blob: bf629c5d5e35f5876768d6588b607605942e471b [file] [log] [blame]
//===- llvm/unittest/CodeGen/GlobalISel/LowLevelTypeTest.cpp --------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
#include "llvm/CodeGen/LowLevelType.h"
#include "llvm/IR/DataLayout.h"
#include "llvm/IR/DerivedTypes.h"
#include "llvm/IR/LLVMContext.h"
#include "llvm/IR/Type.h"
#include "llvm/Support/TypeSize.h"
#include "gtest/gtest.h"
using namespace llvm;
namespace {
TEST(LowLevelTypeTest, Scalar) {
LLVMContext C;
DataLayout DL("");
for (unsigned S : {0U, 1U, 17U, 32U, 64U, 0xfffffU}) {
const LLT Ty = LLT::scalar(S);
// Test kind.
ASSERT_TRUE(Ty.isValid());
ASSERT_TRUE(Ty.isScalar());
ASSERT_FALSE(Ty.isPointer());
ASSERT_FALSE(Ty.isVector());
// Test sizes.
EXPECT_EQ(S, Ty.getSizeInBits());
EXPECT_EQ(S, Ty.getScalarSizeInBits());
// Test equality operators.
EXPECT_TRUE(Ty == Ty);
EXPECT_FALSE(Ty != Ty);
// Test Type->LLT conversion.
if (S != 0) {
Type *IRTy = IntegerType::get(C, S);
EXPECT_EQ(Ty, getLLTForType(*IRTy, DL));
}
}
}
TEST(LowLevelTypeTest, Vector) {
LLVMContext C;
DataLayout DL("");
for (unsigned S : {0U, 1U, 17U, 32U, 64U, 0xfffU}) {
for (auto EC :
{ElementCount::getFixed(2), ElementCount::getFixed(3),
ElementCount::getFixed(4), ElementCount::getFixed(32),
ElementCount::getFixed(0xff), ElementCount::getScalable(2),
ElementCount::getScalable(3), ElementCount::getScalable(4),
ElementCount::getScalable(32), ElementCount::getScalable(0xff)}) {
const LLT STy = LLT::scalar(S);
const LLT VTy = LLT::vector(EC, S);
// Test the alternative vector().
{
const LLT VSTy = LLT::vector(EC, STy);
EXPECT_EQ(VTy, VSTy);
}
// Test getElementType().
EXPECT_EQ(STy, VTy.getElementType());
// Test kind.
ASSERT_TRUE(VTy.isValid());
ASSERT_TRUE(VTy.isVector());
ASSERT_FALSE(VTy.isScalar());
ASSERT_FALSE(VTy.isPointer());
// Test sizes.
EXPECT_EQ(S, VTy.getScalarSizeInBits());
EXPECT_EQ(EC, VTy.getElementCount());
if (!EC.isScalable())
EXPECT_EQ(S * EC.getFixedValue(), VTy.getSizeInBits());
else
EXPECT_EQ(TypeSize::Scalable(S * EC.getKnownMinValue()),
VTy.getSizeInBits());
// Test equality operators.
EXPECT_TRUE(VTy == VTy);
EXPECT_FALSE(VTy != VTy);
// Test inequality operators on..
// ..different kind.
EXPECT_NE(VTy, STy);
// Test Type->LLT conversion.
if (S != 0) {
Type *IRSTy = IntegerType::get(C, S);
Type *IRTy = VectorType::get(IRSTy, EC);
EXPECT_EQ(VTy, getLLTForType(*IRTy, DL));
}
}
}
}
TEST(LowLevelTypeTest, ScalarOrVector) {
// Test version with number of bits for scalar type.
EXPECT_EQ(LLT::scalar(32),
LLT::scalarOrVector(ElementCount::getFixed(1), 32));
EXPECT_EQ(LLT::fixed_vector(2, 32),
LLT::scalarOrVector(ElementCount::getFixed(2), 32));
EXPECT_EQ(LLT::scalable_vector(1, 32),
LLT::scalarOrVector(ElementCount::getScalable(1), 32));
// Test version with LLT for scalar type.
EXPECT_EQ(LLT::scalar(32),
LLT::scalarOrVector(ElementCount::getFixed(1), LLT::scalar(32)));
EXPECT_EQ(LLT::fixed_vector(2, 32),
LLT::scalarOrVector(ElementCount::getFixed(2), LLT::scalar(32)));
// Test with pointer elements.
EXPECT_EQ(LLT::pointer(1, 32), LLT::scalarOrVector(ElementCount::getFixed(1),
LLT::pointer(1, 32)));
EXPECT_EQ(
LLT::fixed_vector(2, LLT::pointer(1, 32)),
LLT::scalarOrVector(ElementCount::getFixed(2), LLT::pointer(1, 32)));
}
TEST(LowLevelTypeTest, ChangeElementType) {
const LLT P0 = LLT::pointer(0, 32);
const LLT P1 = LLT::pointer(1, 64);
const LLT S32 = LLT::scalar(32);
const LLT S64 = LLT::scalar(64);
const LLT V2S32 = LLT::fixed_vector(2, 32);
const LLT V2S64 = LLT::fixed_vector(2, 64);
const LLT V2P0 = LLT::fixed_vector(2, P0);
const LLT V2P1 = LLT::fixed_vector(2, P1);
EXPECT_EQ(S64, S32.changeElementType(S64));
EXPECT_EQ(S32, S32.changeElementType(S32));
EXPECT_EQ(S32, S64.changeElementSize(32));
EXPECT_EQ(S32, S32.changeElementSize(32));
EXPECT_EQ(V2S64, V2S32.changeElementType(S64));
EXPECT_EQ(V2S32, V2S64.changeElementType(S32));
EXPECT_EQ(V2S64, V2S32.changeElementSize(64));
EXPECT_EQ(V2S32, V2S64.changeElementSize(32));
EXPECT_EQ(P0, S32.changeElementType(P0));
EXPECT_EQ(S32, P0.changeElementType(S32));
EXPECT_EQ(V2P1, V2P0.changeElementType(P1));
EXPECT_EQ(V2S32, V2P0.changeElementType(S32));
// Similar tests for for scalable vectors.
const LLT NXV2S32 = LLT::scalable_vector(2, 32);
const LLT NXV2S64 = LLT::scalable_vector(2, 64);
const LLT NXV2P0 = LLT::scalable_vector(2, P0);
const LLT NXV2P1 = LLT::scalable_vector(2, P1);
EXPECT_EQ(NXV2S64, NXV2S32.changeElementType(S64));
EXPECT_EQ(NXV2S32, NXV2S64.changeElementType(S32));
EXPECT_EQ(NXV2S64, NXV2S32.changeElementSize(64));
EXPECT_EQ(NXV2S32, NXV2S64.changeElementSize(32));
EXPECT_EQ(NXV2P1, NXV2P0.changeElementType(P1));
EXPECT_EQ(NXV2S32, NXV2P0.changeElementType(S32));
}
TEST(LowLevelTypeTest, ChangeNumElements) {
const LLT P0 = LLT::pointer(0, 32);
const LLT V2P0 = LLT::fixed_vector(2, P0);
const LLT V3P0 = LLT::fixed_vector(3, P0);
const LLT S64 = LLT::scalar(64);
const LLT V2S64 = LLT::fixed_vector(2, 64);
const LLT V3S64 = LLT::fixed_vector(3, 64);
// Vector to scalar
EXPECT_EQ(S64, V2S64.changeElementCount(ElementCount::getFixed(1)));
// Vector to vector
EXPECT_EQ(V3S64, V2S64.changeElementCount(ElementCount::getFixed(3)));
// Scalar to vector
EXPECT_EQ(V2S64, S64.changeElementCount(ElementCount::getFixed(2)));
EXPECT_EQ(P0, V2P0.changeElementCount(ElementCount::getFixed(1)));
EXPECT_EQ(V3P0, V2P0.changeElementCount(ElementCount::getFixed(3)));
EXPECT_EQ(V2P0, P0.changeElementCount(ElementCount::getFixed(2)));
const LLT NXV2S64 = LLT::scalable_vector(2, 64);
const LLT NXV3S64 = LLT::scalable_vector(3, 64);
const LLT NXV2P0 = LLT::scalable_vector(2, P0);
// Scalable vector to scalar
EXPECT_EQ(S64, NXV2S64.changeElementCount(ElementCount::getFixed(1)));
EXPECT_EQ(P0, NXV2P0.changeElementCount(ElementCount::getFixed(1)));
// Fixed-width vector to scalable vector
EXPECT_EQ(NXV3S64, V2S64.changeElementCount(ElementCount::getScalable(3)));
// Scalable vector to fixed-width vector
EXPECT_EQ(V3P0, NXV2P0.changeElementCount(ElementCount::getFixed(3)));
// Scalar to scalable vector
EXPECT_EQ(NXV2S64, S64.changeElementCount(ElementCount::getScalable(2)));
EXPECT_EQ(NXV2P0, P0.changeElementCount(ElementCount::getScalable(2)));
}
#ifdef GTEST_HAS_DEATH_TEST
#ifndef NDEBUG
// Invalid to directly change the element size for pointers.
TEST(LowLevelTypeTest, ChangeElementTypeDeath) {
const LLT P0 = LLT::pointer(0, 32);
const LLT V2P0 = LLT::fixed_vector(2, P0);
EXPECT_DEATH(P0.changeElementSize(64),
"invalid to directly change element size for pointers");
EXPECT_DEATH(V2P0.changeElementSize(64),
"invalid to directly change element size for pointers");
// Make sure this still fails even without a change in size.
EXPECT_DEATH(P0.changeElementSize(32),
"invalid to directly change element size for pointers");
EXPECT_DEATH(V2P0.changeElementSize(32),
"invalid to directly change element size for pointers");
}
#endif
#endif
TEST(LowLevelTypeTest, Pointer) {
LLVMContext C;
DataLayout DL("p64:64:64-p127:512:512:512-p16777215:65528:8");
for (unsigned AS : {0U, 1U, 127U, 0xffffU,
static_cast<unsigned>(maxUIntN(23)),
static_cast<unsigned>(maxUIntN(24))}) {
for (ElementCount EC :
{ElementCount::getFixed(2), ElementCount::getFixed(3),
ElementCount::getFixed(4), ElementCount::getFixed(256),
ElementCount::getFixed(65535), ElementCount::getScalable(2),
ElementCount::getScalable(3), ElementCount::getScalable(4),
ElementCount::getScalable(256), ElementCount::getScalable(65535)}) {
const LLT Ty = LLT::pointer(AS, DL.getPointerSizeInBits(AS));
const LLT VTy = LLT::vector(EC, Ty);
// Test kind.
ASSERT_TRUE(Ty.isValid());
ASSERT_TRUE(Ty.isPointer());
ASSERT_FALSE(Ty.isScalar());
ASSERT_FALSE(Ty.isVector());
ASSERT_TRUE(VTy.isValid());
ASSERT_TRUE(VTy.isVector());
ASSERT_TRUE(VTy.getElementType().isPointer());
EXPECT_EQ(Ty, VTy.getElementType());
EXPECT_EQ(Ty.getSizeInBits(), VTy.getScalarSizeInBits());
// Test address space.
EXPECT_EQ(AS, Ty.getAddressSpace());
EXPECT_EQ(AS, VTy.getElementType().getAddressSpace());
// Test equality operators.
EXPECT_TRUE(Ty == Ty);
EXPECT_FALSE(Ty != Ty);
EXPECT_TRUE(VTy == VTy);
EXPECT_FALSE(VTy != VTy);
// Test Type->LLT conversion.
Type *IRTy = PointerType::get(IntegerType::get(C, 8), AS);
EXPECT_EQ(Ty, getLLTForType(*IRTy, DL));
Type *IRVTy =
VectorType::get(PointerType::get(IntegerType::get(C, 8), AS), EC);
EXPECT_EQ(VTy, getLLTForType(*IRVTy, DL));
}
}
}
TEST(LowLevelTypeTest, Invalid) {
const LLT Ty;
ASSERT_FALSE(Ty.isValid());
ASSERT_FALSE(Ty.isScalar());
ASSERT_FALSE(Ty.isPointer());
ASSERT_FALSE(Ty.isVector());
}
TEST(LowLevelTypeTest, Divide) {
// Test basic scalar->scalar cases.
EXPECT_EQ(LLT::scalar(16), LLT::scalar(32).divide(2));
EXPECT_EQ(LLT::scalar(8), LLT::scalar(32).divide(4));
EXPECT_EQ(LLT::scalar(8), LLT::scalar(32).divide(4));
// Test pointer->scalar
EXPECT_EQ(LLT::scalar(32), LLT::pointer(0, 64).divide(2));
// Test dividing vectors.
EXPECT_EQ(LLT::scalar(32), LLT::fixed_vector(2, 32).divide(2));
EXPECT_EQ(LLT::fixed_vector(2, 32), LLT::fixed_vector(4, 32).divide(2));
// Test vector of pointers
EXPECT_EQ(LLT::pointer(1, 64),
LLT::fixed_vector(4, LLT::pointer(1, 64)).divide(4));
EXPECT_EQ(LLT::fixed_vector(2, LLT::pointer(1, 64)),
LLT::fixed_vector(4, LLT::pointer(1, 64)).divide(2));
}
}