI__builtin_neon_vqrshrn_n_v: |
| Int = usgn ? Intrinsic::aarch64_neon_uqrshrn : Intrinsic::aarch64_neon_sqrshrn; |
| return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vqrshrn_n"); |
| case NEON::BI__builtin_neon_vrndah_f16: { |
| Ops.push_back(EmitScalarExpr(E->getArg(0))); |
| Int = Builder.getIsFPConstrained() |
| ? Intrinsic::experimental_constrained_round |
| : Intrinsic::round; |
| return EmitNeonCall(CGM.getIntrinsic(Int, HalfTy), Ops, "vrnda"); |
| } |
| case NEON::BI__builtin_neon_vrnda_v: |
| case NEON::BI__builtin_neon_vrndaq_v: { |
| Int = Builder.getIsFPConstrained() |
| ? Intrinsic::experimental_constrained_round |
| : Intrinsic::round; |
| return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vrnda"); |
| } |
| case NEON::BI__builtin_neon_vrndih_f16: { |
| Ops.push_back(EmitScalarExpr(E->getArg(0))); |
| Int = Builder.getIsFPConstrained() |
| ? Intrinsic::experimental_constrained_nearbyint |
| : Intrinsic::nearbyint; |
| return EmitNeonCall(CGM.getIntrinsic(Int, HalfTy), Ops, "vrndi"); |
| } |
| case NEON::BI__builtin_neon_vrndmh_f16: { |
| Ops.push_back(EmitScalarExpr(E->getArg(0))); |
| Int = Builder.getIsFPConstrained() |
| ? Intrinsic::experimental_constrained_floor |
| : Intrinsic::floor; |
| return EmitNeonCall(CGM.getIntrinsic(Int, HalfTy), Ops, "vrndm"); |
| } |
| case NEON::BI__builtin_neon_vrndm_v: |
| case NEON::BI__builtin_neon_vrndmq_v: { |
| Int = Builder.getIsFPConstrained() |
| ? Intrinsic::experimental_constrained_floor |
| : Intrinsic::floor; |
| return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vrndm"); |
| } |
| case NEON::BI__builtin_neon_vrndnh_f16: { |
| Ops.push_back(EmitScalarExpr(E->getArg(0))); |
| Int = Builder.getIsFPConstrained() |
| ? Intrinsic::experimental_constrained_roundeven |
| : Intrinsic::roundeven; |
| return EmitNeonCall(CGM.getIntrinsic(Int, HalfTy), Ops, "vrndn"); |
| } |
| case NEON::BI__builtin_neon_vrndn_v: |
| case NEON::BI__builtin_neon_vrndnq_v: { |
| Int = Builder.getIsFPConstrained() |
| ? Intrinsic::experimental_constrained_roundeven |
| : Intrinsic::roundeven; |
| return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vrndn"); |
| } |
| case NEON::BI__builtin_neon_vrndns_f32: { |
| Ops.push_back(EmitScalarExpr(E->getArg(0))); |
| Int = Builder.getIsFPConstrained() |
| ? Intrinsic::experimental_constrained_roundeven |
| : Intrinsic::roundeven; |
| return EmitNeonCall(CGM.getIntrinsic(Int, FloatTy), Ops, "vrndn"); |
| } |
| case NEON::BI__builtin_neon_vrndph_f16: { |
| Ops.push_back(EmitScalarExpr(E->getArg(0))); |
| Int = Builder.getIsFPConstrained() |
| ? Intrinsic::experimental_constrained_ceil |
| : Intrinsic::ceil; |
| return EmitNeonCall(CGM.getIntrinsic(Int, HalfTy), Ops, "vrndp"); |
| } |
| case NEON::BI__builtin_neon_vrndp_v: |
| case NEON::BI__builtin_neon_vrndpq_v: { |
| Int = Builder.getIsFPConstrained() |
| ? Intrinsic::experimental_constrained_ceil |
| : Intrinsic::ceil; |
| return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vrndp"); |
| } |
| case NEON::BI__builtin_neon_vrndxh_f16: { |
| Ops.push_back(EmitScalarExpr(E->getArg(0))); |
| Int = Builder.getIsFPConstrained() |
| ? Intrinsic::experimental_constrained_rint |
| : Intrinsic::rint; |
| return EmitNeonCall(CGM.getIntrinsic(Int, HalfTy), Ops, "vrndx"); |
| } |
| case NEON::BI__builtin_neon_vrndx_v: |
| case NEON::BI__builtin_neon_vrndxq_v: { |
| Int = Builder.getIsFPConstrained() |
| ? Intrinsic::experimental_constrained_rint |
| : Intrinsic::rint; |
| return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vrndx"); |
| } |
| case NEON::BI__builtin_neon_vrndh_f16: { |
| Ops.push_back(EmitScalarExpr(E->getArg(0))); |
| Int = Builder.getIsFPConstrained() |
| ? Intrinsic::experimental_constrained_trunc |
| : Intrinsic::trunc; |
| return EmitNeonCall(CGM.getIntrinsic(Int, HalfTy), Ops, "vrndz"); |
| } |
| case NEON::BI__builtin_neon_vrnd32x_v: |
| case NEON::BI__builtin_neon_vrnd32xq_v: { |
| Ops.push_back(EmitScalarExpr(E->getArg(0))); |
| Int = Intrinsic::aarch64_neon_frint32x; |
| return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vrnd32x"); |
| } |
| case NEON::BI__builtin_neon_vrnd32z_v: |
| case NEON::BI__builtin_neon_vrnd32zq_v: { |
| Ops.push_back(EmitScalarExpr(E->getArg(0))); |
| Int = Intrinsic::aarch64_neon_frint32z; |
| return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vrnd32z"); |
| } |
| case NEON::BI__builtin_neon_vrnd64x_v: |
| case NEON::BI__builtin_neon_vrnd64xq_v: { |
| Ops.push_back(EmitScalarExpr(E->getArg(0))); |
| Int = Intrinsic::aarch64_neon_frint64x; |
| return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vrnd64x"); |
| } |
| case NEON::BI__builtin_neon_vrnd64z_v: |
| case NEON::BI__builtin_neon_vrnd64zq_v: { |
| Ops.push_back(EmitScalarExpr(E->getArg(0))); |
| Int = Intrinsic::aarch64_neon_frint64z; |
| return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vrnd64z"); |
| } |
| case NEON::BI__builtin_neon_vrnd_v: |
| case NEON::BI__builtin_neon_vrndq_v: { |
| Int = Builder.getIsFPConstrained() |
| ? Intrinsic::experimental_constrained_trunc |
| : Intrinsic::trunc; |
| return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vrndz"); |
| } |
| case NEON::BI__builtin_neon_vcvt_f64_v: |
| case NEON::BI__builtin_neon_vcvtq_f64_v: |
| Ops[0] = Builder.CreateBitCast(Ops[0], Ty); |
| Ty = GetNeonType(this, NeonTypeFlags(NeonTypeFlags::Float64, false, quad)); |
| return usgn ? Builder.CreateUIToFP(Ops[0], Ty, "vcvt") |
| : Builder.CreateSIToFP(Ops[0], Ty, "vcvt"); |
| case NEON::BI__builtin_neon_vcvt_f64_f32: { |
| assert(Type.getEltType() == NeonTypeFlags::Float64 && quad && |
| "unexpected vcvt_f64_f32 builtin"); |
| NeonTypeFlags SrcFlag = NeonTypeFlags(NeonTypeFlags::Float32, false, false); |
| Ops[0] = Builder.CreateBitCast(Ops[0], GetNeonType(this, SrcFlag)); |
| |
| return Builder.CreateFPExt(Ops[0], Ty, "vcvt"); |
| } |
| case NEON::BI__builtin_neon_vcvt_f32_f64: { |
| assert(Type.getEltType() == NeonTypeFlags::Float32 && |
| "unexpected vcvt_f32_f64 builtin"); |
| NeonTypeFlags SrcFlag = NeonTypeFlags(NeonTypeFlags::Float64, false, true); |
| Ops[0] = Builder.CreateBitCast(Ops[0], GetNeonType(this, SrcFlag)); |
| |
| return Builder.CreateFPTrunc(Ops[0], Ty, "vcvt"); |
| } |
| case NEON::BI__builtin_neon_vcvt_s32_v: |
| case NEON::BI__builtin_neon_vcvt_u32_v: |
| case NEON::BI__builtin_neon_vcvt_s64_v: |
| case NEON::BI__builtin_neon_vcvt_u64_v: |
| case NEON::BI__builtin_neon_vcvt_s16_v: |
| case NEON::BI__builtin_neon_vcvt_u16_v: |
| case NEON::BI__builtin_neon_vcvtq_s32_v: |
| case NEON::BI__builtin_neon_vcvtq_u32_v: |
| case NEON::BI__builtin_neon_vcvtq_s64_v: |
| case NEON::BI__builtin_neon_vcvtq_u64_v: |
| case NEON::BI__builtin_neon_vcvtq_s16_v: |
| case NEON::BI__builtin_neon_vcvtq_u16_v: { |
| Int = |
| usgn ? Intrinsic::aarch64_neon_fcvtzu : Intrinsic::aarch64_neon_fcvtzs; |
| llvm::Type *Tys[2] = {Ty, GetFloatNeonType(this, Type)}; |
| return EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vcvtz"); |
| } |
| case NEON::BI__builtin_neon_vcvta_s16_v: |
| case NEON::BI__builtin_neon_vcvta_u16_v: |
| case NEON::BI__builtin_neon_vcvta_s32_v: |
| case NEON::BI__builtin_neon_vcvtaq_s16_v: |
| case NEON::BI__builtin_neon_vcvtaq_s32_v: |
| case NEON::BI__builtin_neon_vcvta_u32_v: |
| case NEON::BI__builtin_neon_vcvtaq_u16_v: |
| case NEON::BI__builtin_neon_vcvtaq_u32_v: |
| case NEON::BI__builtin_neon_vcvta_s64_v: |
| case NEON::BI__builtin_neon_vcvtaq_s64_v: |
| case NEON::BI__builtin_neon_vcvta_u64_v: |
| case NEON::BI__builtin_neon_vcvtaq_u64_v: { |
| Int = usgn ? Intrinsic::aarch64_neon_fcvtau : Intrinsic::aarch64_neon_fcvtas; |
| llvm::Type *Tys[2] = { Ty, GetFloatNeonType(this, Type) }; |
| return EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vcvta"); |
| } |
| case NEON::BI__builtin_neon_vcvtm_s16_v: |
| case NEON::BI__builtin_neon_vcvtm_s32_v: |
| case NEON::BI__builtin_neon_vcvtmq_s16_v: |
| case NEON::BI__builtin_neon_vcvtmq_s32_v: |
| case NEON::BI__builtin_neon_vcvtm_u16_v: |
| case NEON::BI__builtin_neon_vcvtm_u32_v: |
| case NEON::BI__builtin_neon_vcvtmq_u16_v: |
| case NEON::BI__builtin_neon_vcvtmq_u32_v: |
| case NEON::BI__builtin_neon_vcvtm_s64_v: |
| case NEON::BI__builtin_neon_vcvtmq_s64_v: |
| case NEON::BI__builtin_neon_vcvtm_u64_v: |
| case NEON::BI__builtin_neon_vcvtmq_u64_v: { |
| Int = usgn ? Intrinsic::aarch64_neon_fcvtmu : Intrinsic::aarch64_neon_fcvtms; |
| llvm::Type *Tys[2] = { Ty, GetFloatNeonType(this, Type) }; |
| return EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vcvtm"); |
| } |
| case NEON::BI__builtin_neon_vcvtn_s16_v: |
| case NEON::BI__builtin_neon_vcvtn_s32_v: |
| case NEON::BI__builtin_neon_vcvtnq_s16_v: |
| case NEON::BI__builtin_neon_vcvtnq_s32_v: |
| case NEON::BI__builtin_neon_vcvtn_u16_v: |
| case NEON::BI__builtin_neon_vcvtn_u32_v: |
| case NEON::BI__builtin_neon_vcvtnq_u16_v: |
| case NEON::BI__builtin_neon_vcvtnq_u32_v: |
| case NEON::BI__builtin_neon_vcvtn_s64_v: |
| case NEON::BI__builtin_neon_vcvtnq_s64_v: |
| case NEON::BI__builtin_neon_vcvtn_u64_v: |
| case NEON::BI__builtin_neon_vcvtnq_u64_v: { |
| Int = usgn ? Intrinsic::aarch64_neon_fcvtnu : Intrinsic::aarch64_neon_fcvtns; |
| llvm::Type *Tys[2] = { Ty, GetFloatNeonType(this, Type) }; |
| return EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vcvtn"); |
| } |
| case NEON::BI__builtin_neon_vcvtp_s16_v: |
| case NEON::BI__builtin_neon_vcvtp_s32_v: |
| case NEON::BI__builtin_neon_vcvtpq_s16_v: |
| case NEON::BI__builtin_neon_vcvtpq_s32_v: |
| case NEON::BI__builtin_neon_vcvtp_u16_v: |
| case NEON::BI__builtin_neon_vcvtp_u32_v: |
| case NEON::BI__builtin_neon_vcvtpq_u16_v: |
| case NEON::BI__builtin_neon_vcvtpq_u32_v: |
| case NEON::BI__builtin_neon_vcvtp_s64_v: |
| case NEON::BI__builtin_neon_vcvtpq_s64_v: |
| case NEON::BI__builtin_neon_vcvtp_u64_v: |
| case NEON::BI__builtin_neon_vcvtpq_u64_v: { |
| Int = usgn ? Intrinsic::aarch64_neon_fcvtpu : Intrinsic::aarch64_neon_fcvtps; |
| llvm::Type *Tys[2] = { Ty, GetFloatNeonType(this, Type) }; |
| return EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vcvtp"); |
| } |
| case NEON::BI__builtin_neon_vmulx_v: |
| case NEON::BI__builtin_neon_vmulxq_v: { |
| Int = Intrinsic::aarch64_neon_fmulx; |
| return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vmulx"); |
| } |
| case NEON::BI__builtin_neon_vmulxh_lane_f16: |
| case NEON::BI__builtin_neon_vmulxh_laneq_f16: { |
| // vmulx_lane should be mapped to Neon scalar mulx after |
| // extracting the scalar element |
| Ops.push_back(EmitScalarExpr(E->getArg(2))); |
| Ops[1] = Builder.CreateExtractElement(Ops[1], Ops[2], "extract"); |
| Ops.pop_back(); |
| Int = Intrinsic::aarch64_neon_fmulx; |
| return EmitNeonCall(CGM.getIntrinsic(Int, HalfTy), Ops, "vmulx"); |
| } |
| case NEON::BI__builtin_neon_vmul_lane_v: |
| case NEON::BI__builtin_neon_vmul_laneq_v: { |
| // v1f64 vmul_lane should be mapped to Neon scalar mul lane |
| bool Quad = false; |
| if (BuiltinID == NEON::BI__builtin_neon_vmul_laneq_v) |
| Quad = true; |
| Ops[0] = Builder.CreateBitCast(Ops[0], DoubleTy); |
| llvm::FixedVectorType *VTy = |
| GetNeonType(this, NeonTypeFlags(NeonTypeFlags::Float64, false, Quad)); |
| Ops[1] = Builder.CreateBitCast(Ops[1], VTy); |
| Ops[1] = Builder.CreateExtractElement(Ops[1], Ops[2], "extract"); |
| Value *Result = Builder.CreateFMul(Ops[0], Ops[1]); |
| return Builder.CreateBitCast(Result, Ty); |
| } |
| case NEON::BI__builtin_neon_vnegd_s64: |
| return Builder.CreateNeg(EmitScalarExpr(E->getArg(0)), "vnegd"); |
| case NEON::BI__builtin_neon_vnegh_f16: |
| return Builder.CreateFNeg(EmitScalarExpr(E->getArg(0)), "vnegh"); |
| case NEON::BI__builtin_neon_vpmaxnm_v: |
| case NEON::BI__builtin_neon_vpmaxnmq_v: { |
| Int = Intrinsic::aarch64_neon_fmaxnmp; |
| return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vpmaxnm"); |
| } |
| case NEON::BI__builtin_neon_vpminnm_v: |
| case NEON::BI__builtin_neon_vpminnmq_v: { |
| Int = Intrinsic::aarch64_neon_fminnmp; |
| return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vpminnm"); |
| } |
| case NEON::BI__builtin_neon_vsqrth_f16: { |
| Ops.push_back(EmitScalarExpr(E->getArg(0))); |
| Int = Builder.getIsFPConstrained() |
| ? Intrinsic::experimental_constrained_sqrt |
| : Intrinsic::sqrt; |
| return EmitNeonCall(CGM.getIntrinsic(Int, HalfTy), Ops, "vsqrt"); |
| } |
| case NEON::BI__builtin_neon_vsqrt_v: |
| case NEON::BI__builtin_neon_vsqrtq_v: { |
| Int = Builder.getIsFPConstrained() |
| ? Intrinsic::experimental_constrained_sqrt |
| : Intrinsic::sqrt; |
| Ops[0] = Builder.CreateBitCast(Ops[0], Ty); |
| return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vsqrt"); |
| } |
| case NEON::BI__builtin_neon_vrbit_v: |
| case NEON::BI__builtin_neon_vrbitq_v: { |
| Int = Intrinsic::bitreverse; |
| return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vrbit"); |
| } |
| case NEON::BI__builtin_neon_vaddv_u8: |
| // FIXME: These are handled by the AArch64 scalar code. |
| usgn = true; |
| LLVM_FALLTHROUGH; |
| case NEON::BI__builtin_neon_vaddv_s8: { |
| Int = usgn ? Intrinsic::aarch64_neon_uaddv : Intrinsic::aarch64_neon_saddv; |
| Ty = Int32Ty; |
| VTy = llvm::FixedVectorType::get(Int8Ty, 8); |
| llvm::Type *Tys[2] = { Ty, VTy }; |
| Ops.push_back(EmitScalarExpr(E->getArg(0))); |
| Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vaddv"); |
| return Builder.CreateTrunc(Ops[0], Int8Ty); |
| } |
| case NEON::BI__builtin_neon_vaddv_u16: |
| usgn = true; |
| LLVM_FALLTHROUGH; |
| case NEON::BI__builtin_neon_vaddv_s16: { |
| Int = usgn ? Intrinsic::aarch64_neon_uaddv : Intrinsic::aarch64_neon_saddv; |
| Ty = Int32Ty; |
| VTy = llvm::FixedVectorType::get(Int16Ty, 4); |
| llvm::Type *Tys[2] = { Ty, VTy }; |
| Ops.push_back(EmitScalarExpr(E->getArg(0))); |
| Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vaddv"); |
| return Builder.CreateTrunc(Ops[0], Int16Ty); |
| } |
| case NEON::BI__builtin_neon_vaddvq_u8: |
| usgn = true; |
| LLVM_FALLTHROUGH; |
| case NEON::BI__builtin_neon_vaddvq_s8: { |
| Int = usgn ? Intrinsic::aarch64_neon_uaddv : Intrinsic::aarch64_neon_saddv; |
| Ty = Int32Ty; |
| VTy = llvm::FixedVectorType::get(Int8Ty, 16); |
| llvm::Type *Tys[2] = { Ty, VTy }; |
| Ops.push_back(EmitScalarExpr(E->getArg(0))); |
| Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vaddv"); |
| return Builder.CreateTrunc(Ops[0], Int8Ty); |
| } |
| case NEON::BI__builtin_neon_vaddvq_u16: |
| usgn = true; |
| LLVM_FALLTHROUGH; |
| case NEON::BI__builtin_neon_vaddvq_s16: { |
| Int = usgn ? Intrinsic::aarch64_neon_uaddv : Intrinsic::aarch64_neon_saddv; |
| Ty = Int32Ty; |
| VTy = llvm::FixedVectorType::get(Int16Ty, 8); |
| llvm::Type *Tys[2] = { Ty, VTy }; |
| Ops.push_back(EmitScalarExpr(E->getArg(0))); |
| Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vaddv"); |
| return Builder.CreateTrunc(Ops[0], Int16Ty); |
| } |
| case NEON::BI__builtin_neon_vmaxv_u8: { |
| Int = Intrinsic::aarch64_neon_umaxv; |
| Ty = Int32Ty; |
| VTy = llvm::FixedVectorType::get(Int8Ty, 8); |
| llvm::Type *Tys[2] = { Ty, VTy }; |
| Ops.push_back(EmitScalarExpr(E->getArg(0))); |
| Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vmaxv"); |
| return Builder.CreateTrunc(Ops[0], Int8Ty); |
| } |
| case NEON::BI__builtin_neon_vmaxv_u16: { |
| Int = Intrinsic::aarch64_neon_umaxv; |
| Ty = Int32Ty; |
| VTy = llvm::FixedVectorType::get(Int16Ty, 4); |
| llvm::Type *Tys[2] = { Ty, VTy }; |
| Ops.push_back(EmitScalarExpr(E->getArg(0))); |
| Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vmaxv"); |
| return Builder.CreateTrunc(Ops[0], Int16Ty); |
| } |
| case NEON::BI__builtin_neon_vmaxvq_u8: { |
| Int = Intrinsic::aarch64_neon_umaxv; |
| Ty = Int32Ty; |
| VTy = llvm::FixedVectorType::get(Int8Ty, 16); |
| llvm::Type *Tys[2] = { Ty, VTy }; |
| Ops.push_back(EmitScalarExpr(E->getArg(0))); |
| Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vmaxv"); |
| return Builder.CreateTrunc(Ops[0], Int8Ty); |
| } |
| case NEON::BI__builtin_neon_vmaxvq_u16: { |
| Int = Intrinsic::aarch64_neon_umaxv; |
| Ty = Int32Ty; |
| VTy = llvm::FixedVectorType::get(Int16Ty, 8); |
| llvm::Type *Tys[2] = { Ty, VTy }; |
| Ops.push_back(EmitScalarExpr(E->getArg(0))); |
| Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vmaxv"); |
| return Builder.CreateTrunc(Ops[0], Int16Ty); |
| } |
| case NEON::BI__builtin_neon_vmaxv_s8: { |
| Int = Intrinsic::aarch64_neon_smaxv; |
| Ty = Int32Ty; |
| VTy = llvm::FixedVectorType::get(Int8Ty, 8); |
| llvm::Type *Tys[2] = { Ty, VTy }; |
| Ops.push_back(EmitScalarExpr(E->getArg(0))); |
| Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vmaxv"); |
| return Builder.CreateTrunc(Ops[0], Int8Ty); |
| } |
| case NEON::BI__builtin_neon_vmaxv_s16: { |
| Int = Intrinsic::aarch64_neon_smaxv; |
| Ty = Int32Ty; |
| VTy = llvm::FixedVectorType::get(Int16Ty, 4); |
| llvm::Type *Tys[2] = { Ty, VTy }; |
| Ops.push_back(EmitScalarExpr(E->getArg(0))); |
| Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vmaxv"); |
| return Builder.CreateTrunc(Ops[0], Int16Ty); |
| } |
| case NEON::BI__builtin_neon_vmaxvq_s8: { |
| Int = Intrinsic::aarch64_neon_smaxv; |
| Ty = Int32Ty; |
| VTy = llvm::FixedVectorType::get(Int8Ty, 16); |
| llvm::Type *Tys[2] = { Ty, VTy }; |
| Ops.push_back(EmitScalarExpr(E->getArg(0))); |
| Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vmaxv"); |
| return Builder.CreateTrunc(Ops[0], Int8Ty); |
| } |
| case NEON::BI__builtin_neon_vmaxvq_s16: { |
| Int = Intrinsic::aarch64_neon_smaxv; |
| Ty = Int32Ty; |
| VTy = llvm::FixedVectorType::get(Int16Ty, 8); |
| llvm::Type *Tys[2] = { Ty, VTy }; |
| Ops.push_back(EmitScalarExpr(E->getArg(0))); |
| Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vmaxv"); |
| return Builder.CreateTrunc(Ops[0], Int16Ty); |
| } |
| case NEON::BI__builtin_neon_vmaxv_f16: { |
| Int = Intrinsic::aarch64_neon_fmaxv; |
| Ty = HalfTy; |
| VTy = llvm::FixedVectorType::get(HalfTy, 4); |
| llvm::Type *Tys[2] = { Ty, VTy }; |
| Ops.push_back(EmitScalarExpr(E->getArg(0))); |
| Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vmaxv"); |
| return Builder.CreateTrunc(Ops[0], HalfTy); |
| } |
| case NEON::BI__builtin_neon_vmaxvq_f16: { |
| Int = Intrinsic::aarch64_neon_fmaxv; |
| Ty = HalfTy; |
| VTy = llvm::FixedVectorType::get(HalfTy, 8); |
| llvm::Type *Tys[2] = { Ty, VTy }; |
| Ops.push_back(EmitScalarExpr(E->getArg(0))); |
| Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vmaxv"); |
| return Builder.CreateTrunc(Ops[0], HalfTy); |
| } |
| case NEON::BI__builtin_neon_vminv_u8: { |
| Int = Intrinsic::aarch64_neon_uminv; |
| Ty = Int32Ty; |
| VTy = llvm::FixedVectorType::get(Int8Ty, 8); |
| llvm::Type *Tys[2] = { Ty, VTy }; |
| Ops.push_back(EmitScalarExpr(E->getArg(0))); |
| Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vminv"); |
| return Builder.CreateTrunc(Ops[0], Int8Ty); |
| } |
| case NEON::BI__builtin_neon_vminv_u16: { |
| Int = Intrinsic::aarch64_neon_uminv; |
| Ty = Int32Ty; |
| VTy = llvm::FixedVectorType::get(Int16Ty, 4); |
| llvm::Type *Tys[2] = { Ty, VTy }; |
| Ops.push_back(EmitScalarExpr(E->getArg(0))); |
| Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vminv"); |
| return Builder.CreateTrunc(Ops[0], Int16Ty); |
| } |
| case NEON::BI__builtin_neon_vminvq_u8: { |
| Int = Intrinsic::aarch64_neon_uminv; |
| Ty = Int32Ty; |
| VTy = llvm::FixedVectorType::get(Int8Ty, 16); |
| llvm::Type *Tys[2] = { Ty, VTy }; |
| Ops.push_back(EmitScalarExpr(E->getArg(0))); |
| Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vminv"); |
| return Builder.CreateTrunc(Ops[0], Int8Ty); |
| } |
| case NEON::BI__builtin_neon_vminvq_u16: { |
| Int = Intrinsic::aarch64_neon_uminv; |
| Ty = Int32Ty; |
| VTy = llvm::FixedVectorType::get(Int16Ty, 8); |
| llvm::Type *Tys[2] = { Ty, VTy }; |
| Ops.push_back(EmitScalarExpr(E->getArg(0))); |
| Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vminv"); |
| return Builder.CreateTrunc(Ops[0], Int16Ty); |
| } |
| case NEON::BI__builtin_neon_vminv_s8: { |
| Int = Intrinsic::aarch64_neon_sminv; |
| Ty = Int32Ty; |
| VTy = llvm::FixedVectorType::get(Int8Ty, 8); |
| llvm::Type *Tys[2] = { Ty, VTy }; |
| Ops.push_back(EmitScalarExpr(E->getArg(0))); |
| Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vminv"); |
| return Builder.CreateTrunc(Ops[0], Int8Ty); |
| } |
| case NEON::BI__builtin_neon_vminv_s16: { |
| Int = Intrinsic::aarch64_neon_sminv; |
| Ty = Int32Ty; |
| VTy = llvm::FixedVectorType::get(Int16Ty, 4); |
| llvm::Type *Tys[2] = { Ty, VTy }; |
| Ops.push_back(EmitScalarExpr(E->getArg(0))); |
| Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vminv"); |
| return Builder.CreateTrunc(Ops[0], Int16Ty); |
| } |
| case NEON::BI__builtin_neon_vminvq_s8: { |
| Int = Intrinsic::aarch64_neon_sminv; |
| Ty = Int32Ty; |
| VTy = llvm::FixedVectorType::get(Int8Ty, 16); |
| llvm::Type *Tys[2] = { Ty, VTy }; |
| Ops.push_back(EmitScalarExpr(E->getArg(0))); |
| Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vminv"); |
| return Builder.CreateTrunc(Ops[0], Int8Ty); |
| } |
| case NEON::BI__builtin_neon_vminvq_s16: { |
| Int = Intrinsic::aarch64_neon_sminv; |
| Ty = Int32Ty; |
| VTy = llvm::FixedVectorType::get(Int16Ty, 8); |
| llvm::Type *Tys[2] = { Ty, VTy }; |
| Ops.push_back(EmitScalarExpr(E->getArg(0))); |
| Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vminv"); |
| return Builder.CreateTrunc(Ops[0], Int16Ty); |
| } |
| case NEON::BI__builtin_neon_vminv_f16: { |
| Int = Intrinsic::aarch64_neon_fminv; |
| Ty = HalfTy; |
| VTy = llvm::FixedVectorType::get(HalfTy, 4); |
| llvm::Type *Tys[2] = { Ty, VTy }; |
| Ops.push_back(EmitScalarExpr(E->getArg(0))); |
| Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vminv"); |
| return Builder.CreateTrunc(Ops[0], HalfTy); |
| } |
| case NEON::BI__builtin_neon_vminvq_f16: { |
| Int = Intrinsic::aarch64_neon_fminv; |
| Ty = HalfTy; |
| VTy = llvm::FixedVectorType::get(HalfTy, 8); |
| llvm::Type *Tys[2] = { Ty, VTy }; |
| Ops.push_back(EmitScalarExpr(E->getArg(0))); |
| Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vminv"); |
| return Builder.CreateTrunc(Ops[0], HalfTy); |
| } |
| case NEON::BI__builtin_neon_vmaxnmv_f16: { |
| Int = Intrinsic::aarch64_neon_fmaxnmv; |
| Ty = HalfTy; |
| VTy = llvm::FixedVectorType::get(HalfTy, 4); |
| llvm::Type *Tys[2] = { Ty, VTy }; |
| Ops.push_back(EmitScalarExpr(E->getArg(0))); |
| Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vmaxnmv"); |
| return Builder.CreateTrunc(Ops[0], HalfTy); |
| } |
| case NEON::BI__builtin_neon_vmaxnmvq_f16: { |
| Int = Intrinsic::aarch64_neon_fmaxnmv; |
| Ty = HalfTy; |
| VTy = llvm::FixedVectorType::get(HalfTy, 8); |
| llvm::Type *Tys[2] = { Ty, VTy }; |
| Ops.push_back(EmitScalarExpr(E->getArg(0))); |
| Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vmaxnmv"); |
| return Builder.CreateTrunc(Ops[0], HalfTy); |
| } |
| case NEON::BI__builtin_neon_vminnmv_f16: { |
| Int = Intrinsic::aarch64_neon_fminnmv; |
| Ty = HalfTy; |
| VTy = llvm::FixedVectorType::get(HalfTy, 4); |
| llvm::Type *Tys[2] = { Ty, VTy }; |
| Ops.push_back(EmitScalarExpr(E->getArg(0))); |
| Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vminnmv"); |
| return Builder.CreateTrunc(Ops[0], HalfTy); |
| } |
| case NEON::BI__builtin_neon_vminnmvq_f16: { |
| Int = Intrinsic::aarch64_neon_fminnmv; |
| Ty = HalfTy; |
| VTy = llvm::FixedVectorType::get(HalfTy, 8); |
| llvm::Type *Tys[2] = { Ty, VTy }; |
| Ops.push_back(EmitScalarExpr(E->getArg(0))); |
| Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vminnmv"); |
| return Builder.CreateTrunc(Ops[0], HalfTy); |
| } |
| case NEON::BI__builtin_neon_vmul_n_f64: { |
| Ops[0] = Builder.CreateBitCast(Ops[0], DoubleTy); |
| Value *RHS = Builder.CreateBitCast(EmitScalarExpr(E->getArg(1)), DoubleTy); |
| return Builder.CreateFMul(Ops[0], RHS); |
| } |
| case NEON::BI__builtin_neon_vaddlv_u8: { |
| Int = Intrinsic::aarch64_neon_uaddlv; |
| Ty = Int32Ty; |
| VTy = llvm::FixedVectorType::get(Int8Ty, 8); |
| llvm::Type *Tys[2] = { Ty, VTy }; |
| Ops.push_back(EmitScalarExpr(E->getArg(0))); |
| Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vaddlv"); |
| return Builder.CreateTrunc(Ops[0], Int16Ty); |
| } |
| case NEON::BI__builtin_neon_vaddlv_u16: { |
| Int = Intrinsic::aarch64_neon_uaddlv; |
| Ty = Int32Ty; |
| VTy = llvm::FixedVectorType::get(Int16Ty, 4); |
| llvm::Type *Tys[2] = { Ty, VTy }; |
| Ops.push_back(EmitScalarExpr(E->getArg(0))); |
| return EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vaddlv"); |
| } |
| case NEON::BI__builtin_neon_vaddlvq_u8: { |
| Int = Intrinsic::aarch64_neon_uaddlv; |
| Ty = Int32Ty; |
| VTy = llvm::FixedVectorType::get(Int8Ty, 16); |
| llvm::Type *Tys[2] = { Ty, VTy }; |
| Ops.push_back(EmitScalarExpr(E->getArg(0))); |
| Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vaddlv"); |
| return Builder.CreateTrunc(Ops[0], Int16Ty); |
| } |
| case NEON::BI__builtin_neon_vaddlvq_u16: { |
| Int = Intrinsic::aarch64_neon_uaddlv; |
| Ty = Int32Ty; |
| VTy = llvm::FixedVectorType::get(Int16Ty, 8); |
| llvm::Type *Tys[2] = { Ty, VTy }; |
| Ops.push_back(EmitScalarExpr(E->getArg(0))); |
| return EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vaddlv"); |
| } |
| case NEON::BI__builtin_neon_vaddlv_s8: { |
| Int = Intrinsic::aarch64_neon_saddlv; |
| Ty = Int32Ty; |
| VTy = llvm::FixedVectorType::get(Int8Ty, 8); |
| llvm::Type *Tys[2] = { Ty, VTy }; |
| Ops.push_back(EmitScalarExpr(E->getArg(0))); |
| Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vaddlv"); |
| return Builder.CreateTrunc(Ops[0], Int16Ty); |
| } |
| case NEON::BI__builtin_neon_vaddlv_s16: { |
| Int = Intrinsic::aarch64_neon_saddlv; |
| Ty = Int32Ty; |
| VTy = llvm::FixedVectorType::get(Int16Ty, 4); |
| llvm::Type *Tys[2] = { Ty, VTy }; |
| Ops.push_back(EmitScalarExpr(E->getArg(0))); |
| return EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vaddlv"); |
| } |
| case NEON::BI__builtin_neon_vaddlvq_s8: { |
| Int = Intrinsic::aarch64_neon_saddlv; |
| Ty = Int32Ty; |
| VTy = llvm::FixedVectorType::get(Int8Ty, 16); |
| llvm::Type *Tys[2] = { Ty, VTy }; |
| Ops.push_back(EmitScalarExpr(E->getArg(0))); |
| Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vaddlv"); |
| return Builder.CreateTrunc(Ops[0], Int16Ty); |
| } |
| case NEON::BI__builtin_neon_vaddlvq_s16: { |
| Int = Intrinsic::aarch64_neon_saddlv; |
| Ty = Int32Ty; |
| VTy = llvm::FixedVectorType::get(Int16Ty, 8); |
| llvm::Type *Tys[2] = { Ty, VTy }; |
| Ops.push_back(EmitScalarExpr(E->getArg(0))); |
| return EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vaddlv"); |
| } |
| case NEON::BI__builtin_neon_vsri_n_v: |
| case NEON::BI__builtin_neon_vsriq_n_v: { |
| Int = Intrinsic::aarch64_neon_vsri; |
| llvm::Function *Intrin = CGM.getIntrinsic(Int, Ty); |
| return EmitNeonCall(Intrin, Ops, "vsri_n"); |
| } |
| case NEON::BI__builtin_neon_vsli_n_v: |
| case NEON::BI__builtin_neon_vsliq_n_v: { |
| Int = Intrinsic::aarch64_neon_vsli; |
| llvm::Function *Intrin = CGM.getIntrinsic(Int, Ty); |
| return EmitNeonCall(Intrin, Ops, "vsli_n"); |
| } |
| case NEON::BI__builtin_neon_vsra_n_v: |
| case NEON::BI__builtin_neon_vsraq_n_v: |
| Ops[0] = Builder.CreateBitCast(Ops[0], Ty); |
| Ops[1] = EmitNeonRShiftImm(Ops[1], Ops[2], Ty, usgn, "vsra_n"); |
| return Builder.CreateAdd(Ops[0], Ops[1]); |
| case NEON::BI__builtin_neon_vrsra_n_v: |
| case NEON::BI__builtin_neon_vrsraq_n_v: { |
| Int = usgn ? Intrinsic::aarch64_neon_urshl : Intrinsic::aarch64_neon_srshl; |
| SmallVector<llvm::Value*,2> TmpOps; |
| TmpOps.push_back(Ops[1]); |
| TmpOps.push_back(Ops[2]); |
| Function* F = CGM.getIntrinsic(Int, Ty); |
| llvm::Value *tmp = EmitNeonCall(F, TmpOps, "vrshr_n", 1, true); |
| Ops[0] = Builder.CreateBitCast(Ops[0], VTy); |
| return Builder.CreateAdd(Ops[0], tmp); |
| } |
| case NEON::BI__builtin_neon_vld1_v: |
| case NEON::BI__builtin_neon_vld1q_v: { |
| Ops[0] = Builder.CreateBitCast(Ops[0], llvm::PointerType::getUnqual(VTy)); |
| return Builder.CreateAlignedLoad(VTy, Ops[0], PtrOp0.getAlignment()); |
| } |
| case NEON::BI__builtin_neon_vst1_v: |
| case NEON::BI__builtin_neon_vst1q_v: |
| Ops[0] = Builder.CreateBitCast(Ops[0], llvm::PointerType::getUnqual(VTy)); |
| Ops[1] = Builder.CreateBitCast(Ops[1], VTy); |
| return Builder.CreateAlignedStore(Ops[1], Ops[0], PtrOp0.getAlignment()); |
| case NEON::BI__builtin_neon_vld1_lane_v: |
| case NEON::BI__builtin_neon_vld1q_lane_v: { |
| Ops[1] = Builder.CreateBitCast(Ops[1], Ty); |
| Ty = llvm::PointerType::getUnqual(VTy->getElementType()); |
| Ops[0] = Builder.CreateBitCast(Ops[0], Ty); |
| Ops[0] = Builder.CreateAlignedLoad(VTy->getElementType(), Ops[0], |
| PtrOp0.getAlignment()); |
| return Builder.CreateInsertElement(Ops[1], Ops[0], Ops[2], "vld1_lane"); |
| } |
| case NEON::BI__builtin_neon_vld1_dup_v: |
| case NEON::BI__builtin_neon_vld1q_dup_v: { |
| Value *V = UndefValue::get(Ty); |
| Ty = llvm::PointerType::getUnqual(VTy->getElementType()); |
| Ops[0] = Builder.CreateBitCast(Ops[0], Ty); |
| Ops[0] = Builder.CreateAlignedLoad(VTy->getElementType(), Ops[0], |
| PtrOp0.getAlignment()); |
| llvm::Constant *CI = ConstantInt::get(Int32Ty, 0); |
| Ops[0] = Builder.CreateInsertElement(V, Ops[0], CI); |
| return EmitNeonSplat(Ops[0], CI); |
| } |
| case NEON::BI__builtin_neon_vst1_lane_v: |
| case NEON::BI__builtin_neon_vst1q_lane_v: |
| Ops[1] = Builder.CreateBitCast(Ops[1], Ty); |
| Ops[1] = Builder.CreateExtractElement(Ops[1], Ops[2]); |
| Ty = llvm::PointerType::getUnqual(Ops[1]->getType()); |
| return Builder.CreateAlignedStore(Ops[1], Builder.CreateBitCast(Ops[0], Ty), |
| PtrOp0.getAlignment()); |
| case NEON::BI__builtin_neon_vld2_v: |
| case NEON::BI__builtin_neon_vld2q_v: { |
| llvm::Type *PTy = llvm::PointerType::getUnqual(VTy); |
| Ops[1] = Builder.CreateBitCast(Ops[1], PTy); |
| llvm::Type *Tys[2] = { VTy, PTy }; |
| Function *F = CGM.getIntrinsic(Intrinsic::aarch64_neon_ld2, Tys); |
| Ops[1] = Builder.CreateCall(F, Ops[1], "vld2"); |
| Ops[0] = Builder.CreateBitCast(Ops[0], |
| llvm::PointerType::getUnqual(Ops[1]->getType())); |
| return Builder.CreateDefaultAlignedStore(Ops[1], Ops[0]); |
| } |
| case NEON::BI__builtin_neon_vld3_v: |
| case NEON::BI__builtin_neon_vld3q_v: { |
| llvm::Type *PTy = llvm::PointerType::getUnqual(VTy); |
| Ops[1] = Builder.CreateBitCast(Ops[1], PTy); |
| llvm::Type *Tys[2] = { VTy, PTy }; |
| Function *F = CGM.getIntrinsic(Intrinsic::aarch64_neon_ld3, Tys); |
| Ops[1] = Builder.CreateCall(F, Ops[1], "vld3"); |
| Ops[0] = Builder.CreateBitCast(Ops[0], |
| llvm::PointerType::getUnqual(Ops[1]->getType())); |
| return Builder.CreateDefaultAlignedStore(Ops[1], Ops[0]); |
| } |
| case NEON::BI__builtin_neon_vld4_v: |
| case NEON::BI__builtin_neon_vld4q_v: { |
| llvm::Type *PTy = llvm::PointerType::getUnqual(VTy); |
| Ops[1] = Builder.CreateBitCast(Ops[1], PTy); |
| llvm::Type *Tys[2] = { VTy, PTy }; |
| Function *F = CGM.getIntrinsic(Intrinsic::aarch64_neon_ld4, Tys); |
| Ops[1] = Builder.CreateCall(F, Ops[1], "vld4"); |
| Ops[0] = Builder.CreateBitCast(Ops[0], |
| llvm::PointerType::getUnqual(Ops[1]->getType())); |
| return Builder.CreateDefaultAlignedStore(Ops[1], Ops[0]); |
| } |
| case NEON::BI__builtin_neon_vld2_dup_v: |
| case NEON::BI__builtin_neon_vld2q_dup_v: { |
| llvm::Type *PTy = |
| llvm::PointerType::getUnqual(VTy->getElementType()); |
| Ops[1] = Builder.CreateBitCast(Ops[1], PTy); |
| llvm::Type *Tys[2] = { VTy, PTy }; |
| Function *F = CGM.getIntrinsic(Intrinsic::aarch64_neon_ld2r, Tys); |
| Ops[1] = Builder.CreateCall(F, Ops[1], "vld2"); |
| Ops[0] = Builder.CreateBitCast(Ops[0], |
| llvm::PointerType::getUnqual(Ops[1]->getType())); |
| return Builder.CreateDefaultAlignedStore(Ops[1], Ops[0]); |
| } |
| case NEON::BI__builtin_neon_vld3_dup_v: |
| case NEON::BI__builtin_neon_vld3q_dup_v: { |
| llvm::Type *PTy = |
| llvm::PointerType::getUnqual(VTy->getElementType()); |
| Ops[1] = Builder.CreateBitCast(Ops[1], PTy); |
| llvm::Type *Tys[2] = { VTy, PTy }; |
| Function *F = CGM.getIntrinsic(Intrinsic::aarch64_neon_ld3r, Tys); |
| Ops[1] = Builder.CreateCall(F, Ops[1], "vld3"); |
| Ops[0] = Builder.CreateBitCast(Ops[0], |
| llvm::PointerType::getUnqual(Ops[1]->getType())); |
| return Builder.CreateDefaultAlignedStore(Ops[1], Ops[0]); |
| } |
| case NEON::BI__builtin_neon_vld4_dup_v: |
| case NEON::BI__builtin_neon_vld4q_dup_v: { |
| llvm::Type *PTy = |
| llvm::PointerType::getUnqual(VTy->getElementType()); |
| Ops[1] = Builder.CreateBitCast(Ops[1], PTy); |
| llvm::Type *Tys[2] = { VTy, PTy }; |
| Function *F = CGM.getIntrinsic(Intrinsic::aarch64_neon_ld4r, Tys); |
| Ops[1] = Builder.CreateCall(F, Ops[1], "vld4"); |
| Ops[0] = Builder.CreateBitCast(Ops[0], |
| llvm::PointerType::getUnqual(Ops[1]->getType())); |
| return Builder.CreateDefaultAlignedStore(Ops[1], Ops[0]); |
| } |
| case NEON::BI__builtin_neon_vld2_lane_v: |
| case NEON::BI__builtin_neon_vld2q_lane_v: { |
| llvm::Type *Tys[2] = { VTy, Ops[1]->getType() }; |
| Function *F = CGM.getIntrinsic(Intrinsic::aarch64_neon_ld2lane, Tys); |
| std::rotate(Ops.begin() + 1, Ops.begin() + 2, Ops.end()); |
| Ops[1] = Builder.CreateBitCast(Ops[1], Ty); |
| Ops[2] = Builder.CreateBitCast(Ops[2], Ty); |
| Ops[3] = Builder.CreateZExt(Ops[3], Int64Ty); |
| Ops[1] = Builder.CreateCall(F, makeArrayRef(Ops).slice(1), "vld2_lane"); |
| Ty = llvm::PointerType::getUnqual(Ops[1]->getType()); |
| Ops[0] = Builder.CreateBitCast(Ops[0], Ty); |
| return Builder.CreateDefaultAlignedStore(Ops[1], Ops[0]); |
| } |
| case NEON::BI__builtin_neon_vld3_lane_v: |
| case NEON::BI__builtin_neon_vld3q_lane_v: { |
| llvm::Type *Tys[2] = { VTy, Ops[1]->getType() }; |
| Function *F = CGM.getIntrinsic(Intrinsic::aarch64_neon_ld3lane, Tys); |
| std::rotate(Ops.begin() + 1, Ops.begin() + 2, Ops.end()); |
| Ops[1] = Builder.CreateBitCast(Ops[1], Ty); |
| Ops[2] = Builder.CreateBitCast(Ops[2], Ty); |
| Ops[3] = Builder.CreateBitCast(Ops[3], Ty); |
| Ops[4] = Builder.CreateZExt(Ops[4], Int64Ty); |
| Ops[1] = Builder.CreateCall(F, makeArrayRef(Ops).slice(1), "vld3_lane"); |
| Ty = llvm::PointerType::getUnqual(Ops[1]->getType()); |
| Ops[0] = Builder.CreateBitCast(Ops[0], Ty); |
| return Builder.CreateDefaultAlignedStore(Ops[1], Ops[0]); |
| } |
| case NEON::BI__builtin_neon_vld4_lane_v: |
| case NEON::BI__builtin_neon_vld4q_lane_v: { |
| llvm::Type *Tys[2] = { VTy, Ops[1]->getType() }; |
| Function *F = CGM.getIntrinsic(Intrinsic::aarch64_neon_ld4lane, Tys); |
| std::rotate(Ops.begin() + 1, Ops.begin() + 2, Ops.end()); |
| Ops[1] = Builder.CreateBitCast(Ops[1], Ty); |
| Ops[2] = Builder.CreateBitCast(Ops[2], Ty); |
|