[mlir][tensor] Update `GeneralizeOuterUnitDimsPackOpPattern` (#115312)

Avoid generating spurious tensor.extract_slice, follow-on for #114315.

This is best to demonstrate with an example. Here's input for
`GeneralizeOuterUnitDimsPackOpPattern`:
```mlir
%pack = tensor.pack %input
  padding_value(%pad : f32)
  inner_dims_pos = [1, 0]
  inner_tiles = [2, %tile_dim_1]
  into %output : tensor<5x1xf32> -> tensor<1x1x2x?xf32>
```

Output _before_:
```mlir
%padded = tensor.pad %arg0 low[0, 0] high[%0, 1] {
^bb0(%arg4: index, %arg5: index):
  tensor.yield %arg2 : f32
} : tensor<5x1xf32> to tensor<?x2xf32>
// NOTE: skipped in the output _after_
%extracted_slice = tensor.extract_slice
  %padded[0, 0] [%arg3, 2] [1, 1] :
  tensor<?x2xf32> to tensor<?x2xf32>
%empty = tensor.empty(%arg3) : tensor<2x?xf32>
%transposed = linalg.transpose
  ins(%extracted_slice : tensor<?x2xf32>)
  outs(%empty : tensor<2x?xf32>)
  permutation = [1, 0]
%inserted_slice = tensor.insert_slice %transposed=
  into %arg1[0, 0, 0, 0] [1, 1, 2, %arg3] [1, 1, 1, 1] :
  tensor<2x?xf32> into tensor<1x1x2x?xf32>
```

Output _after_:
```mlir
%padded = tensor.pad %arg0 low[0, 0] high[%0, 1] {
^bb0(%arg4: index, %arg5: index):
  tensor.yield %arg2 : f32
} : tensor<5x1xf32> to tensor<?x2xf32>
%empty = tensor.empty(%arg3) : tensor<2x?xf32>
%transposed = linalg.transpose
  ins(%padded : tensor<?x2xf32>)
  outs(%empty : tensor<2x?xf32>) permutation = [1, 0]
%inserted_slice = tensor.insert_slice %transposed
  into %arg1[0, 0, 0, 0] [1, 1, 2, %arg3] [1, 1, 1, 1] :
  tensor<2x?xf32> into tensor<1x1x2x?xf32>
```

This PR also adds a check to verify that only the last N trailing
dimensions are tiled (for some value of N). Based on the PR
discussion, this restriction seems reasonable - especially as there
are no in-tree tests requiring otherwise. For now, it also simplifies
the computation of permutations for linalg.transpose. This
restriction can be relaxed in the future if needed.
4 files changed
tree: 1e2ad0438d15c9062ae585f90200257475e05cbc
  1. .ci/
  2. .github/
  3. bolt/
  4. clang/
  5. clang-tools-extra/
  6. cmake/
  7. compiler-rt/
  8. cross-project-tests/
  9. flang/
  10. libc/
  11. libclc/
  12. libcxx/
  13. libcxxabi/
  14. libunwind/
  15. lld/
  16. lldb/
  17. llvm/
  18. llvm-libgcc/
  19. mlir/
  20. offload/
  21. openmp/
  22. polly/
  23. pstl/
  24. runtimes/
  25. third-party/
  26. utils/
  27. .clang-format
  28. .clang-tidy
  29. .git-blame-ignore-revs
  30. .gitattributes
  31. .gitignore
  32. .mailmap
  33. CODE_OF_CONDUCT.md
  34. CONTRIBUTING.md
  35. LICENSE.TXT
  36. pyproject.toml
  37. README.md
  38. SECURITY.md
README.md

The LLVM Compiler Infrastructure

OpenSSF Scorecard OpenSSF Best Practices libc++

Welcome to the LLVM project!

This repository contains the source code for LLVM, a toolkit for the construction of highly optimized compilers, optimizers, and run-time environments.

The LLVM project has multiple components. The core of the project is itself called “LLVM”. This contains all of the tools, libraries, and header files needed to process intermediate representations and convert them into object files. Tools include an assembler, disassembler, bitcode analyzer, and bitcode optimizer.

C-like languages use the Clang frontend. This component compiles C, C++, Objective-C, and Objective-C++ code into LLVM bitcode -- and from there into object files, using LLVM.

Other components include: the libc++ C++ standard library, the LLD linker, and more.

Getting the Source Code and Building LLVM

Consult the Getting Started with LLVM page for information on building and running LLVM.

For information on how to contribute to the LLVM project, please take a look at the Contributing to LLVM guide.

Getting in touch

Join the LLVM Discourse forums, Discord chat, LLVM Office Hours or Regular sync-ups.

The LLVM project has adopted a code of conduct for participants to all modes of communication within the project.