[lldb] Inherit DuplicateFileAction(HANDLE, HANDLE) handles on windows (#137978)

This is a follow-up to https://github.com/llvm/llvm-project/pull/126935,
which enables passing handles to a child
process on windows systems. Unlike on unix-like systems, the handles
need to be created with the "inheritable" flag because there's to way to
change the flag value after it has been created. This is why I don't
respect the child_process_inherit flag but rather always set the flag to
true. (My next step is to delete the flag entirely.)

This does mean that pipe may be created as inheritable even if its not
necessary, but I think this is offset by the fact that windows (unlike
unixes, which pass all ~O_CLOEXEC descriptors through execve and *all*
descriptors through fork) has a way to specify the precise set of
handles to pass to a specific child process.

If this turns out to be insufficient, instead of a constructor flag, I'd
rather go with creating a separate api to create an inheritable copy of
a handle (as typically, you only want to inherit one end of the pipe).
5 files changed
tree: 339e5274ebd010e5961da60dd3d9daa1c281f16d
  1. .ci/
  2. .github/
  3. bolt/
  4. clang/
  5. clang-tools-extra/
  6. cmake/
  7. compiler-rt/
  8. cross-project-tests/
  9. flang/
  10. flang-rt/
  11. libc/
  12. libclc/
  13. libcxx/
  14. libcxxabi/
  15. libunwind/
  16. lld/
  17. lldb/
  18. llvm/
  19. llvm-libgcc/
  20. mlir/
  21. offload/
  22. openmp/
  23. polly/
  24. pstl/
  25. runtimes/
  26. third-party/
  27. utils/
  28. .clang-format
  29. .clang-format-ignore
  30. .clang-tidy
  31. .git-blame-ignore-revs
  32. .gitattributes
  33. .gitignore
  34. .mailmap
  35. CODE_OF_CONDUCT.md
  36. CONTRIBUTING.md
  37. LICENSE.TXT
  38. pyproject.toml
  39. README.md
  40. SECURITY.md
README.md

The LLVM Compiler Infrastructure

OpenSSF Scorecard OpenSSF Best Practices libc++

Welcome to the LLVM project!

This repository contains the source code for LLVM, a toolkit for the construction of highly optimized compilers, optimizers, and run-time environments.

The LLVM project has multiple components. The core of the project is itself called “LLVM”. This contains all of the tools, libraries, and header files needed to process intermediate representations and convert them into object files. Tools include an assembler, disassembler, bitcode analyzer, and bitcode optimizer.

C-like languages use the Clang frontend. This component compiles C, C++, Objective-C, and Objective-C++ code into LLVM bitcode -- and from there into object files, using LLVM.

Other components include: the libc++ C++ standard library, the LLD linker, and more.

Getting the Source Code and Building LLVM

Consult the Getting Started with LLVM page for information on building and running LLVM.

For information on how to contribute to the LLVM project, please take a look at the Contributing to LLVM guide.

Getting in touch

Join the LLVM Discourse forums, Discord chat, LLVM Office Hours or Regular sync-ups.

The LLVM project has adopted a code of conduct for participants to all modes of communication within the project.