blob: fc856a976946bf6decda9b6724cac66afc7bdcd6 [file] [log] [blame]
//===- FunctionExtrasTest.cpp - Unit tests for function type erasure ------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
#include "llvm/ADT/FunctionExtras.h"
#include "gtest/gtest.h"
#include <memory>
#include <type_traits>
using namespace llvm;
namespace {
TEST(UniqueFunctionTest, Basic) {
unique_function<int(int, int)> Sum = [](int A, int B) { return A + B; };
EXPECT_EQ(Sum(1, 2), 3);
unique_function<int(int, int)> Sum2 = std::move(Sum);
EXPECT_EQ(Sum2(1, 2), 3);
unique_function<int(int, int)> Sum3 = [](int A, int B) { return A + B; };
Sum2 = std::move(Sum3);
EXPECT_EQ(Sum2(1, 2), 3);
Sum2 = unique_function<int(int, int)>([](int A, int B) { return A + B; });
EXPECT_EQ(Sum2(1, 2), 3);
// Explicit self-move test.
*&Sum2 = std::move(Sum2);
EXPECT_EQ(Sum2(1, 2), 3);
Sum2 = unique_function<int(int, int)>();
EXPECT_FALSE(Sum2);
// Make sure we can forward through l-value reference parameters.
unique_function<void(int &)> Inc = [](int &X) { ++X; };
int X = 42;
Inc(X);
EXPECT_EQ(X, 43);
// Make sure we can forward through r-value reference parameters with
// move-only types.
unique_function<int(std::unique_ptr<int> &&)> ReadAndDeallocByRef =
[](std::unique_ptr<int> &&Ptr) {
int V = *Ptr;
Ptr.reset();
return V;
};
std::unique_ptr<int> Ptr{new int(13)};
EXPECT_EQ(ReadAndDeallocByRef(std::move(Ptr)), 13);
EXPECT_FALSE((bool)Ptr);
// Make sure we can pass a move-only temporary as opposed to a local variable.
EXPECT_EQ(ReadAndDeallocByRef(std::unique_ptr<int>(new int(42))), 42);
// Make sure we can pass a move-only type by-value.
unique_function<int(std::unique_ptr<int>)> ReadAndDeallocByVal =
[](std::unique_ptr<int> Ptr) {
int V = *Ptr;
Ptr.reset();
return V;
};
Ptr.reset(new int(13));
EXPECT_EQ(ReadAndDeallocByVal(std::move(Ptr)), 13);
EXPECT_FALSE((bool)Ptr);
EXPECT_EQ(ReadAndDeallocByVal(std::unique_ptr<int>(new int(42))), 42);
}
TEST(UniqueFunctionTest, Captures) {
long A = 1, B = 2, C = 3, D = 4, E = 5;
unique_function<long()> Tmp;
unique_function<long()> C1 = [A]() { return A; };
EXPECT_EQ(C1(), 1);
Tmp = std::move(C1);
EXPECT_EQ(Tmp(), 1);
unique_function<long()> C2 = [A, B]() { return A + B; };
EXPECT_EQ(C2(), 3);
Tmp = std::move(C2);
EXPECT_EQ(Tmp(), 3);
unique_function<long()> C3 = [A, B, C]() { return A + B + C; };
EXPECT_EQ(C3(), 6);
Tmp = std::move(C3);
EXPECT_EQ(Tmp(), 6);
unique_function<long()> C4 = [A, B, C, D]() { return A + B + C + D; };
EXPECT_EQ(C4(), 10);
Tmp = std::move(C4);
EXPECT_EQ(Tmp(), 10);
unique_function<long()> C5 = [A, B, C, D, E]() { return A + B + C + D + E; };
EXPECT_EQ(C5(), 15);
Tmp = std::move(C5);
EXPECT_EQ(Tmp(), 15);
}
TEST(UniqueFunctionTest, MoveOnly) {
struct SmallCallable {
std::unique_ptr<int> A{new int(1)};
int operator()(int B) { return *A + B; }
};
unique_function<int(int)> Small = SmallCallable();
EXPECT_EQ(Small(2), 3);
unique_function<int(int)> Small2 = std::move(Small);
EXPECT_EQ(Small2(2), 3);
struct LargeCallable {
std::unique_ptr<int> A{new int(1)};
std::unique_ptr<int> B{new int(2)};
std::unique_ptr<int> C{new int(3)};
std::unique_ptr<int> D{new int(4)};
std::unique_ptr<int> E{new int(5)};
int operator()() { return *A + *B + *C + *D + *E; }
};
unique_function<int()> Large = LargeCallable();
EXPECT_EQ(Large(), 15);
unique_function<int()> Large2 = std::move(Large);
EXPECT_EQ(Large2(), 15);
}
TEST(UniqueFunctionTest, CountForwardingCopies) {
struct CopyCounter {
int &CopyCount;
CopyCounter(int &CopyCount) : CopyCount(CopyCount) {}
CopyCounter(const CopyCounter &Arg) : CopyCount(Arg.CopyCount) {
++CopyCount;
}
};
unique_function<void(CopyCounter)> ByValF = [](CopyCounter) {};
int CopyCount = 0;
ByValF(CopyCounter(CopyCount));
EXPECT_EQ(1, CopyCount);
CopyCount = 0;
{
CopyCounter Counter{CopyCount};
ByValF(Counter);
}
EXPECT_EQ(2, CopyCount);
// Check that we don't generate a copy at all when we can bind a reference all
// the way down, even if that reference could *in theory* allow copies.
unique_function<void(const CopyCounter &)> ByRefF = [](const CopyCounter &) {
};
CopyCount = 0;
ByRefF(CopyCounter(CopyCount));
EXPECT_EQ(0, CopyCount);
CopyCount = 0;
{
CopyCounter Counter{CopyCount};
ByRefF(Counter);
}
EXPECT_EQ(0, CopyCount);
// If we use a reference, we can make a stronger guarantee that *no* copy
// occurs.
struct Uncopyable {
Uncopyable() = default;
Uncopyable(const Uncopyable &) = delete;
};
unique_function<void(const Uncopyable &)> UncopyableF =
[](const Uncopyable &) {};
UncopyableF(Uncopyable());
Uncopyable X;
UncopyableF(X);
}
TEST(UniqueFunctionTest, CountForwardingMoves) {
struct MoveCounter {
int &MoveCount;
MoveCounter(int &MoveCount) : MoveCount(MoveCount) {}
MoveCounter(MoveCounter &&Arg) : MoveCount(Arg.MoveCount) { ++MoveCount; }
};
unique_function<void(MoveCounter)> ByValF = [](MoveCounter) {};
int MoveCount = 0;
ByValF(MoveCounter(MoveCount));
EXPECT_EQ(1, MoveCount);
MoveCount = 0;
{
MoveCounter Counter{MoveCount};
ByValF(std::move(Counter));
}
EXPECT_EQ(2, MoveCount);
// Check that when we use an r-value reference we get no spurious copies.
unique_function<void(MoveCounter &&)> ByRefF = [](MoveCounter &&) {};
MoveCount = 0;
ByRefF(MoveCounter(MoveCount));
EXPECT_EQ(0, MoveCount);
MoveCount = 0;
{
MoveCounter Counter{MoveCount};
ByRefF(std::move(Counter));
}
EXPECT_EQ(0, MoveCount);
// If we use an r-value reference we can in fact make a stronger guarantee
// with an unmovable type.
struct Unmovable {
Unmovable() = default;
Unmovable(Unmovable &&) = delete;
};
unique_function<void(const Unmovable &)> UnmovableF = [](const Unmovable &) {
};
UnmovableF(Unmovable());
Unmovable X;
UnmovableF(X);
}
TEST(UniqueFunctionTest, Const) {
// Can assign from const lambda.
unique_function<int(int) const> Plus2 = [X(std::make_unique<int>(2))](int Y) {
return *X + Y;
};
EXPECT_EQ(5, Plus2(3));
// Can call through a const ref.
const auto &Plus2Ref = Plus2;
EXPECT_EQ(5, Plus2Ref(3));
// Can move-construct and assign.
unique_function<int(int) const> Plus2A = std::move(Plus2);
EXPECT_EQ(5, Plus2A(3));
unique_function<int(int) const> Plus2B;
Plus2B = std::move(Plus2A);
EXPECT_EQ(5, Plus2B(3));
// Can convert to non-const function type, but not back.
unique_function<int(int)> Plus2C = std::move(Plus2B);
EXPECT_EQ(5, Plus2C(3));
// Overloaded call operator correctly resolved.
struct ChooseCorrectOverload {
StringRef operator()() { return "non-const"; }
StringRef operator()() const { return "const"; }
};
unique_function<StringRef()> ChooseMutable = ChooseCorrectOverload();
ChooseCorrectOverload A;
EXPECT_EQ("non-const", ChooseMutable());
EXPECT_EQ("non-const", A());
unique_function<StringRef() const> ChooseConst = ChooseCorrectOverload();
const ChooseCorrectOverload &X = A;
EXPECT_EQ("const", ChooseConst());
EXPECT_EQ("const", X());
}
// Test that overloads on unique_functions are resolved as expected.
std::string returns(StringRef) { return "not a function"; }
std::string returns(unique_function<double()> F) { return "number"; }
std::string returns(unique_function<StringRef()> F) { return "string"; }
TEST(UniqueFunctionTest, SFINAE) {
EXPECT_EQ("not a function", returns("boo!"));
EXPECT_EQ("number", returns([] { return 42; }));
EXPECT_EQ("string", returns([] { return "hello"; }));
}
// A forward declared type, and a templated type.
class Incomplete;
template <typename T> class Templated { T A; };
// Check that we can define unique_function that have references to
// incomplete types, even if those types are templated over an
// incomplete type.
TEST(UniqueFunctionTest, IncompleteTypes) {
unique_function<void(Templated<Incomplete> &&)>
IncompleteArgumentRValueReference;
unique_function<void(Templated<Incomplete> &)>
IncompleteArgumentLValueReference;
unique_function<void(Templated<Incomplete> *)> IncompleteArgumentPointer;
unique_function<Templated<Incomplete> &()> IncompleteResultLValueReference;
unique_function<Templated<Incomplete> && ()> IncompleteResultRValueReference2;
unique_function<Templated<Incomplete> *()> IncompleteResultPointer;
}
// Incomplete function returning an incomplete type
Incomplete incompleteFunction();
const Incomplete incompleteFunctionConst();
// Check that we can assign a callable to a unique_function when the
// callable return value is incomplete.
TEST(UniqueFunctionTest, IncompleteCallableType) {
unique_function<Incomplete()> IncompleteReturnInCallable{incompleteFunction};
unique_function<const Incomplete()> IncompleteReturnInCallableConst{
incompleteFunctionConst};
unique_function<const Incomplete()> IncompleteReturnInCallableConstConversion{
incompleteFunction};
}
// Define the incomplete function
class Incomplete {};
Incomplete incompleteFunction() { return {}; }
const Incomplete incompleteFunctionConst() { return {}; }
} // anonymous namespace