blob: d2232048491768b24e3909af5747c18cb9374006 [file] [log] [blame]
// -*- C++ -*-
//===-- utils.h -----------------------------------------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
// File contains common utilities that tests rely on
// Do not #include <algorithm>, because if we do we will not detect accidental dependencies.
#include <atomic>
#include <cstdint>
#include <cstdlib>
#include <cstring>
#include <iostream>
#include <iterator>
#include <memory>
#include <sstream>
#include <vector>
#include "pstl_test_config.h"
namespace TestUtils
{
typedef double float64_t;
typedef float float32_t;
template <class T, std::size_t N>
constexpr size_t
const_size(const T (&)[N]) noexcept
{
return N;
}
template <typename T>
class Sequence;
// Handy macros for error reporting
#define EXPECT_TRUE(condition, message) ::TestUtils::expect(true, condition, __FILE__, __LINE__, message)
#define EXPECT_FALSE(condition, message) ::TestUtils::expect(false, condition, __FILE__, __LINE__, message)
// Check that expected and actual are equal and have the same type.
#define EXPECT_EQ(expected, actual, message) ::TestUtils::expect_equal(expected, actual, __FILE__, __LINE__, message)
// Check that sequences started with expected and actual and have had size n are equal and have the same type.
#define EXPECT_EQ_N(expected, actual, n, message) \
::TestUtils::expect_equal(expected, actual, n, __FILE__, __LINE__, message)
// Issue error message from outstr, adding a newline.
// Real purpose of this routine is to have a place to hang a breakpoint.
inline void
issue_error_message(std::stringstream& outstr)
{
outstr << std::endl;
std::cerr << outstr.str();
std::exit(EXIT_FAILURE);
}
inline void
expect(bool expected, bool condition, const char* file, int32_t line, const char* message)
{
if (condition != expected)
{
std::stringstream outstr;
outstr << "error at " << file << ":" << line << " - " << message;
issue_error_message(outstr);
}
}
// Do not change signature to const T&.
// Function must be able to detect const differences between expected and actual.
template <typename T>
void
expect_equal(T& expected, T& actual, const char* file, int32_t line, const char* message)
{
if (!(expected == actual))
{
std::stringstream outstr;
outstr << "error at " << file << ":" << line << " - " << message << ", expected " << expected << " got "
<< actual;
issue_error_message(outstr);
}
}
template <typename T>
void
expect_equal(Sequence<T>& expected, Sequence<T>& actual, const char* file, int32_t line, const char* message)
{
size_t n = expected.size();
size_t m = actual.size();
if (n != m)
{
std::stringstream outstr;
outstr << "error at " << file << ":" << line << " - " << message << ", expected sequence of size " << n
<< " got sequence of size " << m;
issue_error_message(outstr);
return;
}
size_t error_count = 0;
for (size_t k = 0; k < n && error_count < 10; ++k)
{
if (!(expected[k] == actual[k]))
{
std::stringstream outstr;
outstr << "error at " << file << ":" << line << " - " << message << ", at index " << k << " expected "
<< expected[k] << " got " << actual[k];
issue_error_message(outstr);
++error_count;
}
}
}
template <typename Iterator1, typename Iterator2, typename Size>
void
expect_equal(Iterator1 expected_first, Iterator2 actual_first, Size n, const char* file, int32_t line,
const char* message)
{
size_t error_count = 0;
for (Size k = 0; k < n && error_count < 10; ++k, ++expected_first, ++actual_first)
{
if (!(*expected_first == *actual_first))
{
std::stringstream outstr;
outstr << "error at " << file << ":" << line << " - " << message << ", at index " << k;
issue_error_message(outstr);
++error_count;
}
}
}
// ForwardIterator is like type Iterator, but restricted to be a forward iterator.
// Only the forward iterator signatures that are necessary for tests are present.
// Post-increment in particular is deliberatly omitted since our templates should avoid using it
// because of efficiency considerations.
template <typename Iterator, typename IteratorTag>
class ForwardIterator
{
public:
typedef IteratorTag iterator_category;
typedef typename std::iterator_traits<Iterator>::value_type value_type;
typedef typename std::iterator_traits<Iterator>::difference_type difference_type;
typedef typename std::iterator_traits<Iterator>::pointer pointer;
typedef typename std::iterator_traits<Iterator>::reference reference;
protected:
Iterator my_iterator;
typedef value_type element_type;
public:
ForwardIterator() = default;
explicit ForwardIterator(Iterator i) : my_iterator(i) {}
reference operator*() const { return *my_iterator; }
Iterator operator->() const { return my_iterator; }
ForwardIterator
operator++()
{
++my_iterator;
return *this;
}
ForwardIterator operator++(int32_t)
{
auto retval = *this;
my_iterator++;
return retval;
}
friend bool
operator==(const ForwardIterator& i, const ForwardIterator& j)
{
return i.my_iterator == j.my_iterator;
}
friend bool
operator!=(const ForwardIterator& i, const ForwardIterator& j)
{
return i.my_iterator != j.my_iterator;
}
Iterator
iterator() const
{
return my_iterator;
}
};
template <typename Iterator, typename IteratorTag>
class BidirectionalIterator : public ForwardIterator<Iterator, IteratorTag>
{
typedef ForwardIterator<Iterator, IteratorTag> base_type;
public:
BidirectionalIterator() = default;
explicit BidirectionalIterator(Iterator i) : base_type(i) {}
BidirectionalIterator(const base_type& i) : base_type(i.iterator()) {}
BidirectionalIterator
operator++()
{
++base_type::my_iterator;
return *this;
}
BidirectionalIterator
operator--()
{
--base_type::my_iterator;
return *this;
}
BidirectionalIterator operator++(int32_t)
{
auto retval = *this;
base_type::my_iterator++;
return retval;
}
BidirectionalIterator operator--(int32_t)
{
auto retval = *this;
base_type::my_iterator--;
return retval;
}
};
template <typename Iterator, typename F>
void
fill_data(Iterator first, Iterator last, F f)
{
typedef typename std::iterator_traits<Iterator>::value_type T;
for (std::size_t i = 0; first != last; ++first, ++i)
{
*first = T(f(i));
}
}
struct MemoryChecker {
// static counters and state tags
static std::atomic<std::int64_t> alive_object_counter; // initialized outside
static constexpr std::int64_t alive_state = 0xAAAAAAAAAAAAAAAA;
static constexpr std::int32_t dead_state = 0; // only used as a set value to cancel alive_state
std::int32_t _value; // object value used for algorithms
std::int64_t _state; // state tag used for checks
// ctors, dtors, assign ops
explicit MemoryChecker(std::int32_t value = 0) : _value(value) {
// check for EXPECT_TRUE(state() != alive_state, ...) has not been done since we cannot guarantee that
// raw memory for object being constructed does not have a bit sequence being equal to alive_state
// set constructed state and increment counter for living object
inc_alive_objects();
_state = alive_state;
}
MemoryChecker(MemoryChecker&& other) : _value(other.value()) {
// check for EXPECT_TRUE(state() != alive_state, ...) has not been done since
// compiler can optimize out the move ctor call that results in false positive failure
EXPECT_TRUE(other.state() == alive_state, "wrong effect from MemoryChecker(MemoryChecker&&): attemp to construct an object from non-existing object");
// set constructed state and increment counter for living object
inc_alive_objects();
_state = alive_state;
}
MemoryChecker(const MemoryChecker& other) : _value(other.value()) {
// check for EXPECT_TRUE(state() != alive_state, ...) has not been done since
// compiler can optimize out the copy ctor call that results in false positive failure
EXPECT_TRUE(other.state() == alive_state, "wrong effect from MemoryChecker(const MemoryChecker&): attemp to construct an object from non-existing object");
// set constructed state and increment counter for living object
inc_alive_objects();
_state = alive_state;
}
MemoryChecker& operator=(MemoryChecker&& other) {
// check if we do not assign over uninitialized memory
EXPECT_TRUE(state() == alive_state, "wrong effect from MemoryChecker::operator=(MemoryChecker&& other): attemp to assign to non-existing object");
EXPECT_TRUE(other.state() == alive_state, "wrong effect from MemoryChecker::operator=(MemoryChecker&& other): attemp to assign from non-existing object");
// just assign new value, counter is the same, state is the same
_value = other.value();
return *this;
}
MemoryChecker& operator=(const MemoryChecker& other) {
// check if we do not assign over uninitialized memory
EXPECT_TRUE(state() == alive_state, "wrong effect from MemoryChecker::operator=(const MemoryChecker& other): attemp to assign to non-existing object");
EXPECT_TRUE(other.state() == alive_state, "wrong effect from MemoryChecker::operator=(const MemoryChecker& other): attemp to assign from non-existing object");
// just assign new value, counter is the same, state is the same
_value = other.value();
return *this;
}
~MemoryChecker() {
// check if we do not double destruct the object
EXPECT_TRUE(state() == alive_state, "wrong effect from ~MemoryChecker(): attemp to destroy non-existing object");
// set destructed state and decrement counter for living object
static_cast<volatile std::int64_t&>(_state) = dead_state;
dec_alive_objects();
}
// getters
std::int32_t value() const { return _value; }
std::int64_t state() const { return _state; }
static std::int32_t alive_objects() { return alive_object_counter.load(); }
private:
// setters
void inc_alive_objects() { alive_object_counter.fetch_add(1); }
void dec_alive_objects() { alive_object_counter.fetch_sub(1); }
};
std::atomic<std::int64_t> MemoryChecker::alive_object_counter{0};
std::ostream& operator<<(std::ostream& os, const MemoryChecker& val) { return (os << val.value()); }
bool operator==(const MemoryChecker& v1, const MemoryChecker& v2) { return v1.value() == v2.value(); }
bool operator<(const MemoryChecker& v1, const MemoryChecker& v2) { return v1.value() < v2.value(); }
// Sequence<T> is a container of a sequence of T with lots of kinds of iterators.
// Prefixes on begin/end mean:
// c = "const"
// f = "forward"
// No prefix indicates non-const random-access iterator.
template <typename T>
class Sequence
{
std::vector<T> m_storage;
public:
typedef typename std::vector<T>::iterator iterator;
typedef typename std::vector<T>::const_iterator const_iterator;
typedef ForwardIterator<iterator, std::forward_iterator_tag> forward_iterator;
typedef ForwardIterator<const_iterator, std::forward_iterator_tag> const_forward_iterator;
typedef BidirectionalIterator<iterator, std::bidirectional_iterator_tag> bidirectional_iterator;
typedef BidirectionalIterator<const_iterator, std::bidirectional_iterator_tag> const_bidirectional_iterator;
typedef T value_type;
explicit Sequence(size_t size) : m_storage(size) {}
// Construct sequence [f(0), f(1), ... f(size-1)]
// f can rely on its invocations being sequential from 0 to size-1.
template <typename Func>
Sequence(size_t size, Func f)
{
m_storage.reserve(size);
// Use push_back because T might not have a default constructor
for (size_t k = 0; k < size; ++k)
m_storage.push_back(T(f(k)));
}
Sequence(const std::initializer_list<T>& data) : m_storage(data) {}
const_iterator
begin() const
{
return m_storage.begin();
}
const_iterator
end() const
{
return m_storage.end();
}
iterator
begin()
{
return m_storage.begin();
}
iterator
end()
{
return m_storage.end();
}
const_iterator
cbegin() const
{
return m_storage.cbegin();
}
const_iterator
cend() const
{
return m_storage.cend();
}
forward_iterator
fbegin()
{
return forward_iterator(m_storage.begin());
}
forward_iterator
fend()
{
return forward_iterator(m_storage.end());
}
const_forward_iterator
cfbegin() const
{
return const_forward_iterator(m_storage.cbegin());
}
const_forward_iterator
cfend() const
{
return const_forward_iterator(m_storage.cend());
}
const_forward_iterator
fbegin() const
{
return const_forward_iterator(m_storage.cbegin());
}
const_forward_iterator
fend() const
{
return const_forward_iterator(m_storage.cend());
}
const_bidirectional_iterator
cbibegin() const
{
return const_bidirectional_iterator(m_storage.cbegin());
}
const_bidirectional_iterator
cbiend() const
{
return const_bidirectional_iterator(m_storage.cend());
}
bidirectional_iterator
bibegin()
{
return bidirectional_iterator(m_storage.begin());
}
bidirectional_iterator
biend()
{
return bidirectional_iterator(m_storage.end());
}
std::size_t
size() const
{
return m_storage.size();
}
const T*
data() const
{
return m_storage.data();
}
typename std::vector<T>::reference operator[](size_t j) { return m_storage[j]; }
const T& operator[](size_t j) const { return m_storage[j]; }
// Fill with given value
void
fill(const T& value)
{
for (size_t i = 0; i < m_storage.size(); i++)
m_storage[i] = value;
}
void
print() const;
template <typename Func>
void
fill(Func f)
{
fill_data(m_storage.begin(), m_storage.end(), f);
}
};
template <typename T>
void
Sequence<T>::print() const
{
std::cout << "size = " << size() << ": { ";
std::copy(begin(), end(), std::ostream_iterator<T>(std::cout, " "));
std::cout << " } " << std::endl;
}
// Predicates for algorithms
template <typename DataType>
struct is_equal_to
{
is_equal_to(const DataType& expected) : m_expected(expected) {}
bool
operator()(const DataType& actual) const
{
return actual == m_expected;
}
private:
DataType m_expected;
};
// Low-quality hash function, returns value between 0 and (1<<bits)-1
// Warning: low-order bits are quite predictable.
inline size_t
HashBits(size_t i, size_t bits)
{
size_t mask = bits >= 8 * sizeof(size_t) ? ~size_t(0) : (size_t(1) << bits) - 1;
return (424157 * i ^ 0x24aFa) & mask;
}
// Stateful unary op
template <typename T, typename U>
class Complement
{
int32_t val;
public:
Complement(T v) : val(v) {}
U
operator()(const T& x) const
{
return U(val - x);
}
};
// Tag used to prevent accidental use of converting constructor, even if use is explicit.
struct OddTag
{
};
class Sum;
// Type with limited set of operations. Not default-constructible.
// Only available operator is "==".
// Typically used as value type in tests.
class Number
{
int32_t value;
friend class Add;
friend class Sum;
friend class IsMultiple;
friend class Congruent;
friend Sum
operator+(const Sum& x, const Sum& y);
public:
Number(int32_t val, OddTag) : value(val) {}
friend bool
operator==(const Number& x, const Number& y)
{
return x.value == y.value;
}
friend std::ostream&
operator<<(std::ostream& o, const Number& d)
{
return o << d.value;
}
};
// Stateful predicate for Number. Not default-constructible.
class IsMultiple
{
long modulus;
public:
// True if x is multiple of modulus
bool
operator()(Number x) const
{
return x.value % modulus == 0;
}
IsMultiple(long modulus_, OddTag) : modulus(modulus_) {}
};
// Stateful equivalence-class predicate for Number. Not default-constructible.
class Congruent
{
long modulus;
public:
// True if x and y have same remainder for the given modulus.
// Note: this is not quite the same as "equivalent modulo modulus" when x and y have different
// sign, but nonetheless AreCongruent is still an equivalence relationship, which is all
// we need for testing.
bool
operator()(Number x, Number y) const
{
return x.value % modulus == y.value % modulus;
}
Congruent(long modulus_, OddTag) : modulus(modulus_) {}
};
// Stateful reduction operation for Number
class Add
{
long bias;
public:
explicit Add(OddTag) : bias(1) {}
Number
operator()(Number x, const Number& y)
{
return Number(x.value + y.value + (bias - 1), OddTag());
}
};
// Class similar to Number, but has default constructor and +.
class Sum : public Number
{
public:
Sum() : Number(0, OddTag()) {}
Sum(long x, OddTag) : Number(x, OddTag()) {}
friend Sum
operator+(const Sum& x, const Sum& y)
{
return Sum(x.value + y.value, OddTag());
}
};
// Type with limited set of operations, which includes an associative but not commutative operation.
// Not default-constructible.
// Typically used as value type in tests involving "GENERALIZED_NONCOMMUTATIVE_SUM".
class MonoidElement
{
size_t a, b;
public:
MonoidElement(size_t a_, size_t b_, OddTag) : a(a_), b(b_) {}
friend bool
operator==(const MonoidElement& x, const MonoidElement& y)
{
return x.a == y.a && x.b == y.b;
}
friend std::ostream&
operator<<(std::ostream& o, const MonoidElement& x)
{
return o << "[" << x.a << ".." << x.b << ")";
}
friend class AssocOp;
};
// Stateful associative op for MonoidElement
// It's not really a monoid since the operation is not allowed for any two elements.
// But it's good enough for testing.
class AssocOp
{
unsigned c;
public:
explicit AssocOp(OddTag) : c(5) {}
MonoidElement
operator()(const MonoidElement& x, const MonoidElement& y)
{
unsigned d = 5;
EXPECT_EQ(d, c, "state lost");
EXPECT_EQ(x.b, y.a, "commuted?");
return MonoidElement(x.a, y.b, OddTag());
}
};
// Multiplication of matrix is an associative but not commutative operation
// Typically used as value type in tests involving "GENERALIZED_NONCOMMUTATIVE_SUM".
template <typename T>
struct Matrix2x2
{
T a[2][2];
Matrix2x2() : a{{1, 0}, {0, 1}} {}
Matrix2x2(T x, T y) : a{{0, x}, {x, y}} {}
#if !defined(_PSTL_ICL_19_VC14_VC141_TEST_SCAN_RELEASE_BROKEN)
Matrix2x2(const Matrix2x2& m) : a{{m.a[0][0], m.a[0][1]}, {m.a[1][0], m.a[1][1]}} {}
Matrix2x2&
operator=(const Matrix2x2& m)
{
a[0][0] = m.a[0][0], a[0][1] = m.a[0][1], a[1][0] = m.a[1][0], a[1][1] = m.a[1][1];
return *this;
}
#endif
};
template <typename T>
bool
operator==(const Matrix2x2<T>& left, const Matrix2x2<T>& right)
{
return left.a[0][0] == right.a[0][0] && left.a[0][1] == right.a[0][1] && left.a[1][0] == right.a[1][0] &&
left.a[1][1] == right.a[1][1];
}
template <typename T>
Matrix2x2<T>
multiply_matrix(const Matrix2x2<T>& left, const Matrix2x2<T>& right)
{
Matrix2x2<T> result;
for (int32_t i = 0; i < 2; ++i)
{
for (int32_t j = 0; j < 2; ++j)
{
result.a[i][j] = left.a[i][0] * right.a[0][j] + left.a[i][1] * right.a[1][j];
}
}
return result;
}
//============================================================================
// Adapters for creating different types of iterators.
//
// In this block we implemented some adapters for creating differnet types of iterators.
// It's needed for extending the unit testing of Parallel STL algorithms.
// We have adapters for iterators with different tags (forward_iterator_tag, bidirectional_iterator_tag), reverse iterators.
// The input iterator should be const or non-const, non-reverse random access iterator.
// Iterator creates in "MakeIterator":
// firstly, iterator is "packed" by "IteratorTypeAdapter" (creating forward or bidirectional iterator)
// then iterator is "packed" by "ReverseAdapter" (if it's possible)
// So, from input iterator we may create, for example, reverse bidirectional iterator.
// "Main" functor for testing iterators is named "invoke_on_all_iterator_types".
// Base adapter
template <typename Iterator>
struct BaseAdapter
{
typedef Iterator iterator_type;
iterator_type
operator()(Iterator it)
{
return it;
}
};
// Check if the iterator is reverse iterator
// Note: it works only for iterators that created by std::reverse_iterator
template <typename NotReverseIterator>
struct isReverse : std::false_type
{
};
template <typename Iterator>
struct isReverse<std::reverse_iterator<Iterator>> : std::true_type
{
};
// Reverse adapter
template <typename Iterator, typename IsReverse>
struct ReverseAdapter
{
typedef std::reverse_iterator<Iterator> iterator_type;
iterator_type
operator()(Iterator it)
{
#if defined(_PSTL_CPP14_MAKE_REVERSE_ITERATOR_PRESENT)
return std::make_reverse_iterator(it);
#else
return iterator_type(it);
#endif
}
};
// Non-reverse adapter
template <typename Iterator>
struct ReverseAdapter<Iterator, std::false_type> : BaseAdapter<Iterator>
{
};
// Iterator adapter by type (by default std::random_access_iterator_tag)
template <typename Iterator, typename IteratorTag>
struct IteratorTypeAdapter : BaseAdapter<Iterator>
{
};
// Iterator adapter for forward iterator
template <typename Iterator>
struct IteratorTypeAdapter<Iterator, std::forward_iterator_tag>
{
typedef ForwardIterator<Iterator, std::forward_iterator_tag> iterator_type;
iterator_type
operator()(Iterator it)
{
return iterator_type(it);
}
};
// Iterator adapter for bidirectional iterator
template <typename Iterator>
struct IteratorTypeAdapter<Iterator, std::bidirectional_iterator_tag>
{
typedef BidirectionalIterator<Iterator, std::bidirectional_iterator_tag> iterator_type;
iterator_type
operator()(Iterator it)
{
return iterator_type(it);
}
};
//For creating iterator with new type
template <typename InputIterator, typename IteratorTag, typename IsReverse>
struct MakeIterator
{
typedef IteratorTypeAdapter<InputIterator, IteratorTag> IterByType;
typedef ReverseAdapter<typename IterByType::iterator_type, IsReverse> ReverseIter;
typename ReverseIter::iterator_type
operator()(InputIterator it)
{
return ReverseIter()(IterByType()(it));
}
};
// Useful constant variables
constexpr std::size_t GuardSize = 5;
constexpr std::ptrdiff_t sizeLimit = 1000;
template <typename Iter, typename Void = void> // local iterator_traits for non-iterators
struct iterator_traits_
{
};
template <typename Iter> // For iterators
struct iterator_traits_<Iter,
typename std::enable_if<!std::is_void<typename Iter::iterator_category>::value, void>::type>
{
typedef typename Iter::iterator_category iterator_category;
};
template <typename T> // For pointers
struct iterator_traits_<T*>
{
typedef std::random_access_iterator_tag iterator_category;
};
// is iterator Iter has tag Tag
template <typename Iter, typename Tag>
using is_same_iterator_category = std::is_same<typename iterator_traits_<Iter>::iterator_category, Tag>;
// if we run with reverse or const iterators we shouldn't test the large range
template <typename IsReverse, typename IsConst>
struct invoke_if_
{
template <typename Op, typename... Rest>
void
operator()(bool is_allow, Op op, Rest&&... rest)
{
if (is_allow)
op(std::forward<Rest>(rest)...);
}
};
template <>
struct invoke_if_<std::false_type, std::false_type>
{
template <typename Op, typename... Rest>
void
operator()(bool, Op op, Rest&&... rest)
{
op(std::forward<Rest>(rest)...);
}
};
// Base non_const_wrapper struct. It is used to distinguish non_const testcases
// from a regular one. For non_const testcases only compilation is checked.
struct non_const_wrapper
{
};
// Generic wrapper to specify iterator type to execute callable Op on.
// The condition can be either positive(Op is executed only with IteratorTag)
// or negative(Op is executed with every type of iterators except IteratorTag)
template <typename Op, typename IteratorTag, bool IsPositiveCondition = true>
struct non_const_wrapper_tagged : non_const_wrapper
{
template <typename Policy, typename Iterator>
typename std::enable_if<IsPositiveCondition == is_same_iterator_category<Iterator, IteratorTag>::value, void>::type
operator()(Policy&& exec, Iterator iter)
{
Op()(exec, iter);
}
template <typename Policy, typename InputIterator, typename OutputIterator>
typename std::enable_if<IsPositiveCondition == is_same_iterator_category<OutputIterator, IteratorTag>::value,
void>::type
operator()(Policy&& exec, InputIterator input_iter, OutputIterator out_iter)
{
Op()(exec, input_iter, out_iter);
}
template <typename Policy, typename Iterator>
typename std::enable_if<IsPositiveCondition != is_same_iterator_category<Iterator, IteratorTag>::value, void>::type
operator()(Policy&&, Iterator)
{
}
template <typename Policy, typename InputIterator, typename OutputIterator>
typename std::enable_if<IsPositiveCondition != is_same_iterator_category<OutputIterator, IteratorTag>::value,
void>::type
operator()(Policy&&, InputIterator, OutputIterator)
{
}
};
// These run_for_* structures specify with which types of iterators callable object Op
// should be executed.
template <typename Op>
struct run_for_rnd : non_const_wrapper_tagged<Op, std::random_access_iterator_tag>
{
};
template <typename Op>
struct run_for_rnd_bi : non_const_wrapper_tagged<Op, std::forward_iterator_tag, false>
{
};
template <typename Op>
struct run_for_rnd_fw : non_const_wrapper_tagged<Op, std::bidirectional_iterator_tag, false>
{
};
// Invoker for different types of iterators.
template <typename IteratorTag, typename IsReverse>
struct iterator_invoker
{
template <typename Iterator>
using make_iterator = MakeIterator<Iterator, IteratorTag, IsReverse>;
template <typename Iterator>
using IsConst = typename std::is_const<
typename std::remove_pointer<typename std::iterator_traits<Iterator>::pointer>::type>::type;
template <typename Iterator>
using invoke_if = invoke_if_<IsReverse, IsConst<Iterator>>;
// A single iterator version which is used for non_const testcases
template <typename Policy, typename Op, typename Iterator>
typename std::enable_if<is_same_iterator_category<Iterator, std::random_access_iterator_tag>::value &&
std::is_base_of<non_const_wrapper, Op>::value,
void>::type
operator()(Policy&& exec, Op op, Iterator iter)
{
op(std::forward<Policy>(exec), make_iterator<Iterator>()(iter));
}
// A version with 2 iterators which is used for non_const testcases
template <typename Policy, typename Op, typename InputIterator, typename OutputIterator>
typename std::enable_if<is_same_iterator_category<OutputIterator, std::random_access_iterator_tag>::value &&
std::is_base_of<non_const_wrapper, Op>::value,
void>::type
operator()(Policy&& exec, Op op, InputIterator input_iter, OutputIterator out_iter)
{
op(std::forward<Policy>(exec), make_iterator<InputIterator>()(input_iter),
make_iterator<OutputIterator>()(out_iter));
}
template <typename Policy, typename Op, typename Iterator, typename Size, typename... Rest>
typename std::enable_if<is_same_iterator_category<Iterator, std::random_access_iterator_tag>::value, void>::type
operator()(Policy&& exec, Op op, Iterator begin, Size n, Rest&&... rest)
{
invoke_if<Iterator>()(n <= sizeLimit, op, exec, make_iterator<Iterator>()(begin), n,
std::forward<Rest>(rest)...);
}
template <typename Policy, typename Op, typename Iterator, typename... Rest>
typename std::enable_if<is_same_iterator_category<Iterator, std::random_access_iterator_tag>::value &&
!std::is_base_of<non_const_wrapper, Op>::value,
void>::type
operator()(Policy&& exec, Op op, Iterator inputBegin, Iterator inputEnd, Rest&&... rest)
{
invoke_if<Iterator>()(std::distance(inputBegin, inputEnd) <= sizeLimit, op, exec,
make_iterator<Iterator>()(inputBegin), make_iterator<Iterator>()(inputEnd),
std::forward<Rest>(rest)...);
}
template <typename Policy, typename Op, typename InputIterator, typename OutputIterator, typename... Rest>
typename std::enable_if<is_same_iterator_category<OutputIterator, std::random_access_iterator_tag>::value,
void>::type
operator()(Policy&& exec, Op op, InputIterator inputBegin, InputIterator inputEnd, OutputIterator outputBegin,
Rest&&... rest)
{
invoke_if<InputIterator>()(std::distance(inputBegin, inputEnd) <= sizeLimit, op, exec,
make_iterator<InputIterator>()(inputBegin), make_iterator<InputIterator>()(inputEnd),
make_iterator<OutputIterator>()(outputBegin), std::forward<Rest>(rest)...);
}
template <typename Policy, typename Op, typename InputIterator, typename OutputIterator, typename... Rest>
typename std::enable_if<is_same_iterator_category<OutputIterator, std::random_access_iterator_tag>::value,
void>::type
operator()(Policy&& exec, Op op, InputIterator inputBegin, InputIterator inputEnd, OutputIterator outputBegin,
OutputIterator outputEnd, Rest&&... rest)
{
invoke_if<InputIterator>()(std::distance(inputBegin, inputEnd) <= sizeLimit, op, exec,
make_iterator<InputIterator>()(inputBegin), make_iterator<InputIterator>()(inputEnd),
make_iterator<OutputIterator>()(outputBegin),
make_iterator<OutputIterator>()(outputEnd), std::forward<Rest>(rest)...);
}
template <typename Policy, typename Op, typename InputIterator1, typename InputIterator2, typename OutputIterator,
typename... Rest>
typename std::enable_if<is_same_iterator_category<OutputIterator, std::random_access_iterator_tag>::value,
void>::type
operator()(Policy&& exec, Op op, InputIterator1 inputBegin1, InputIterator1 inputEnd1, InputIterator2 inputBegin2,
InputIterator2 inputEnd2, OutputIterator outputBegin, OutputIterator outputEnd, Rest&&... rest)
{
invoke_if<InputIterator1>()(
std::distance(inputBegin1, inputEnd1) <= sizeLimit, op, exec, make_iterator<InputIterator1>()(inputBegin1),
make_iterator<InputIterator1>()(inputEnd1), make_iterator<InputIterator2>()(inputBegin2),
make_iterator<InputIterator2>()(inputEnd2), make_iterator<OutputIterator>()(outputBegin),
make_iterator<OutputIterator>()(outputEnd), std::forward<Rest>(rest)...);
}
};
// Invoker for reverse iterators only
// Note: if we run with reverse iterators we shouldn't test the large range
template <typename IteratorTag>
struct iterator_invoker<IteratorTag, /* IsReverse = */ std::true_type>
{
template <typename Iterator>
using make_iterator = MakeIterator<Iterator, IteratorTag, std::true_type>;
// A single iterator version which is used for non_const testcases
template <typename Policy, typename Op, typename Iterator>
typename std::enable_if<is_same_iterator_category<Iterator, std::random_access_iterator_tag>::value &&
std::is_base_of<non_const_wrapper, Op>::value,
void>::type
operator()(Policy&& exec, Op op, Iterator iter)
{
op(std::forward<Policy>(exec), make_iterator<Iterator>()(iter));
}
// A version with 2 iterators which is used for non_const testcases
template <typename Policy, typename Op, typename InputIterator, typename OutputIterator>
typename std::enable_if<is_same_iterator_category<OutputIterator, std::random_access_iterator_tag>::value &&
std::is_base_of<non_const_wrapper, Op>::value,
void>::type
operator()(Policy&& exec, Op op, InputIterator input_iter, OutputIterator out_iter)
{
op(std::forward<Policy>(exec), make_iterator<InputIterator>()(input_iter),
make_iterator<OutputIterator>()(out_iter));
}
template <typename Policy, typename Op, typename Iterator, typename Size, typename... Rest>
typename std::enable_if<is_same_iterator_category<Iterator, std::random_access_iterator_tag>::value, void>::type
operator()(Policy&& exec, Op op, Iterator begin, Size n, Rest&&... rest)
{
if (n <= sizeLimit)
op(exec, make_iterator<Iterator>()(begin + n), n, std::forward<Rest>(rest)...);
}
template <typename Policy, typename Op, typename Iterator, typename... Rest>
typename std::enable_if<is_same_iterator_category<Iterator, std::random_access_iterator_tag>::value &&
!std::is_base_of<non_const_wrapper, Op>::value,
void>::type
operator()(Policy&& exec, Op op, Iterator inputBegin, Iterator inputEnd, Rest&&... rest)
{
if (std::distance(inputBegin, inputEnd) <= sizeLimit)
op(exec, make_iterator<Iterator>()(inputEnd), make_iterator<Iterator>()(inputBegin),
std::forward<Rest>(rest)...);
}
template <typename Policy, typename Op, typename InputIterator, typename OutputIterator, typename... Rest>
typename std::enable_if<is_same_iterator_category<OutputIterator, std::random_access_iterator_tag>::value,
void>::type
operator()(Policy&& exec, Op op, InputIterator inputBegin, InputIterator inputEnd, OutputIterator outputBegin,
Rest&&... rest)
{
if (std::distance(inputBegin, inputEnd) <= sizeLimit)
op(exec, make_iterator<InputIterator>()(inputEnd), make_iterator<InputIterator>()(inputBegin),
make_iterator<OutputIterator>()(outputBegin + (inputEnd - inputBegin)), std::forward<Rest>(rest)...);
}
template <typename Policy, typename Op, typename InputIterator, typename OutputIterator, typename... Rest>
typename std::enable_if<is_same_iterator_category<OutputIterator, std::random_access_iterator_tag>::value,
void>::type
operator()(Policy&& exec, Op op, InputIterator inputBegin, InputIterator inputEnd, OutputIterator outputBegin,
OutputIterator outputEnd, Rest&&... rest)
{
if (std::distance(inputBegin, inputEnd) <= sizeLimit)
op(exec, make_iterator<InputIterator>()(inputEnd), make_iterator<InputIterator>()(inputBegin),
make_iterator<OutputIterator>()(outputEnd), make_iterator<OutputIterator>()(outputBegin),
std::forward<Rest>(rest)...);
}
template <typename Policy, typename Op, typename InputIterator1, typename InputIterator2, typename OutputIterator,
typename... Rest>
typename std::enable_if<is_same_iterator_category<OutputIterator, std::random_access_iterator_tag>::value,
void>::type
operator()(Policy&& exec, Op op, InputIterator1 inputBegin1, InputIterator1 inputEnd1, InputIterator2 inputBegin2,
InputIterator2 inputEnd2, OutputIterator outputBegin, OutputIterator outputEnd, Rest&&... rest)
{
if (std::distance(inputBegin1, inputEnd1) <= sizeLimit)
op(exec, make_iterator<InputIterator1>()(inputEnd1), make_iterator<InputIterator1>()(inputBegin1),
make_iterator<InputIterator2>()(inputEnd2), make_iterator<InputIterator2>()(inputBegin2),
make_iterator<OutputIterator>()(outputEnd), make_iterator<OutputIterator>()(outputBegin),
std::forward<Rest>(rest)...);
}
};
// We can't create reverse iterator from forward iterator
template <>
struct iterator_invoker<std::forward_iterator_tag, /*isReverse=*/std::true_type>
{
template <typename... Rest>
void
operator()(Rest&&...)
{
}
};
template <typename IsReverse>
struct reverse_invoker
{
template <typename... Rest>
void
operator()(Rest&&... rest)
{
// Random-access iterator
iterator_invoker<std::random_access_iterator_tag, IsReverse>()(std::forward<Rest>(rest)...);
// Forward iterator
iterator_invoker<std::forward_iterator_tag, IsReverse>()(std::forward<Rest>(rest)...);
// Bidirectional iterator
iterator_invoker<std::bidirectional_iterator_tag, IsReverse>()(std::forward<Rest>(rest)...);
}
};
struct invoke_on_all_iterator_types
{
template <typename... Rest>
void
operator()(Rest&&... rest)
{
reverse_invoker</* IsReverse = */ std::false_type>()(std::forward<Rest>(rest)...);
reverse_invoker</* IsReverse = */ std::true_type>()(std::forward<Rest>(rest)...);
}
};
//============================================================================
// Invoke op(policy,rest...) for each possible policy.
template <typename Op, typename... T>
void
invoke_on_all_policies(Op op, T&&... rest)
{
using namespace __pstl::execution;
// Try static execution policies
invoke_on_all_iterator_types()(seq, op, std::forward<T>(rest)...);
invoke_on_all_iterator_types()(unseq, op, std::forward<T>(rest)...);
invoke_on_all_iterator_types()(par, op, std::forward<T>(rest)...);
invoke_on_all_iterator_types()(par_unseq, op, std::forward<T>(rest)...);
}
template <typename F>
struct NonConstAdapter
{
F my_f;
NonConstAdapter(const F& f) : my_f(f) {}
template <typename... Types>
auto
operator()(Types&&... args) -> decltype(std::declval<F>().
operator()(std::forward<Types>(args)...))
{
return my_f(std::forward<Types>(args)...);
}
};
template <typename F>
NonConstAdapter<F>
non_const(const F& f)
{
return NonConstAdapter<F>(f);
}
// Wrapper for types. It's need for counting of constructing and destructing objects
template <typename T>
class Wrapper
{
public:
Wrapper()
{
my_field = std::shared_ptr<T>(new T());
++my_count;
}
Wrapper(const T& input)
{
my_field = std::shared_ptr<T>(new T(input));
++my_count;
}
Wrapper(const Wrapper& input)
{
my_field = input.my_field;
++my_count;
}
Wrapper(Wrapper&& input)
{
my_field = input.my_field;
input.my_field = nullptr;
++move_count;
}
Wrapper&
operator=(const Wrapper& input)
{
my_field = input.my_field;
return *this;
}
Wrapper&
operator=(Wrapper&& input)
{
my_field = input.my_field;
input.my_field = nullptr;
++move_count;
return *this;
}
bool
operator==(const Wrapper& input) const
{
return my_field == input.my_field;
}
bool
operator<(const Wrapper& input) const
{
return *my_field < *input.my_field;
}
bool
operator>(const Wrapper& input) const
{
return *my_field > *input.my_field;
}
friend std::ostream&
operator<<(std::ostream& stream, const Wrapper& input)
{
return stream << *(input.my_field);
}
~Wrapper()
{
--my_count;
if (move_count > 0)
{
--move_count;
}
}
T*
get_my_field() const
{
return my_field.get();
};
static size_t
Count()
{
return my_count;
}
static size_t
MoveCount()
{
return move_count;
}
static void
SetCount(const size_t& n)
{
my_count = n;
}
static void
SetMoveCount(const size_t& n)
{
move_count = n;
}
private:
static std::atomic<size_t> my_count;
static std::atomic<size_t> move_count;
std::shared_ptr<T> my_field;
};
template <typename T>
std::atomic<size_t> Wrapper<T>::my_count = {0};
template <typename T>
std::atomic<size_t> Wrapper<T>::move_count = {0};
template <typename InputIterator, typename T, typename BinaryOperation, typename UnaryOperation>
T
transform_reduce_serial(InputIterator first, InputIterator last, T init, BinaryOperation binary_op,
UnaryOperation unary_op) noexcept
{
for (; first != last; ++first)
{
init = binary_op(init, unary_op(*first));
}
return init;
}
static const char*
done()
{
#if defined(_PSTL_TEST_SUCCESSFUL_KEYWORD)
return "done";
#else
return "passed";
#endif
}
// test_algo_basic_* functions are used to execute
// f on a very basic sequence of elements of type T.
// Should be used with unary predicate
template <typename T, typename F>
static void
test_algo_basic_single(F&& f)
{
size_t N = 10;
Sequence<T> in(N, [](size_t v) -> T { return T(v); });
invoke_on_all_policies(f, in.begin());
}
// Should be used with binary predicate
template <typename T, typename F>
static void
test_algo_basic_double(F&& f)
{
size_t N = 10;
Sequence<T> in(N, [](size_t v) -> T { return T(v); });
Sequence<T> out(N, [](size_t v) -> T { return T(v); });
invoke_on_all_policies(f, in.begin(), out.begin());
}
template <typename Policy, typename F>
static void
invoke_if(Policy&&, F f)
{
#if defined(_PSTL_ICC_16_VC14_TEST_SIMD_LAMBDA_DEBUG_32_BROKEN) || defined(_PSTL_ICC_17_VC141_TEST_SIMD_LAMBDA_DEBUG_32_BROKEN)
__pstl::__internal::invoke_if_not(__pstl::__internal::allow_unsequenced<Policy>(), f);
#else
f();
#endif
}
} /* namespace TestUtils */