| commit | 8868c02cda875d1efe1646affa01656ef268ffed | [log] [tgz] |
|---|---|---|
| author | Andrzej WarzyĆski <andrzej.warzynski@arm.com> | Tue Aug 06 10:57:10 2024 +0100 |
| committer | GitHub <noreply@github.com> | Tue Aug 06 10:57:10 2024 +0100 |
| tree | 76c8de07ca2e7bbbce3108916c901c588c38a51e | |
| parent | b1234ddbe2652aa7948242a57107ca7ab12fd2f8 [diff] |
[mlir][linalg] Relax tensor.extract vectorization (#99299)
Simplifies the vectorization of tensor.extract so that:
* all cases that read into a genuinely multi-dim vector (*) are
considered a gather load,
* all other cases are considered as potential contiguous loads.
This change means that the following extraction from a "column" tensor
will be correctly identified as a scalar load followed by a broadcast (rather
than a gather load).
```mlir
func.func @vectorize_scalar_broadcast_column_tensor(%in: tensor<1x1x4xi32>) -> tensor<1x1x4xi32> {
%c4 = arith.constant 4 : index
%c0 = arith.constant 0 : index
%cst = arith.constant dense<[...]> : tensor<15x1xi32>
%out = linalg.generic {
indexing_maps = [affine_map<(d0, d1, d2) -> (d0, d1, d2)>],
iterator_types = ["parallel", "parallel", "parallel"]}
outs(%in : tensor<1x1x4xi32>) {
^bb0(%out: i32):
%idx_0 = linalg.index 0 : index
%extracted = tensor.extract %cst[%idx_0, %c0] : tensor<15x1xi32>
linalg.yield %extracted : i32
} -> tensor<1x1x4xi32>
return %out:tensor<1x1x4xi32>
}
```
(*) `vector<1x4x1xf32>` is considered as 1D vector in this context.Welcome to the LLVM project!
This repository contains the source code for LLVM, a toolkit for the construction of highly optimized compilers, optimizers, and run-time environments.
The LLVM project has multiple components. The core of the project is itself called “LLVM”. This contains all of the tools, libraries, and header files needed to process intermediate representations and convert them into object files. Tools include an assembler, disassembler, bitcode analyzer, and bitcode optimizer.
C-like languages use the Clang frontend. This component compiles C, C++, Objective-C, and Objective-C++ code into LLVM bitcode -- and from there into object files, using LLVM.
Other components include: the libc++ C++ standard library, the LLD linker, and more.
Consult the Getting Started with LLVM page for information on building and running LLVM.
For information on how to contribute to the LLVM project, please take a look at the Contributing to LLVM guide.
Join the LLVM Discourse forums, Discord chat, LLVM Office Hours or Regular sync-ups.
The LLVM project has adopted a code of conduct for participants to all modes of communication within the project.