[NFC] CoroElide: Refactor `Lowerer` into `CoroIdElider` (#91539)

This patch contains no functional changes. 

The main goal of this patch is to get better clarity out of the code, to
make intentions and assumptions clear.

One major design problem I had in the past were `Lowerer`. It previously
inherited from `coro::LowererBase` but it doesn't use any of the fields
or methods from `LowererBase`. It might be an artifact leftover from
previous designs of this code.

Furthermore, we should clarify that although one such instance is bound
to the function, `Lowerer` was dedicated to one `CoroId` instruction at
a time. We rely on a sequence of fragile constructs like
`CoroBegins.clear(); DestroyAddr.clear()`. This doesn't help understand
the code.

What's worse is that we have confusing calls like
`elideHeapAllocations(CoroId->getFunction(), ...` and it might get
confused with `CoroId->getCoroutine()`.

The new structure intends to make it clear that we always operate on one
`CoroId` at a time, which may have multiple `CoroBegin`s. Such structure
doesn't rely on frequent `.clear()` that's prone to miss.
1 file changed
tree: 8dfa4abcb8cc4f3fdde3d3a1402a9af80b3da493
  1. .ci/
  2. .github/
  3. bolt/
  4. clang/
  5. clang-tools-extra/
  6. cmake/
  7. compiler-rt/
  8. cross-project-tests/
  9. flang/
  10. libc/
  11. libclc/
  12. libcxx/
  13. libcxxabi/
  14. libunwind/
  15. lld/
  16. lldb/
  17. llvm/
  18. llvm-libgcc/
  19. mlir/
  20. offload/
  21. openmp/
  22. polly/
  23. pstl/
  24. runtimes/
  25. third-party/
  26. utils/
  27. .clang-format
  28. .clang-tidy
  29. .git-blame-ignore-revs
  30. .gitattributes
  31. .gitignore
  32. .mailmap
  33. CODE_OF_CONDUCT.md
  34. CONTRIBUTING.md
  35. LICENSE.TXT
  36. pyproject.toml
  37. README.md
  38. SECURITY.md
README.md

The LLVM Compiler Infrastructure

OpenSSF Scorecard OpenSSF Best Practices libc++

Welcome to the LLVM project!

This repository contains the source code for LLVM, a toolkit for the construction of highly optimized compilers, optimizers, and run-time environments.

The LLVM project has multiple components. The core of the project is itself called “LLVM”. This contains all of the tools, libraries, and header files needed to process intermediate representations and convert them into object files. Tools include an assembler, disassembler, bitcode analyzer, and bitcode optimizer.

C-like languages use the Clang frontend. This component compiles C, C++, Objective-C, and Objective-C++ code into LLVM bitcode -- and from there into object files, using LLVM.

Other components include: the libc++ C++ standard library, the LLD linker, and more.

Getting the Source Code and Building LLVM

Consult the Getting Started with LLVM page for information on building and running LLVM.

For information on how to contribute to the LLVM project, please take a look at the Contributing to LLVM guide.

Getting in touch

Join the LLVM Discourse forums, Discord chat, LLVM Office Hours or Regular sync-ups.

The LLVM project has adopted a code of conduct for participants to all modes of communication within the project.