blob: 33d115945614fca4126003ecd5c51679721b5254 [file] [log] [blame]
//===- ARMISelLowering.cpp - ARM DAG Lowering Implementation --------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file defines the interfaces that ARM uses to lower LLVM code into a
// selection DAG.
//
//===----------------------------------------------------------------------===//
#include "ARMISelLowering.h"
#include "ARMBaseInstrInfo.h"
#include "ARMBaseRegisterInfo.h"
#include "ARMCallingConv.h"
#include "ARMConstantPoolValue.h"
#include "ARMMachineFunctionInfo.h"
#include "ARMPerfectShuffle.h"
#include "ARMRegisterInfo.h"
#include "ARMSelectionDAGInfo.h"
#include "ARMSubtarget.h"
#include "ARMTargetTransformInfo.h"
#include "MCTargetDesc/ARMAddressingModes.h"
#include "MCTargetDesc/ARMBaseInfo.h"
#include "Utils/ARMBaseInfo.h"
#include "llvm/ADT/APFloat.h"
#include "llvm/ADT/APInt.h"
#include "llvm/ADT/ArrayRef.h"
#include "llvm/ADT/BitVector.h"
#include "llvm/ADT/DenseMap.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/ADT/SmallPtrSet.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/ADT/Statistic.h"
#include "llvm/ADT/StringExtras.h"
#include "llvm/ADT/StringRef.h"
#include "llvm/ADT/StringSwitch.h"
#include "llvm/ADT/Triple.h"
#include "llvm/ADT/Twine.h"
#include "llvm/Analysis/VectorUtils.h"
#include "llvm/CodeGen/CallingConvLower.h"
#include "llvm/CodeGen/ISDOpcodes.h"
#include "llvm/CodeGen/IntrinsicLowering.h"
#include "llvm/CodeGen/MachineBasicBlock.h"
#include "llvm/CodeGen/MachineConstantPool.h"
#include "llvm/CodeGen/MachineFrameInfo.h"
#include "llvm/CodeGen/MachineFunction.h"
#include "llvm/CodeGen/MachineInstr.h"
#include "llvm/CodeGen/MachineInstrBuilder.h"
#include "llvm/CodeGen/MachineJumpTableInfo.h"
#include "llvm/CodeGen/MachineMemOperand.h"
#include "llvm/CodeGen/MachineOperand.h"
#include "llvm/CodeGen/MachineRegisterInfo.h"
#include "llvm/CodeGen/RuntimeLibcalls.h"
#include "llvm/CodeGen/SelectionDAG.h"
#include "llvm/CodeGen/SelectionDAGAddressAnalysis.h"
#include "llvm/CodeGen/SelectionDAGNodes.h"
#include "llvm/CodeGen/TargetInstrInfo.h"
#include "llvm/CodeGen/TargetLowering.h"
#include "llvm/CodeGen/TargetOpcodes.h"
#include "llvm/CodeGen/TargetRegisterInfo.h"
#include "llvm/CodeGen/TargetSubtargetInfo.h"
#include "llvm/CodeGen/ValueTypes.h"
#include "llvm/IR/Attributes.h"
#include "llvm/IR/CallingConv.h"
#include "llvm/IR/Constant.h"
#include "llvm/IR/Constants.h"
#include "llvm/IR/DataLayout.h"
#include "llvm/IR/DebugLoc.h"
#include "llvm/IR/DerivedTypes.h"
#include "llvm/IR/Function.h"
#include "llvm/IR/GlobalAlias.h"
#include "llvm/IR/GlobalValue.h"
#include "llvm/IR/GlobalVariable.h"
#include "llvm/IR/IRBuilder.h"
#include "llvm/IR/InlineAsm.h"
#include "llvm/IR/Instruction.h"
#include "llvm/IR/Instructions.h"
#include "llvm/IR/IntrinsicInst.h"
#include "llvm/IR/Intrinsics.h"
#include "llvm/IR/IntrinsicsARM.h"
#include "llvm/IR/Module.h"
#include "llvm/IR/PatternMatch.h"
#include "llvm/IR/Type.h"
#include "llvm/IR/User.h"
#include "llvm/IR/Value.h"
#include "llvm/MC/MCInstrDesc.h"
#include "llvm/MC/MCInstrItineraries.h"
#include "llvm/MC/MCRegisterInfo.h"
#include "llvm/MC/MCSchedule.h"
#include "llvm/Support/AtomicOrdering.h"
#include "llvm/Support/BranchProbability.h"
#include "llvm/Support/Casting.h"
#include "llvm/Support/CodeGen.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/Compiler.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/ErrorHandling.h"
#include "llvm/Support/KnownBits.h"
#include "llvm/Support/MachineValueType.h"
#include "llvm/Support/MathExtras.h"
#include "llvm/Support/raw_ostream.h"
#include "llvm/Target/TargetMachine.h"
#include "llvm/Target/TargetOptions.h"
#include <algorithm>
#include <cassert>
#include <cstdint>
#include <cstdlib>
#include <iterator>
#include <limits>
#include <string>
#include <tuple>
#include <utility>
#include <vector>
using namespace llvm;
using namespace llvm::PatternMatch;
#define DEBUG_TYPE "arm-isel"
STATISTIC(NumTailCalls, "Number of tail calls");
STATISTIC(NumMovwMovt, "Number of GAs materialized with movw + movt");
STATISTIC(NumLoopByVals, "Number of loops generated for byval arguments");
STATISTIC(NumConstpoolPromoted,
"Number of constants with their storage promoted into constant pools");
static cl::opt<bool>
ARMInterworking("arm-interworking", cl::Hidden,
cl::desc("Enable / disable ARM interworking (for debugging only)"),
cl::init(true));
static cl::opt<bool> EnableConstpoolPromotion(
"arm-promote-constant", cl::Hidden,
cl::desc("Enable / disable promotion of unnamed_addr constants into "
"constant pools"),
cl::init(false)); // FIXME: set to true by default once PR32780 is fixed
static cl::opt<unsigned> ConstpoolPromotionMaxSize(
"arm-promote-constant-max-size", cl::Hidden,
cl::desc("Maximum size of constant to promote into a constant pool"),
cl::init(64));
static cl::opt<unsigned> ConstpoolPromotionMaxTotal(
"arm-promote-constant-max-total", cl::Hidden,
cl::desc("Maximum size of ALL constants to promote into a constant pool"),
cl::init(128));
cl::opt<unsigned>
MVEMaxSupportedInterleaveFactor("mve-max-interleave-factor", cl::Hidden,
cl::desc("Maximum interleave factor for MVE VLDn to generate."),
cl::init(2));
// The APCS parameter registers.
static const MCPhysReg GPRArgRegs[] = {
ARM::R0, ARM::R1, ARM::R2, ARM::R3
};
void ARMTargetLowering::addTypeForNEON(MVT VT, MVT PromotedLdStVT) {
if (VT != PromotedLdStVT) {
setOperationAction(ISD::LOAD, VT, Promote);
AddPromotedToType (ISD::LOAD, VT, PromotedLdStVT);
setOperationAction(ISD::STORE, VT, Promote);
AddPromotedToType (ISD::STORE, VT, PromotedLdStVT);
}
MVT ElemTy = VT.getVectorElementType();
if (ElemTy != MVT::f64)
setOperationAction(ISD::SETCC, VT, Custom);
setOperationAction(ISD::INSERT_VECTOR_ELT, VT, Custom);
setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT, Custom);
if (ElemTy == MVT::i32) {
setOperationAction(ISD::SINT_TO_FP, VT, Custom);
setOperationAction(ISD::UINT_TO_FP, VT, Custom);
setOperationAction(ISD::FP_TO_SINT, VT, Custom);
setOperationAction(ISD::FP_TO_UINT, VT, Custom);
} else {
setOperationAction(ISD::SINT_TO_FP, VT, Expand);
setOperationAction(ISD::UINT_TO_FP, VT, Expand);
setOperationAction(ISD::FP_TO_SINT, VT, Expand);
setOperationAction(ISD::FP_TO_UINT, VT, Expand);
}
setOperationAction(ISD::BUILD_VECTOR, VT, Custom);
setOperationAction(ISD::VECTOR_SHUFFLE, VT, Custom);
setOperationAction(ISD::CONCAT_VECTORS, VT, Legal);
setOperationAction(ISD::EXTRACT_SUBVECTOR, VT, Legal);
setOperationAction(ISD::SELECT, VT, Expand);
setOperationAction(ISD::SELECT_CC, VT, Expand);
setOperationAction(ISD::VSELECT, VT, Expand);
setOperationAction(ISD::SIGN_EXTEND_INREG, VT, Expand);
if (VT.isInteger()) {
setOperationAction(ISD::SHL, VT, Custom);
setOperationAction(ISD::SRA, VT, Custom);
setOperationAction(ISD::SRL, VT, Custom);
}
// Neon does not support vector divide/remainder operations.
setOperationAction(ISD::SDIV, VT, Expand);
setOperationAction(ISD::UDIV, VT, Expand);
setOperationAction(ISD::FDIV, VT, Expand);
setOperationAction(ISD::SREM, VT, Expand);
setOperationAction(ISD::UREM, VT, Expand);
setOperationAction(ISD::FREM, VT, Expand);
setOperationAction(ISD::SDIVREM, VT, Expand);
setOperationAction(ISD::UDIVREM, VT, Expand);
if (!VT.isFloatingPoint() &&
VT != MVT::v2i64 && VT != MVT::v1i64)
for (auto Opcode : {ISD::ABS, ISD::SMIN, ISD::SMAX, ISD::UMIN, ISD::UMAX})
setOperationAction(Opcode, VT, Legal);
if (!VT.isFloatingPoint())
for (auto Opcode : {ISD::SADDSAT, ISD::UADDSAT, ISD::SSUBSAT, ISD::USUBSAT})
setOperationAction(Opcode, VT, Legal);
}
void ARMTargetLowering::addDRTypeForNEON(MVT VT) {
addRegisterClass(VT, &ARM::DPRRegClass);
addTypeForNEON(VT, MVT::f64);
}
void ARMTargetLowering::addQRTypeForNEON(MVT VT) {
addRegisterClass(VT, &ARM::DPairRegClass);
addTypeForNEON(VT, MVT::v2f64);
}
void ARMTargetLowering::setAllExpand(MVT VT) {
for (unsigned Opc = 0; Opc < ISD::BUILTIN_OP_END; ++Opc)
setOperationAction(Opc, VT, Expand);
// We support these really simple operations even on types where all
// the actual arithmetic has to be broken down into simpler
// operations or turned into library calls.
setOperationAction(ISD::BITCAST, VT, Legal);
setOperationAction(ISD::LOAD, VT, Legal);
setOperationAction(ISD::STORE, VT, Legal);
setOperationAction(ISD::UNDEF, VT, Legal);
}
void ARMTargetLowering::addAllExtLoads(const MVT From, const MVT To,
LegalizeAction Action) {
setLoadExtAction(ISD::EXTLOAD, From, To, Action);
setLoadExtAction(ISD::ZEXTLOAD, From, To, Action);
setLoadExtAction(ISD::SEXTLOAD, From, To, Action);
}
void ARMTargetLowering::addMVEVectorTypes(bool HasMVEFP) {
const MVT IntTypes[] = { MVT::v16i8, MVT::v8i16, MVT::v4i32 };
for (auto VT : IntTypes) {
addRegisterClass(VT, &ARM::MQPRRegClass);
setOperationAction(ISD::VECTOR_SHUFFLE, VT, Custom);
setOperationAction(ISD::INSERT_VECTOR_ELT, VT, Custom);
setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT, Custom);
setOperationAction(ISD::BUILD_VECTOR, VT, Custom);
setOperationAction(ISD::SHL, VT, Custom);
setOperationAction(ISD::SRA, VT, Custom);
setOperationAction(ISD::SRL, VT, Custom);
setOperationAction(ISD::SMIN, VT, Legal);
setOperationAction(ISD::SMAX, VT, Legal);
setOperationAction(ISD::UMIN, VT, Legal);
setOperationAction(ISD::UMAX, VT, Legal);
setOperationAction(ISD::ABS, VT, Legal);
setOperationAction(ISD::SETCC, VT, Custom);
setOperationAction(ISD::MLOAD, VT, Custom);
setOperationAction(ISD::MSTORE, VT, Legal);
setOperationAction(ISD::CTLZ, VT, Legal);
setOperationAction(ISD::CTTZ, VT, Custom);
setOperationAction(ISD::BITREVERSE, VT, Legal);
setOperationAction(ISD::BSWAP, VT, Legal);
setOperationAction(ISD::SADDSAT, VT, Legal);
setOperationAction(ISD::UADDSAT, VT, Legal);
setOperationAction(ISD::SSUBSAT, VT, Legal);
setOperationAction(ISD::USUBSAT, VT, Legal);
setOperationAction(ISD::ABDS, VT, Legal);
setOperationAction(ISD::ABDU, VT, Legal);
// No native support for these.
setOperationAction(ISD::UDIV, VT, Expand);
setOperationAction(ISD::SDIV, VT, Expand);
setOperationAction(ISD::UREM, VT, Expand);
setOperationAction(ISD::SREM, VT, Expand);
setOperationAction(ISD::UDIVREM, VT, Expand);
setOperationAction(ISD::SDIVREM, VT, Expand);
setOperationAction(ISD::CTPOP, VT, Expand);
setOperationAction(ISD::SELECT, VT, Expand);
setOperationAction(ISD::SELECT_CC, VT, Expand);
// Vector reductions
setOperationAction(ISD::VECREDUCE_ADD, VT, Legal);
setOperationAction(ISD::VECREDUCE_SMAX, VT, Legal);
setOperationAction(ISD::VECREDUCE_UMAX, VT, Legal);
setOperationAction(ISD::VECREDUCE_SMIN, VT, Legal);
setOperationAction(ISD::VECREDUCE_UMIN, VT, Legal);
setOperationAction(ISD::VECREDUCE_MUL, VT, Custom);
setOperationAction(ISD::VECREDUCE_AND, VT, Custom);
setOperationAction(ISD::VECREDUCE_OR, VT, Custom);
setOperationAction(ISD::VECREDUCE_XOR, VT, Custom);
if (!HasMVEFP) {
setOperationAction(ISD::SINT_TO_FP, VT, Expand);
setOperationAction(ISD::UINT_TO_FP, VT, Expand);
setOperationAction(ISD::FP_TO_SINT, VT, Expand);
setOperationAction(ISD::FP_TO_UINT, VT, Expand);
} else {
setOperationAction(ISD::FP_TO_SINT_SAT, VT, Custom);
setOperationAction(ISD::FP_TO_UINT_SAT, VT, Custom);
}
// Pre and Post inc are supported on loads and stores
for (unsigned im = (unsigned)ISD::PRE_INC;
im != (unsigned)ISD::LAST_INDEXED_MODE; ++im) {
setIndexedLoadAction(im, VT, Legal);
setIndexedStoreAction(im, VT, Legal);
setIndexedMaskedLoadAction(im, VT, Legal);
setIndexedMaskedStoreAction(im, VT, Legal);
}
}
const MVT FloatTypes[] = { MVT::v8f16, MVT::v4f32 };
for (auto VT : FloatTypes) {
addRegisterClass(VT, &ARM::MQPRRegClass);
if (!HasMVEFP)
setAllExpand(VT);
// These are legal or custom whether we have MVE.fp or not
setOperationAction(ISD::VECTOR_SHUFFLE, VT, Custom);
setOperationAction(ISD::INSERT_VECTOR_ELT, VT, Custom);
setOperationAction(ISD::INSERT_VECTOR_ELT, VT.getVectorElementType(), Custom);
setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT, Custom);
setOperationAction(ISD::BUILD_VECTOR, VT, Custom);
setOperationAction(ISD::BUILD_VECTOR, VT.getVectorElementType(), Custom);
setOperationAction(ISD::SCALAR_TO_VECTOR, VT, Legal);
setOperationAction(ISD::SETCC, VT, Custom);
setOperationAction(ISD::MLOAD, VT, Custom);
setOperationAction(ISD::MSTORE, VT, Legal);
setOperationAction(ISD::SELECT, VT, Expand);
setOperationAction(ISD::SELECT_CC, VT, Expand);
// Pre and Post inc are supported on loads and stores
for (unsigned im = (unsigned)ISD::PRE_INC;
im != (unsigned)ISD::LAST_INDEXED_MODE; ++im) {
setIndexedLoadAction(im, VT, Legal);
setIndexedStoreAction(im, VT, Legal);
setIndexedMaskedLoadAction(im, VT, Legal);
setIndexedMaskedStoreAction(im, VT, Legal);
}
if (HasMVEFP) {
setOperationAction(ISD::FMINNUM, VT, Legal);
setOperationAction(ISD::FMAXNUM, VT, Legal);
setOperationAction(ISD::FROUND, VT, Legal);
setOperationAction(ISD::VECREDUCE_FADD, VT, Custom);
setOperationAction(ISD::VECREDUCE_FMUL, VT, Custom);
setOperationAction(ISD::VECREDUCE_FMIN, VT, Custom);
setOperationAction(ISD::VECREDUCE_FMAX, VT, Custom);
// No native support for these.
setOperationAction(ISD::FDIV, VT, Expand);
setOperationAction(ISD::FREM, VT, Expand);
setOperationAction(ISD::FSQRT, VT, Expand);
setOperationAction(ISD::FSIN, VT, Expand);
setOperationAction(ISD::FCOS, VT, Expand);
setOperationAction(ISD::FPOW, VT, Expand);
setOperationAction(ISD::FLOG, VT, Expand);
setOperationAction(ISD::FLOG2, VT, Expand);
setOperationAction(ISD::FLOG10, VT, Expand);
setOperationAction(ISD::FEXP, VT, Expand);
setOperationAction(ISD::FEXP2, VT, Expand);
setOperationAction(ISD::FNEARBYINT, VT, Expand);
}
}
// Custom Expand smaller than legal vector reductions to prevent false zero
// items being added.
setOperationAction(ISD::VECREDUCE_FADD, MVT::v4f16, Custom);
setOperationAction(ISD::VECREDUCE_FMUL, MVT::v4f16, Custom);
setOperationAction(ISD::VECREDUCE_FMIN, MVT::v4f16, Custom);
setOperationAction(ISD::VECREDUCE_FMAX, MVT::v4f16, Custom);
setOperationAction(ISD::VECREDUCE_FADD, MVT::v2f16, Custom);
setOperationAction(ISD::VECREDUCE_FMUL, MVT::v2f16, Custom);
setOperationAction(ISD::VECREDUCE_FMIN, MVT::v2f16, Custom);
setOperationAction(ISD::VECREDUCE_FMAX, MVT::v2f16, Custom);
// We 'support' these types up to bitcast/load/store level, regardless of
// MVE integer-only / float support. Only doing FP data processing on the FP
// vector types is inhibited at integer-only level.
const MVT LongTypes[] = { MVT::v2i64, MVT::v2f64 };
for (auto VT : LongTypes) {
addRegisterClass(VT, &ARM::MQPRRegClass);
setAllExpand(VT);
setOperationAction(ISD::INSERT_VECTOR_ELT, VT, Custom);
setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT, Custom);
setOperationAction(ISD::BUILD_VECTOR, VT, Custom);
}
setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v2f64, Legal);
// We can do bitwise operations on v2i64 vectors
setOperationAction(ISD::AND, MVT::v2i64, Legal);
setOperationAction(ISD::OR, MVT::v2i64, Legal);
setOperationAction(ISD::XOR, MVT::v2i64, Legal);
// It is legal to extload from v4i8 to v4i16 or v4i32.
addAllExtLoads(MVT::v8i16, MVT::v8i8, Legal);
addAllExtLoads(MVT::v4i32, MVT::v4i16, Legal);
addAllExtLoads(MVT::v4i32, MVT::v4i8, Legal);
// It is legal to sign extend from v4i8/v4i16 to v4i32 or v8i8 to v8i16.
setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v4i8, Legal);
setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v4i16, Legal);
setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v4i32, Legal);
setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v8i8, Legal);
setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v8i16, Legal);
// Some truncating stores are legal too.
setTruncStoreAction(MVT::v4i32, MVT::v4i16, Legal);
setTruncStoreAction(MVT::v4i32, MVT::v4i8, Legal);
setTruncStoreAction(MVT::v8i16, MVT::v8i8, Legal);
// Pre and Post inc on these are legal, given the correct extends
for (unsigned im = (unsigned)ISD::PRE_INC;
im != (unsigned)ISD::LAST_INDEXED_MODE; ++im) {
for (auto VT : {MVT::v8i8, MVT::v4i8, MVT::v4i16}) {
setIndexedLoadAction(im, VT, Legal);
setIndexedStoreAction(im, VT, Legal);
setIndexedMaskedLoadAction(im, VT, Legal);
setIndexedMaskedStoreAction(im, VT, Legal);
}
}
// Predicate types
const MVT pTypes[] = {MVT::v16i1, MVT::v8i1, MVT::v4i1};
for (auto VT : pTypes) {
addRegisterClass(VT, &ARM::VCCRRegClass);
setOperationAction(ISD::BUILD_VECTOR, VT, Custom);
setOperationAction(ISD::VECTOR_SHUFFLE, VT, Custom);
setOperationAction(ISD::EXTRACT_SUBVECTOR, VT, Custom);
setOperationAction(ISD::CONCAT_VECTORS, VT, Custom);
setOperationAction(ISD::INSERT_VECTOR_ELT, VT, Custom);
setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT, Custom);
setOperationAction(ISD::SETCC, VT, Custom);
setOperationAction(ISD::SCALAR_TO_VECTOR, VT, Expand);
setOperationAction(ISD::LOAD, VT, Custom);
setOperationAction(ISD::STORE, VT, Custom);
setOperationAction(ISD::TRUNCATE, VT, Custom);
setOperationAction(ISD::VSELECT, VT, Expand);
setOperationAction(ISD::SELECT, VT, Expand);
}
setOperationAction(ISD::SIGN_EXTEND, MVT::v8i32, Custom);
setOperationAction(ISD::SIGN_EXTEND, MVT::v16i16, Custom);
setOperationAction(ISD::SIGN_EXTEND, MVT::v16i32, Custom);
setOperationAction(ISD::ZERO_EXTEND, MVT::v8i32, Custom);
setOperationAction(ISD::ZERO_EXTEND, MVT::v16i16, Custom);
setOperationAction(ISD::ZERO_EXTEND, MVT::v16i32, Custom);
setOperationAction(ISD::TRUNCATE, MVT::v8i32, Custom);
setOperationAction(ISD::TRUNCATE, MVT::v16i16, Custom);
}
ARMTargetLowering::ARMTargetLowering(const TargetMachine &TM,
const ARMSubtarget &STI)
: TargetLowering(TM), Subtarget(&STI) {
RegInfo = Subtarget->getRegisterInfo();
Itins = Subtarget->getInstrItineraryData();
setBooleanContents(ZeroOrOneBooleanContent);
setBooleanVectorContents(ZeroOrNegativeOneBooleanContent);
if (!Subtarget->isTargetDarwin() && !Subtarget->isTargetIOS() &&
!Subtarget->isTargetWatchOS()) {
bool IsHFTarget = TM.Options.FloatABIType == FloatABI::Hard;
for (int LCID = 0; LCID < RTLIB::UNKNOWN_LIBCALL; ++LCID)
setLibcallCallingConv(static_cast<RTLIB::Libcall>(LCID),
IsHFTarget ? CallingConv::ARM_AAPCS_VFP
: CallingConv::ARM_AAPCS);
}
if (Subtarget->isTargetMachO()) {
// Uses VFP for Thumb libfuncs if available.
if (Subtarget->isThumb() && Subtarget->hasVFP2Base() &&
Subtarget->hasARMOps() && !Subtarget->useSoftFloat()) {
static const struct {
const RTLIB::Libcall Op;
const char * const Name;
const ISD::CondCode Cond;
} LibraryCalls[] = {
// Single-precision floating-point arithmetic.
{ RTLIB::ADD_F32, "__addsf3vfp", ISD::SETCC_INVALID },
{ RTLIB::SUB_F32, "__subsf3vfp", ISD::SETCC_INVALID },
{ RTLIB::MUL_F32, "__mulsf3vfp", ISD::SETCC_INVALID },
{ RTLIB::DIV_F32, "__divsf3vfp", ISD::SETCC_INVALID },
// Double-precision floating-point arithmetic.
{ RTLIB::ADD_F64, "__adddf3vfp", ISD::SETCC_INVALID },
{ RTLIB::SUB_F64, "__subdf3vfp", ISD::SETCC_INVALID },
{ RTLIB::MUL_F64, "__muldf3vfp", ISD::SETCC_INVALID },
{ RTLIB::DIV_F64, "__divdf3vfp", ISD::SETCC_INVALID },
// Single-precision comparisons.
{ RTLIB::OEQ_F32, "__eqsf2vfp", ISD::SETNE },
{ RTLIB::UNE_F32, "__nesf2vfp", ISD::SETNE },
{ RTLIB::OLT_F32, "__ltsf2vfp", ISD::SETNE },
{ RTLIB::OLE_F32, "__lesf2vfp", ISD::SETNE },
{ RTLIB::OGE_F32, "__gesf2vfp", ISD::SETNE },
{ RTLIB::OGT_F32, "__gtsf2vfp", ISD::SETNE },
{ RTLIB::UO_F32, "__unordsf2vfp", ISD::SETNE },
// Double-precision comparisons.
{ RTLIB::OEQ_F64, "__eqdf2vfp", ISD::SETNE },
{ RTLIB::UNE_F64, "__nedf2vfp", ISD::SETNE },
{ RTLIB::OLT_F64, "__ltdf2vfp", ISD::SETNE },
{ RTLIB::OLE_F64, "__ledf2vfp", ISD::SETNE },
{ RTLIB::OGE_F64, "__gedf2vfp", ISD::SETNE },
{ RTLIB::OGT_F64, "__gtdf2vfp", ISD::SETNE },
{ RTLIB::UO_F64, "__unorddf2vfp", ISD::SETNE },
// Floating-point to integer conversions.
// i64 conversions are done via library routines even when generating VFP
// instructions, so use the same ones.
{ RTLIB::FPTOSINT_F64_I32, "__fixdfsivfp", ISD::SETCC_INVALID },
{ RTLIB::FPTOUINT_F64_I32, "__fixunsdfsivfp", ISD::SETCC_INVALID },
{ RTLIB::FPTOSINT_F32_I32, "__fixsfsivfp", ISD::SETCC_INVALID },
{ RTLIB::FPTOUINT_F32_I32, "__fixunssfsivfp", ISD::SETCC_INVALID },
// Conversions between floating types.
{ RTLIB::FPROUND_F64_F32, "__truncdfsf2vfp", ISD::SETCC_INVALID },
{ RTLIB::FPEXT_F32_F64, "__extendsfdf2vfp", ISD::SETCC_INVALID },
// Integer to floating-point conversions.
// i64 conversions are done via library routines even when generating VFP
// instructions, so use the same ones.
// FIXME: There appears to be some naming inconsistency in ARM libgcc:
// e.g., __floatunsidf vs. __floatunssidfvfp.
{ RTLIB::SINTTOFP_I32_F64, "__floatsidfvfp", ISD::SETCC_INVALID },
{ RTLIB::UINTTOFP_I32_F64, "__floatunssidfvfp", ISD::SETCC_INVALID },
{ RTLIB::SINTTOFP_I32_F32, "__floatsisfvfp", ISD::SETCC_INVALID },
{ RTLIB::UINTTOFP_I32_F32, "__floatunssisfvfp", ISD::SETCC_INVALID },
};
for (const auto &LC : LibraryCalls) {
setLibcallName(LC.Op, LC.Name);
if (LC.Cond != ISD::SETCC_INVALID)
setCmpLibcallCC(LC.Op, LC.Cond);
}
}
}
// These libcalls are not available in 32-bit.
setLibcallName(RTLIB::SHL_I128, nullptr);
setLibcallName(RTLIB::SRL_I128, nullptr);
setLibcallName(RTLIB::SRA_I128, nullptr);
setLibcallName(RTLIB::MUL_I128, nullptr);
setLibcallName(RTLIB::MULO_I64, nullptr);
setLibcallName(RTLIB::MULO_I128, nullptr);
// RTLIB
if (Subtarget->isAAPCS_ABI() &&
(Subtarget->isTargetAEABI() || Subtarget->isTargetGNUAEABI() ||
Subtarget->isTargetMuslAEABI() || Subtarget->isTargetAndroid())) {
static const struct {
const RTLIB::Libcall Op;
const char * const Name;
const CallingConv::ID CC;
const ISD::CondCode Cond;
} LibraryCalls[] = {
// Double-precision floating-point arithmetic helper functions
// RTABI chapter 4.1.2, Table 2
{ RTLIB::ADD_F64, "__aeabi_dadd", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
{ RTLIB::DIV_F64, "__aeabi_ddiv", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
{ RTLIB::MUL_F64, "__aeabi_dmul", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
{ RTLIB::SUB_F64, "__aeabi_dsub", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
// Double-precision floating-point comparison helper functions
// RTABI chapter 4.1.2, Table 3
{ RTLIB::OEQ_F64, "__aeabi_dcmpeq", CallingConv::ARM_AAPCS, ISD::SETNE },
{ RTLIB::UNE_F64, "__aeabi_dcmpeq", CallingConv::ARM_AAPCS, ISD::SETEQ },
{ RTLIB::OLT_F64, "__aeabi_dcmplt", CallingConv::ARM_AAPCS, ISD::SETNE },
{ RTLIB::OLE_F64, "__aeabi_dcmple", CallingConv::ARM_AAPCS, ISD::SETNE },
{ RTLIB::OGE_F64, "__aeabi_dcmpge", CallingConv::ARM_AAPCS, ISD::SETNE },
{ RTLIB::OGT_F64, "__aeabi_dcmpgt", CallingConv::ARM_AAPCS, ISD::SETNE },
{ RTLIB::UO_F64, "__aeabi_dcmpun", CallingConv::ARM_AAPCS, ISD::SETNE },
// Single-precision floating-point arithmetic helper functions
// RTABI chapter 4.1.2, Table 4
{ RTLIB::ADD_F32, "__aeabi_fadd", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
{ RTLIB::DIV_F32, "__aeabi_fdiv", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
{ RTLIB::MUL_F32, "__aeabi_fmul", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
{ RTLIB::SUB_F32, "__aeabi_fsub", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
// Single-precision floating-point comparison helper functions
// RTABI chapter 4.1.2, Table 5
{ RTLIB::OEQ_F32, "__aeabi_fcmpeq", CallingConv::ARM_AAPCS, ISD::SETNE },
{ RTLIB::UNE_F32, "__aeabi_fcmpeq", CallingConv::ARM_AAPCS, ISD::SETEQ },
{ RTLIB::OLT_F32, "__aeabi_fcmplt", CallingConv::ARM_AAPCS, ISD::SETNE },
{ RTLIB::OLE_F32, "__aeabi_fcmple", CallingConv::ARM_AAPCS, ISD::SETNE },
{ RTLIB::OGE_F32, "__aeabi_fcmpge", CallingConv::ARM_AAPCS, ISD::SETNE },
{ RTLIB::OGT_F32, "__aeabi_fcmpgt", CallingConv::ARM_AAPCS, ISD::SETNE },
{ RTLIB::UO_F32, "__aeabi_fcmpun", CallingConv::ARM_AAPCS, ISD::SETNE },
// Floating-point to integer conversions.
// RTABI chapter 4.1.2, Table 6
{ RTLIB::FPTOSINT_F64_I32, "__aeabi_d2iz", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
{ RTLIB::FPTOUINT_F64_I32, "__aeabi_d2uiz", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
{ RTLIB::FPTOSINT_F64_I64, "__aeabi_d2lz", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
{ RTLIB::FPTOUINT_F64_I64, "__aeabi_d2ulz", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
{ RTLIB::FPTOSINT_F32_I32, "__aeabi_f2iz", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
{ RTLIB::FPTOUINT_F32_I32, "__aeabi_f2uiz", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
{ RTLIB::FPTOSINT_F32_I64, "__aeabi_f2lz", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
{ RTLIB::FPTOUINT_F32_I64, "__aeabi_f2ulz", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
// Conversions between floating types.
// RTABI chapter 4.1.2, Table 7
{ RTLIB::FPROUND_F64_F32, "__aeabi_d2f", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
{ RTLIB::FPROUND_F64_F16, "__aeabi_d2h", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
{ RTLIB::FPEXT_F32_F64, "__aeabi_f2d", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
// Integer to floating-point conversions.
// RTABI chapter 4.1.2, Table 8
{ RTLIB::SINTTOFP_I32_F64, "__aeabi_i2d", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
{ RTLIB::UINTTOFP_I32_F64, "__aeabi_ui2d", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
{ RTLIB::SINTTOFP_I64_F64, "__aeabi_l2d", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
{ RTLIB::UINTTOFP_I64_F64, "__aeabi_ul2d", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
{ RTLIB::SINTTOFP_I32_F32, "__aeabi_i2f", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
{ RTLIB::UINTTOFP_I32_F32, "__aeabi_ui2f", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
{ RTLIB::SINTTOFP_I64_F32, "__aeabi_l2f", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
{ RTLIB::UINTTOFP_I64_F32, "__aeabi_ul2f", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
// Long long helper functions
// RTABI chapter 4.2, Table 9
{ RTLIB::MUL_I64, "__aeabi_lmul", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
{ RTLIB::SHL_I64, "__aeabi_llsl", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
{ RTLIB::SRL_I64, "__aeabi_llsr", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
{ RTLIB::SRA_I64, "__aeabi_lasr", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
// Integer division functions
// RTABI chapter 4.3.1
{ RTLIB::SDIV_I8, "__aeabi_idiv", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
{ RTLIB::SDIV_I16, "__aeabi_idiv", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
{ RTLIB::SDIV_I32, "__aeabi_idiv", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
{ RTLIB::SDIV_I64, "__aeabi_ldivmod", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
{ RTLIB::UDIV_I8, "__aeabi_uidiv", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
{ RTLIB::UDIV_I16, "__aeabi_uidiv", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
{ RTLIB::UDIV_I32, "__aeabi_uidiv", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
{ RTLIB::UDIV_I64, "__aeabi_uldivmod", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
};
for (const auto &LC : LibraryCalls) {
setLibcallName(LC.Op, LC.Name);
setLibcallCallingConv(LC.Op, LC.CC);
if (LC.Cond != ISD::SETCC_INVALID)
setCmpLibcallCC(LC.Op, LC.Cond);
}
// EABI dependent RTLIB
if (TM.Options.EABIVersion == EABI::EABI4 ||
TM.Options.EABIVersion == EABI::EABI5) {
static const struct {
const RTLIB::Libcall Op;
const char *const Name;
const CallingConv::ID CC;
const ISD::CondCode Cond;
} MemOpsLibraryCalls[] = {
// Memory operations
// RTABI chapter 4.3.4
{ RTLIB::MEMCPY, "__aeabi_memcpy", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
{ RTLIB::MEMMOVE, "__aeabi_memmove", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
{ RTLIB::MEMSET, "__aeabi_memset", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
};
for (const auto &LC : MemOpsLibraryCalls) {
setLibcallName(LC.Op, LC.Name);
setLibcallCallingConv(LC.Op, LC.CC);
if (LC.Cond != ISD::SETCC_INVALID)
setCmpLibcallCC(LC.Op, LC.Cond);
}
}
}
if (Subtarget->isTargetWindows()) {
static const struct {
const RTLIB::Libcall Op;
const char * const Name;
const CallingConv::ID CC;
} LibraryCalls[] = {
{ RTLIB::FPTOSINT_F32_I64, "__stoi64", CallingConv::ARM_AAPCS_VFP },
{ RTLIB::FPTOSINT_F64_I64, "__dtoi64", CallingConv::ARM_AAPCS_VFP },
{ RTLIB::FPTOUINT_F32_I64, "__stou64", CallingConv::ARM_AAPCS_VFP },
{ RTLIB::FPTOUINT_F64_I64, "__dtou64", CallingConv::ARM_AAPCS_VFP },
{ RTLIB::SINTTOFP_I64_F32, "__i64tos", CallingConv::ARM_AAPCS_VFP },
{ RTLIB::SINTTOFP_I64_F64, "__i64tod", CallingConv::ARM_AAPCS_VFP },
{ RTLIB::UINTTOFP_I64_F32, "__u64tos", CallingConv::ARM_AAPCS_VFP },
{ RTLIB::UINTTOFP_I64_F64, "__u64tod", CallingConv::ARM_AAPCS_VFP },
};
for (const auto &LC : LibraryCalls) {
setLibcallName(LC.Op, LC.Name);
setLibcallCallingConv(LC.Op, LC.CC);
}
}
// Use divmod compiler-rt calls for iOS 5.0 and later.
if (Subtarget->isTargetMachO() &&
!(Subtarget->isTargetIOS() &&
Subtarget->getTargetTriple().isOSVersionLT(5, 0))) {
setLibcallName(RTLIB::SDIVREM_I32, "__divmodsi4");
setLibcallName(RTLIB::UDIVREM_I32, "__udivmodsi4");
}
// The half <-> float conversion functions are always soft-float on
// non-watchos platforms, but are needed for some targets which use a
// hard-float calling convention by default.
if (!Subtarget->isTargetWatchABI()) {
if (Subtarget->isAAPCS_ABI()) {
setLibcallCallingConv(RTLIB::FPROUND_F32_F16, CallingConv::ARM_AAPCS);
setLibcallCallingConv(RTLIB::FPROUND_F64_F16, CallingConv::ARM_AAPCS);
setLibcallCallingConv(RTLIB::FPEXT_F16_F32, CallingConv::ARM_AAPCS);
} else {
setLibcallCallingConv(RTLIB::FPROUND_F32_F16, CallingConv::ARM_APCS);
setLibcallCallingConv(RTLIB::FPROUND_F64_F16, CallingConv::ARM_APCS);
setLibcallCallingConv(RTLIB::FPEXT_F16_F32, CallingConv::ARM_APCS);
}
}
// In EABI, these functions have an __aeabi_ prefix, but in GNUEABI they have
// a __gnu_ prefix (which is the default).
if (Subtarget->isTargetAEABI()) {
static const struct {
const RTLIB::Libcall Op;
const char * const Name;
const CallingConv::ID CC;
} LibraryCalls[] = {
{ RTLIB::FPROUND_F32_F16, "__aeabi_f2h", CallingConv::ARM_AAPCS },
{ RTLIB::FPROUND_F64_F16, "__aeabi_d2h", CallingConv::ARM_AAPCS },
{ RTLIB::FPEXT_F16_F32, "__aeabi_h2f", CallingConv::ARM_AAPCS },
};
for (const auto &LC : LibraryCalls) {
setLibcallName(LC.Op, LC.Name);
setLibcallCallingConv(LC.Op, LC.CC);
}
}
if (Subtarget->isThumb1Only())
addRegisterClass(MVT::i32, &ARM::tGPRRegClass);
else
addRegisterClass(MVT::i32, &ARM::GPRRegClass);
if (!Subtarget->useSoftFloat() && !Subtarget->isThumb1Only() &&
Subtarget->hasFPRegs()) {
addRegisterClass(MVT::f32, &ARM::SPRRegClass);
addRegisterClass(MVT::f64, &ARM::DPRRegClass);
setOperationAction(ISD::FP_TO_SINT_SAT, MVT::i32, Custom);
setOperationAction(ISD::FP_TO_UINT_SAT, MVT::i32, Custom);
setOperationAction(ISD::FP_TO_SINT_SAT, MVT::i64, Custom);
setOperationAction(ISD::FP_TO_UINT_SAT, MVT::i64, Custom);
if (!Subtarget->hasVFP2Base())
setAllExpand(MVT::f32);
if (!Subtarget->hasFP64())
setAllExpand(MVT::f64);
}
if (Subtarget->hasFullFP16()) {
addRegisterClass(MVT::f16, &ARM::HPRRegClass);
setOperationAction(ISD::BITCAST, MVT::i16, Custom);
setOperationAction(ISD::BITCAST, MVT::f16, Custom);
setOperationAction(ISD::FMINNUM, MVT::f16, Legal);
setOperationAction(ISD::FMAXNUM, MVT::f16, Legal);
}
if (Subtarget->hasBF16()) {
addRegisterClass(MVT::bf16, &ARM::HPRRegClass);
setAllExpand(MVT::bf16);
if (!Subtarget->hasFullFP16())
setOperationAction(ISD::BITCAST, MVT::bf16, Custom);
}
for (MVT VT : MVT::fixedlen_vector_valuetypes()) {
for (MVT InnerVT : MVT::fixedlen_vector_valuetypes()) {
setTruncStoreAction(VT, InnerVT, Expand);
addAllExtLoads(VT, InnerVT, Expand);
}
setOperationAction(ISD::SMUL_LOHI, VT, Expand);
setOperationAction(ISD::UMUL_LOHI, VT, Expand);
setOperationAction(ISD::BSWAP, VT, Expand);
}
setOperationAction(ISD::ConstantFP, MVT::f32, Custom);
setOperationAction(ISD::ConstantFP, MVT::f64, Custom);
setOperationAction(ISD::READ_REGISTER, MVT::i64, Custom);
setOperationAction(ISD::WRITE_REGISTER, MVT::i64, Custom);
if (Subtarget->hasMVEIntegerOps())
addMVEVectorTypes(Subtarget->hasMVEFloatOps());
// Combine low-overhead loop intrinsics so that we can lower i1 types.
if (Subtarget->hasLOB()) {
setTargetDAGCombine(ISD::BRCOND);
setTargetDAGCombine(ISD::BR_CC);
}
if (Subtarget->hasNEON()) {
addDRTypeForNEON(MVT::v2f32);
addDRTypeForNEON(MVT::v8i8);
addDRTypeForNEON(MVT::v4i16);
addDRTypeForNEON(MVT::v2i32);
addDRTypeForNEON(MVT::v1i64);
addQRTypeForNEON(MVT::v4f32);
addQRTypeForNEON(MVT::v2f64);
addQRTypeForNEON(MVT::v16i8);
addQRTypeForNEON(MVT::v8i16);
addQRTypeForNEON(MVT::v4i32);
addQRTypeForNEON(MVT::v2i64);
if (Subtarget->hasFullFP16()) {
addQRTypeForNEON(MVT::v8f16);
addDRTypeForNEON(MVT::v4f16);
}
if (Subtarget->hasBF16()) {
addQRTypeForNEON(MVT::v8bf16);
addDRTypeForNEON(MVT::v4bf16);
}
}
if (Subtarget->hasMVEIntegerOps() || Subtarget->hasNEON()) {
// v2f64 is legal so that QR subregs can be extracted as f64 elements, but
// none of Neon, MVE or VFP supports any arithmetic operations on it.
setOperationAction(ISD::FADD, MVT::v2f64, Expand);
setOperationAction(ISD::FSUB, MVT::v2f64, Expand);
setOperationAction(ISD::FMUL, MVT::v2f64, Expand);
// FIXME: Code duplication: FDIV and FREM are expanded always, see
// ARMTargetLowering::addTypeForNEON method for details.
setOperationAction(ISD::FDIV, MVT::v2f64, Expand);
setOperationAction(ISD::FREM, MVT::v2f64, Expand);
// FIXME: Create unittest.
// In another words, find a way when "copysign" appears in DAG with vector
// operands.
setOperationAction(ISD::FCOPYSIGN, MVT::v2f64, Expand);
// FIXME: Code duplication: SETCC has custom operation action, see
// ARMTargetLowering::addTypeForNEON method for details.
setOperationAction(ISD::SETCC, MVT::v2f64, Expand);
// FIXME: Create unittest for FNEG and for FABS.
setOperationAction(ISD::FNEG, MVT::v2f64, Expand);
setOperationAction(ISD::FABS, MVT::v2f64, Expand);
setOperationAction(ISD::FSQRT, MVT::v2f64, Expand);
setOperationAction(ISD::FSIN, MVT::v2f64, Expand);
setOperationAction(ISD::FCOS, MVT::v2f64, Expand);
setOperationAction(ISD::FPOW, MVT::v2f64, Expand);
setOperationAction(ISD::FLOG, MVT::v2f64, Expand);
setOperationAction(ISD::FLOG2, MVT::v2f64, Expand);
setOperationAction(ISD::FLOG10, MVT::v2f64, Expand);
setOperationAction(ISD::FEXP, MVT::v2f64, Expand);
setOperationAction(ISD::FEXP2, MVT::v2f64, Expand);
// FIXME: Create unittest for FCEIL, FTRUNC, FRINT, FNEARBYINT, FFLOOR.
setOperationAction(ISD::FCEIL, MVT::v2f64, Expand);
setOperationAction(ISD::FTRUNC, MVT::v2f64, Expand);
setOperationAction(ISD::FRINT, MVT::v2f64, Expand);
setOperationAction(ISD::FNEARBYINT, MVT::v2f64, Expand);
setOperationAction(ISD::FFLOOR, MVT::v2f64, Expand);
setOperationAction(ISD::FMA, MVT::v2f64, Expand);
}
if (Subtarget->hasNEON()) {
// The same with v4f32. But keep in mind that vadd, vsub, vmul are natively
// supported for v4f32.
setOperationAction(ISD::FSQRT, MVT::v4f32, Expand);
setOperationAction(ISD::FSIN, MVT::v4f32, Expand);
setOperationAction(ISD::FCOS, MVT::v4f32, Expand);
setOperationAction(ISD::FPOW, MVT::v4f32, Expand);
setOperationAction(ISD::FLOG, MVT::v4f32, Expand);
setOperationAction(ISD::FLOG2, MVT::v4f32, Expand);
setOperationAction(ISD::FLOG10, MVT::v4f32, Expand);
setOperationAction(ISD::FEXP, MVT::v4f32, Expand);
setOperationAction(ISD::FEXP2, MVT::v4f32, Expand);
setOperationAction(ISD::FCEIL, MVT::v4f32, Expand);
setOperationAction(ISD::FTRUNC, MVT::v4f32, Expand);
setOperationAction(ISD::FRINT, MVT::v4f32, Expand);
setOperationAction(ISD::FNEARBYINT, MVT::v4f32, Expand);
setOperationAction(ISD::FFLOOR, MVT::v4f32, Expand);
// Mark v2f32 intrinsics.
setOperationAction(ISD::FSQRT, MVT::v2f32, Expand);
setOperationAction(ISD::FSIN, MVT::v2f32, Expand);
setOperationAction(ISD::FCOS, MVT::v2f32, Expand);
setOperationAction(ISD::FPOW, MVT::v2f32, Expand);
setOperationAction(ISD::FLOG, MVT::v2f32, Expand);
setOperationAction(ISD::FLOG2, MVT::v2f32, Expand);
setOperationAction(ISD::FLOG10, MVT::v2f32, Expand);
setOperationAction(ISD::FEXP, MVT::v2f32, Expand);
setOperationAction(ISD::FEXP2, MVT::v2f32, Expand);
setOperationAction(ISD::FCEIL, MVT::v2f32, Expand);
setOperationAction(ISD::FTRUNC, MVT::v2f32, Expand);
setOperationAction(ISD::FRINT, MVT::v2f32, Expand);
setOperationAction(ISD::FNEARBYINT, MVT::v2f32, Expand);
setOperationAction(ISD::FFLOOR, MVT::v2f32, Expand);
// Neon does not support some operations on v1i64 and v2i64 types.
setOperationAction(ISD::MUL, MVT::v1i64, Expand);
// Custom handling for some quad-vector types to detect VMULL.
setOperationAction(ISD::MUL, MVT::v8i16, Custom);
setOperationAction(ISD::MUL, MVT::v4i32, Custom);
setOperationAction(ISD::MUL, MVT::v2i64, Custom);
// Custom handling for some vector types to avoid expensive expansions
setOperationAction(ISD::SDIV, MVT::v4i16, Custom);
setOperationAction(ISD::SDIV, MVT::v8i8, Custom);
setOperationAction(ISD::UDIV, MVT::v4i16, Custom);
setOperationAction(ISD::UDIV, MVT::v8i8, Custom);
// Neon does not have single instruction SINT_TO_FP and UINT_TO_FP with
// a destination type that is wider than the source, and nor does
// it have a FP_TO_[SU]INT instruction with a narrower destination than
// source.
setOperationAction(ISD::SINT_TO_FP, MVT::v4i16, Custom);
setOperationAction(ISD::SINT_TO_FP, MVT::v8i16, Custom);
setOperationAction(ISD::UINT_TO_FP, MVT::v4i16, Custom);
setOperationAction(ISD::UINT_TO_FP, MVT::v8i16, Custom);
setOperationAction(ISD::FP_TO_UINT, MVT::v4i16, Custom);
setOperationAction(ISD::FP_TO_UINT, MVT::v8i16, Custom);
setOperationAction(ISD::FP_TO_SINT, MVT::v4i16, Custom);
setOperationAction(ISD::FP_TO_SINT, MVT::v8i16, Custom);
setOperationAction(ISD::FP_ROUND, MVT::v2f32, Expand);
setOperationAction(ISD::FP_EXTEND, MVT::v2f64, Expand);
// NEON does not have single instruction CTPOP for vectors with element
// types wider than 8-bits. However, custom lowering can leverage the
// v8i8/v16i8 vcnt instruction.
setOperationAction(ISD::CTPOP, MVT::v2i32, Custom);
setOperationAction(ISD::CTPOP, MVT::v4i32, Custom);
setOperationAction(ISD::CTPOP, MVT::v4i16, Custom);
setOperationAction(ISD::CTPOP, MVT::v8i16, Custom);
setOperationAction(ISD::CTPOP, MVT::v1i64, Custom);
setOperationAction(ISD::CTPOP, MVT::v2i64, Custom);
setOperationAction(ISD::CTLZ, MVT::v1i64, Expand);
setOperationAction(ISD::CTLZ, MVT::v2i64, Expand);
// NEON does not have single instruction CTTZ for vectors.
setOperationAction(ISD::CTTZ, MVT::v8i8, Custom);
setOperationAction(ISD::CTTZ, MVT::v4i16, Custom);
setOperationAction(ISD::CTTZ, MVT::v2i32, Custom);
setOperationAction(ISD::CTTZ, MVT::v1i64, Custom);
setOperationAction(ISD::CTTZ, MVT::v16i8, Custom);
setOperationAction(ISD::CTTZ, MVT::v8i16, Custom);
setOperationAction(ISD::CTTZ, MVT::v4i32, Custom);
setOperationAction(ISD::CTTZ, MVT::v2i64, Custom);
setOperationAction(ISD::CTTZ_ZERO_UNDEF, MVT::v8i8, Custom);
setOperationAction(ISD::CTTZ_ZERO_UNDEF, MVT::v4i16, Custom);
setOperationAction(ISD::CTTZ_ZERO_UNDEF, MVT::v2i32, Custom);
setOperationAction(ISD::CTTZ_ZERO_UNDEF, MVT::v1i64, Custom);
setOperationAction(ISD::CTTZ_ZERO_UNDEF, MVT::v16i8, Custom);
setOperationAction(ISD::CTTZ_ZERO_UNDEF, MVT::v8i16, Custom);
setOperationAction(ISD::CTTZ_ZERO_UNDEF, MVT::v4i32, Custom);
setOperationAction(ISD::CTTZ_ZERO_UNDEF, MVT::v2i64, Custom);
for (MVT VT : MVT::fixedlen_vector_valuetypes()) {
setOperationAction(ISD::MULHS, VT, Expand);
setOperationAction(ISD::MULHU, VT, Expand);
}
// NEON only has FMA instructions as of VFP4.
if (!Subtarget->hasVFP4Base()) {
setOperationAction(ISD::FMA, MVT::v2f32, Expand);
setOperationAction(ISD::FMA, MVT::v4f32, Expand);
}
setTargetDAGCombine(ISD::SHL);
setTargetDAGCombine(ISD::SRL);
setTargetDAGCombine(ISD::SRA);
setTargetDAGCombine(ISD::FP_TO_SINT);
setTargetDAGCombine(ISD::FP_TO_UINT);
setTargetDAGCombine(ISD::FDIV);
setTargetDAGCombine(ISD::LOAD);
// It is legal to extload from v4i8 to v4i16 or v4i32.
for (MVT Ty : {MVT::v8i8, MVT::v4i8, MVT::v2i8, MVT::v4i16, MVT::v2i16,
MVT::v2i32}) {
for (MVT VT : MVT::integer_fixedlen_vector_valuetypes()) {
setLoadExtAction(ISD::EXTLOAD, VT, Ty, Legal);
setLoadExtAction(ISD::ZEXTLOAD, VT, Ty, Legal);
setLoadExtAction(ISD::SEXTLOAD, VT, Ty, Legal);
}
}
}
if (Subtarget->hasNEON() || Subtarget->hasMVEIntegerOps()) {
setTargetDAGCombine(ISD::BUILD_VECTOR);
setTargetDAGCombine(ISD::VECTOR_SHUFFLE);
setTargetDAGCombine(ISD::INSERT_SUBVECTOR);
setTargetDAGCombine(ISD::INSERT_VECTOR_ELT);
setTargetDAGCombine(ISD::EXTRACT_VECTOR_ELT);
setTargetDAGCombine(ISD::SIGN_EXTEND_INREG);
setTargetDAGCombine(ISD::STORE);
setTargetDAGCombine(ISD::SIGN_EXTEND);
setTargetDAGCombine(ISD::ZERO_EXTEND);
setTargetDAGCombine(ISD::ANY_EXTEND);
setTargetDAGCombine(ISD::INTRINSIC_WO_CHAIN);
setTargetDAGCombine(ISD::INTRINSIC_W_CHAIN);
setTargetDAGCombine(ISD::INTRINSIC_VOID);
setTargetDAGCombine(ISD::VECREDUCE_ADD);
setTargetDAGCombine(ISD::ADD);
setTargetDAGCombine(ISD::BITCAST);
}
if (Subtarget->hasMVEIntegerOps()) {
setTargetDAGCombine(ISD::SMIN);
setTargetDAGCombine(ISD::UMIN);
setTargetDAGCombine(ISD::SMAX);
setTargetDAGCombine(ISD::UMAX);
setTargetDAGCombine(ISD::FP_EXTEND);
setTargetDAGCombine(ISD::SELECT);
setTargetDAGCombine(ISD::SELECT_CC);
setTargetDAGCombine(ISD::SETCC);
}
if (Subtarget->hasMVEFloatOps()) {
setTargetDAGCombine(ISD::FADD);
}
if (!Subtarget->hasFP64()) {
// When targeting a floating-point unit with only single-precision
// operations, f64 is legal for the few double-precision instructions which
// are present However, no double-precision operations other than moves,
// loads and stores are provided by the hardware.
setOperationAction(ISD::FADD, MVT::f64, Expand);
setOperationAction(ISD::FSUB, MVT::f64, Expand);
setOperationAction(ISD::FMUL, MVT::f64, Expand);
setOperationAction(ISD::FMA, MVT::f64, Expand);
setOperationAction(ISD::FDIV, MVT::f64, Expand);
setOperationAction(ISD::FREM, MVT::f64, Expand);
setOperationAction(ISD::FCOPYSIGN, MVT::f64, Expand);
setOperationAction(ISD::FGETSIGN, MVT::f64, Expand);
setOperationAction(ISD::FNEG, MVT::f64, Expand);
setOperationAction(ISD::FABS, MVT::f64, Expand);
setOperationAction(ISD::FSQRT, MVT::f64, Expand);
setOperationAction(ISD::FSIN, MVT::f64, Expand);
setOperationAction(ISD::FCOS, MVT::f64, Expand);
setOperationAction(ISD::FPOW, MVT::f64, Expand);
setOperationAction(ISD::FLOG, MVT::f64, Expand);
setOperationAction(ISD::FLOG2, MVT::f64, Expand);
setOperationAction(ISD::FLOG10, MVT::f64, Expand);
setOperationAction(ISD::FEXP, MVT::f64, Expand);
setOperationAction(ISD::FEXP2, MVT::f64, Expand);
setOperationAction(ISD::FCEIL, MVT::f64, Expand);
setOperationAction(ISD::FTRUNC, MVT::f64, Expand);
setOperationAction(ISD::FRINT, MVT::f64, Expand);
setOperationAction(ISD::FNEARBYINT, MVT::f64, Expand);
setOperationAction(ISD::FFLOOR, MVT::f64, Expand);
setOperationAction(ISD::SINT_TO_FP, MVT::i32, Custom);
setOperationAction(ISD::UINT_TO_FP, MVT::i32, Custom);
setOperationAction(ISD::FP_TO_SINT, MVT::i32, Custom);
setOperationAction(ISD::FP_TO_UINT, MVT::i32, Custom);
setOperationAction(ISD::FP_TO_SINT, MVT::f64, Custom);
setOperationAction(ISD::FP_TO_UINT, MVT::f64, Custom);
setOperationAction(ISD::FP_ROUND, MVT::f32, Custom);
setOperationAction(ISD::STRICT_FP_TO_SINT, MVT::i32, Custom);
setOperationAction(ISD::STRICT_FP_TO_UINT, MVT::i32, Custom);
setOperationAction(ISD::STRICT_FP_TO_SINT, MVT::f64, Custom);
setOperationAction(ISD::STRICT_FP_TO_UINT, MVT::f64, Custom);
setOperationAction(ISD::STRICT_FP_ROUND, MVT::f32, Custom);
}
if (!Subtarget->hasFP64() || !Subtarget->hasFPARMv8Base()) {
setOperationAction(ISD::FP_EXTEND, MVT::f64, Custom);
setOperationAction(ISD::STRICT_FP_EXTEND, MVT::f64, Custom);
if (Subtarget->hasFullFP16()) {
setOperationAction(ISD::FP_ROUND, MVT::f16, Custom);
setOperationAction(ISD::STRICT_FP_ROUND, MVT::f16, Custom);
}
}
if (!Subtarget->hasFP16()) {
setOperationAction(ISD::FP_EXTEND, MVT::f32, Custom);
setOperationAction(ISD::STRICT_FP_EXTEND, MVT::f32, Custom);
}
computeRegisterProperties(Subtarget->getRegisterInfo());
// ARM does not have floating-point extending loads.
for (MVT VT : MVT::fp_valuetypes()) {
setLoadExtAction(ISD::EXTLOAD, VT, MVT::f32, Expand);
setLoadExtAction(ISD::EXTLOAD, VT, MVT::f16, Expand);
}
// ... or truncating stores
setTruncStoreAction(MVT::f64, MVT::f32, Expand);
setTruncStoreAction(MVT::f32, MVT::f16, Expand);
setTruncStoreAction(MVT::f64, MVT::f16, Expand);
// ARM does not have i1 sign extending load.
for (MVT VT : MVT::integer_valuetypes())
setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i1, Promote);
// ARM supports all 4 flavors of integer indexed load / store.
if (!Subtarget->isThumb1Only()) {
for (unsigned im = (unsigned)ISD::PRE_INC;
im != (unsigned)ISD::LAST_INDEXED_MODE; ++im) {
setIndexedLoadAction(im, MVT::i1, Legal);
setIndexedLoadAction(im, MVT::i8, Legal);
setIndexedLoadAction(im, MVT::i16, Legal);
setIndexedLoadAction(im, MVT::i32, Legal);
setIndexedStoreAction(im, MVT::i1, Legal);
setIndexedStoreAction(im, MVT::i8, Legal);
setIndexedStoreAction(im, MVT::i16, Legal);
setIndexedStoreAction(im, MVT::i32, Legal);
}
} else {
// Thumb-1 has limited post-inc load/store support - LDM r0!, {r1}.
setIndexedLoadAction(ISD::POST_INC, MVT::i32, Legal);
setIndexedStoreAction(ISD::POST_INC, MVT::i32, Legal);
}
setOperationAction(ISD::SADDO, MVT::i32, Custom);
setOperationAction(ISD::UADDO, MVT::i32, Custom);
setOperationAction(ISD::SSUBO, MVT::i32, Custom);
setOperationAction(ISD::USUBO, MVT::i32, Custom);
setOperationAction(ISD::ADDCARRY, MVT::i32, Custom);
setOperationAction(ISD::SUBCARRY, MVT::i32, Custom);
if (Subtarget->hasDSP()) {
setOperationAction(ISD::SADDSAT, MVT::i8, Custom);
setOperationAction(ISD::SSUBSAT, MVT::i8, Custom);
setOperationAction(ISD::SADDSAT, MVT::i16, Custom);
setOperationAction(ISD::SSUBSAT, MVT::i16, Custom);
setOperationAction(ISD::UADDSAT, MVT::i8, Custom);
setOperationAction(ISD::USUBSAT, MVT::i8, Custom);
setOperationAction(ISD::UADDSAT, MVT::i16, Custom);
setOperationAction(ISD::USUBSAT, MVT::i16, Custom);
}
if (Subtarget->hasBaseDSP()) {
setOperationAction(ISD::SADDSAT, MVT::i32, Legal);
setOperationAction(ISD::SSUBSAT, MVT::i32, Legal);
}
// i64 operation support.
setOperationAction(ISD::MUL, MVT::i64, Expand);
setOperationAction(ISD::MULHU, MVT::i32, Expand);
if (Subtarget->isThumb1Only()) {
setOperationAction(ISD::UMUL_LOHI, MVT::i32, Expand);
setOperationAction(ISD::SMUL_LOHI, MVT::i32, Expand);
}
if (Subtarget->isThumb1Only() || !Subtarget->hasV6Ops()
|| (Subtarget->isThumb2() && !Subtarget->hasDSP()))
setOperationAction(ISD::MULHS, MVT::i32, Expand);
setOperationAction(ISD::SHL_PARTS, MVT::i32, Custom);
setOperationAction(ISD::SRA_PARTS, MVT::i32, Custom);
setOperationAction(ISD::SRL_PARTS, MVT::i32, Custom);
setOperationAction(ISD::SRL, MVT::i64, Custom);
setOperationAction(ISD::SRA, MVT::i64, Custom);
setOperationAction(ISD::INTRINSIC_VOID, MVT::Other, Custom);
setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::i64, Custom);
setOperationAction(ISD::LOAD, MVT::i64, Custom);
setOperationAction(ISD::STORE, MVT::i64, Custom);
// MVE lowers 64 bit shifts to lsll and lsrl
// assuming that ISD::SRL and SRA of i64 are already marked custom
if (Subtarget->hasMVEIntegerOps())
setOperationAction(ISD::SHL, MVT::i64, Custom);
// Expand to __aeabi_l{lsl,lsr,asr} calls for Thumb1.
if (Subtarget->isThumb1Only()) {
setOperationAction(ISD::SHL_PARTS, MVT::i32, Expand);
setOperationAction(ISD::SRA_PARTS, MVT::i32, Expand);
setOperationAction(ISD::SRL_PARTS, MVT::i32, Expand);
}
if (!Subtarget->isThumb1Only() && Subtarget->hasV6T2Ops())
setOperationAction(ISD::BITREVERSE, MVT::i32, Legal);
// ARM does not have ROTL.
setOperationAction(ISD::ROTL, MVT::i32, Expand);
for (MVT VT : MVT::fixedlen_vector_valuetypes()) {
setOperationAction(ISD::ROTL, VT, Expand);
setOperationAction(ISD::ROTR, VT, Expand);
}
setOperationAction(ISD::CTTZ, MVT::i32, Custom);
setOperationAction(ISD::CTPOP, MVT::i32, Expand);
if (!Subtarget->hasV5TOps() || Subtarget->isThumb1Only()) {
setOperationAction(ISD::CTLZ, MVT::i32, Expand);
setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i32, LibCall);
}
// @llvm.readcyclecounter requires the Performance Monitors extension.
// Default to the 0 expansion on unsupported platforms.
// FIXME: Technically there are older ARM CPUs that have
// implementation-specific ways of obtaining this information.
if (Subtarget->hasPerfMon())
setOperationAction(ISD::READCYCLECOUNTER, MVT::i64, Custom);
// Only ARMv6 has BSWAP.
if (!Subtarget->hasV6Ops())
setOperationAction(ISD::BSWAP, MVT::i32, Expand);
bool hasDivide = Subtarget->isThumb() ? Subtarget->hasDivideInThumbMode()
: Subtarget->hasDivideInARMMode();
if (!hasDivide) {
// These are expanded into libcalls if the cpu doesn't have HW divider.
setOperationAction(ISD::SDIV, MVT::i32, LibCall);
setOperationAction(ISD::UDIV, MVT::i32, LibCall);
}
if (Subtarget->isTargetWindows() && !Subtarget->hasDivideInThumbMode()) {
setOperationAction(ISD::SDIV, MVT::i32, Custom);
setOperationAction(ISD::UDIV, MVT::i32, Custom);
setOperationAction(ISD::SDIV, MVT::i64, Custom);
setOperationAction(ISD::UDIV, MVT::i64, Custom);
}
setOperationAction(ISD::SREM, MVT::i32, Expand);
setOperationAction(ISD::UREM, MVT::i32, Expand);
// Register based DivRem for AEABI (RTABI 4.2)
if (Subtarget->isTargetAEABI() || Subtarget->isTargetAndroid() ||
Subtarget->isTargetGNUAEABI() || Subtarget->isTargetMuslAEABI() ||
Subtarget->isTargetWindows()) {
setOperationAction(ISD::SREM, MVT::i64, Custom);
setOperationAction(ISD::UREM, MVT::i64, Custom);
HasStandaloneRem = false;
if (Subtarget->isTargetWindows()) {
const struct {
const RTLIB::Libcall Op;
const char * const Name;
const CallingConv::ID CC;
} LibraryCalls[] = {
{ RTLIB::SDIVREM_I8, "__rt_sdiv", CallingConv::ARM_AAPCS },
{ RTLIB::SDIVREM_I16, "__rt_sdiv", CallingConv::ARM_AAPCS },
{ RTLIB::SDIVREM_I32, "__rt_sdiv", CallingConv::ARM_AAPCS },
{ RTLIB::SDIVREM_I64, "__rt_sdiv64", CallingConv::ARM_AAPCS },
{ RTLIB::UDIVREM_I8, "__rt_udiv", CallingConv::ARM_AAPCS },
{ RTLIB::UDIVREM_I16, "__rt_udiv", CallingConv::ARM_AAPCS },
{ RTLIB::UDIVREM_I32, "__rt_udiv", CallingConv::ARM_AAPCS },
{ RTLIB::UDIVREM_I64, "__rt_udiv64", CallingConv::ARM_AAPCS },
};
for (const auto &LC : LibraryCalls) {
setLibcallName(LC.Op, LC.Name);
setLibcallCallingConv(LC.Op, LC.CC);
}
} else {
const struct {
const RTLIB::Libcall Op;
const char * const Name;
const CallingConv::ID CC;
} LibraryCalls[] = {
{ RTLIB::SDIVREM_I8, "__aeabi_idivmod", CallingConv::ARM_AAPCS },
{ RTLIB::SDIVREM_I16, "__aeabi_idivmod", CallingConv::ARM_AAPCS },
{ RTLIB::SDIVREM_I32, "__aeabi_idivmod", CallingConv::ARM_AAPCS },
{ RTLIB::SDIVREM_I64, "__aeabi_ldivmod", CallingConv::ARM_AAPCS },
{ RTLIB::UDIVREM_I8, "__aeabi_uidivmod", CallingConv::ARM_AAPCS },
{ RTLIB::UDIVREM_I16, "__aeabi_uidivmod", CallingConv::ARM_AAPCS },
{ RTLIB::UDIVREM_I32, "__aeabi_uidivmod", CallingConv::ARM_AAPCS },
{ RTLIB::UDIVREM_I64, "__aeabi_uldivmod", CallingConv::ARM_AAPCS },
};
for (const auto &LC : LibraryCalls) {
setLibcallName(LC.Op, LC.Name);
setLibcallCallingConv(LC.Op, LC.CC);
}
}
setOperationAction(ISD::SDIVREM, MVT::i32, Custom);
setOperationAction(ISD::UDIVREM, MVT::i32, Custom);
setOperationAction(ISD::SDIVREM, MVT::i64, Custom);
setOperationAction(ISD::UDIVREM, MVT::i64, Custom);
} else {
setOperationAction(ISD::SDIVREM, MVT::i32, Expand);
setOperationAction(ISD::UDIVREM, MVT::i32, Expand);
}
if (Subtarget->getTargetTriple().isOSMSVCRT()) {
// MSVCRT doesn't have powi; fall back to pow
setLibcallName(RTLIB::POWI_F32, nullptr);
setLibcallName(RTLIB::POWI_F64, nullptr);
}
setOperationAction(ISD::GlobalAddress, MVT::i32, Custom);
setOperationAction(ISD::ConstantPool, MVT::i32, Custom);
setOperationAction(ISD::GlobalTLSAddress, MVT::i32, Custom);
setOperationAction(ISD::BlockAddress, MVT::i32, Custom);
setOperationAction(ISD::TRAP, MVT::Other, Legal);
setOperationAction(ISD::DEBUGTRAP, MVT::Other, Legal);
// Use the default implementation.
setOperationAction(ISD::VASTART, MVT::Other, Custom);
setOperationAction(ISD::VAARG, MVT::Other, Expand);
setOperationAction(ISD::VACOPY, MVT::Other, Expand);
setOperationAction(ISD::VAEND, MVT::Other, Expand);
setOperationAction(ISD::STACKSAVE, MVT::Other, Expand);
setOperationAction(ISD::STACKRESTORE, MVT::Other, Expand);
if (Subtarget->isTargetWindows())
setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i32, Custom);
else
setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i32, Expand);
// ARMv6 Thumb1 (except for CPUs that support dmb / dsb) and earlier use
// the default expansion.
InsertFencesForAtomic = false;
if (Subtarget->hasAnyDataBarrier() &&
(!Subtarget->isThumb() || Subtarget->hasV8MBaselineOps())) {
// ATOMIC_FENCE needs custom lowering; the others should have been expanded
// to ldrex/strex loops already.
setOperationAction(ISD::ATOMIC_FENCE, MVT::Other, Custom);
if (!Subtarget->isThumb() || !Subtarget->isMClass())
setOperationAction(ISD::ATOMIC_CMP_SWAP, MVT::i64, Custom);
// On v8, we have particularly efficient implementations of atomic fences
// if they can be combined with nearby atomic loads and stores.
if (!Subtarget->hasAcquireRelease() ||
getTargetMachine().getOptLevel() == 0) {
// Automatically insert fences (dmb ish) around ATOMIC_SWAP etc.
InsertFencesForAtomic = true;
}
} else {
// If there's anything we can use as a barrier, go through custom lowering
// for ATOMIC_FENCE.
// If target has DMB in thumb, Fences can be inserted.
if (Subtarget->hasDataBarrier())
InsertFencesForAtomic = true;
setOperationAction(ISD::ATOMIC_FENCE, MVT::Other,
Subtarget->hasAnyDataBarrier() ? Custom : Expand);
// Set them all for expansion, which will force libcalls.
setOperationAction(ISD::ATOMIC_CMP_SWAP, MVT::i32, Expand);
setOperationAction(ISD::ATOMIC_SWAP, MVT::i32, Expand);
setOperationAction(ISD::ATOMIC_LOAD_ADD, MVT::i32, Expand);
setOperationAction(ISD::ATOMIC_LOAD_SUB, MVT::i32, Expand);
setOperationAction(ISD::ATOMIC_LOAD_AND, MVT::i32, Expand);
setOperationAction(ISD::ATOMIC_LOAD_OR, MVT::i32, Expand);
setOperationAction(ISD::ATOMIC_LOAD_XOR, MVT::i32, Expand);
setOperationAction(ISD::ATOMIC_LOAD_NAND, MVT::i32, Expand);
setOperationAction(ISD::ATOMIC_LOAD_MIN, MVT::i32, Expand);
setOperationAction(ISD::ATOMIC_LOAD_MAX, MVT::i32, Expand);
setOperationAction(ISD::ATOMIC_LOAD_UMIN, MVT::i32, Expand);
setOperationAction(ISD::ATOMIC_LOAD_UMAX, MVT::i32, Expand);
// Mark ATOMIC_LOAD and ATOMIC_STORE custom so we can handle the
// Unordered/Monotonic case.
if (!InsertFencesForAtomic) {
setOperationAction(ISD::ATOMIC_LOAD, MVT::i32, Custom);
setOperationAction(ISD::ATOMIC_STORE, MVT::i32, Custom);
}
}
setOperationAction(ISD::PREFETCH, MVT::Other, Custom);
// Requires SXTB/SXTH, available on v6 and up in both ARM and Thumb modes.
if (!Subtarget->hasV6Ops()) {
setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i16, Expand);
setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i8, Expand);
}
setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1, Expand);
if (!Subtarget->useSoftFloat() && Subtarget->hasFPRegs() &&
!Subtarget->isThumb1Only()) {
// Turn f64->i64 into VMOVRRD, i64 -> f64 to VMOVDRR
// iff target supports vfp2.
setOperationAction(ISD::BITCAST, MVT::i64, Custom);
setOperationAction(ISD::FLT_ROUNDS_, MVT::i32, Custom);
setOperationAction(ISD::SET_ROUNDING, MVT::Other, Custom);
}
// We want to custom lower some of our intrinsics.
setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom);
setOperationAction(ISD::EH_SJLJ_SETJMP, MVT::i32, Custom);
setOperationAction(ISD::EH_SJLJ_LONGJMP, MVT::Other, Custom);
setOperationAction(ISD::EH_SJLJ_SETUP_DISPATCH, MVT::Other, Custom);
if (Subtarget->useSjLjEH())
setLibcallName(RTLIB::UNWIND_RESUME, "_Unwind_SjLj_Resume");
setOperationAction(ISD::SETCC, MVT::i32, Expand);
setOperationAction(ISD::SETCC, MVT::f32, Expand);
setOperationAction(ISD::SETCC, MVT::f64, Expand);
setOperationAction(ISD::SELECT, MVT::i32, Custom);
setOperationAction(ISD::SELECT, MVT::f32, Custom);
setOperationAction(ISD::SELECT, MVT::f64, Custom);
setOperationAction(ISD::SELECT_CC, MVT::i32, Custom);
setOperationAction(ISD::SELECT_CC, MVT::f32, Custom);
setOperationAction(ISD::SELECT_CC, MVT::f64, Custom);
if (Subtarget->hasFullFP16()) {
setOperationAction(ISD::SETCC, MVT::f16, Expand);
setOperationAction(ISD::SELECT, MVT::f16, Custom);
setOperationAction(ISD::SELECT_CC, MVT::f16, Custom);
}
setOperationAction(ISD::SETCCCARRY, MVT::i32, Custom);
setOperationAction(ISD::BRCOND, MVT::Other, Custom);
setOperationAction(ISD::BR_CC, MVT::i32, Custom);
if (Subtarget->hasFullFP16())
setOperationAction(ISD::BR_CC, MVT::f16, Custom);
setOperationAction(ISD::BR_CC, MVT::f32, Custom);
setOperationAction(ISD::BR_CC, MVT::f64, Custom);
setOperationAction(ISD::BR_JT, MVT::Other, Custom);
// We don't support sin/cos/fmod/copysign/pow
setOperationAction(ISD::FSIN, MVT::f64, Expand);
setOperationAction(ISD::FSIN, MVT::f32, Expand);
setOperationAction(ISD::FCOS, MVT::f32, Expand);
setOperationAction(ISD::FCOS, MVT::f64, Expand);
setOperationAction(ISD::FSINCOS, MVT::f64, Expand);
setOperationAction(ISD::FSINCOS, MVT::f32, Expand);
setOperationAction(ISD::FREM, MVT::f64, Expand);
setOperationAction(ISD::FREM, MVT::f32, Expand);
if (!Subtarget->useSoftFloat() && Subtarget->hasVFP2Base() &&
!Subtarget->isThumb1Only()) {
setOperationAction(ISD::FCOPYSIGN, MVT::f64, Custom);
setOperationAction(ISD::FCOPYSIGN, MVT::f32, Custom);
}
setOperationAction(ISD::FPOW, MVT::f64, Expand);
setOperationAction(ISD::FPOW, MVT::f32, Expand);
if (!Subtarget->hasVFP4Base()) {
setOperationAction(ISD::FMA, MVT::f64, Expand);
setOperationAction(ISD::FMA, MVT::f32, Expand);
}
// Various VFP goodness
if (!Subtarget->useSoftFloat() && !Subtarget->isThumb1Only()) {
// FP-ARMv8 adds f64 <-> f16 conversion. Before that it should be expanded.
if (!Subtarget->hasFPARMv8Base() || !Subtarget->hasFP64()) {
setOperationAction(ISD::FP16_TO_FP, MVT::f64, Expand);
setOperationAction(ISD::FP_TO_FP16, MVT::f64, Expand);
}
// fp16 is a special v7 extension that adds f16 <-> f32 conversions.
if (!Subtarget->hasFP16()) {
setOperationAction(ISD::FP16_TO_FP, MVT::f32, Expand);
setOperationAction(ISD::FP_TO_FP16, MVT::f32, Expand);
}
// Strict floating-point comparisons need custom lowering.
setOperationAction(ISD::STRICT_FSETCC, MVT::f16, Custom);
setOperationAction(ISD::STRICT_FSETCCS, MVT::f16, Custom);
setOperationAction(ISD::STRICT_FSETCC, MVT::f32, Custom);
setOperationAction(ISD::STRICT_FSETCCS, MVT::f32, Custom);
setOperationAction(ISD::STRICT_FSETCC, MVT::f64, Custom);
setOperationAction(ISD::STRICT_FSETCCS, MVT::f64, Custom);
}
// Use __sincos_stret if available.
if (getLibcallName(RTLIB::SINCOS_STRET_F32) != nullptr &&
getLibcallName(RTLIB::SINCOS_STRET_F64) != nullptr) {
setOperationAction(ISD::FSINCOS, MVT::f64, Custom);
setOperationAction(ISD::FSINCOS, MVT::f32, Custom);
}
// FP-ARMv8 implements a lot of rounding-like FP operations.
if (Subtarget->hasFPARMv8Base()) {
setOperationAction(ISD::FFLOOR, MVT::f32, Legal);
setOperationAction(ISD::FCEIL, MVT::f32, Legal);
setOperationAction(ISD::FROUND, MVT::f32, Legal);
setOperationAction(ISD::FTRUNC, MVT::f32, Legal);
setOperationAction(ISD::FNEARBYINT, MVT::f32, Legal);
setOperationAction(ISD::FRINT, MVT::f32, Legal);
setOperationAction(ISD::FMINNUM, MVT::f32, Legal);
setOperationAction(ISD::FMAXNUM, MVT::f32, Legal);
if (Subtarget->hasNEON()) {
setOperationAction(ISD::FMINNUM, MVT::v2f32, Legal);
setOperationAction(ISD::FMAXNUM, MVT::v2f32, Legal);
setOperationAction(ISD::FMINNUM, MVT::v4f32, Legal);
setOperationAction(ISD::FMAXNUM, MVT::v4f32, Legal);
}
if (Subtarget->hasFP64()) {
setOperationAction(ISD::FFLOOR, MVT::f64, Legal);
setOperationAction(ISD::FCEIL, MVT::f64, Legal);
setOperationAction(ISD::FROUND, MVT::f64, Legal);
setOperationAction(ISD::FTRUNC, MVT::f64, Legal);
setOperationAction(ISD::FNEARBYINT, MVT::f64, Legal);
setOperationAction(ISD::FRINT, MVT::f64, Legal);
setOperationAction(ISD::FMINNUM, MVT::f64, Legal);
setOperationAction(ISD::FMAXNUM, MVT::f64, Legal);
}
}
// FP16 often need to be promoted to call lib functions
if (Subtarget->hasFullFP16()) {
setOperationAction(ISD::FREM, MVT::f16, Promote);
setOperationAction(ISD::FCOPYSIGN, MVT::f16, Expand);
setOperationAction(ISD::FSIN, MVT::f16, Promote);
setOperationAction(ISD::FCOS, MVT::f16, Promote);
setOperationAction(ISD::FSINCOS, MVT::f16, Promote);
setOperationAction(ISD::FPOWI, MVT::f16, Promote);
setOperationAction(ISD::FPOW, MVT::f16, Promote);
setOperationAction(ISD::FEXP, MVT::f16, Promote);
setOperationAction(ISD::FEXP2, MVT::f16, Promote);
setOperationAction(ISD::FLOG, MVT::f16, Promote);
setOperationAction(ISD::FLOG10, MVT::f16, Promote);
setOperationAction(ISD::FLOG2, MVT::f16, Promote);
setOperationAction(ISD::FROUND, MVT::f16, Legal);
}
if (Subtarget->hasNEON()) {
// vmin and vmax aren't available in a scalar form, so we can use
// a NEON instruction with an undef lane instead. This has a performance
// penalty on some cores, so we don't do this unless we have been
// asked to by the core tuning model.
if (Subtarget->useNEONForSinglePrecisionFP()) {
setOperationAction(ISD::FMINIMUM, MVT::f32, Legal);
setOperationAction(ISD::FMAXIMUM, MVT::f32, Legal);
setOperationAction(ISD::FMINIMUM, MVT::f16, Legal);
setOperationAction(ISD::FMAXIMUM, MVT::f16, Legal);
}
setOperationAction(ISD::FMINIMUM, MVT::v2f32, Legal);
setOperationAction(ISD::FMAXIMUM, MVT::v2f32, Legal);
setOperationAction(ISD::FMINIMUM, MVT::v4f32, Legal);
setOperationAction(ISD::FMAXIMUM, MVT::v4f32, Legal);
if (Subtarget->hasFullFP16()) {
setOperationAction(ISD::FMINNUM, MVT::v4f16, Legal);
setOperationAction(ISD::FMAXNUM, MVT::v4f16, Legal);
setOperationAction(ISD::FMINNUM, MVT::v8f16, Legal);
setOperationAction(ISD::FMAXNUM, MVT::v8f16, Legal);
setOperationAction(ISD::FMINIMUM, MVT::v4f16, Legal);
setOperationAction(ISD::FMAXIMUM, MVT::v4f16, Legal);
setOperationAction(ISD::FMINIMUM, MVT::v8f16, Legal);
setOperationAction(ISD::FMAXIMUM, MVT::v8f16, Legal);
}
}
// We have target-specific dag combine patterns for the following nodes:
// ARMISD::VMOVRRD - No need to call setTargetDAGCombine
setTargetDAGCombine(ISD::ADD);
setTargetDAGCombine(ISD::SUB);
setTargetDAGCombine(ISD::MUL);
setTargetDAGCombine(ISD::AND);
setTargetDAGCombine(ISD::OR);
setTargetDAGCombine(ISD::XOR);
if (Subtarget->hasMVEIntegerOps())
setTargetDAGCombine(ISD::VSELECT);
if (Subtarget->hasV6Ops())
setTargetDAGCombine(ISD::SRL);
if (Subtarget->isThumb1Only())
setTargetDAGCombine(ISD::SHL);
setStackPointerRegisterToSaveRestore(ARM::SP);
if (Subtarget->useSoftFloat() || Subtarget->isThumb1Only() ||
!Subtarget->hasVFP2Base() || Subtarget->hasMinSize())
setSchedulingPreference(Sched::RegPressure);
else
setSchedulingPreference(Sched::Hybrid);
//// temporary - rewrite interface to use type
MaxStoresPerMemset = 8;
MaxStoresPerMemsetOptSize = 4;
MaxStoresPerMemcpy = 4; // For @llvm.memcpy -> sequence of stores
MaxStoresPerMemcpyOptSize = 2;
MaxStoresPerMemmove = 4; // For @llvm.memmove -> sequence of stores
MaxStoresPerMemmoveOptSize = 2;
// On ARM arguments smaller than 4 bytes are extended, so all arguments
// are at least 4 bytes aligned.
setMinStackArgumentAlignment(Align(4));
// Prefer likely predicted branches to selects on out-of-order cores.
PredictableSelectIsExpensive = Subtarget->getSchedModel().isOutOfOrder();
setPrefLoopAlignment(Align(1ULL << Subtarget->getPrefLoopLogAlignment()));
setMinFunctionAlignment(Subtarget->isThumb() ? Align(2) : Align(4));
if (Subtarget->isThumb() || Subtarget->isThumb2())
setTargetDAGCombine(ISD::ABS);
}
bool ARMTargetLowering::useSoftFloat() const {
return Subtarget->useSoftFloat();
}
// FIXME: It might make sense to define the representative register class as the
// nearest super-register that has a non-null superset. For example, DPR_VFP2 is
// a super-register of SPR, and DPR is a superset if DPR_VFP2. Consequently,
// SPR's representative would be DPR_VFP2. This should work well if register
// pressure tracking were modified such that a register use would increment the
// pressure of the register class's representative and all of it's super
// classes' representatives transitively. We have not implemented this because
// of the difficulty prior to coalescing of modeling operand register classes
// due to the common occurrence of cross class copies and subregister insertions
// and extractions.
std::pair<const TargetRegisterClass *, uint8_t>
ARMTargetLowering::findRepresentativeClass(const TargetRegisterInfo *TRI,
MVT VT) const {
const TargetRegisterClass *RRC = nullptr;
uint8_t Cost = 1;
switch (VT.SimpleTy) {
default:
return TargetLowering::findRepresentativeClass(TRI, VT);
// Use DPR as representative register class for all floating point
// and vector types. Since there are 32 SPR registers and 32 DPR registers so
// the cost is 1 for both f32 and f64.
case MVT::f32: case MVT::f64: case MVT::v8i8: case MVT::v4i16:
case MVT::v2i32: case MVT::v1i64: case MVT::v2f32:
RRC = &ARM::DPRRegClass;
// When NEON is used for SP, only half of the register file is available
// because operations that define both SP and DP results will be constrained
// to the VFP2 class (D0-D15). We currently model this constraint prior to
// coalescing by double-counting the SP regs. See the FIXME above.
if (Subtarget->useNEONForSinglePrecisionFP())
Cost = 2;
break;
case MVT::v16i8: case MVT::v8i16: case MVT::v4i32: case MVT::v2i64:
case MVT::v4f32: case MVT::v2f64:
RRC = &ARM::DPRRegClass;
Cost = 2;
break;
case MVT::v4i64:
RRC = &ARM::DPRRegClass;
Cost = 4;
break;
case MVT::v8i64:
RRC = &ARM::DPRRegClass;
Cost = 8;
break;
}
return std::make_pair(RRC, Cost);
}
const char *ARMTargetLowering::getTargetNodeName(unsigned Opcode) const {
#define MAKE_CASE(V) \
case V: \
return #V;
switch ((ARMISD::NodeType)Opcode) {
case ARMISD::FIRST_NUMBER:
break;
MAKE_CASE(ARMISD::Wrapper)
MAKE_CASE(ARMISD::WrapperPIC)
MAKE_CASE(ARMISD::WrapperJT)
MAKE_CASE(ARMISD::COPY_STRUCT_BYVAL)
MAKE_CASE(ARMISD::CALL)
MAKE_CASE(ARMISD::CALL_PRED)
MAKE_CASE(ARMISD::CALL_NOLINK)
MAKE_CASE(ARMISD::tSECALL)
MAKE_CASE(ARMISD::BRCOND)
MAKE_CASE(ARMISD::BR_JT)
MAKE_CASE(ARMISD::BR2_JT)
MAKE_CASE(ARMISD::RET_FLAG)
MAKE_CASE(ARMISD::SERET_FLAG)
MAKE_CASE(ARMISD::INTRET_FLAG)
MAKE_CASE(ARMISD::PIC_ADD)
MAKE_CASE(ARMISD::CMP)
MAKE_CASE(ARMISD::CMN)
MAKE_CASE(ARMISD::CMPZ)
MAKE_CASE(ARMISD::CMPFP)
MAKE_CASE(ARMISD::CMPFPE)
MAKE_CASE(ARMISD::CMPFPw0)
MAKE_CASE(ARMISD::CMPFPEw0)
MAKE_CASE(ARMISD::BCC_i64)
MAKE_CASE(ARMISD::FMSTAT)
MAKE_CASE(ARMISD::CMOV)
MAKE_CASE(ARMISD::SUBS)
MAKE_CASE(ARMISD::SSAT)
MAKE_CASE(ARMISD::USAT)
MAKE_CASE(ARMISD::ASRL)
MAKE_CASE(ARMISD::LSRL)
MAKE_CASE(ARMISD::LSLL)
MAKE_CASE(ARMISD::SRL_FLAG)
MAKE_CASE(ARMISD::SRA_FLAG)
MAKE_CASE(ARMISD::RRX)
MAKE_CASE(ARMISD::ADDC)
MAKE_CASE(ARMISD::ADDE)
MAKE_CASE(ARMISD::SUBC)
MAKE_CASE(ARMISD::SUBE)
MAKE_CASE(ARMISD::LSLS)
MAKE_CASE(ARMISD::VMOVRRD)
MAKE_CASE(ARMISD::VMOVDRR)
MAKE_CASE(ARMISD::VMOVhr)
MAKE_CASE(ARMISD::VMOVrh)
MAKE_CASE(ARMISD::VMOVSR)
MAKE_CASE(ARMISD::EH_SJLJ_SETJMP)
MAKE_CASE(ARMISD::EH_SJLJ_LONGJMP)
MAKE_CASE(ARMISD::EH_SJLJ_SETUP_DISPATCH)
MAKE_CASE(ARMISD::TC_RETURN)
MAKE_CASE(ARMISD::THREAD_POINTER)
MAKE_CASE(ARMISD::DYN_ALLOC)
MAKE_CASE(ARMISD::MEMBARRIER_MCR)
MAKE_CASE(ARMISD::PRELOAD)
MAKE_CASE(ARMISD::LDRD)
MAKE_CASE(ARMISD::STRD)
MAKE_CASE(ARMISD::WIN__CHKSTK)
MAKE_CASE(ARMISD::WIN__DBZCHK)
MAKE_CASE(ARMISD::PREDICATE_CAST)
MAKE_CASE(ARMISD::VECTOR_REG_CAST)
MAKE_CASE(ARMISD::MVESEXT)
MAKE_CASE(ARMISD::MVEZEXT)
MAKE_CASE(ARMISD::MVETRUNC)
MAKE_CASE(ARMISD::VCMP)
MAKE_CASE(ARMISD::VCMPZ)
MAKE_CASE(ARMISD::VTST)
MAKE_CASE(ARMISD::VSHLs)
MAKE_CASE(ARMISD::VSHLu)
MAKE_CASE(ARMISD::VSHLIMM)
MAKE_CASE(ARMISD::VSHRsIMM)
MAKE_CASE(ARMISD::VSHRuIMM)
MAKE_CASE(ARMISD::VRSHRsIMM)
MAKE_CASE(ARMISD::VRSHRuIMM)
MAKE_CASE(ARMISD::VRSHRNIMM)
MAKE_CASE(ARMISD::VQSHLsIMM)
MAKE_CASE(ARMISD::VQSHLuIMM)
MAKE_CASE(ARMISD::VQSHLsuIMM)
MAKE_CASE(ARMISD::VQSHRNsIMM)
MAKE_CASE(ARMISD::VQSHRNuIMM)
MAKE_CASE(ARMISD::VQSHRNsuIMM)
MAKE_CASE(ARMISD::VQRSHRNsIMM)
MAKE_CASE(ARMISD::VQRSHRNuIMM)
MAKE_CASE(ARMISD::VQRSHRNsuIMM)
MAKE_CASE(ARMISD::VSLIIMM)
MAKE_CASE(ARMISD::VSRIIMM)
MAKE_CASE(ARMISD::VGETLANEu)
MAKE_CASE(ARMISD::VGETLANEs)
MAKE_CASE(ARMISD::VMOVIMM)
MAKE_CASE(ARMISD::VMVNIMM)
MAKE_CASE(ARMISD::VMOVFPIMM)
MAKE_CASE(ARMISD::VDUP)
MAKE_CASE(ARMISD::VDUPLANE)
MAKE_CASE(ARMISD::VEXT)
MAKE_CASE(ARMISD::VREV64)
MAKE_CASE(ARMISD::VREV32)
MAKE_CASE(ARMISD::VREV16)
MAKE_CASE(ARMISD::VZIP)
MAKE_CASE(ARMISD::VUZP)
MAKE_CASE(ARMISD::VTRN)
MAKE_CASE(ARMISD::VTBL1)
MAKE_CASE(ARMISD::VTBL2)
MAKE_CASE(ARMISD::VMOVN)
MAKE_CASE(ARMISD::VQMOVNs)
MAKE_CASE(ARMISD::VQMOVNu)
MAKE_CASE(ARMISD::VCVTN)
MAKE_CASE(ARMISD::VCVTL)
MAKE_CASE(ARMISD::VIDUP)
MAKE_CASE(ARMISD::VMULLs)
MAKE_CASE(ARMISD::VMULLu)
MAKE_CASE(ARMISD::VQDMULH)
MAKE_CASE(ARMISD::VADDVs)
MAKE_CASE(ARMISD::VADDVu)
MAKE_CASE(ARMISD::VADDVps)
MAKE_CASE(ARMISD::VADDVpu)
MAKE_CASE(ARMISD::VADDLVs)
MAKE_CASE(ARMISD::VADDLVu)
MAKE_CASE(ARMISD::VADDLVAs)
MAKE_CASE(ARMISD::VADDLVAu)
MAKE_CASE(ARMISD::VADDLVps)
MAKE_CASE(ARMISD::VADDLVpu)
MAKE_CASE(ARMISD::VADDLVAps)
MAKE_CASE(ARMISD::VADDLVApu)
MAKE_CASE(ARMISD::VMLAVs)
MAKE_CASE(ARMISD::VMLAVu)
MAKE_CASE(ARMISD::VMLAVps)
MAKE_CASE(ARMISD::VMLAVpu)
MAKE_CASE(ARMISD::VMLALVs)
MAKE_CASE(ARMISD::VMLALVu)
MAKE_CASE(ARMISD::VMLALVps)
MAKE_CASE(ARMISD::VMLALVpu)
MAKE_CASE(ARMISD::VMLALVAs)
MAKE_CASE(ARMISD::VMLALVAu)
MAKE_CASE(ARMISD::VMLALVAps)
MAKE_CASE(ARMISD::VMLALVApu)
MAKE_CASE(ARMISD::VMINVu)
MAKE_CASE(ARMISD::VMINVs)
MAKE_CASE(ARMISD::VMAXVu)
MAKE_CASE(ARMISD::VMAXVs)
MAKE_CASE(ARMISD::UMAAL)
MAKE_CASE(ARMISD::UMLAL)
MAKE_CASE(ARMISD::SMLAL)
MAKE_CASE(ARMISD::SMLALBB)
MAKE_CASE(ARMISD::SMLALBT)
MAKE_CASE(ARMISD::SMLALTB)
MAKE_CASE(ARMISD::SMLALTT)
MAKE_CASE(ARMISD::SMULWB)
MAKE_CASE(ARMISD::SMULWT)
MAKE_CASE(ARMISD::SMLALD)
MAKE_CASE(ARMISD::SMLALDX)
MAKE_CASE(ARMISD::SMLSLD)
MAKE_CASE(ARMISD::SMLSLDX)
MAKE_CASE(ARMISD::SMMLAR)
MAKE_CASE(ARMISD::SMMLSR)
MAKE_CASE(ARMISD::QADD16b)
MAKE_CASE(ARMISD::QSUB16b)
MAKE_CASE(ARMISD::QADD8b)
MAKE_CASE(ARMISD::QSUB8b)
MAKE_CASE(ARMISD::UQADD16b)
MAKE_CASE(ARMISD::UQSUB16b)
MAKE_CASE(ARMISD::UQADD8b)
MAKE_CASE(ARMISD::UQSUB8b)
MAKE_CASE(ARMISD::BUILD_VECTOR)
MAKE_CASE(ARMISD::BFI)
MAKE_CASE(ARMISD::VORRIMM)
MAKE_CASE(ARMISD::VBICIMM)
MAKE_CASE(ARMISD::VBSP)
MAKE_CASE(ARMISD::MEMCPY)
MAKE_CASE(ARMISD::VLD1DUP)
MAKE_CASE(ARMISD::VLD2DUP)
MAKE_CASE(ARMISD::VLD3DUP)
MAKE_CASE(ARMISD::VLD4DUP)
MAKE_CASE(ARMISD::VLD1_UPD)
MAKE_CASE(ARMISD::VLD2_UPD)
MAKE_CASE(ARMISD::VLD3_UPD)
MAKE_CASE(ARMISD::VLD4_UPD)
MAKE_CASE(ARMISD::VLD1x2_UPD)
MAKE_CASE(ARMISD::VLD1x3_UPD)
MAKE_CASE(ARMISD::VLD1x4_UPD)
MAKE_CASE(ARMISD::VLD2LN_UPD)
MAKE_CASE(ARMISD::VLD3LN_UPD)
MAKE_CASE(ARMISD::VLD4LN_UPD)
MAKE_CASE(ARMISD::VLD1DUP_UPD)
MAKE_CASE(ARMISD::VLD2DUP_UPD)
MAKE_CASE(ARMISD::VLD3DUP_UPD)
MAKE_CASE(ARMISD::VLD4DUP_UPD)
MAKE_CASE(ARMISD::VST1_UPD)
MAKE_CASE(ARMISD::VST2_UPD)
MAKE_CASE(ARMISD::VST3_UPD)
MAKE_CASE(ARMISD::VST4_UPD)
MAKE_CASE(ARMISD::VST1x2_UPD)
MAKE_CASE(ARMISD::VST1x3_UPD)
MAKE_CASE(ARMISD::VST1x4_UPD)
MAKE_CASE(ARMISD::VST2LN_UPD)
MAKE_CASE(ARMISD::VST3LN_UPD)
MAKE_CASE(ARMISD::VST4LN_UPD)
MAKE_CASE(ARMISD::WLS)
MAKE_CASE(ARMISD::WLSSETUP)
MAKE_CASE(ARMISD::LE)
MAKE_CASE(ARMISD::LOOP_DEC)
MAKE_CASE(ARMISD::CSINV)
MAKE_CASE(ARMISD::CSNEG)
MAKE_CASE(ARMISD::CSINC)
MAKE_CASE(ARMISD::MEMCPYLOOP)
MAKE_CASE(ARMISD::MEMSETLOOP)
#undef MAKE_CASE
}
return nullptr;
}
EVT ARMTargetLowering::getSetCCResultType(const DataLayout &DL, LLVMContext &,
EVT VT) const {
if (!VT.isVector())
return getPointerTy(DL);
// MVE has a predicate register.
if ((Subtarget->hasMVEIntegerOps() &&
(VT == MVT::v4i32 || VT == MVT::v8i16 || VT == MVT::v16i8)) ||
(Subtarget->hasMVEFloatOps() && (VT == MVT::v4f32 || VT == MVT::v8f16)))
return MVT::getVectorVT(MVT::i1, VT.getVectorElementCount());
return VT.changeVectorElementTypeToInteger();
}
/// getRegClassFor - Return the register class that should be used for the
/// specified value type.
const TargetRegisterClass *
ARMTargetLowering::getRegClassFor(MVT VT, bool isDivergent) const {
(void)isDivergent;
// Map v4i64 to QQ registers but do not make the type legal. Similarly map
// v8i64 to QQQQ registers. v4i64 and v8i64 are only used for REG_SEQUENCE to
// load / store 4 to 8 consecutive NEON D registers, or 2 to 4 consecutive
// MVE Q registers.
if (Subtarget->hasNEON()) {
if (VT == MVT::v4i64)
return &ARM::QQPRRegClass;
if (VT == MVT::v8i64)
return &ARM::QQQQPRRegClass;
}
if (Subtarget->hasMVEIntegerOps()) {
if (VT == MVT::v4i64)
return &ARM::MQQPRRegClass;
if (VT == MVT::v8i64)
return &ARM::MQQQQPRRegClass;
}
return TargetLowering::getRegClassFor(VT);
}
// memcpy, and other memory intrinsics, typically tries to use LDM/STM if the
// source/dest is aligned and the copy size is large enough. We therefore want
// to align such objects passed to memory intrinsics.
bool ARMTargetLowering::shouldAlignPointerArgs(CallInst *CI, unsigned &MinSize,
unsigned &PrefAlign) const {
if (!isa<MemIntrinsic>(CI))
return false;
MinSize = 8;
// On ARM11 onwards (excluding M class) 8-byte aligned LDM is typically 1
// cycle faster than 4-byte aligned LDM.
PrefAlign = (Subtarget->hasV6Ops() && !Subtarget->isMClass() ? 8 : 4);
return true;
}
// Create a fast isel object.
FastISel *
ARMTargetLowering::createFastISel(FunctionLoweringInfo &funcInfo,
const TargetLibraryInfo *libInfo) const {
return ARM::createFastISel(funcInfo, libInfo);
}
Sched::Preference ARMTargetLowering::getSchedulingPreference(SDNode *N) const {
unsigned NumVals = N->getNumValues();
if (!NumVals)
return Sched::RegPressure;
for (unsigned i = 0; i != NumVals; ++i) {
EVT VT = N->getValueType(i);
if (VT == MVT::Glue || VT == MVT::Other)
continue;
if (VT.isFloatingPoint() || VT.isVector())
return Sched::ILP;
}
if (!N->isMachineOpcode())
return Sched::RegPressure;
// Load are scheduled for latency even if there instruction itinerary
// is not available.
const TargetInstrInfo *TII = Subtarget->getInstrInfo();
const MCInstrDesc &MCID = TII->get(N->getMachineOpcode());
if (MCID.getNumDefs() == 0)
return Sched::RegPressure;
if (!Itins->isEmpty() &&
Itins->getOperandCycle(MCID.getSchedClass(), 0) > 2)
return Sched::ILP;
return Sched::RegPressure;
}
//===----------------------------------------------------------------------===//
// Lowering Code
//===----------------------------------------------------------------------===//
static bool isSRL16(const SDValue &Op) {
if (Op.getOpcode() != ISD::SRL)
return false;
if (auto Const = dyn_cast<ConstantSDNode>(Op.getOperand(1)))
return Const->getZExtValue() == 16;
return false;
}
static bool isSRA16(const SDValue &Op) {
if (Op.getOpcode() != ISD::SRA)
return false;
if (auto Const = dyn_cast<ConstantSDNode>(Op.getOperand(1)))
return Const->getZExtValue() == 16;
return false;
}
static bool isSHL16(const SDValue &Op) {
if (Op.getOpcode() != ISD::SHL)
return false;
if (auto Const = dyn_cast<ConstantSDNode>(Op.getOperand(1)))
return Const->getZExtValue() == 16;
return false;
}
// Check for a signed 16-bit value. We special case SRA because it makes it
// more simple when also looking for SRAs that aren't sign extending a
// smaller value. Without the check, we'd need to take extra care with
// checking order for some operations.
static bool isS16(const SDValue &Op, SelectionDAG &DAG) {
if (isSRA16(Op))
return isSHL16(Op.getOperand(0));
return DAG.ComputeNumSignBits(Op) == 17;
}
/// IntCCToARMCC - Convert a DAG integer condition code to an ARM CC
static ARMCC::CondCodes IntCCToARMCC(ISD::CondCode CC) {
switch (CC) {
default: llvm_unreachable("Unknown condition code!");
case ISD::SETNE: return ARMCC::NE;
case ISD::SETEQ: return ARMCC::EQ;
case ISD::SETGT: return ARMCC::GT;
case ISD::SETGE: return ARMCC::GE;
case ISD::SETLT: return ARMCC::LT;
case ISD::SETLE: return ARMCC::LE;
case ISD::SETUGT: return ARMCC::HI;
case ISD::SETUGE: return ARMCC::HS;
case ISD::SETULT: return ARMCC::LO;
case ISD::SETULE: return ARMCC::LS;
}
}
/// FPCCToARMCC - Convert a DAG fp condition code to an ARM CC.
static void FPCCToARMCC(ISD::CondCode CC, ARMCC::CondCodes &CondCode,
ARMCC::CondCodes &CondCode2) {
CondCode2 = ARMCC::AL;
switch (CC) {
default: llvm_unreachable("Unknown FP condition!");
case ISD::SETEQ:
case ISD::SETOEQ: CondCode = ARMCC::EQ; break;
case ISD::SETGT:
case ISD::SETOGT: CondCode = ARMCC::GT; break;
case ISD::SETGE:
case ISD::SETOGE: CondCode = ARMCC::GE; break;
case ISD::SETOLT: CondCode = ARMCC::MI; break;
case ISD::SETOLE: CondCode = ARMCC::LS; break;
case ISD::SETONE: CondCode = ARMCC::MI; CondCode2 = ARMCC::GT; break;
case ISD::SETO: CondCode = ARMCC::VC; break;
case ISD::SETUO: CondCode = ARMCC::VS; break;
case ISD::SETUEQ: CondCode = ARMCC::EQ; CondCode2 = ARMCC::VS; break;
case ISD::SETUGT: CondCode = ARMCC::HI; break;
case ISD::SETUGE: CondCode = ARMCC::PL; break;
case ISD::SETLT:
case ISD::SETULT: CondCode = ARMCC::LT; break;
case ISD::SETLE:
case ISD::SETULE: CondCode = ARMCC::LE; break;
case ISD::SETNE:
case ISD::SETUNE: CondCode = ARMCC::NE; break;
}
}
//===----------------------------------------------------------------------===//
// Calling Convention Implementation
//===----------------------------------------------------------------------===//
/// getEffectiveCallingConv - Get the effective calling convention, taking into
/// account presence of floating point hardware and calling convention
/// limitations, such as support for variadic functions.
CallingConv::ID
ARMTargetLowering::getEffectiveCallingConv(CallingConv::ID CC,
bool isVarArg) const {
switch (CC) {
default:
report_fatal_error("Unsupported calling convention");
case CallingConv::ARM_AAPCS:
case CallingConv::ARM_APCS:
case CallingConv::GHC:
case CallingConv::CFGuard_Check:
return CC;
case CallingConv::PreserveMost:
return CallingConv::PreserveMost;
case CallingConv::ARM_AAPCS_VFP:
case CallingConv::Swift:
case CallingConv::SwiftTail:
return isVarArg ? CallingConv::ARM_AAPCS : CallingConv::ARM_AAPCS_VFP;
case CallingConv::C:
case CallingConv::Tail:
if (!Subtarget->isAAPCS_ABI())
return CallingConv::ARM_APCS;
else if (Subtarget->hasVFP2Base() && !Subtarget->isThumb1Only() &&
getTargetMachine().Options.FloatABIType == FloatABI::Hard &&
!isVarArg)
return CallingConv::ARM_AAPCS_VFP;
else
return CallingConv::ARM_AAPCS;
case CallingConv::Fast:
case CallingConv::CXX_FAST_TLS:
if (!Subtarget->isAAPCS_ABI()) {
if (Subtarget->hasVFP2Base() && !Subtarget->isThumb1Only() && !isVarArg)
return CallingConv::Fast;
return CallingConv::ARM_APCS;
} else if (Subtarget->hasVFP2Base() &&
!Subtarget->isThumb1Only() && !isVarArg)
return CallingConv::ARM_AAPCS_VFP;
else
return CallingConv::ARM_AAPCS;
}
}
CCAssignFn *ARMTargetLowering::CCAssignFnForCall(CallingConv::ID CC,
bool isVarArg) const {
return CCAssignFnForNode(CC, false, isVarArg);
}
CCAssignFn *ARMTargetLowering::CCAssignFnForReturn(CallingConv::ID CC,
bool isVarArg) const {
return CCAssignFnForNode(CC, true, isVarArg);
}
/// CCAssignFnForNode - Selects the correct CCAssignFn for the given
/// CallingConvention.
CCAssignFn *ARMTargetLowering::CCAssignFnForNode(CallingConv::ID CC,
bool Return,
bool isVarArg) const {
switch (getEffectiveCallingConv(CC, isVarArg)) {
default:
report_fatal_error("Unsupported calling convention");
case CallingConv::ARM_APCS:
return (Return ? RetCC_ARM_APCS : CC_ARM_APCS);
case CallingConv::ARM_AAPCS:
return (Return ? RetCC_ARM_AAPCS : CC_ARM_AAPCS);
case CallingConv::ARM_AAPCS_VFP:
return (Return ? RetCC_ARM_AAPCS_VFP : CC_ARM_AAPCS_VFP);
case CallingConv::Fast:
return (Return ? RetFastCC_ARM_APCS : FastCC_ARM_APCS);
case CallingConv::GHC:
return (Return ? RetCC_ARM_APCS : CC_ARM_APCS_GHC);
case CallingConv::PreserveMost:
return (Return ? RetCC_ARM_AAPCS : CC_ARM_AAPCS);
case CallingConv::CFGuard_Check:
return (Return ? RetCC_ARM_AAPCS : CC_ARM_Win32_CFGuard_Check);
}
}
SDValue ARMTargetLowering::MoveToHPR(const SDLoc &dl, SelectionDAG &DAG,
MVT LocVT, MVT ValVT, SDValue Val) const {
Val = DAG.getNode(ISD::BITCAST, dl, MVT::getIntegerVT(LocVT.getSizeInBits()),
Val);
if (Subtarget->hasFullFP16()) {
Val = DAG.getNode(ARMISD::VMOVhr, dl, ValVT, Val);
} else {
Val = DAG.getNode(ISD::TRUNCATE, dl,
MVT::getIntegerVT(ValVT.getSizeInBits()), Val);
Val = DAG.getNode(ISD::BITCAST, dl, ValVT, Val);
}
return Val;
}
SDValue ARMTargetLowering::MoveFromHPR(const SDLoc &dl, SelectionDAG &DAG,
MVT LocVT, MVT ValVT,
SDValue Val) const {
if (Subtarget->hasFullFP16()) {
Val = DAG.getNode(ARMISD::VMOVrh, dl,
MVT::getIntegerVT(LocVT.getSizeInBits()), Val);
} else {
Val = DAG.getNode(ISD::BITCAST, dl,
MVT::getIntegerVT(ValVT.getSizeInBits()), Val);
Val = DAG.getNode(ISD::ZERO_EXTEND, dl,
MVT::getIntegerVT(LocVT.getSizeInBits()), Val);
}
return DAG.getNode(ISD::BITCAST, dl, LocVT, Val);
}
/// LowerCallResult - Lower the result values of a call into the
/// appropriate copies out of appropriate physical registers.
SDValue ARMTargetLowering::LowerCallResult(
SDValue Chain, SDValue InFlag, CallingConv::ID CallConv, bool isVarArg,
const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl,
SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals, bool isThisReturn,
SDValue ThisVal) const {
// Assign locations to each value returned by this call.
SmallVector<CCValAssign, 16> RVLocs;
CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), RVLocs,
*DAG.getContext());
CCInfo.AnalyzeCallResult(Ins, CCAssignFnForReturn(CallConv, isVarArg));
// Copy all of the result registers out of their specified physreg.
for (unsigned i = 0; i != RVLocs.size(); ++i) {
CCValAssign VA = RVLocs[i];
// Pass 'this' value directly from the argument to return value, to avoid
// reg unit interference
if (i == 0 && isThisReturn) {
assert(!VA.needsCustom() && VA.getLocVT() == MVT::i32 &&
"unexpected return calling convention register assignment");
InVals.push_back(ThisVal);
continue;
}
SDValue Val;
if (VA.needsCustom() &&
(VA.getLocVT() == MVT::f64 || VA.getLocVT() == MVT::v2f64)) {
// Handle f64 or half of a v2f64.
SDValue Lo = DAG.getCopyFromReg(Chain, dl, VA.getLocReg(), MVT::i32,
InFlag);
Chain = Lo.getValue(1);
InFlag = Lo.getValue(2);
VA = RVLocs[++i]; // skip ahead to next loc
SDValue Hi = DAG.getCopyFromReg(Chain, dl, VA.getLocReg(), MVT::i32,
InFlag);
Chain = Hi.getValue(1);
InFlag = Hi.getValue(2);
if (!Subtarget->isLittle())
std::swap (Lo, Hi);
Val = DAG.getNode(ARMISD::VMOVDRR, dl, MVT::f64, Lo, Hi);
if (VA.getLocVT() == MVT::v2f64) {
SDValue Vec = DAG.getNode(ISD::UNDEF, dl, MVT::v2f64);
Vec = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v2f64, Vec, Val,
DAG.getConstant(0, dl, MVT::i32));
VA = RVLocs[++i]; // skip ahead to next loc
Lo = DAG.getCopyFromReg(Chain, dl, VA.getLocReg(), MVT::i32, InFlag);
Chain = Lo.getValue(1);
InFlag = Lo.getValue(2);
VA = RVLocs[++i]; // skip ahead to next loc
Hi = DAG.getCopyFromReg(Chain, dl, VA.getLocReg(), MVT::i32, InFlag);
Chain = Hi.getValue(1);
InFlag = Hi.getValue(2);
if (!Subtarget->isLittle())
std::swap (Lo, Hi);
Val = DAG.getNode(ARMISD::VMOVDRR, dl, MVT::f64, Lo, Hi);
Val = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v2f64, Vec, Val,
DAG.getConstant(1, dl, MVT::i32));
}
} else {
Val = DAG.getCopyFromReg(Chain, dl, VA.getLocReg(), VA.getLocVT(),
InFlag);
Chain = Val.getValue(1);
InFlag = Val.getValue(2);
}
switch (VA.getLocInfo()) {
default: llvm_unreachable("Unknown loc info!");
case CCValAssign::Full: break;
case CCValAssign::BCvt:
Val = DAG.getNode(ISD::BITCAST, dl, VA.getValVT(), Val);
break;
}
// f16 arguments have their size extended to 4 bytes and passed as if they
// had been copied to the LSBs of a 32-bit register.
// For that, it's passed extended to i32 (soft ABI) or to f32 (hard ABI)
if (VA.needsCustom() &&
(VA.getValVT() == MVT::f16 || VA.getValVT() == MVT::bf16))
Val = MoveToHPR(dl, DAG, VA.getLocVT(), VA.getValVT(), Val);
InVals.push_back(Val);
}
return Chain;
}
std::pair<SDValue, MachinePointerInfo> ARMTargetLowering::computeAddrForCallArg(
const SDLoc &dl, SelectionDAG &DAG, const CCValAssign &VA, SDValue StackPtr,
bool IsTailCall, int SPDiff) const {
SDValue DstAddr;
MachinePointerInfo DstInfo;
int32_t Offset = VA.getLocMemOffset();
MachineFunction &MF = DAG.getMachineFunction();
if (IsTailCall) {
Offset += SPDiff;
auto PtrVT = getPointerTy(DAG.getDataLayout());
int Size = VA.getLocVT().getFixedSizeInBits() / 8;
int FI = MF.getFrameInfo().CreateFixedObject(Size, Offset, true);
DstAddr = DAG.getFrameIndex(FI, PtrVT);
DstInfo =
MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI);
} else {
SDValue PtrOff = DAG.getIntPtrConstant(Offset, dl);
DstAddr = DAG.getNode(ISD::ADD, dl, getPointerTy(DAG.getDataLayout()),
StackPtr, PtrOff);
DstInfo =
MachinePointerInfo::getStack(DAG.getMachineFunction(), Offset);
}
return std::make_pair(DstAddr, DstInfo);
}
void ARMTargetLowering::PassF64ArgInRegs(const SDLoc &dl, SelectionDAG &DAG,
SDValue Chain, SDValue &Arg,
RegsToPassVector &RegsToPass,
CCValAssign &VA, CCValAssign &NextVA,
SDValue &StackPtr,
SmallVectorImpl<SDValue> &MemOpChains,
bool IsTailCall,
int SPDiff) const {
SDValue fmrrd = DAG.getNode(ARMISD::VMOVRRD, dl,
DAG.getVTList(MVT::i32, MVT::i32), Arg);
unsigned id = Subtarget->isLittle() ? 0 : 1;
RegsToPass.push_back(std::make_pair(VA.getLocReg(), fmrrd.getValue(id)));
if (NextVA.isRegLoc())
RegsToPass.push_back(std::make_pair(NextVA.getLocReg(), fmrrd.getValue(1-id)));
else {
assert(NextVA.isMemLoc());
if (!StackPtr.getNode())
StackPtr = DAG.getCopyFromReg(Chain, dl, ARM::SP,
getPointerTy(DAG.getDataLayout()));
SDValue DstAddr;
MachinePointerInfo DstInfo;
std::tie(DstAddr, DstInfo) =
computeAddrForCallArg(dl, DAG, NextVA, StackPtr, IsTailCall, SPDiff);
MemOpChains.push_back(
DAG.getStore(Chain, dl, fmrrd.getValue(1 - id), DstAddr, DstInfo));
}
}
static bool canGuaranteeTCO(CallingConv::ID CC, bool GuaranteeTailCalls) {
return (CC == CallingConv::Fast && GuaranteeTailCalls) ||
CC == CallingConv::Tail || CC == CallingConv::SwiftTail;
}
/// LowerCall - Lowering a call into a callseq_start <-
/// ARMISD:CALL <- callseq_end chain. Also add input and output parameter
/// nodes.
SDValue
ARMTargetLowering::LowerCall(TargetLowering::CallLoweringInfo &CLI,
SmallVectorImpl<SDValue> &InVals) const {
SelectionDAG &DAG = CLI.DAG;
SDLoc &dl = CLI.DL;
SmallVectorImpl<ISD::OutputArg> &Outs = CLI.Outs;
SmallVectorImpl<SDValue> &OutVals = CLI.OutVals;
SmallVectorImpl<ISD::InputArg> &Ins = CLI.Ins;
SDValue Chain = CLI.Chain;
SDValue Callee = CLI.Callee;
bool &isTailCall = CLI.IsTailCall;
CallingConv::ID CallConv = CLI.CallConv;
bool doesNotRet = CLI.DoesNotReturn;
bool isVarArg = CLI.IsVarArg;
MachineFunction &MF = DAG.getMachineFunction();
ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
MachineFunction::CallSiteInfo CSInfo;
bool isStructRet = (Outs.empty()) ? false : Outs[0].Flags.isSRet();
bool isThisReturn = false;
bool isCmseNSCall = false;
bool isSibCall = false;
bool PreferIndirect = false;
// Determine whether this is a non-secure function call.
if (CLI.CB && CLI.CB->getAttributes().hasFnAttr("cmse_nonsecure_call"))
isCmseNSCall = true;
// Disable tail calls if they're not supported.
if (!Subtarget->supportsTailCall())
isTailCall = false;
// For both the non-secure calls and the returns from a CMSE entry function,
// the function needs to do some extra work afte r the call, or before the
// return, respectively, thus it cannot end with atail call
if (isCmseNSCall || AFI->isCmseNSEntryFunction())
isTailCall = false;
if (isa<GlobalAddressSDNode>(Callee)) {
// If we're optimizing for minimum size and the function is called three or
// more times in this block, we can improve codesize by calling indirectly
// as BLXr has a 16-bit encoding.
auto *GV = cast<GlobalAddressSDNode>(Callee)->getGlobal();
if (CLI.CB) {
auto *BB = CLI.CB->getParent();
PreferIndirect = Subtarget->isThumb() && Subtarget->hasMinSize() &&
count_if(GV->users(), [&BB](const User *U) {
return isa<Instruction>(U) &&
cast<Instruction>(U)->getParent() == BB;
}) > 2;
}
}
if (isTailCall) {
// Check if it's really possible to do a tail call.
isTailCall = IsEligibleForTailCallOptimization(
Callee, CallConv, isVarArg, isStructRet,
MF.getFunction().hasStructRetAttr(), Outs, OutVals, Ins, DAG,
PreferIndirect);
if (isTailCall && !getTargetMachine().Options.GuaranteedTailCallOpt &&
CallConv != CallingConv::Tail && CallConv != CallingConv::SwiftTail)
isSibCall = true;
// We don't support GuaranteedTailCallOpt for ARM, only automatically
// detected sibcalls.
if (isTailCall)
++NumTailCalls;
}
if (!isTailCall && CLI.CB && CLI.CB->isMustTailCall())
report_fatal_error("failed to perform tail call elimination on a call "
"site marked musttail");
// Analyze operands of the call, assigning locations to each operand.
SmallVector<CCValAssign, 16> ArgLocs;
CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), ArgLocs,
*DAG.getContext());
CCInfo.AnalyzeCallOperands(Outs, CCAssignFnForCall(CallConv, isVarArg));
// Get a count of how many bytes are to be pushed on the stack.
unsigned NumBytes = CCInfo.getNextStackOffset();
// SPDiff is the byte offset of the call's argument area from the callee's.
// Stores to callee stack arguments will be placed in FixedStackSlots offset
// by this amount for a tail call. In a sibling call it must be 0 because the
// caller will deallocate the entire stack and the callee still expects its
// arguments to begin at SP+0. Completely unused for non-tail calls.
int SPDiff = 0;
if (isTailCall && !isSibCall) {
auto FuncInfo = MF.getInfo<ARMFunctionInfo>();
unsigned NumReusableBytes = FuncInfo->getArgumentStackSize();
// Since callee will pop argument stack as a tail call, we must keep the
// popped size 16-byte aligned.
Align StackAlign = DAG.getDataLayout().getStackAlignment();
NumBytes = alignTo(NumBytes, StackAlign);
// SPDiff will be negative if this tail call requires more space than we
// would automatically have in our incoming argument space. Positive if we
// can actually shrink the stack.
SPDiff = NumReusableBytes - NumBytes;
// If this call requires more stack than we have available from
// LowerFormalArguments, tell FrameLowering to reserve space for it.
if (SPDiff < 0 && AFI->getArgRegsSaveSize() < (unsigned)-SPDiff)
AFI->setArgRegsSaveSize(-SPDiff);
}
if (isSibCall) {
// For sibling tail calls, memory operands are available in our caller's stack.
NumBytes = 0;
} else {
// Adjust the stack pointer for the new arguments...
// These operations are automatically eliminated by the prolog/epilog pass
Chain = DAG.getCALLSEQ_START(Chain, isTailCall ? 0 : NumBytes, 0, dl);
}
SDValue StackPtr =
DAG.getCopyFromReg(Chain, dl, ARM::SP, getPointerTy(DAG.getDataLayout()));
RegsToPassVector RegsToPass;
SmallVector<SDValue, 8> MemOpChains;
// During a tail call, stores to the argument area must happen after all of
// the function's incoming arguments have been loaded because they may alias.
// This is done by folding in a TokenFactor from LowerFormalArguments, but
// there's no point in doing so repeatedly so this tracks whether that's
// happened yet.
bool AfterFormalArgLoads = false;
// Walk the register/memloc assignments, inserting copies/loads. In the case
// of tail call optimization, arguments are handled later.
for (unsigned i = 0, realArgIdx = 0, e = ArgLocs.size();
i != e;
++i, ++realArgIdx) {
CCValAssign &VA = ArgLocs[i];
SDValue Arg = OutVals[realArgIdx];
ISD::ArgFlagsTy Flags = Outs[realArgIdx].Flags;
bool isByVal = Flags.isByVal();
// Promote the value if needed.
switch (VA.getLocInfo()) {
default: llvm_unreachable("Unknown loc info!");
case CCValAssign::Full: break;
case CCValAssign::SExt:
Arg = DAG.getNode(ISD::SIGN_EXTEND, dl, VA.getLocVT(), Arg);
break;
case CCValAssign::ZExt:
Arg = DAG.getNode(ISD::ZERO_EXTEND, dl, VA.getLocVT(), Arg);
break;
case CCValAssign::AExt:
Arg = DAG.getNode(ISD::ANY_EXTEND, dl, VA.getLocVT(), Arg);
break;
case CCValAssign::BCvt:
Arg = DAG.getNode(ISD::BITCAST, dl, VA.getLocVT(), Arg);
break;
}
if (isTailCall && VA.isMemLoc() && !AfterFormalArgLoads) {
Chain = DAG.getStackArgumentTokenFactor(Chain);
AfterFormalArgLoads = true;
}
// f16 arguments have their size extended to 4 bytes and passed as if they
// had been copied to the LSBs of a 32-bit register.
// For that, it's passed extended to i32 (soft ABI) or to f32 (hard ABI)
if (VA.needsCustom() &&
(VA.getValVT() == MVT::f16 || VA.getValVT() == MVT::bf16)) {
Arg = MoveFromHPR(dl, DAG, VA.getLocVT(), VA.getValVT(), Arg);
} else {
// f16 arguments could have been extended prior to argument lowering.
// Mask them arguments if this is a CMSE nonsecure call.
auto ArgVT = Outs[realArgIdx].ArgVT;
if (isCmseNSCall && (ArgVT == MVT::f16)) {
auto LocBits = VA.getLocVT().getSizeInBits();
auto MaskValue = APInt::getLowBitsSet(LocBits, ArgVT.getSizeInBits());
SDValue Mask =
DAG.getConstant(MaskValue, dl, MVT::getIntegerVT(LocBits));
Arg = DAG.getNode(ISD::BITCAST, dl, MVT::getIntegerVT(LocBits), Arg);
Arg = DAG.getNode(ISD::AND, dl, MVT::getIntegerVT(LocBits), Arg, Mask);
Arg = DAG.getNode(ISD::BITCAST, dl, VA.getLocVT(), Arg);
}
}
// f64 and v2f64 might be passed in i32 pairs and must be split into pieces
if (VA.needsCustom() && VA.getLocVT() == MVT::v2f64) {
SDValue Op0 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f64, Arg,
DAG.getConstant(0, dl, MVT::i32));
SDValue Op1 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f64, Arg,
DAG.getConstant(1, dl, MVT::i32));
PassF64ArgInRegs(dl, DAG, Chain, Op0, RegsToPass, VA, ArgLocs[++i],
StackPtr, MemOpChains, isTailCall, SPDiff);
VA = ArgLocs[++i]; // skip ahead to next loc
if (VA.isRegLoc()) {
PassF64ArgInRegs(dl, DAG, Chain, Op1, RegsToPass, VA, ArgLocs[++i],
StackPtr, MemOpChains, isTailCall, SPDiff);
} else {
assert(VA.isMemLoc());
SDValue DstAddr;
MachinePointerInfo DstInfo;
std::tie(DstAddr, DstInfo) =
computeAddrForCallArg(dl, DAG, VA, StackPtr, isTailCall, SPDiff);
MemOpChains.push_back(DAG.getStore(Chain, dl, Op1, DstAddr, DstInfo));
}
} else if (VA.needsCustom() && VA.getLocVT() == MVT::f64) {
PassF64ArgInRegs(dl, DAG, Chain, Arg, RegsToPass, VA, ArgLocs[++i],
StackPtr, MemOpChains, isTailCall, SPDiff);
} else if (VA.isRegLoc()) {
if (realArgIdx == 0 && Flags.isReturned() && !Flags.isSwiftSelf() &&
Outs[0].VT == MVT::i32) {
assert(VA.getLocVT() == MVT::i32 &&
"unexpected calling convention register assignment");
assert(!Ins.empty() && Ins[0].VT == MVT::i32 &&
"unexpected use of 'returned'");
isThisReturn = true;
}
const TargetOptions &Options = DAG.getTarget().Options;
if (Options.EmitCallSiteInfo)
CSInfo.emplace_back(VA.getLocReg(), i);
RegsToPass.push_back(std::make_pair(VA.getLocReg(), Arg));
} else if (isByVal) {
assert(VA.isMemLoc());
unsigned offset = 0;
// True if this byval aggregate will be split between registers
// and memory.
unsigned ByValArgsCount = CCInfo.getInRegsParamsCount();
unsigned CurByValIdx = CCInfo.getInRegsParamsProcessed();
if (CurByValIdx < ByValArgsCount) {
unsigned RegBegin, RegEnd;
CCInfo.getInRegsParamInfo(CurByValIdx, RegBegin, RegEnd);
EVT PtrVT =
DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout());
unsigned int i, j;
for (i = 0, j = RegBegin; j < RegEnd; i++, j++) {
SDValue Const = DAG.getConstant(4*i, dl, MVT::i32);
SDValue AddArg = DAG.getNode(ISD::ADD, dl, PtrVT, Arg, Const);
SDValue Load =
DAG.getLoad(PtrVT, dl, Chain, AddArg, MachinePointerInfo(),
DAG.InferPtrAlign(AddArg));
MemOpChains.push_back(Load.getValue(1));
RegsToPass.push_back(std::make_pair(j, Load));
}
// If parameter size outsides register area, "offset" value
// helps us to calculate stack slot for remained part properly.
offset = RegEnd - RegBegin;
CCInfo.nextInRegsParam();
}
if (Flags.getByValSize() > 4*offset) {
auto PtrVT = getPointerTy(DAG.getDataLayout());
SDValue Dst;
MachinePointerInfo DstInfo;
std::tie(Dst, DstInfo) =
computeAddrForCallArg(dl, DAG, VA, StackPtr, isTailCall, SPDiff);
SDValue SrcOffset = DAG.getIntPtrConstant(4*offset, dl);
SDValue Src = DAG.getNode(ISD::ADD, dl, PtrVT, Arg, SrcOffset);
SDValue SizeNode = DAG.getConstant(Flags.getByValSize() - 4*offset, dl,
MVT::i32);
SDValue AlignNode =
DAG.getConstant(Flags.getNonZeroByValAlign().value(), dl, MVT::i32);
SDVTList VTs = DAG.getVTList(MVT::Other, MVT::Glue);
SDValue Ops[] = { Chain, Dst, Src, SizeNode, AlignNode};
MemOpChains.push_back(DAG.getNode(ARMISD::COPY_STRUCT_BYVAL, dl, VTs,
Ops));
}
} else {
assert(VA.isMemLoc());
SDValue DstAddr;
MachinePointerInfo DstInfo;
std::tie(DstAddr, DstInfo) =
computeAddrForCallArg(dl, DAG, VA, StackPtr, isTailCall, SPDiff);
SDValue Store = DAG.getStore(Chain, dl, Arg, DstAddr, DstInfo);
MemOpChains.push_back(Store);
}
}
if (!MemOpChains.empty())
Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOpChains);
// Build a sequence of copy-to-reg nodes chained together with token chain
// and flag operands which copy the outgoing args into the appropriate regs.
SDValue InFlag;
for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first,
RegsToPass[i].second, InFlag);
InFlag = Chain.getValue(1);
}
// If the callee is a GlobalAddress/ExternalSymbol node (quite common, every
// direct call is) turn it into a TargetGlobalAddress/TargetExternalSymbol
// node so that legalize doesn't hack it.
bool isDirect = false;
const TargetMachine &TM = getTargetMachine();
const Module *Mod = MF.getFunction().getParent();
const GlobalValue *GV = nullptr;
if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee))
GV = G->getGlobal();
bool isStub =
!TM.shouldAssumeDSOLocal(*Mod, GV) && Subtarget->isTargetMachO();
bool isARMFunc = !Subtarget->isThumb() || (isStub && !Subtarget->isMClass());
bool isLocalARMFunc = false;
auto PtrVt = getPointerTy(DAG.getDataLayout());
if (Subtarget->genLongCalls()) {
assert((!isPositionIndependent() || Subtarget->isTargetWindows()) &&
"long-calls codegen is not position independent!");
// Handle a global address or an external symbol. If it's not one of
// those, the target's already in a register, so we don't need to do
// anything extra.
if (isa<GlobalAddressSDNode>(Callee)) {
// Create a constant pool entry for the callee address
unsigned ARMPCLabelIndex = AFI->createPICLabelUId();
ARMConstantPoolValue *CPV =
ARMConstantPoolConstant::Create(GV, ARMPCLabelIndex, ARMCP::CPValue, 0);
// Get the address of the callee into a register
SDValue CPAddr = DAG.getTargetConstantPool(CPV, PtrVt, Align(4));
CPAddr = DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, CPAddr);
Callee = DAG.getLoad(
PtrVt, dl, DAG.getEntryNode(), CPAddr,
MachinePointerInfo::getConstantPool(DAG.getMachineFunction()));
} else if (ExternalSymbolSDNode *S=dyn_cast<ExternalSymbolSDNode>(Callee)) {
const char *Sym = S->getSymbol();
// Create a constant pool entry for the callee address
unsigned ARMPCLabelIndex = AFI->createPICLabelUId();
ARMConstantPoolValue *CPV =
ARMConstantPoolSymbol::Create(*DAG.getContext(), Sym,
ARMPCLabelIndex, 0);
// Get the address of the callee into a register
SDValue CPAddr = DAG.getTargetConstantPool(CPV, PtrVt, Align(4));
CPAddr = DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, CPAddr);
Callee = DAG.getLoad(
PtrVt, dl, DAG.getEntryNode(), CPAddr,
MachinePointerInfo::getConstantPool(DAG.getMachineFunction()));
}
} else if (isa<GlobalAddressSDNode>(Callee)) {
if (!PreferIndirect) {
isDirect = true;
bool isDef = GV->isStrongDefinitionForLinker();
// ARM call to a local ARM function is predicable.
isLocalARMFunc = !Subtarget->isThumb() && (isDef || !ARMInterworking);
// tBX takes a register source operand.
if (isStub && Subtarget->isThumb1Only() && !Subtarget->hasV5TOps()) {
assert(Subtarget->isTargetMachO() && "WrapperPIC use on non-MachO?");
Callee = DAG.getNode(
ARMISD::WrapperPIC, dl, PtrVt,
DAG.getTargetGlobalAddress(GV, dl, PtrVt, 0, ARMII::MO_NONLAZY));
Callee = DAG.getLoad(
PtrVt, dl, DAG.getEntryNode(), Callee,
MachinePointerInfo::getGOT(DAG.getMachineFunction()), MaybeAlign(),
MachineMemOperand::MODereferenceable |
MachineMemOperand::MOInvariant);
} else if (Subtarget->isTargetCOFF()) {
assert(Subtarget->isTargetWindows() &&
"Windows is the only supported COFF target");
unsigned TargetFlags = ARMII::MO_NO_FLAG;
if (GV->hasDLLImportStorageClass())
TargetFlags = ARMII::MO_DLLIMPORT;
else if (!TM.shouldAssumeDSOLocal(*GV->getParent(), GV))
TargetFlags = ARMII::MO_COFFSTUB;
Callee = DAG.getTargetGlobalAddress(GV, dl, PtrVt, /*offset=*/0,
TargetFlags);
if (TargetFlags & (ARMII::MO_DLLIMPORT | ARMII::MO_COFFSTUB))
Callee =
DAG.getLoad(PtrVt, dl, DAG.getEntryNode(),
DAG.getNode(ARMISD::Wrapper, dl, PtrVt, Callee),
MachinePointerInfo::getGOT(DAG.getMachineFunction()));
} else {
Callee = DAG.getTargetGlobalAddress(GV, dl, PtrVt, 0, 0);
}
}
} else if (ExternalSymbolSDNode *S = dyn_cast<ExternalSymbolSDNode>(Callee)) {
isDirect = true;
// tBX takes a register source operand.
const char *Sym = S->getSymbol();
if (isARMFunc && Subtarget->isThumb1Only() && !Subtarget->hasV5TOps()) {
unsigned ARMPCLabelIndex = AFI->createPICLabelUId();
ARMConstantPoolValue *CPV =
ARMConstantPoolSymbol::Create(*DAG.getContext(), Sym,
ARMPCLabelIndex, 4);
SDValue CPAddr = DAG.getTargetConstantPool(CPV, PtrVt, Align(4));
CPAddr = DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, CPAddr);
Callee = DAG.getLoad(
PtrVt, dl, DAG.getEntryNode(), CPAddr,
MachinePointerInfo::getConstantPool(DAG.getMachineFunction()));
SDValue PICLabel = DAG.getConstant(ARMPCLabelIndex, dl, MVT::i32);
Callee = DAG.getNode(ARMISD::PIC_ADD, dl, PtrVt, Callee, PICLabel);
} else {
Callee = DAG.getTargetExternalSymbol(Sym, PtrVt, 0);
}
}
if (isCmseNSCall) {
assert(!isARMFunc && !isDirect &&
"Cannot handle call to ARM function or direct call");
if (NumBytes > 0) {
DiagnosticInfoUnsupported Diag(DAG.getMachineFunction().getFunction(),
"call to non-secure function would "
"require passing arguments on stack",
dl.getDebugLoc());
DAG.getContext()->diagnose(Diag);
}
if (isStructRet) {
DiagnosticInfoUnsupported Diag(
DAG.getMachineFunction().getFunction(),
"call to non-secure function would return value through pointer",
dl.getDebugLoc());
DAG.getContext()->diagnose(Diag);
}
}
// FIXME: handle tail calls differently.
unsigned CallOpc;
if (Subtarget->isThumb()) {
if (isCmseNSCall)
CallOpc = ARMISD::tSECALL;
else if ((!isDirect || isARMFunc) && !Subtarget->hasV5TOps())
CallOpc = ARMISD::CALL_NOLINK;
else
CallOpc = ARMISD::CALL;
} else {
if (!isDirect && !Subtarget->hasV5TOps())
CallOpc = ARMISD::CALL_NOLINK;
else if (doesNotRet && isDirect && Subtarget->hasRetAddrStack() &&
// Emit regular call when code size is the priority
!Subtarget->hasMinSize())
// "mov lr, pc; b _foo" to avoid confusing the RSP
CallOpc = ARMISD::CALL_NOLINK;
else
CallOpc = isLocalARMFunc ? ARMISD::CALL_PRED : ARMISD::CALL;
}
// We don't usually want to end the call-sequence here because we would tidy
// the frame up *after* the call, however in the ABI-changing tail-call case
// we've carefully laid out the parameters so that when sp is reset they'll be
// in the correct location.
if (isTailCall && !isSibCall) {
Chain = DAG.getCALLSEQ_END(Chain, DAG.getIntPtrConstant(0, dl, true),
DAG.getIntPtrConstant(0, dl, true), InFlag, dl);
InFlag = Chain.getValue(1);
}
std::vector<SDValue> Ops;
Ops.push_back(Chain);
Ops.push_back(Callee);
if (isTailCall) {
Ops.push_back(DAG.getTargetConstant(SPDiff, dl, MVT::i32));
}
// Add argument registers to the end of the list so that they are known live
// into the call.
for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i)
Ops.push_back(DAG.getRegister(RegsToPass[i].first,
RegsToPass[i].second.getValueType()));
// Add a register mask operand representing the call-preserved registers.
if (!isTailCall) {
const uint32_t *Mask;
const ARMBaseRegisterInfo *ARI = Subtarget->getRegisterInfo();
if (isThisReturn) {
// For 'this' returns, use the R0-preserving mask if applicable
Mask = ARI->getThisReturnPreservedMask(MF, CallConv);
if (!Mask) {
// Set isThisReturn to false if the calling convention is not one that
// allows 'returned' to be modeled in this way, so LowerCallResult does
// not try to pass 'this' straight through
isThisReturn = false;
Mask = ARI->getCallPreservedMask(MF, CallConv);
}
} else
Mask = ARI->getCallPreservedMask(MF, CallConv);
assert(Mask && "Missing call preserved mask for calling convention");
Ops.push_back(DAG.getRegisterMask(Mask));
}
if (InFlag.getNode())
Ops.push_back(InFlag);
SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
if (isTailCall) {
MF.getFrameInfo().setHasTailCall();
SDValue Ret = DAG.getNode(ARMISD::TC_RETURN, dl, NodeTys, Ops);
DAG.addCallSiteInfo(Ret.getNode(), std::move(CSInfo));
return Ret;
}
// Returns a chain and a flag for retval copy to use.
Chain = DAG.getNode(CallOpc, dl, NodeTys, Ops);
DAG.addNoMergeSiteInfo(Chain.getNode(), CLI.NoMerge);
InFlag = Chain.getValue(1);
DAG.addCallSiteInfo(Chain.getNode(), std::move(CSInfo));
// If we're guaranteeing tail-calls will be honoured, the callee must
// pop its own argument stack on return. But this call is *not* a tail call so
// we need to undo that after it returns to restore the status-quo.
bool TailCallOpt = getTargetMachine().Options.GuaranteedTailCallOpt;
uint64_t CalleePopBytes =
canGuaranteeTCO(CallConv, TailCallOpt) ? alignTo(NumBytes, 16) : -1ULL;
Chain = DAG.getCALLSEQ_END(Chain, DAG.getIntPtrConstant(NumBytes, dl, true),
DAG.getIntPtrConstant(CalleePopBytes, dl, true),
InFlag, dl);
if (!Ins.empty())
InFlag = Chain.getValue(1);
// Handle result values, copying them out of physregs into vregs that we
// return.
return LowerCallResult(Chain, InFlag, CallConv, isVarArg, Ins, dl, DAG,
InVals, isThisReturn,
isThisReturn ? OutVals[0] : SDValue());
}
/// HandleByVal - Every parameter *after* a byval parameter is passed
/// on the stack. Remember the next parameter register to allocate,
/// and then confiscate the rest of the parameter registers to insure
/// this.
void ARMTargetLowering::HandleByVal(CCState *State, unsigned &Size,
Align Alignment) const {
// Byval (as with any stack) slots are always at least 4 byte aligned.
Alignment = std::max(Alignment, Align(4));
unsigned Reg = State->AllocateReg(GPRArgRegs);
if (!Reg)
return;
unsigned AlignInRegs = Alignment.value() / 4;
unsigned Waste = (ARM::R4 - Reg) % AlignInRegs;
for (unsigned i = 0; i < Waste; ++i)
Reg = State->AllocateReg(GPRArgRegs);
if (!Reg)
return;
unsigned Excess = 4 * (ARM::R4 - Reg);
// Special case when NSAA != SP and parameter size greater than size of
// all remained GPR regs. In that case we can't split parameter, we must
// send it to stack. We also must set NCRN to R4, so waste all
// remained registers.
const unsigned NSAAOffset = State->getNextStackOffset();
if (NSAAOffset != 0 && Size > Excess) {
while (State->AllocateReg(GPRArgRegs))
;
return;
}
// First register for byval parameter is the first register that wasn't
// allocated before this method call, so it would be "reg".
// If parameter is small enough to be saved in range [reg, r4), then
// the end (first after last) register would be reg + param-size-in-regs,
// else parameter would be splitted between registers and stack,
// end register would be r4 in this case.
unsigned ByValRegBegin = Reg;
unsigned ByValRegEnd = std::min<unsigned>(Reg + Size / 4, ARM::R4);
State->addInRegsParamInfo(ByValRegBegin, ByValRegEnd);
// Note, first register is allocated in the beginning of function already,
// allocate remained amount of registers we need.
for (unsigned i = Reg + 1; i != ByValRegEnd; ++i)
State->AllocateReg(GPRArgRegs);
// A byval parameter that is split between registers and memory needs its
// size truncated here.
// In the case where the entire structure fits in registers, we set the
// size in memory to zero.
Size = std::max<int>(Size - Excess, 0);
}
/// MatchingStackOffset - Return true if the given stack call argument is
/// already available in the same position (relatively) of the caller's
/// incoming argument stack.
static
bool MatchingStackOffset(SDValue Arg, unsigned Offset, ISD::ArgFlagsTy Flags,
MachineFrameInfo &MFI, const MachineRegisterInfo *MRI,
const TargetInstrInfo *TII) {
unsigned Bytes = Arg.getValueSizeInBits() / 8;
int FI = std::numeric_limits<int>::max();
if (Arg.getOpcode() == ISD::CopyFromReg) {
unsigned VR = cast<RegisterSDNode>(Arg.getOperand(1))->getReg();
if (!Register::isVirtualRegister(VR))
return false;
MachineInstr *Def = MRI->getVRegDef(VR);
if (!Def)
return false;
if (!Flags.isByVal()) {
if (!TII->isLoadFromStackSlot(*Def, FI))
return false;
} else {
return false;
}
} else if (LoadSDNode *Ld = dyn_cast<LoadSDNode>(Arg)) {
if (Flags.isByVal())
// ByVal argument is passed in as a pointer but it's now being
// dereferenced. e.g.
// define @foo(%struct.X* %A) {
// tail call @bar(%struct.X* byval %A)
// }
return false;
SDValue Ptr = Ld->getBasePtr();
FrameIndexSDNode *FINode = dyn_cast<FrameIndexSDNode>(Ptr);
if (!FINode)
return false;
FI = FINode->getIndex();
} else
return false;
assert(FI != std::numeric_limits<int>::max());
if (!MFI.isFixedObjectIndex(FI))
return false;
return Offset == MFI.getObjectOffset(FI) && Bytes == MFI.getObjectSize(FI);
}
/// IsEligibleForTailCallOptimization - Check whether the call is eligible
/// for tail call optimization. Targets which want to do tail call
/// optimization should implement this function.
bool ARMTargetLowering::IsEligibleForTailCallOptimization(
SDValue Callee, CallingConv::ID CalleeCC, bool isVarArg,
bool isCalleeStructRet, bool isCallerStructRet,
const SmallVectorImpl<ISD::OutputArg> &Outs,
const SmallVectorImpl<SDValue> &OutVals,
const SmallVectorImpl<ISD::InputArg> &Ins, SelectionDAG &DAG,
const bool isIndirect) const {
MachineFunction &MF = DAG.getMachineFunction();
const Function &CallerF = MF.getFunction();
CallingConv::ID CallerCC = CallerF.getCallingConv();
assert(Subtarget->supportsTailCall());
// Indirect tail calls cannot be optimized for Thumb1 if the args
// to the call take up r0-r3. The reason is that there are no legal registers
// left to hold the pointer to the function to be called.
if (Subtarget->isThumb1Only() && Outs.size() >= 4 &&
(!isa<GlobalAddressSDNode>(Callee.getNode()) || isIndirect))
return false;
// Look for obvious safe cases to perform tail call optimization that do not
// require ABI changes. This is what gcc calls sibcall.
// Exception-handling functions need a special set of instructions to indicate
// a return to the hardware. Tail-calling another function would probably
// break this.
if (CallerF.hasFnAttribute("interrupt"))
return false;
if (canGuaranteeTCO(CalleeCC, getTargetMachine().Options.GuaranteedTailCallOpt))
return CalleeCC == CallerCC;
// Also avoid sibcall optimization if either caller or callee uses struct
// return semantics.
if (isCalleeStructRet || isCallerStructRet)
return false;
// Externally-defined functions with weak linkage should not be
// tail-called on ARM when the OS does not support dynamic
// pre-emption of symbols, as the AAELF spec requires normal calls
// to undefined weak functions to be replaced with a NOP or jump to the
// next instruction. The behaviour of branch instructions in this
// situation (as used for tail calls) is implementation-defined, so we
// cannot rely on the linker replacing the tail call with a return.
if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) {
const GlobalValue *GV = G->getGlobal();
const Triple &TT = getTargetMachine().getTargetTriple();
if (GV->hasExternalWeakLinkage() &&
(!TT.isOSWindows() || TT.isOSBinFormatELF() || TT.isOSBinFormatMachO()))
return false;
}
// Check that the call results are passed in the same way.
LLVMContext &C = *DAG.getContext();
if (!CCState::resultsCompatible(
getEffectiveCallingConv(CalleeCC, isVarArg),
getEffectiveCallingConv(CallerCC, CallerF.isVarArg()), MF, C, Ins,
CCAssignFnForReturn(CalleeCC, isVarArg),
CCAssignFnForReturn(CallerCC, CallerF.isVarArg())))
return false;
// The callee has to preserve all registers the caller needs to preserve.
const ARMBaseRegisterInfo *TRI = Subtarget->getRegisterInfo();
const uint32_t *CallerPreserved = TRI->getCallPreservedMask(MF, CallerCC);
if (CalleeCC != CallerCC) {
const uint32_t *CalleePreserved = TRI->getCallPreservedMask(MF, CalleeCC);
if (!TRI->regmaskSubsetEqual(CallerPreserved, CalleePreserved))
return false;
}
// If Caller's vararg or byval argument has been split between registers and
// stack, do not perform tail call, since part of the argument is in caller's
// local frame.
const ARMFunctionInfo *AFI_Caller = MF.getInfo<ARMFunctionInfo>();
if (AFI_Caller->getArgRegsSaveSize())
return false;
// If the callee takes no arguments then go on to check the results of the
// call.
if (!Outs.empty()) {
// Check if stack adjustment is needed. For now, do not do this if any
// argument is passed on the stack.
SmallVector<CCValAssign, 16> ArgLocs;
CCState CCInfo(CalleeCC, isVarArg, MF, ArgLocs, C);
CCInfo.AnalyzeCallOperands(Outs, CCAssignFnForCall(CalleeCC, isVarArg));
if (CCInfo.getNextStackOffset()) {
// Check if the arguments are already laid out in the right way as
// the caller's fixed stack objects.
MachineFrameInfo &MFI = MF.getFrameInfo();
const MachineRegisterInfo *MRI = &MF.getRegInfo();
const TargetInstrInfo *TII = Subtarget->getInstrInfo();
for (unsigned i = 0, realArgIdx = 0, e = ArgLocs.size();
i != e;
++i, ++realArgIdx) {
CCValAssign &VA = ArgLocs[i];
EVT RegVT = VA.getLocVT();
SDValue Arg = OutVals[realArgIdx];
ISD::ArgFlagsTy Flags = Outs[realArgIdx].Flags;
if (VA.getLocInfo() == CCValAssign::Indirect)
return false;
if (VA.needsCustom() && (RegVT == MVT::f64 || RegVT == MVT::v2f64)) {
// f64 and vector types are split into multiple registers or
// register/stack-slot combinations. The types will not match
// the registers; give up on memory f64 refs until we figure
// out what to do about this.
if (!VA.isRegLoc())
return false;
if (!ArgLocs[++i].isRegLoc())
return false;
if (RegVT == MVT::v2f64) {
if (!ArgLocs[++i].isRegLoc())
return false;
if (!ArgLocs[++i].isRegLoc())
return false;
}
} else if (!VA.isRegLoc()) {
if (!MatchingStackOffset(Arg, VA.getLocMemOffset(), Flags,
MFI, MRI, TII))
return false;
}
}
}
const MachineRegisterInfo &MRI = MF.getRegInfo();
if (!parametersInCSRMatch(MRI, CallerPreserved, ArgLocs, OutVals))
return false;
}
return true;
}
bool
ARMTargetLowering::CanLowerReturn(CallingConv::ID CallConv,
MachineFunction &MF, bool isVarArg,
const SmallVectorImpl<ISD::OutputArg> &Outs,
LLVMContext &Context) const {
SmallVector<CCValAssign, 16> RVLocs;
CCState CCInfo(CallConv, isVarArg, MF, RVLocs, Context);
return CCInfo.CheckReturn(Outs, CCAssignFnForReturn(CallConv, isVarArg));
}
static SDValue LowerInterruptReturn(SmallVectorImpl<SDValue> &RetOps,
const SDLoc &DL, SelectionDAG &DAG) {
const MachineFunction &MF = DAG.getMachineFunction();
const Function &F = MF.getFunction();
StringRef IntKind = F.getFnAttribute("interrupt").getValueAsString();
// See ARM ARM v7 B1.8.3. On exception entry LR is set to a possibly offset
// version of the "preferred return address". These offsets affect the return
// instruction if this is a return from PL1 without hypervisor extensions.
// IRQ/FIQ: +4 "subs pc, lr, #4"
// SWI: 0 "subs pc, lr, #0"
// ABORT: +4 "subs pc, lr, #4"
// UNDEF: +4/+2 "subs pc, lr, #0"
// UNDEF varies depending on where the exception came from ARM or Thumb
// mode. Alongside GCC, we throw our hands up in disgust and pretend it's 0.
int64_t LROffset;
if (IntKind == "" || IntKind == "IRQ" || IntKind == "FIQ" ||
IntKind == "ABORT")
LROffset = 4;
else if (IntKind == "SWI" || IntKind == "UNDEF")
LROffset = 0;
else
report_fatal_error("Unsupported interrupt attribute. If present, value "
"must be one of: IRQ, FIQ, SWI, ABORT or UNDEF");
RetOps.insert(RetOps.begin() + 1,
DAG.getConstant(LROffset, DL, MVT::i32, false));
return DAG.getNode(ARMISD::INTRET_FLAG, DL, MVT::Other, RetOps);
}
SDValue
ARMTargetLowering::LowerReturn(SDValue Chain, CallingConv::ID CallConv,
bool isVarArg,
const SmallVectorImpl<ISD::OutputArg> &Outs,
const SmallVectorImpl<SDValue> &OutVals,
const SDLoc &dl, SelectionDAG &DAG) const {
// CCValAssign - represent the assignment of the return value to a location.
SmallVector<CCValAssign, 16> RVLocs;
// CCState - Info about the registers and stack slots.
CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), RVLocs,
*DAG.getContext());
// Analyze outgoing return values.
CCInfo.AnalyzeReturn(Outs, CCAssignFnForReturn(CallConv, isVarArg));
SDValue Flag;
SmallVector<SDValue, 4> RetOps;
RetOps.push_back(Chain); // Operand #0 = Chain (updated below)
bool isLittleEndian = Subtarget->isLittle();
MachineFunction &MF = DAG.getMachineFunction();
ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
AFI->setReturnRegsCount(RVLocs.size());
// Report error if cmse entry function returns structure through first ptr arg.
if (AFI->isCmseNSEntryFunction() && MF.getFunction().hasStructRetAttr()) {
// Note: using an empty SDLoc(), as the first line of the function is a
// better place to report than the last line.
DiagnosticInfoUnsupported Diag(
DAG.getMachineFunction().getFunction(),
"secure entry function would return value through pointer",
SDLoc().getDebugLoc());
DAG.getContext()->diagnose(Diag);
}
// Copy the result values into the output registers.
for (unsigned i = 0, realRVLocIdx = 0;
i != RVLocs.size();
++i, ++realRVLocIdx) {
CCValAssign &VA = RVLocs[i];
assert(VA.isRegLoc() && "Can only return in registers!");
SDValue Arg = OutVals[realRVLocIdx];
bool ReturnF16 = false;
if (Subtarget->hasFullFP16() && Subtarget->isTargetHardFloat()) {
// Half-precision return values can be returned like this:
//
// t11 f16 = fadd ...
// t12: i16 = bitcast t11
// t13: i32 = zero_extend t12
// t14: f32 = bitcast t13 <~~~~~~~ Arg
//
// to avoid code generation for bitcasts, we simply set Arg to the node
// that produces the f16 value, t11 in this case.
//
if (Arg.getValueType() == MVT::f32 && Arg.getOpcode() == ISD::BITCAST) {
SDValue ZE = Arg.getOperand(0);
if (ZE.getOpcode() == ISD::ZERO_EXTEND && ZE.getValueType() == MVT::i32) {
SDValue BC = ZE.getOperand(0);
if (BC.getOpcode() == ISD::BITCAST && BC.getValueType() == MVT::i16) {
Arg = BC.getOperand(0);
ReturnF16 = true;
}
}
}
}
switch (VA.getLocInfo()) {
default: llvm_unreachable("Unknown loc info!");
case CCValAssign::Full: break;
case CCValAssign::BCvt:
if (!ReturnF16)
Arg = DAG.getNode(ISD::BITCAST, dl, VA.getLocVT(), Arg);
break;
}
// Mask f16 arguments if this is a CMSE nonsecure entry.
auto RetVT = Outs[realRVLocIdx].ArgVT;
if (AFI->isCmseNSEntryFunction() && (RetVT == MVT::f16)) {
if (VA.needsCustom() && VA.getValVT() == MVT::f16) {
Arg = MoveFromHPR(dl, DAG, VA.getLocVT(), VA.getValVT(), Arg);
} else {
auto LocBits = VA.getLocVT().getSizeInBits();
auto MaskValue = APInt::getLowBitsSet(LocBits, RetVT.getSizeInBits());
SDValue Mask =
DAG.getConstant(MaskValue, dl, MVT::getIntegerVT(LocBits));
Arg = DAG.getNode(ISD::BITCAST, dl, MVT::getIntegerVT(LocBits), Arg);
Arg = DAG.getNode(ISD::AND, dl, MVT::getIntegerVT(LocBits), Arg, Mask);
Arg = DAG.getNode(ISD::BITCAST, dl, VA.getLocVT(), Arg);
}
}
if (VA.needsCustom() &&
(VA.getLocVT() == MVT::v2f64 || VA.getLocVT() == MVT::f64)) {
if (VA.getLocVT() == MVT::v2f64) {
// Extract the first half and return it in two registers.
SDValue Half = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f64, Arg,
DAG.getConstant(0, dl, MVT::i32));
SDValue HalfGPRs = DAG.getNode(ARMISD::VMOVRRD, dl,
DAG.getVTList(MVT::i32, MVT::i32), Half);
Chain =
DAG.getCopyToReg(Chain, dl, VA.getLocReg(),
HalfGPRs.getValue(isLittleEndian ? 0 : 1), Flag);
Flag = Chain.getValue(1);
RetOps.push_back(DAG.getRegister(VA.getLocReg(), VA.getLocVT()));
VA = RVLocs[++i]; // skip ahead to next loc
Chain =
DAG.getCopyToReg(Chain, dl, VA.getLocReg(),
HalfGPRs.getValue(isLittleEndian ? 1 : 0), Flag);
Flag = Chain.getValue(1);
RetOps.push_back(DAG.getRegister(VA.getLocReg(), VA.getLocVT()));
VA = RVLocs[++i]; // skip ahead to next loc
// Extract the 2nd half and fall through to handle it as an f64 value.
Arg = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f64, Arg,
DAG.getConstant(1, dl, MVT::i32));
}
// Legalize ret f64 -> ret 2 x i32. We always have fmrrd if f64 is
// available.
SDValue fmrrd = DAG.getNode(ARMISD::VMOVRRD, dl,
DAG.getVTList(MVT::i32, MVT::i32), Arg);
Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(),
fmrrd.getValue(isLittleEndian ? 0 : 1), Flag);
Flag = Chain.getValue(1);
RetOps.push_back(DAG.getRegister(VA.getLocReg(), VA.getLocVT()));
VA = RVLocs[++i]; // skip ahead to next loc
Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(),
fmrrd.getValue(isLittleEndian ? 1 : 0), Flag);
} else
Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(), Arg, Flag);
// Guarantee that all emitted copies are
// stuck together, avoiding something bad.
Flag = Chain.getValue(1);
RetOps.push_back(DAG.getRegister(
VA.getLocReg(), ReturnF16 ? Arg.getValueType() : VA.getLocVT()));
}
const ARMBaseRegisterInfo *TRI = Subtarget->getRegisterInfo();
const MCPhysReg *I =
TRI->getCalleeSavedRegsViaCopy(&DAG.getMachineFunction());
if (I) {
for (; *I; ++I) {
if (ARM::GPRRegClass.contains(*I))
RetOps.push_back(DAG.getRegister(*I, MVT::i32));
else if (ARM::DPRRegClass.contains(*I))
RetOps.push_back(DAG.getRegister(*I, MVT::getFloatingPointVT(64)));
else
llvm_unreachable("Unexpected register class in CSRsViaCopy!");
}
}
// Update chain and glue.
RetOps[0] = Chain;
if (Flag.getNode())
RetOps.push_back(Flag);
// CPUs which aren't M-class use a special sequence to return from
// exceptions (roughly, any instruction setting pc and cpsr simultaneously,
// though we use "subs pc, lr, #N").
//
// M-class CPUs actually use a normal return sequence with a special
// (hardware-provided) value in LR, so the normal code path works.
if (DAG.getMachineFunction().getFunction().hasFnAttribute("interrupt") &&
!Subtarget->isMClass()) {
if (Subtarget->isThumb1Only())
report_fatal_error("interrupt attribute is not supported in Thumb1");
return LowerInterruptReturn(RetOps, dl, DAG);
}
ARMISD::NodeType RetNode = AFI->isCmseNSEntryFunction() ? ARMISD::SERET_FLAG :
ARMISD::RET_FLAG;
return DAG.getNode(RetNode, dl, MVT::Other, RetOps);
}
bool ARMTargetLowering::isUsedByReturnOnly(SDNode *N, SDValue &Chain) const {
if (N->getNumValues() != 1)
return false;
if (!N->hasNUsesOfValue(1, 0))
return false;
SDValue TCChain = Chain;
SDNode *Copy = *N->use_begin();
if (Copy->getOpcode() == ISD::CopyToReg) {
// If the copy has a glue operand, we conservatively assume it isn't safe to
// perform a tail call.
if (Copy->getOperand(Copy->getNumOperands()-1).getValueType() == MVT::Glue)
return false;
TCChain = Copy->getOperand(0);
} else if (Copy->getOpcode() == ARMISD::VMOVRRD) {
SDNode *VMov = Copy;
// f64 returned in a pair of GPRs.
SmallPtrSet<SDNode*, 2> Copies;
for (SDNode *U : VMov->uses()) {
if (U->getOpcode() != ISD::CopyToReg)
return false;
Copies.insert(U);
}
if (Copies.size() > 2)
return false;
for (SDNode *U : VMov->uses()) {
SDValue UseChain = U->getOperand(0);
if (Copies.count(UseChain.getNode()))
// Second CopyToReg
Copy = U;
else {
// We are at the top of this chain.
// If the copy has a glue operand, we conservatively assume it
// isn't safe to perform a tail call.
if (U->getOperand(U->getNumOperands() - 1).getValueType() == MVT::Glue)
return false;
// First CopyToReg
TCChain = UseChain;
}
}
} else if (Copy->getOpcode() == ISD::BITCAST) {
// f32 returned in a single GPR.
if (!Copy->hasOneUse())
return false;
Copy = *Copy->use_begin();
if (Copy->getOpcode() != ISD::CopyToReg || !Copy->hasNUsesOfValue(1, 0))
return false;
// If the copy has a glue operand, we conservatively assume it isn't safe to
// perform a tail call.
if (Copy->getOperand(Copy->getNumOperands()-1).getValueType() == MVT::Glue)
return false;
TCChain = Copy->getOperand(0);
} else {
return false;
}
bool HasRet = false;
for (const SDNode *U : Copy->uses()) {
if (U->getOpcode() != ARMISD::RET_FLAG &&
U->getOpcode() != ARMISD::INTRET_FLAG)
return false;
HasRet = true;
}
if (!HasRet)
return false;
Chain = TCChain;
return true;
}
bool ARMTargetLowering::mayBeEmittedAsTailCall(const CallInst *CI) const {
if (!Subtarget->supportsTailCall())
return false;
if (!CI->isTailCall())
return false;
return true;
}
// Trying to write a 64 bit value so need to split into two 32 bit values first,
// and pass the lower and high parts through.
static SDValue LowerWRITE_REGISTER(SDValue Op, SelectionDAG &DAG) {
SDLoc DL(Op);
SDValue WriteValue = Op->getOperand(2);
// This function is only supposed to be called for i64 type argument.
assert(WriteValue.getValueType() == MVT::i64
&& "LowerWRITE_REGISTER called for non-i64 type argument.");
SDValue Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i32, WriteValue,
DAG.getConstant(0, DL, MVT::i32));
SDValue Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i32, WriteValue,
DAG.getConstant(1, DL, MVT::i32));
SDValue Ops[] = { Op->getOperand(0), Op->getOperand(1), Lo, Hi };
return DAG.getNode(ISD::WRITE_REGISTER, DL, MVT::Other, Ops);
}
// ConstantPool, JumpTable, GlobalAddress, and ExternalSymbol are lowered as
// their target counterpart wrapped in the ARMISD::Wrapper node. Suppose N is
// one of the above mentioned nodes. It has to be wrapped because otherwise
// Select(N) returns N. So the raw TargetGlobalAddress nodes, etc. can only
// be used to form addressing mode. These wrapped nodes will be selected
// into MOVi.
SDValue ARMTargetLowering::LowerConstantPool(SDValue Op,
SelectionDAG &DAG) const {
EVT PtrVT = Op.getValueType();
// FIXME there is no actual debug info here
SDLoc dl(Op);
ConstantPoolSDNode *CP = cast<ConstantPoolSDNode>(Op);
SDValue Res;
// When generating execute-only code Constant Pools must be promoted to the
// global data section. It's a bit ugly that we can't share them across basic
// blocks, but this way we guarantee that execute-only behaves correct with
// position-independent addressing modes.
if (Subtarget->genExecuteOnly()) {
auto AFI = DAG.getMachineFunction().getInfo<ARMFunctionInfo>();
auto T = const_cast<Type*>(CP->getType());
auto C = const_cast<Constant*>(CP->getConstVal());
auto M = const_cast<Module*>(DAG.getMachineFunction().
getFunction().getParent());
auto GV = new GlobalVariable(
*M, T, /*isConstant=*/true, GlobalVariable::InternalLinkage, C,
Twine(DAG.getDataLayout().getPrivateGlobalPrefix()) + "CP" +
Twine(DAG.getMachineFunction().getFunctionNumber()) + "_" +
Twine(AFI->createPICLabelUId())
);
SDValue GA = DAG.getTargetGlobalAddress(dyn_cast<GlobalValue>(GV),
dl, PtrVT);
return LowerGlobalAddress(GA, DAG);
}
if (CP->isMachineConstantPoolEntry())
Res =
DAG.getTargetConstantPool(CP->getMachineCPVal(), PtrVT, CP->getAlign());
else
Res = DAG.getTargetConstantPool(CP->getConstVal(), PtrVT, CP->getAlign());
return DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, Res);
}
unsigned ARMTargetLowering::getJumpTableEncoding() const {
return MachineJumpTableInfo::EK_Inline;
}
SDValue ARMTargetLowering::LowerBlockAddress(SDValue Op,
SelectionDAG &DAG) const {
MachineFunction &MF = DAG.getMachineFunction();
ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
unsigned ARMPCLabelIndex = 0;
SDLoc DL(Op);
EVT PtrVT = getPointerTy(DAG.getDataLayout());
const BlockAddress *BA = cast<BlockAddressSDNode>(Op)->getBlockAddress();
SDValue CPAddr;
bool IsPositionIndependent = isPositionIndependent() || Subtarget->isROPI();
if (!IsPositionIndependent) {
CPAddr = DAG.getTargetConstantPool(BA, PtrVT, Align(4));
} else {
unsigned PCAdj = Subtarget->isThumb() ? 4 : 8;
ARMPCLabelIndex = AFI->createPICLabelUId();
ARMConstantPoolValue *CPV =
ARMConstantPoolConstant::Create(BA, ARMPCLabelIndex,
ARMCP::CPBlockAddress, PCAdj);
CPAddr = DAG.getTargetConstantPool(CPV, PtrVT, Align(4));
}
CPAddr = DAG.getNode(ARMISD::Wrapper, DL, PtrVT, CPAddr);
SDValue Result = DAG.getLoad(
PtrVT, DL, DAG.getEntryNode(), CPAddr,
MachinePointerInfo::getConstantPool(DAG.getMachineFunction()));
if (!IsPositionIndependent)
return Result;
SDValue PICLabel = DAG.getConstant(ARMPCLabelIndex, DL, MVT::i32);
return DAG.getNode(ARMISD::PIC_ADD, DL, PtrVT, Result, PICLabel);
}
/// Convert a TLS address reference into the correct sequence of loads
/// and calls to compute the variable's address for Darwin, and return an
/// SDValue containing the final node.
/// Darwin only has one TLS scheme which must be capable of dealing with the
/// fully general situation, in the worst case. This means:
/// + "extern __thread" declaration.
/// + Defined in a possibly unknown dynamic library.
///
/// The general system is that each __thread variable has a [3 x i32] descriptor
/// which contains information used by the runtime to calculate the address. The
/// only part of this the compiler needs to know about is the first word, which
/// contains a function pointer that must be called with the address of the
/// entire descriptor in "r0".
///
/// Since this descriptor may be in a different unit, in general access must
/// proceed along the usual ARM rules. A common sequence to produce is:
///
/// movw rT1, :lower16:_var$non_lazy_ptr
/// movt rT1, :upper16:_var$non_lazy_ptr
/// ldr r0, [rT1]
/// ldr rT2, [r0]
/// blx rT2
/// [...address now in r0...]
SDValue
ARMTargetLowering::LowerGlobalTLSAddressDarwin(SDValue Op,
SelectionDAG &DAG) const {
assert(Subtarget->isTargetDarwin() &&
"This function expects a Darwin target");
SDLoc DL(Op);
// First step is to get the address of the actua global symbol. This is where
// the TLS descriptor lives.
SDValue DescAddr = LowerGlobalAddressDarwin(Op, DAG);
// The first entry in the descriptor is a function pointer that we must call
// to obtain the address of the variable.
SDValue Chain = DAG.getEntryNode();
SDValue FuncTLVGet = DAG.getLoad(
MVT::i32, DL, Chain, DescAddr,
MachinePointerInfo::getGOT(DAG.getMachineFunction()), Align(4),
MachineMemOperand::MONonTemporal | MachineMemOperand::MODereferenceable |
MachineMemOperand::MOInvariant);
Chain = FuncTLVGet.getValue(1);
MachineFunction &F = DAG.getMachineFunction();
MachineFrameInfo &MFI = F.getFrameInfo();
MFI.setAdjustsStack(true);
// TLS calls preserve all registers except those that absolutely must be
// trashed: R0 (it takes an argument), LR (it's a call) and CPSR (let's not be
// silly).
auto TRI =
getTargetMachine().getSubtargetImpl(F.getFunction())->getRegisterInfo();
auto ARI = static_cast<const ARMRegisterInfo *>(TRI);
const uint32_t *Mask = ARI->getTLSCallPreservedMask(DAG.getMachineFunction());
// Finally, we can make the call. This is just a degenerate version of a
// normal AArch64 call node: r0 takes the address of the descriptor, and
// returns the address of the variable in this thread.
Chain = DAG.getCopyToReg(Chain, DL, ARM::R0, DescAddr, SDValue());
Chain =
DAG.getNode(ARMISD::CALL, DL, DAG.getVTList(MVT::Other, MVT::Glue),
Chain, FuncTLVGet, DAG.getRegister(ARM::R0, MVT::i32),
DAG.getRegisterMask(Mask), Chain.getValue(1));
return DAG.getCopyFromReg(Chain, DL, ARM::R0, MVT::i32, Chain.getValue(1));
}
SDValue
ARMTargetLowering::LowerGlobalTLSAddressWindows(SDValue Op,
SelectionDAG &DAG) const {
assert(Subtarget->isTargetWindows() && "Windows specific TLS lowering");
SDValue Chain = DAG.getEntryNode();
EVT PtrVT = getPointerTy(DAG.getDataLayout());
SDLoc DL(Op);
// Load the current TEB (thread environment block)
SDValue Ops[] = {Chain,
DAG.getTargetConstant(Intrinsic::arm_mrc, DL, MVT::i32),
DAG.getTargetConstant(15, DL, MVT::i32),
DAG.getTargetConstant(0, DL, MVT::i32),
DAG.getTargetConstant(13, DL, MVT::i32),
DAG.getTargetConstant(0, DL, MVT::i32),
DAG.getTargetConstant(2, DL, MVT::i32)};
SDValue CurrentTEB = DAG.getNode(ISD::INTRINSIC_W_CHAIN, DL,
DAG.getVTList(MVT::i32, MVT::Other), Ops);
SDValue TEB = CurrentTEB.getValue(0);
Chain = CurrentTEB.getValue(1);
// Load the ThreadLocalStoragePointer from the TEB
// A pointer to the TLS array is located at offset 0x2c from the TEB.
SDValue TLSArray =
DAG.getNode(ISD::ADD, DL, PtrVT, TEB, DAG.getIntPtrConstant(0x2c, DL));
TLSArray = DAG.getLoad(PtrVT, DL, Chain, TLSArray, MachinePointerInfo());
// The pointer to the thread's TLS data area is at the TLS Index scaled by 4
// offset into the TLSArray.
// Load the TLS index from the C runtime
SDValue TLSIndex =
DAG.getTargetExternalSymbol("_tls_index", PtrVT, ARMII::MO_NO_FLAG);
TLSIndex = DAG.getNode(ARMISD::Wrapper, DL, PtrVT, TLSIndex);
TLSIndex = DAG.getLoad(PtrVT, DL, Chain, TLSIndex, MachinePointerInfo());
SDValue Slot = DAG.getNode(ISD::SHL, DL, PtrVT, TLSIndex,
DAG.getConstant(2, DL, MVT::i32));
SDValue TLS = DAG.getLoad(PtrVT, DL, Chain,
DAG.getNode(ISD::ADD, DL, PtrVT, TLSArray, Slot),
MachinePointerInfo());
// Get the offset of the start of the .tls section (section base)
const auto *GA = cast<GlobalAddressSDNode>(Op);
auto *CPV = ARMConstantPoolConstant::Create(GA->getGlobal(), ARMCP::SECREL);
SDValue Offset = DAG.getLoad(
PtrVT, DL, Chain,
DAG.getNode(ARMISD::Wrapper, DL, MVT::i32,
DAG.getTargetConstantPool(CPV, PtrVT, Align(4))),
MachinePointerInfo::getConstantPool(DAG.getMachineFunction()));
return DAG.getNode(ISD::ADD, DL, PtrVT, TLS, Offset);
}
// Lower ISD::GlobalTLSAddress using the "general dynamic" model
SDValue
ARMTargetLowering::LowerToTLSGeneralDynamicModel(GlobalAddressSDNode *GA,
SelectionDAG &DAG) const {
SDLoc dl(GA);
EVT PtrVT = getPointerTy(DAG.getDataLayout());
unsigned char PCAdj = Subtarget->isThumb() ? 4 : 8;
MachineFunction &MF = DAG.getMachineFunction();
ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
unsigned ARMPCLabelIndex = AFI->createPICLabelUId();
ARMConstantPoolValue *CPV =
ARMConstantPoolConstant::Create(GA->getGlobal(), ARMPCLabelIndex,
ARMCP::CPValue, PCAdj, ARMCP::TLSGD, true);
SDValue Argument = DAG.getTargetConstantPool(CPV, PtrVT, Align(4));
Argument = DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, Argument);
Argument = DAG.getLoad(
PtrVT, dl, DAG.getEntryNode(), Argument,
MachinePointerInfo::getConstantPool(DAG.getMachineFunction()));
SDValue Chain = Argument.getValue(1);
SDValue PICLabel = DAG.getConstant(ARMPCLabelIndex, dl, MVT::i32);
Argument = DAG.getNode(ARMISD::PIC_ADD, dl, PtrVT, Argument, PICLabel);
// call __tls_get_addr.
ArgListTy Args;
ArgListEntry Entry;
Entry.Node = Argument;
Entry.Ty = (Type *) Type::getInt32Ty(*DAG.getContext());
Args.push_back(Entry);
// FIXME: is there useful debug info available here?
TargetLowering::CallLoweringInfo CLI(DAG);
CLI.setDebugLoc(dl).setChain(Chain).setLibCallee(
CallingConv::C, Type::getInt32Ty(*DAG.getContext()),
DAG.getExternalSymbol("__tls_get_addr", PtrVT), std::move(Args));
std::pair<SDValue, SDValue> CallResult = LowerCallTo(CLI);
return CallResult.first;
}
// Lower ISD::GlobalTLSAddress using the "initial exec" or
// "local exec" model.
SDValue
ARMTargetLowering::LowerToTLSExecModels(GlobalAddressSDNode *GA,
SelectionDAG &DAG,
TLSModel::Model model) const {
const GlobalValue *GV = GA->getGlobal();
SDLoc dl(GA);
SDValue Offset;
SDValue Chain = DAG.getEntryNode();
EVT PtrVT = getPointerTy(DAG.getDataLayout());
// Get the Thread Pointer
SDValue ThreadPointer = DAG.getNode(ARMISD::THREAD_POINTER, dl, PtrVT);
if (model == TLSModel::InitialExec) {
MachineFunction &MF = DAG.getMachineFunction();
ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
unsigned ARMPCLabelIndex = AFI->createPICLabelUId();
// Initial exec model.
unsigned char PCAdj = Subtarget->isThumb() ? 4 : 8;
ARMConstantPoolValue *CPV =
ARMConstantPoolConstant::Create(GA->getGlobal(), ARMPCLabelIndex,
ARMCP::CPValue, PCAdj, ARMCP::GOTTPOFF,
true);
Offset = DAG.getTargetConstantPool(CPV, PtrVT, Align(4));
Offset = DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, Offset);
Offset = DAG.getLoad(
PtrVT, dl, Chain, Offset,
MachinePointerInfo::getConstantPool(DAG.getMachineFunction()));
Chain = Offset.getValue(1);
SDValue PICLabel = DAG.getConstant(ARMPCLabelIndex, dl, MVT::i32);
Offset = DAG.getNode(ARMISD::PIC_ADD, dl, PtrVT, Offset, PICLabel);
Offset = DAG.getLoad(
PtrVT, dl, Chain, Offset,
MachinePointerInfo::getConstantPool(DAG.getMachineFunction()));
} else {
// local exec model
assert(model == TLSModel::LocalExec);
ARMConstantPoolValue *CPV =
ARMConstantPoolConstant::Create(GV, ARMCP::TPOFF);
Offset = DAG.getTargetConstantPool(CPV, PtrVT, Align(4));
Offset = DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, Offset);
Offset = DAG.getLoad(
PtrVT, dl, Chain, Offset,
MachinePointerInfo::getConstantPool(DAG.getMachineFunction()));
}
// The address of the thread local variable is the add of the thread
// pointer with the offset of the variable.
return DAG.getNode(ISD::ADD, dl, PtrVT, ThreadPointer, Offset);
}
SDValue
ARMTargetLowering::LowerGlobalTLSAddress(SDValue Op, SelectionDAG &DAG) const {
GlobalAddressSDNode *GA = cast<GlobalAddressSDNode>(Op);
if (DAG.getTarget().useEmulatedTLS())
return LowerToTLSEmulatedModel(GA, DAG);
if (Subtarget->isTargetDarwin())
return LowerGlobalTLSAddressDarwin(Op, DAG);
if (Subtarget->isTargetWindows())
return LowerGlobalTLSAddressWindows(Op, DAG);
// TODO: implement the "local dynamic" model
assert(Subtarget->isTargetELF() && "Only ELF implemented here");
TLSModel::Model model = getTargetMachine().getTLSModel(GA->getGlobal());
switch (model) {
case TLSModel::GeneralDynamic:
case TLSModel::LocalDynamic:
return LowerToTLSGeneralDynamicModel(GA, DAG);
case TLSModel::InitialExec:
case TLSModel::LocalExec:
return LowerToTLSExecModels(GA, DAG, model);
}
llvm_unreachable("bogus TLS model");
}
/// Return true if all users of V are within function F, looking through
/// ConstantExprs.
static bool allUsersAreInFunction(const Value *V, const Function *F) {
SmallVector<const User*,4> Worklist(V->users());
while (!Worklist.empty()) {
auto *U = Worklist.pop_back_val();
if (isa<ConstantExpr>(U)) {
append_range(Worklist, U->users());
continue;
}
auto *I = dyn_cast<Instruction>(U);
if (!I || I->getParent()->getParent() != F)
return false;
}
return true;
}
static SDValue promoteToConstantPool(const ARMTargetLowering *TLI,
const GlobalValue *GV, SelectionDAG &DAG,
EVT PtrVT, const SDLoc &dl) {
// If we're creating a pool entry for a constant global with unnamed address,
// and the global is small enough, we can emit it inline into the constant pool
// to save ourselves an indirection.
//
// This is a win if the constant is only used in one function (so it doesn't
// need to be duplicated) or duplicating the constant wouldn't increase code
// size (implying the constant is no larger than 4 bytes).
const Function &F = DAG.getMachineFunction().getFunction();
// We rely on this decision to inline being idemopotent and unrelated to the
// use-site. We know that if we inline a variable at one use site, we'll
// inline it elsewhere too (and reuse the constant pool entry). Fast-isel
// doesn't know about this optimization, so bail out if it's enabled else
// we could decide to inline here (and thus never emit the GV) but require
// the GV from fast-isel generated code.
if (!EnableConstpoolPromotion ||
DAG.getMachineFunction().getTarget().Options.EnableFastISel)
return SDValue();
auto *GVar = dyn_cast<GlobalVariable>(GV);
if (!GVar || !GVar->hasInitializer() ||
!GVar->isConstant() || !GVar->hasGlobalUnnamedAddr() ||
!GVar->hasLocalLinkage())
return SDValue();
// If we inline a value that contains relocations, we move the relocations
// from .data to .text. This is not allowed in position-independent code.
auto *Init = GVar->getInitializer();
if ((TLI->isPositionIndependent() || TLI->getSubtarget()->isROPI()) &&
Init->needsDynamicRelocation())
return SDValue();
// The constant islands pass can only really deal with alignment requests
// <= 4 bytes and cannot pad constants itself. Therefore we cannot promote
// any type wanting greater alignment requirements than 4 bytes. We also
// can only promote constants that are multiples of 4 bytes in size or
// are paddable to a multiple of 4. Currently we only try and pad constants
// that are strings for simplicity.
auto *CDAInit = dyn_cast<ConstantDataArray>(Init);
unsigned Size = DAG.getDataLayout().getTypeAllocSize(Init->getType());
Align PrefAlign = DAG.getDataLayout().getPreferredAlign(GVar);
unsigned RequiredPadding = 4 - (Size % 4);
bool PaddingPossible =
RequiredPadding == 4 || (CDAInit && CDAInit->isString());
if (!PaddingPossible || PrefAlign > 4 || Size > ConstpoolPromotionMaxSize ||
Size == 0)
return SDValue();
unsigned PaddedSize = Size + ((RequiredPadding == 4) ? 0 : RequiredPadding);
MachineFunction &MF = DAG.getMachineFunction();
ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
// We can't bloat the constant pool too much, else the ConstantIslands pass
// may fail to converge. If we haven't promoted this global yet (it may have
// multiple uses), and promoting it would increase the constant pool size (Sz
// > 4), ensure we have space to do so up to MaxTotal.
if (!AFI->getGlobalsPromotedToConstantPool().count(GVar) && Size > 4)
if (AFI->getPromotedConstpoolIncrease() + PaddedSize - 4 >=
ConstpoolPromotionMaxTotal)
return SDValue();
// This is only valid if all users are in a single function; we can't clone
// the constant in general. The LLVM IR unnamed_addr allows merging
// constants, but not cloning them.
//
// We could potentially allow cloning if we could prove all uses of the
// constant in the current function don't care about the address, like
// printf format strings. But that isn't implemented for now.
if (!allUsersAreInFunction(GVar, &F))
return SDValue();
// We're going to inline this global. Pad it out if needed.
if (RequiredPadding != 4) {
StringRef S = CDAInit->getAsString();
SmallVector<uint8_t,16> V(S.size());
std::copy(S.bytes_begin(), S.bytes_end(), V.begin());
while (RequiredPadding--)
V.push_back(0);
Init = ConstantDataArray::get(*DAG.getContext(), V);
}
auto CPVal = ARMConstantPoolConstant::Create(GVar, Init);
SDValue CPAddr = DAG.getTargetConstantPool(CPVal, PtrVT, Align(4));
if (!AFI->getGlobalsPromotedToConstantPool().count(GVar)) {
AFI->markGlobalAsPromotedToConstantPool(GVar);
AFI->setPromotedConstpoolIncrease(AFI->getPromotedConstpoolIncrease() +
PaddedSize - 4);
}
++NumConstpoolPromoted;
return DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, CPAddr);
}
bool ARMTargetLowering::isReadOnly(const GlobalValue *GV) const {
if (const GlobalAlias *GA = dyn_cast<GlobalAlias>(GV))
if (!(GV = GA->getAliaseeObject()))
return false;
if (const auto *V = dyn_cast<GlobalVariable>(GV))
return V->isConstant();
return isa<Function>(GV);
}
SDValue ARMTargetLowering::LowerGlobalAddress(SDValue Op,
SelectionDAG &DAG) const {
switch (Subtarget->getTargetTriple().getObjectFormat()) {
default: llvm_unreachable("unknown object format");
case Triple::COFF:
return LowerGlobalAddressWindows(Op, DAG);
case Triple::ELF:
return LowerGlobalAddressELF(Op, DAG);
case Triple::MachO:
return LowerGlobalAddressDarwin(Op, DAG);
}
}
SDValue ARMTargetLowering::LowerGlobalAddressELF(SDValue Op,
SelectionDAG &DAG) const {
EVT PtrVT = getPointerTy(DAG.getDataLayout());
SDLoc dl(Op);
const GlobalValue *GV = cast<GlobalAddressSDNode>(Op)->getGlobal();
const TargetMachine &TM = getTargetMachine();
bool IsRO = isReadOnly(GV);
// promoteToConstantPool only if not generating XO text section
if (TM.shouldAssumeDSOLocal(*GV->getParent(), GV) && !Subtarget->genExecuteOnly())
if (SDValue V = promoteToConstantPool(this, GV, DAG, PtrVT, dl))
return V;
if (isPositionIndependent()) {
bool UseGOT_PREL = !TM.shouldAssumeDSOLocal(*GV->getParent(), GV);
SDValue G = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0,
UseGOT_PREL ? ARMII::MO_GOT : 0);
SDValue Result = DAG.getNode(ARMISD::WrapperPIC, dl, PtrVT, G);
if (UseGOT_PREL)
Result =
DAG.getLoad(PtrVT, dl, DAG.getEntryNode(), Result,
MachinePointerInfo::getGOT(DAG.getMachineFunction()));
return Result;
} else if (Subtarget->isROPI() && IsRO) {
// PC-relative.
SDValue G = DAG.getTargetGlobalAddress(GV, dl, PtrVT);
SDValue Result = DAG.getNode(ARMISD::WrapperPIC, dl, PtrVT, G);
return Result;
} else if (Subtarget->isRWPI() && !IsRO) {
// SB-relative.
SDValue RelAddr;
if (Subtarget->useMovt()) {
++NumMovwMovt;
SDValue G = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0, ARMII::MO_SBREL);
RelAddr = DAG.getNode(ARMISD::Wrapper, dl, PtrVT, G);
} else { // use literal pool for address constant
ARMConstantPoolValue *CPV =
ARMConstantPoolConstant::Create(GV, ARMCP::SBREL);
SDValue CPAddr = DAG.getTargetConstantPool(CPV, PtrVT, Align(4));
CPAddr = DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, CPAddr);
RelAddr = DAG.getLoad(
PtrVT, dl, DAG.getEntryNode(), CPAddr,
MachinePointerInfo::getConstantPool(DAG.getMachineFunction()));
}
SDValue SB = DAG.getCopyFromReg(DAG.getEntryNode(), dl, ARM::R9, PtrVT);
SDValue Result = DAG.getNode(ISD::ADD, dl, PtrVT, SB, RelAddr);
return Result;
}
// If we have T2 ops, we can materialize the address directly via movt/movw
// pair. This is always cheaper.
if (Subtarget->useMovt()) {
++NumMovwMovt;
// FIXME: Once remat is capable of dealing with instructions with register
// operands, expand this into two nodes.
return DAG.getNode(ARMISD::Wrapper, dl, PtrVT,
DAG.getTargetGlobalAddress(GV, dl, PtrVT));
} else {
SDValue CPAddr = DAG.getTargetConstantPool(GV, PtrVT, Align(4));
CPAddr = DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, CPAddr);
return DAG.getLoad(
PtrVT, dl, DAG.getEntryNode(), CPAddr,
MachinePointerInfo::getConstantPool(DAG.getMachineFunction()));
}
}
SDValue ARMTargetLowering::LowerGlobalAddressDarwin(SDValue Op,
SelectionDAG &DAG) const {
assert(!Subtarget->isROPI() && !Subtarget->isRWPI() &&
"ROPI/RWPI not currently supported for Darwin");
EVT PtrVT = getPointerTy(DAG.getDataLayout());
SDLoc dl(Op);
const GlobalValue *GV = cast<GlobalAddressSDNode>(Op)->getGlobal();
if (Subtarget->useMovt())
++NumMovwMovt;
// FIXME: Once remat is capable of dealing with instructions with register
// operands, expand this into multiple nodes
unsigned Wrapper =
isPositionIndependent() ? ARMISD::WrapperPIC : ARMISD::Wrapper;
SDValue G = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0, ARMII::MO_NONLAZY);
SDValue Result = DAG.getNode(Wrapper, dl, PtrVT, G);
if (Subtarget->isGVIndirectSymbol(GV))
Result = DAG.getLoad(PtrVT, dl, DAG.getEntryNode(), Result,
MachinePointerInfo::getGOT(DAG.getMachineFunction()));
return Result;
}
SDValue ARMTargetLowering::LowerGlobalAddressWindows(SDValue Op,
SelectionDAG &DAG) const {
assert(Subtarget->isTargetWindows() && "non-Windows COFF is not supported");
assert(Subtarget->useMovt() &&
"Windows on ARM expects to use movw/movt");
assert(!Subtarget->isROPI() && !Subtarget->isRWPI() &&
"ROPI/RWPI not currently supported for Windows");
const TargetMachine &TM = getTargetMachine();
const GlobalValue *GV = cast<GlobalAddressSDNode>(Op)->getGlobal();
ARMII::TOF TargetFlags = ARMII::MO_NO_FLAG;
if (GV->hasDLLImportStorageClass())
TargetFlags = ARMII::MO_DLLIMPORT;
else if (!TM.shouldAssumeDSOLocal(*GV->getParent(), GV))
TargetFlags = ARMII::MO_COFFSTUB;
EVT PtrVT = getPointerTy(DAG.getDataLayout());
SDValue Result;
SDLoc DL(Op);
++NumMovwMovt;
// FIXME: Once remat is capable of dealing with instructions with register
// operands, expand this into two nodes.
Result = DAG.getNode(ARMISD::Wrapper, DL, PtrVT,
DAG.getTargetGlobalAddress(GV, DL, PtrVT, /*offset=*/0,
TargetFlags));
if (TargetFlags & (ARMII::MO_DLLIMPORT | ARMII::MO_COFFSTUB))
Result = DAG.getLoad(PtrVT, DL, DAG.getEntryNode(), Result,
MachinePointerInfo::getGOT(DAG.getMachineFunction()));
return Result;
}
SDValue
ARMTargetLowering::LowerEH_SJLJ_SETJMP(SDValue Op, SelectionDAG &DAG) const {
SDLoc dl(Op);
SDValue Val = DAG.getConstant(0, dl, MVT::i32);
return DAG.getNode(ARMISD::EH_SJLJ_SETJMP, dl,
DAG.getVTList(MVT::i32, MVT::Other), Op.getOperand(0),
Op.getOperand(1), Val);
}
SDValue
ARMTargetLowering::LowerEH_SJLJ_LONGJMP(SDValue Op, SelectionDAG &DAG) const {
SDLoc dl(Op);
return DAG.getNode(ARMISD::EH_SJLJ_LONGJMP, dl, MVT::Other, Op.getOperand(0),
Op.getOperand(1), DAG.getConstant(0, dl, MVT::i32));
}
SDValue ARMTargetLowering::LowerEH_SJLJ_SETUP_DISPATCH(SDValue Op,
SelectionDAG &DAG) const {
SDLoc dl(Op);
return DAG.getNode(ARMISD::EH_SJLJ_SETUP_DISPATCH, dl, MVT::Other,
Op.getOperand(0));
}
SDValue ARMTargetLowering::LowerINTRINSIC_VOID(
SDValue Op, SelectionDAG &DAG, const ARMSubtarget *Subtarget) const {
unsigned IntNo =
cast<ConstantSDNode>(
Op.getOperand(Op.getOperand(0).getValueType() == MVT::Other))
->getZExtValue();
switch (IntNo) {
default:
return SDValue(); // Don't custom lower most intrinsics.
case Intrinsic::arm_gnu_eabi_mcount: {
MachineFunction &MF = DAG.getMachineFunction();
EVT PtrVT = getPointerTy(DAG.getDataLayout());
SDLoc dl(Op);
SDValue Chain = Op.getOperand(0);
// call "\01__gnu_mcount_nc"
const ARMBaseRegisterInfo *ARI = Subtarget->getRegisterInfo();
const uint32_t *Mask =
ARI->getCallPreservedMask(DAG.getMachineFunction(), CallingConv::C);
assert(Mask && "Missing call preserved mask for calling convention");
// Mark LR an implicit live-in.
unsigned Reg = MF.addLiveIn(ARM::LR, getRegClassFor(MVT::i32));
SDValue ReturnAddress =
DAG.getCopyFromReg(DAG.getEntryNode(), dl, Reg, PtrVT);
constexpr EVT ResultTys[] = {MVT::Other, MVT::Glue};
SDValue Callee =
DAG.getTargetExternalSymbol("\01__gnu_mcount_nc", PtrVT, 0);
SDValue RegisterMask = DAG.getRegisterMask(Mask);
if (Subtarget->isThumb())
return SDValue(
DAG.getMachineNode(
ARM::tBL_PUSHLR, dl, ResultTys,
{ReturnAddress, DAG.getTargetConstant(ARMCC::AL, dl, PtrVT),
DAG.getRegister(0, PtrVT), Callee, RegisterMask, Chain}),
0);
return SDValue(
DAG.getMachineNode(ARM::BL_PUSHLR, dl, ResultTys,
{ReturnAddress, Callee, RegisterMask, Chain}),
0);
}
}
}
SDValue
ARMTargetLowering::LowerINTRINSIC_WO_CHAIN(SDValue Op, SelectionDAG &DAG,
const ARMSubtarget *Subtarget) const {
unsigned IntNo = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
SDLoc dl(Op);
switch (IntNo) {
default: return SDValue(); // Don't custom lower most intrinsics.
case Intrinsic::thread_pointer: {
EVT PtrVT = getPointerTy(DAG.getDataLayout());
return DAG.getNode(ARMISD::THREAD_POINTER, dl, PtrVT);
}
case Intrinsic::arm_cls: {
const SDValue &Operand = Op.getOperand(1);
const EVT VTy = Op.getValueType();
SDValue SRA =
DAG.getNode(ISD::SRA, dl, VTy, Operand, DAG.getConstant(31, dl, VTy));
SDValue XOR = DAG.getNode(ISD::XOR, dl, VTy, SRA, Operand);
SDValue SHL =
DAG.getNode(ISD::SHL, dl, VTy, XOR, DAG.getConstant(1, dl, VTy));
SDValue OR =
DAG.getNode(ISD::OR, dl, VTy, SHL, DAG.getConstant(1, dl, VTy));
SDValue Result = DAG.getNode(ISD::CTLZ, dl, VTy, OR);
return Result;
}
case Intrinsic::arm_cls64: {
// cls(x) = if cls(hi(x)) != 31 then cls(hi(x))
// else 31 + clz(if hi(x) == 0 then lo(x) else not(lo(x)))
const SDValue &Operand = Op.getOperand(1);
const EVT VTy = Op.getValueType();
SDValue Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, VTy, Operand,
DAG.getConstant(1, dl, VTy));
SDValue Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, VTy, Operand,
DAG.getConstant(0, dl, VTy));
SDValue Constant0 = DAG.getConstant(0, dl, VTy);
SDValue Constant1 = DAG.getConstant(1, dl, VTy);
SDValue Constant31 = DAG.getConstant(31, dl, VTy);
SDValue SRAHi = DAG.getNode(ISD::SRA, dl, VTy, Hi, Constant31);
SDValue XORHi = DAG.getNode(ISD::XOR, dl, VTy, SRAHi, Hi);
SDValue SHLHi = DAG.getNode(ISD::SHL, dl, VTy, XORHi, Constant1);
SDValue ORHi = DAG.getNode(ISD::OR, dl, VTy, SHLHi, Constant1);
SDValue CLSHi = DAG.getNode(ISD::CTLZ, dl, VTy, ORHi);
SDValue CheckLo =
DAG.getSetCC(dl, MVT::i1, CLSHi, Constant31, ISD::CondCode::SETEQ);
SDValue HiIsZero =
DAG.getSetCC(dl, MVT::i1, Hi, Constant0, ISD::CondCode::SETEQ);
SDValue AdjustedLo =
DAG.getSelect(dl, VTy, HiIsZero, Lo, DAG.getNOT(dl, Lo, VTy));
SDValue CLZAdjustedLo = DAG.getNode(ISD::CTLZ, dl, VTy, AdjustedLo);
SDValue Result =
DAG.getSelect(dl, VTy, CheckLo,
DAG.getNode(ISD::ADD, dl, VTy, CLZAdjustedLo, Constant31), CLSHi);
return Result;
}
case Intrinsic::eh_sjlj_lsda: {
MachineFunction &MF = DAG.getMachineFunction();
ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
unsigned ARMPCLabelIndex = AFI->createPICLabelUId();
EVT PtrVT = getPointerTy(DAG.getDataLayout());
SDValue CPAddr;
bool IsPositionIndependent = isPositionIndependent();
unsigned PCAdj = IsPositionIndependent ? (Subtarget->isThumb() ? 4 : 8) : 0;
ARMConstantPoolValue *CPV =
ARMConstantPoolConstant::Create(&MF.getFunction(), ARMPCLabelIndex,
ARMCP::CPLSDA, PCAdj);
CPAddr = DAG.getTargetConstantPool(CPV, PtrVT, Align(4));
CPAddr = DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, CPAddr);
SDValue Result = DAG.getLoad(
PtrVT, dl, DAG.getEntryNode(), CPAddr,
MachinePointerInfo::getConstantPool(DAG.getMachineFunction()));
if (IsPositionIndependent) {
SDValue PICLabel = DAG.getConstant(ARMPCLabelIndex, dl, MVT::i32);
Result = DAG.getNode(ARMISD::PIC_ADD, dl, PtrVT, Result, PICLabel);
}
return Result;
}
case Intrinsic::arm_neon_vabs:
return DAG.getNode(ISD::ABS, SDLoc(Op), Op.getValueType(),
Op.getOperand(1));
case Intrinsic::arm_neon_vmulls:
case Intrinsic::arm_neon_vmullu: {
unsigned NewOpc = (IntNo == Intrinsic::arm_neon_vmulls)
? ARMISD::VMULLs : ARMISD::VMULLu;
return DAG.getNode(NewOpc, SDLoc(Op), Op.getValueType(),
Op.getOperand(1), Op.getOperand(2));
}
case Intrinsic::arm_neon_vminnm:
case Intrinsic::arm_neon_vmaxnm: {
unsigned NewOpc = (IntNo == Intrinsic::arm_neon_vminnm)
? ISD::FMINNUM : ISD::FMAXNUM;
return DAG.getNode(NewOpc, SDLoc(Op), Op.getValueType(),
Op.getOperand(1), Op.getOperand(2));
}
case Intrinsic::arm_neon_vminu:
case Intrinsic::arm_neon_vmaxu: {
if (Op.getValueType().isFloatingPoint())
return SDValue();
unsigned NewOpc = (IntNo == Intrinsic::arm_neon_vminu)
? ISD::UMIN : ISD::UMAX;
return DAG.getNode(NewOpc, SDLoc(Op), Op.getValueType(),
Op.getOperand(1), Op.getOperand(2));
}
case Intrinsic::arm_neon_vmins:
case Intrinsic::arm_neon_vmaxs: {
// v{min,max}s is overloaded between signed integers and floats.
if (!Op.getValueType().isFloatingPoint()) {
unsigned NewOpc = (IntNo == Intrinsic::arm_neon_vmins)
? ISD::SMIN : ISD::SMAX;
return DAG.getNode(NewOpc, SDLoc(Op), Op.getValueType(),
Op.getOperand(1), Op.getOperand(2));
}
unsigned NewOpc = (IntNo == Intrinsic::arm_neon_vmins)
? ISD::FMINIMUM : ISD::FMAXIMUM;
return DAG.getNode(NewOpc, SDLoc(Op), Op.getValueType(),
Op.getOperand(1), Op.getOperand(2));
}
case Intrinsic::arm_neon_vtbl1:
return DAG.getNode(ARMISD::VTBL1, SDLoc(Op), Op.getValueType(),
Op.getOperand(1), Op.getOperand(2));
case Intrinsic::arm_neon_vtbl2:
return DAG.getNode(ARMISD::VTBL2, SDLoc(Op), Op.getValueType(),
Op.getOperand(1), Op.getOperand(2), Op.getOperand(3));
case Intrinsic::arm_mve_pred_i2v:
case Intrinsic::arm_mve_pred_v2i:
return DAG.getNode(ARMISD::PREDICATE_CAST, SDLoc(Op), Op.getValueType(),
Op.getOperand(1));
case Intrinsic::arm_mve_vreinterpretq:
return DAG.getNode(ARMISD::VECTOR_REG_CAST, SDLoc(Op), Op.getValueType(),
Op.getOperand(1));
case Intrinsic::arm_mve_lsll:
return DAG.getNode(ARMISD::LSLL, SDLoc(Op), Op->getVTList(),
Op.getOperand(1), Op.getOperand(2), Op.getOperand(3));
case Intrinsic::arm_mve_asrl:
return DAG.getNode(ARMISD::ASRL, SDLoc(Op), Op->getVTList(),
Op.getOperand(1), Op.getOperand(2), Op.getOperand(3));
}
}
static SDValue LowerATOMIC_FENCE(SDValue Op, SelectionDAG &DAG,
const ARMSubtarget *Subtarget) {
SDLoc dl(Op);
ConstantSDNode *SSIDNode = cast<ConstantSDNode>(Op.getOperand(2));
auto SSID = static_cast<SyncScope::ID>(SSIDNode->getZExtValue());
if (SSID == SyncScope::SingleThread)
return Op;
if (!Subtarget->hasDataBarrier()) {
// Some ARMv6 cpus can support data barriers with an mcr instruction.
// Thumb1 and pre-v6 ARM mode use a libcall instead and should never get
// here.
assert(Subtarget->hasV6Ops() && !Subtarget->isThumb() &&
"Unexpected ISD::ATOMIC_FENCE encountered. Should be libcall!");
return DAG.getNode(ARMISD::MEMBARRIER_MCR, dl, MVT::Other, Op.getOperand(0),
DAG.getConstant(0, dl, MVT::i32));
}
ConstantSDNode *OrdN = cast<ConstantSDNode>(Op.getOperand(1));
AtomicOrdering Ord = static_cast<AtomicOrdering>(OrdN->getZExtValue());
ARM_MB::MemBOpt Domain = ARM_MB::ISH;
if (Subtarget->isMClass()) {
// Only a full system barrier exists in the M-class architectures.
Domain = ARM_MB::SY;
} else if (Subtarget->preferISHSTBarriers() &&
Ord == AtomicOrdering::Release) {
// Swift happens to implement ISHST barriers in a way that's compatible with
// Release semantics but weaker than ISH so we'd be fools not to use
// it. Beware: other processors probably don't!
Domain = ARM_MB::ISHST;
}
return DAG.getNode(ISD::INTRINSIC_VOID, dl, MVT::Other, Op.getOperand(0),
DAG.getConstant(Intrinsic::arm_dmb, dl, MVT::i32),
DAG.getConstant(Domain, dl, MVT::i32));
}
static SDValue LowerPREFETCH(SDValue Op, SelectionDAG &DAG,
const ARMSubtarget *Subtarget) {
// ARM pre v5TE and Thumb1 does not have preload instructions.
if (!(Subtarget->isThumb2() ||
(!Subtarget->isThumb1Only() && Subtarget->hasV5TEOps())))
// Just preserve the chain.
return Op.getOperand(0);
SDLoc dl(Op);
unsigned isRead = ~cast<ConstantSDNode>(Op.getOperand(2))->getZExtValue() & 1;
if (!isRead &&
(!Subtarget->hasV7Ops() || !Subtarget->hasMPExtension()))
// ARMv7 with MP extension has PLDW.
return Op.getOperand(0);
unsigned isData = cast<ConstantSDNode>(Op.getOperand(4))->getZExtValue();
if (Subtarget->isThumb()) {
// Invert the bits.
isRead = ~isRead & 1;
isData = ~isData & 1;
}
return DAG.getNode(ARMISD::PRELOAD, dl, MVT::Other, Op.getOperand(0),
Op.getOperand(1), DAG.getConstant(isRead, dl, MVT::i32),
DAG.getConstant(isData, dl, MVT::i32));
}
static SDValue LowerVASTART(SDValue Op, SelectionDAG &DAG) {
MachineFunction &MF = DAG.getMachineFunction();
ARMFunctionInfo *FuncInfo = MF.getInfo<ARMFunctionInfo>();
// vastart just stores the address of the VarArgsFrameIndex slot into the
// memory location argument.
SDLoc dl(Op);
EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout());
SDValue FR = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), PtrVT);
const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue();
return DAG.getStore(Op.getOperand(0), dl, FR, Op.getOperand(1),
MachinePointerInfo(SV));
}
SDValue ARMTargetLowering::GetF64FormalArgument(CCValAssign &VA,
CCValAssign &NextVA,
SDValue &Root,
SelectionDAG &DAG,
const SDLoc &dl) const {
MachineFunction &MF = DAG.getMachineFunction();
ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
const TargetRegisterClass *RC;
if (AFI->isThumb1OnlyFunction())
RC = &ARM::tGPRRegClass;
else
RC = &ARM::GPRRegClass;
// Transform the arguments stored in physical registers into virtual ones.
unsigned Reg = MF.addLiveIn(VA.getLocReg(), RC);
SDValue ArgValue = DAG.getCopyFromReg(Root, dl, Reg, MVT::i32);
SDValue ArgValue2;
if (NextVA.isMemLoc()) {
MachineFrameInfo &MFI = MF.getFrameInfo();
int FI = MFI.CreateFixedObject(4, NextVA.getLocMemOffset(), true);
// Create load node to retrieve arguments from the stack.
SDValue FIN = DAG.getFrameIndex(FI, getPointerTy(DAG.getDataLayout()));
ArgValue2 = DAG.getLoad(
MVT::i32, dl, Root, FIN,
MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI));
} else {
Reg = MF.addLiveIn(NextVA.getLocReg(), RC);
ArgValue2 = DAG.getCopyFromReg(Root, dl, Reg, MVT::i32);
}
if (!Subtarget->isLittle())
std::swap (ArgValue, ArgValue2);
return DAG.getNode(ARMISD::VMOVDRR, dl, MVT::f64, ArgValue, ArgValue2);
}
// The remaining GPRs hold either the beginning of variable-argument
// data, or the beginning of an aggregate passed by value (usually
// byval). Either way, we allocate stack slots adjacent to the data
// provided by our caller, and store the unallocated registers there.
// If this is a variadic function, the va_list pointer will begin with
// these values; otherwise, this reassembles a (byval) structure that
// was split between registers and memory.
// Return: The frame index registers were stored into.
int ARMTargetLowering::StoreByValRegs(CCState &CCInfo, SelectionDAG &DAG,
const SDLoc &dl, SDValue &Chain,
const Value *OrigArg,
unsigned InRegsParamRecordIdx,
int ArgOffset, unsigned ArgSize) const {
// Currently, two use-cases possible:
// Case #1. Non-var-args function, and we meet first byval parameter.
// Setup first unallocated register as first byval register;
// eat all remained registers
// (these two actions are performed by HandleByVal method).
// Then, here, we initialize stack frame with
// "store-reg" instructions.
// Case #2. Var-args function, that doesn't contain byval parameters.
// The same: eat all remained unallocated registers,
// initialize stack frame.
MachineFunction &MF = DAG.getMachineFunction();
MachineFrameInfo &MFI = MF.getFrameInfo();
ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
unsigned RBegin, REnd;
if (InRegsParamRecordIdx < CCInfo.getInRegsParamsCount()) {
CCInfo.getInRegsParamInfo(InRegsParamRecordIdx, RBegin, REnd);
} else {
unsigned RBeginIdx = CCInfo.getFirstUnallocated(GPRArgRegs);
RBegin = RBeginIdx == 4 ? (unsigned)ARM::R4 : GPRArgRegs[RBeginIdx];
REnd = ARM::R4;
}
if (REnd != RBegin)
ArgOffset = -4 * (ARM::R4 - RBegin);
auto PtrVT = getPointerTy(DAG.getDataLayout());
int FrameIndex = MFI.CreateFixedObject(ArgSize, ArgOffset, false);
SDValue FIN = DAG.getFrameIndex(FrameIndex, PtrVT);
SmallVector<SDValue, 4> MemOps;
const TargetRegisterClass *RC =
AFI->isThumb1OnlyFunction() ? &ARM::tGPRRegClass : &ARM::GPRRegClass;
for (unsigned Reg = RBegin, i = 0; Reg < REnd; ++Reg, ++i) {
unsigned VReg = MF.addLiveIn(Reg, RC);
SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, MVT::i32);
SDValue Store = DAG.getStore(Val.getValue(1), dl, Val, FIN,
MachinePointerInfo(OrigArg, 4 * i));
MemOps.push_back(Store);
FIN = DAG.getNode(ISD::ADD, dl, PtrVT, FIN, DAG.getConstant(4, dl, PtrVT));
}
if (!MemOps.empty())
Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOps);
return FrameIndex;
}
// Setup stack frame, the va_list pointer will start from.
void ARMTargetLowering::VarArgStyleRegisters(CCState &CCInfo, SelectionDAG &DAG,
const SDLoc &dl, SDValue &Chain,
unsigned ArgOffset,
unsigned TotalArgRegsSaveSize,
bool ForceMutable) const {
MachineFunction &MF = DAG.getMachineFunction();
ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
// Try to store any remaining integer argument regs
// to their spots on the stack so that they may be loaded by dereferencing
// the result of va_next.
// If there is no regs to be stored, just point address after last
// argument passed via stack.
int FrameIndex = StoreByValRegs(CCInfo, DAG, dl, Chain, nullptr,
CCInfo.getInRegsParamsCount(),
CCInfo.getNextStackOffset(),
std::max(4U, TotalArgRegsSaveSize));
AFI->setVarArgsFrameIndex(FrameIndex);
}
bool ARMTargetLowering::splitValueIntoRegisterParts(
SelectionDAG &DAG, const SDLoc &DL, SDValue Val, SDValue *Parts,
unsigned NumParts, MVT PartVT, Optional<CallingConv::ID> CC) const {
bool IsABIRegCopy = CC.hasValue();
EVT ValueVT = Val.getValueType();
if (IsABIRegCopy && (ValueVT == MVT::f16 || ValueVT == MVT::bf16) &&
PartVT == MVT::f32) {
unsigned ValueBits = ValueVT.getSizeInBits();
unsigned PartBits = PartVT.getSizeInBits();
Val = DAG.getNode(ISD::BITCAST, DL, MVT::getIntegerVT(ValueBits), Val);
Val = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::getIntegerVT(PartBits), Val);
Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val);
Parts[0] = Val;
return true;
}
return false;
}
SDValue ARMTargetLowering::joinRegisterPartsIntoValue(
SelectionDAG &DAG, const SDLoc &DL, const SDValue *Parts, unsigned NumParts,
MVT PartVT, EVT ValueVT, Optional<CallingConv::ID> CC) const {
bool IsABIRegCopy = CC.hasValue();
if (IsABIRegCopy && (ValueVT == MVT::f16 || ValueVT == MVT::bf16) &&
PartVT == MVT::f32) {
unsigned ValueBits = ValueVT.getSizeInBits();
unsigned PartBits = PartVT.getSizeInBits();
SDValue Val = Parts[0];
Val = DAG.getNode(ISD::BITCAST, DL, MVT::getIntegerVT(PartBits), Val);
Val = DAG.getNode(ISD::TRUNCATE, DL, MVT::getIntegerVT(ValueBits), Val);
Val = DAG.getNode(ISD::BITCAST, DL, ValueVT, Val);
return Val;
}
return SDValue();
}
SDValue ARMTargetLowering::LowerFormalArguments(
SDValue Chain, CallingConv::ID CallConv, bool isVarArg,
const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl,
SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const {
MachineFunction &MF = DAG.getMachineFunction();
MachineFrameInfo &MFI = MF.getFrameInfo();
ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
// Assign locations to all of the incoming arguments.
SmallVector<CCValAssign, 16> ArgLocs;
CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), ArgLocs,
*DAG.getContext());
CCInfo.AnalyzeFormalArguments(Ins, CCAssignFnForCall(CallConv, isVarArg));
SmallVector<SDValue, 16> ArgValues;
SDValue ArgValue;
Function::const_arg_iterator CurOrigArg = MF.getFunction().arg_begin();
unsigned CurArgIdx = 0;
// Initially ArgRegsSaveSize is zero.
// Then we increase this value each time we meet byval parameter.
// We also increase this value in case of varargs function.
AFI->setArgRegsSaveSize(0);
// Calculate the amount of stack space that we need to allocate to store
// byval and variadic arguments that are passed in registers.
// We need to know this before we allocate the first byval or variadic
// argument, as they will be allocated a stack slot below the CFA (Canonical
// Frame Address, the stack pointer at entry to the function).
unsigned ArgRegBegin = ARM::R4;
for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
if (CCInfo.getInRegsParamsProcessed() >= CCInfo.getInRegsParamsCount())
break;
CCValAssign &VA = ArgLocs[i];
unsigned Index = VA.getValNo();
ISD::ArgFlagsTy Flags = Ins[Index].Flags;
if (!Flags.isByVal())
continue;
assert(VA.isMemLoc() && "unexpected byval pointer in reg");
unsigned RBegin, REnd;
CCInfo.getInRegsParamInfo(CCInfo.getInRegsParamsProcessed(), RBegin, REnd);
ArgRegBegin = std::min(ArgRegBegin, RBegin);
CCInfo.nextInRegsParam();
}
CCInfo.rewindByValRegsInfo();
int lastInsIndex = -1;
if (isVarArg && MFI.hasVAStart()) {
unsigned RegIdx = CCInfo.getFirstUnallocated(GPRArgRegs);
if (RegIdx != array_lengthof(GPRArgRegs))
ArgRegBegin = std::min(ArgRegBegin, (unsigned)GPRArgRegs[RegIdx]);
}
unsigned TotalArgRegsSaveSize = 4 * (ARM::R4 - ArgRegBegin);
AFI->setArgRegsSaveSize(TotalArgRegsSaveSize);
auto PtrVT = getPointerTy(DAG.getDataLayout());
for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
CCValAssign &VA = ArgLocs[i];
if (Ins[VA.getValNo()].isOrigArg()) {
std::advance(CurOrigArg,
Ins[VA.getValNo()].getOrigArgIndex() - CurArgIdx);
CurArgIdx = Ins[VA.getValNo()].getOrigArgIndex();
}
// Arguments stored in registers.
if (VA.isRegLoc()) {
EVT RegVT = VA.getLocVT();
if (VA.needsCustom() && VA.getLocVT() == MVT::v2f64) {
// f64 and vector types are split up into multiple registers or
// combinations of registers and stack slots.
SDValue ArgValue1 =
GetF64FormalArgument(VA, ArgLocs[++i], Chain, DAG, dl);
VA = ArgLocs[++i]; // skip ahead to next loc
SDValue ArgValue2;
if (VA.isMemLoc()) {
int FI = MFI.CreateFixedObject(8, VA.getLocMemOffset(), true);
SDValue FIN = DAG.getFrameIndex(FI, PtrVT);
ArgValue2 = DAG.getLoad(
MVT::f64, dl, Chain, FIN,
MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI));
} else {
ArgValue2 = GetF64FormalArgument(VA, ArgLocs[++i], Chain, DAG, dl);
}
ArgValue = DAG.getNode(ISD::UNDEF, dl, MVT::v2f64);
ArgValue = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v2f64, ArgValue,
ArgValue1, DAG.getIntPtrConstant(0, dl));
ArgValue = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v2f64, ArgValue,
ArgValue2, DAG.getIntPtrConstant(1, dl));
} else if (VA.needsCustom() && VA.getLocVT() == MVT::f64) {
ArgValue = GetF64FormalArgument(VA, ArgLocs[++i], Chain, DAG, dl);
} else {
const TargetRegisterClass *RC;
if (RegVT == MVT::f16 || RegVT == MVT::bf16)
RC = &ARM::HPRRegClass;
else if (RegVT == MVT::f32)
RC = &ARM::SPRRegClass;
else if (RegVT == MVT::f64 || RegVT == MVT::v4f16 ||
RegVT == MVT::v4bf16)
RC = &ARM::DPRRegClass;
else if (RegVT == MVT::v2f64 || RegVT == MVT::v8f16 ||
RegVT == MVT::v8bf16)
RC = &ARM::QPRRegClass;
else if (RegVT == MVT::i32)
RC = AFI->isThumb1OnlyFunction() ? &ARM::tGPRRegClass
: &ARM::GPRRegClass;
else
llvm_unreachable("RegVT not supported by FORMAL_ARGUMENTS Lowering");
// Transform the arguments in physical registers into virtual ones.
unsigned Reg = MF.addLiveIn(VA.getLocReg(), RC);
ArgValue = DAG.getCopyFromReg(Chain, dl, Reg, RegVT);
// If this value is passed in r0 and has the returned attribute (e.g.
// C++ 'structors), record this fact for later use.
if (VA.getLocReg() == ARM::R0 && Ins[VA.getValNo()].Flags.isReturned()) {
AFI->setPreservesR0();
}
}
// If this is an 8 or 16-bit value, it is really passed promoted
// to 32 bits. Insert an assert[sz]ext to capture this, then
// truncate to the right size.
switch (VA.getLocInfo()) {
default: llvm_unreachable("Unknown loc info!");
case CCValAssign::Full: break;
case CCValAssign::BCvt:
ArgValue = DAG.getNode(ISD::BITCAST, dl, VA.getValVT(), ArgValue);
break;
case CCValAssign::SExt:
ArgValue = DAG.getNode(ISD::AssertSext, dl, RegVT, ArgValue,
DAG.getValueType(VA.getValVT()));
ArgValue = DAG.getNode(ISD::TRUNCATE, dl, VA.getValVT(), ArgValue);
break;
case CCValAssign::ZExt:
ArgValue = DAG.getNode(ISD::AssertZext, dl, RegVT, ArgValue,
DAG.getValueType(VA.getValVT()));
ArgValue = DAG.getNode(ISD::TRUNCATE, dl, VA.getValVT(), ArgValue);
break;
}
// f16 arguments have their size extended to 4 bytes and passed as if they
// had been copied to the LSBs of a 32-bit register.
// For that, it's passed extended to i32 (soft ABI) or to f32 (hard ABI)
if (VA.needsCustom() &&
(VA.getValVT() == MVT::f16 || VA.getValVT() == MVT::bf16))
ArgValue = MoveToHPR(dl, DAG, VA.getLocVT(), VA.getValVT(), ArgValue);
InVals.push_back(ArgValue);
} else { // VA.isRegLoc()
// Only arguments passed on the stack should make it here.
assert(VA.isMemLoc());
assert(VA.getValVT() != MVT::i64 && "i64 should already be lowered");
int index = VA.getValNo();
// Some Ins[] entries become multiple ArgLoc[] entries.
// Process them only once.
if (index != lastInsIndex)
{
ISD::ArgFlagsTy Flags = Ins[index].Flags;
// FIXME: For now, all byval parameter objects are marked mutable.
// This can be changed with more analysis.
// In case of tail call optimization mark all arguments mutable.
// Since they could be overwritten by lowering of arguments in case of
// a tail call.
if (Flags.isByVal()) {
assert(Ins[index].isOrigArg() &&
"Byval arguments cannot be implicit");
unsigned CurByValIndex = CCInfo.getInRegsParamsProcessed();
int FrameIndex = StoreByValRegs(
CCInfo, DAG, dl, Chain, &*CurOrigArg, CurByValIndex,
VA.getLocMemOffset(), Flags.getByValSize());
InVals.push_back(DAG.getFrameIndex(FrameIndex, PtrVT));
CCInfo.nextInRegsParam();
} else {
unsigned FIOffset = VA.getLocMemOffset();
int FI = MFI.CreateFixedObject(VA.getLocVT().getSizeInBits()/8,
FIOffset, true);
// Create load nodes to retrieve arguments from the stack.
SDValue FIN = DAG.getFrameIndex(FI, PtrVT);
InVals.push_back(DAG.getLoad(VA.getValVT(), dl, Chain, FIN,
MachinePointerInfo::getFixedStack(
DAG.getMachineFunction(), FI)));
}
lastInsIndex = index;
}
}
}
// varargs
if (isVarArg && MFI.hasVAStart()) {
VarArgStyleRegisters(CCInfo, DAG, dl, Chain, CCInfo.getNextStackOffset(),
TotalArgRegsSaveSize);
if (AFI->isCmseNSEntryFunction()) {
DiagnosticInfoUnsupported Diag(
DAG.getMachineFunction().getFunction(),
"secure entry function must not be variadic", dl.getDebugLoc());
DAG.getContext()->diagnose(Diag);
}
}
unsigned StackArgSize = CCInfo.getNextStackOffset();
bool TailCallOpt = MF.getTarget().Options.GuaranteedTailCallOpt;
if (canGuaranteeTCO(CallConv, TailCallOpt)) {
// The only way to guarantee a tail call is if the callee restores its
// argument area, but it must also keep the stack aligned when doing so.
const DataLayout &DL = DAG.getDataLayout();
StackArgSize = alignTo(StackArgSize, DL.getStackAlignment());
AFI->setArgumentStackToRestore(StackArgSize);
}
AFI->setArgumentStackSize(StackArgSize);
if (CCInfo.getNextStackOffset() > 0 && AFI->isCmseNSEntryFunction()) {
DiagnosticInfoUnsupported Diag(
DAG.getMachineFunction().getFunction(),
"secure entry function requires arguments on stack", dl.getDebugLoc());
DAG.getContext()->diagnose(Diag);
}
return Chain;
}
/// isFloatingPointZero - Return true if this is +0.0.
static bool isFloatingPointZero(SDValue Op) {
if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(Op))
return CFP->getValueAPF().isPosZero();
else if (ISD::isEXTLoad(Op.getNode()) || ISD::isNON_EXTLoad(Op.getNode())) {
// Maybe this has already been legalized into the constant pool?
if (Op.getOperand(1).getOpcode() == ARMISD::Wrapper) {
SDValue WrapperOp = Op.getOperand(1).getOperand(0);
if (ConstantPoolSDNode *CP = dyn_cast<ConstantPoolSDNode>(WrapperOp))
if (const ConstantFP *CFP = dyn_cast<ConstantFP>(CP->getConstVal()))
return CFP->getValueAPF().isPosZero();
}
} else if (Op->getOpcode() == ISD::BITCAST &&
Op->getValueType(0) == MVT::f64) {
// Handle (ISD::BITCAST (ARMISD::VMOVIMM (ISD::TargetConstant 0)) MVT::f64)
// created by LowerConstantFP().
SDValue BitcastOp = Op->getOperand(0);
if (BitcastOp->getOpcode() == ARMISD::VMOVIMM &&
isNullConstant(BitcastOp->getOperand(0)))
return true;
}
return false;
}
/// Returns appropriate ARM CMP (cmp) and corresponding condition code for
/// the given operands.
SDValue ARMTargetLowering::getARMCmp(SDValue LHS, SDValue RHS, ISD::CondCode CC,
SDValue &ARMcc, SelectionDAG &DAG,
const SDLoc &dl) const {
if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(RHS.getNode())) {
unsigned C = RHSC->getZExtValue();
if (!isLegalICmpImmediate((int32_t)C)) {
// Constant does not fit, try adjusting it by one.
switch (CC) {
default: break;
case ISD::SETLT:
case ISD::SETGE:
if (C != 0x80000000 && isLegalICmpImmediate(C-1)) {
CC = (CC == ISD::SETLT) ? ISD::SETLE : ISD::SETGT;
RHS = DAG.getConstant(C - 1, dl, MVT::i32);
}
break;
case ISD::SETULT:
case ISD::SETUGE:
if (C != 0 && isLegalICmpImmediate(C-1)) {
CC = (CC == ISD::SETULT) ? ISD::SETULE : ISD::SETUGT;
RHS = DAG.getConstant(C - 1, dl, MVT::i32);
}
break;
case ISD::SETLE:
case ISD::SETGT:
if (C != 0x7fffffff && isLegalICmpImmediate(C+1)) {
CC = (CC == ISD::SETLE) ? ISD::SETLT : ISD::SETGE;
RHS = DAG.getConstant(C + 1, dl, MVT::i32);
}
break;
case ISD::SETULE:
case ISD::SETUGT:
if (C != 0xffffffff && isLegalICmpImmediate(C+1)) {
CC = (CC == ISD::SETULE) ? ISD::SETULT : ISD::SETUGE;
RHS = DAG.getConstant(C + 1, dl, MVT::i32);
}
break;
}
}
} else if ((ARM_AM::getShiftOpcForNode(LHS.getOpcode()) != ARM_AM::no_shift) &&
(ARM_AM::getShiftOpcForNode(RHS.getOpcode()) == ARM_AM::no_shift)) {
// In ARM and Thumb-2, the compare instructions can shift their second
// operand.
CC = ISD::getSetCCSwappedOperands(CC);
std::swap(LHS, RHS);
}
// Thumb1 has very limited immediate modes, so turning an "and" into a
// shift can save multiple instructions.
//
// If we have (x & C1), and C1 is an appropriate mask, we can transform it
// into "((x << n) >> n)". But that isn't necessarily profitable on its
// own. If it's the operand to an unsigned comparison with an immediate,
// we can eliminate one of the shifts: we transform
// "((x << n) >> n) == C2" to "(x << n) == (C2 << n)".
//
// We avoid transforming cases which aren't profitable due to encoding
// details:
//
// 1. C2 fits into the immediate field of a cmp, and the transformed version
// would not; in that case, we're essentially trading one immediate load for
// another.
// 2. C1 is 255 or 65535, so we can use uxtb or uxth.
// 3. C2 is zero; we have other code for this special case.
//
// FIXME: Figure out profitability for Thumb2; we usually can't save an
// instruction, since the AND is always one instruction anyway, but we could
// use narrow instructions in some cases.
if (Subtarget->isThumb1Only() && LHS->getOpcode() == ISD::AND &&
LHS->hasOneUse() && isa<ConstantSDNode>(LHS.getOperand(1)) &&
LHS.getValueType() == MVT::i32 && isa<ConstantSDNode>(RHS) &&
!isSignedIntSetCC(CC)) {
unsigned Mask = cast<ConstantSDNode>(LHS.getOperand(1))->getZExtValue();
auto *RHSC = cast<ConstantSDNode>(RHS.getNode());
uint64_t RHSV = RHSC->getZExtValue();
if (isMask_32(Mask) && (RHSV & ~Mask) == 0 && Mask != 255 && Mask != 65535) {
unsigned ShiftBits = countLeadingZeros(Mask);
if (RHSV && (RHSV > 255 || (RHSV << ShiftBits) <= 255)) {
SDValue ShiftAmt = DAG.getConstant(ShiftBits, dl, MVT::i32);
LHS = DAG.getNode(ISD::SHL, dl, MVT::i32, LHS.getOperand(0), ShiftAmt);
RHS = DAG.getConstant(RHSV << ShiftBits, dl, MVT::i32);
}
}
}
// The specific comparison "(x<<c) > 0x80000000U" can be optimized to a
// single "lsls x, c+1". The shift sets the "C" and "Z" flags the same
// way a cmp would.
// FIXME: Add support for ARM/Thumb2; this would need isel patterns, and
// some tweaks to the heuristics for the previous and->shift transform.
// FIXME: Optimize cases where the LHS isn't a shift.
if (Subtarget->isThumb1Only() && LHS->getOpcode() == ISD::SHL &&
isa<ConstantSDNode>(RHS) &&
cast<ConstantSDNode>(RHS)->getZExtValue() == 0x80000000U &&
CC == ISD::SETUGT && isa<ConstantSDNode>(LHS.getOperand(1)) &&
cast<ConstantSDNode>(LHS.getOperand(1))->getZExtValue() < 31) {
unsigned ShiftAmt =
cast<ConstantSDNode>(LHS.getOperand(1))->getZExtValue() + 1;
SDValue Shift = DAG.getNode(ARMISD::LSLS, dl,
DAG.getVTList(MVT::i32, MVT::i32),
LHS.getOperand(0),
DAG.getConstant(ShiftAmt, dl, MVT::i32));
SDValue Chain = DAG.getCopyToReg(DAG.getEntryNode(), dl, ARM::CPSR,
Shift.getValue(1), SDValue());
ARMcc = DAG.getConstant(ARMCC::HI, dl, MVT::i32);
return Chain.getValue(1);
}
ARMCC::CondCodes CondCode = IntCCToARMCC(CC);
// If the RHS is a constant zero then the V (overflow) flag will never be
// set. This can allow us to simplify GE to PL or LT to MI, which can be
// simpler for other passes (like the peephole optimiser) to deal with.
if (isNullConstant(RHS)) {
switch (CondCode) {
default: break;
case ARMCC::GE:
CondCode = ARMCC::PL;
break;
case ARMCC::LT:
CondCode = ARMCC::MI;
break;
}
}
ARMISD::NodeType CompareType;
switch (CondCode) {
default:
CompareType = ARMISD::CMP;
break;
case ARMCC::EQ:
case ARMCC::NE:
// Uses only Z Flag
CompareType = ARMISD::CMPZ;
break;
}
ARMcc = DAG.getConstant(CondCode, dl, MVT::i32);
return DAG.getNode(CompareType, dl, MVT::Glue, LHS, RHS);
}
/// Returns a appropriate VFP CMP (fcmp{s|d}+fmstat) for the given operands.
SDValue ARMTargetLowering::getVFPCmp(SDValue LHS, SDValue RHS,
SelectionDAG &DAG, const SDLoc &dl,
bool Signaling) const {
assert(Subtarget->hasFP64() || RHS.getValueType() != MVT::f64);
SDValue Cmp;
if (!isFloatingPointZero(RHS))
Cmp = DAG.getNode(Signaling ? ARMISD::CMPFPE : ARMISD::CMPFP,
dl, MVT::Glue, LHS, RHS);
else
Cmp = DAG.getNode(Signaling ? ARMISD::CMPFPEw0 : ARMISD::CMPFPw0,
dl, MVT::Glue, LHS);
return DAG.getNode(ARMISD::FMSTAT, dl, MVT::Glue, Cmp);
}
/// duplicateCmp - Glue values can have only one use, so this function
/// duplicates a comparison node.
SDValue
ARMTargetLowering::duplicateCmp(SDValue Cmp, SelectionDAG &DAG) const {
unsigned Opc = Cmp.getOpcode();
SDLoc DL(Cmp);
if (Opc == ARMISD::CMP || Opc == ARMISD::CMPZ)
return DAG.getNode(Opc, DL, MVT::Glue, Cmp.getOperand(0),Cmp.getOperand(1));
assert(Opc == ARMISD::FMSTAT && "unexpected comparison operation");
Cmp = Cmp.getOperand(0);
Opc = Cmp.getOpcode();
if (Opc == ARMISD::CMPFP)
Cmp = DAG.getNode(Opc, DL, MVT::Glue, Cmp.getOperand(0),Cmp.getOperand(1));
else {
assert(Opc == ARMISD::CMPFPw0 && "unexpected operand of FMSTAT");
Cmp = DAG.getNode(Opc, DL, MVT::Glue, Cmp.getOperand(0));
}
return DAG.getNode(ARMISD::FMSTAT, DL, MVT::Glue, Cmp);
}
// This function returns three things: the arithmetic computation itself
// (Value), a comparison (OverflowCmp), and a condition code (ARMcc). The
// comparison and the condition code define the case in which the arithmetic
// computation *does not* overflow.
std::pair<SDValue, SDValue>
ARMTargetLowering::getARMXALUOOp(SDValue Op, SelectionDAG &DAG,
SDValue &ARMcc) const {
assert(Op.getValueType() == MVT::i32 && "Unsupported value type");
SDValue Value, OverflowCmp;
SDValue LHS = Op.getOperand(0);
SDValue RHS = Op.getOperand(1);
SDLoc dl(Op);
// FIXME: We are currently always generating CMPs because we don't support
// generating CMN through the backend. This is not as good as the natural
// CMP case because it causes a register dependency and cannot be folded
// later.
switch (Op.getOpcode()) {
default:
llvm_unreachable("Unknown overflow instruction!");
case ISD::SADDO:
ARMcc = DAG.getConstant(ARMCC::VC, dl, MVT::i32);
Value = DAG.getNode(ISD::ADD, dl, Op.getValueType(), LHS, RHS);
OverflowCmp = DAG.getNode(ARMISD::CMP, dl, MVT::Glue, Value, LHS);
break;
case ISD::UADDO:
ARMcc = DAG.getConstant(ARMCC::HS, dl, MVT::i32);
// We use ADDC here to correspond to its use in LowerUnsignedALUO.
// We do not use it in the USUBO case as Value may not be used.
Value = DAG.getNode(ARMISD::ADDC, dl,
DAG.getVTList(Op.getValueType(), MVT::i32), LHS, RHS)
.getValue(0);
OverflowCmp = DAG.getNode(ARMISD::CMP, dl, MVT::Glue, Value, LHS);
break;
case ISD::SSUBO:
ARMcc = DAG.getConstant(ARMCC::VC, dl, MVT::i32);
Value = DAG.getNode(ISD::SUB, dl, Op.getValueType(), LHS, RHS);
OverflowCmp = DAG.getNode(ARMISD::CMP, dl, MVT::Glue, LHS, RHS);
break;
case ISD::USUBO:
ARMcc = DAG.getConstant(ARMCC::HS, dl, MVT::i32);
Value = DAG.getNode(ISD::SUB, dl, Op.getValueType(), LHS, RHS);
OverflowCmp = DAG.getNode(ARMISD::CMP, dl, MVT::Glue, LHS, RHS);
break;
case ISD::UMULO:
// We generate a UMUL_LOHI and then check if the high word is 0.
ARMcc = DAG.getConstant(ARMCC::EQ, dl, MVT::i32);
Value = DAG.getNode(ISD::UMUL_LOHI, dl,
DAG.getVTList(Op.getValueType(), Op.getValueType()),
LHS, RHS);
OverflowCmp = DAG.getNode(ARMISD::CMP, dl, MVT::Glue, Value.getValue(1),
DAG.getConstant(0, dl, MVT::i32));
Value = Value.getValue(0); // We only want the low 32 bits for the result.
break;
case ISD::SMULO:
// We generate a SMUL_LOHI and then check if all the bits of the high word
// are the same as the sign bit of the low word.
ARMcc = DAG.getConstant(ARMCC::EQ, dl, MVT::i32);
Value = DAG.getNode(ISD::SMUL_LOHI, dl,
DAG.getVTList(Op.getValueType(), Op.getValueType()),
LHS, RHS);
OverflowCmp = DAG.getNode(ARMISD::CMP, dl, MVT::Glue, Value.getValue(1),
DAG.getNode(ISD::SRA, dl, Op.getValueType(),
Value.getValue(0),
DAG.getConstant(31, dl, MVT::i32)));
Value = Value.getValue(0); // We only want the low 32 bits for the result.
break;
} // switch (...)
return std::make_pair(Value, OverflowCmp);
}
SDValue
ARMTargetLowering::LowerSignedALUO(SDValue Op, SelectionDAG &DAG) const {
// Let legalize expand this if it isn't a legal type yet.
if (!DAG.getTargetLoweringInfo().isTypeLegal(Op.getValueType()))
return SDValue();
SDValue Value, OverflowCmp;
SDValue ARMcc;
std::tie(Value, OverflowCmp) = getARMXALUOOp(Op, DAG, ARMcc);
SDValue CCR = DAG.getRegister(ARM::CPSR, MVT::i32);
SDLoc dl(Op);
// We use 0 and 1 as false and true values.
SDValue TVal = DAG.getConstant(1, dl, MVT::i32);
SDValue FVal = DAG.getConstant(0, dl, MVT::i32);
EVT VT = Op.getValueType();
SDValue Overflow = DAG.getNode(ARMISD::CMOV, dl, VT, TVal, FVal,
ARMcc, CCR, OverflowCmp);
SDVTList VTs = DAG.getVTList(Op.getValueType(), MVT::i32);
return DAG.getNode(ISD::MERGE_VALUES, dl, VTs, Value, Overflow);
}
static SDValue ConvertBooleanCarryToCarryFlag(SDValue BoolCarry,
SelectionDAG &DAG) {
SDLoc DL(BoolCarry);
EVT CarryVT = BoolCarry.getValueType();
// This converts the boolean value carry into the carry flag by doing
// ARMISD::SUBC Carry, 1
SDValue Carry = DAG.getNode(ARMISD::SUBC, DL,
DAG.getVTList(CarryVT, MVT::i32),
BoolCarry, DAG.getConstant(1, DL, CarryVT));
return Carry.getValue(1);
}
static SDValue ConvertCarryFlagToBooleanCarry(SDValue Flags, EVT VT,
SelectionDAG &DAG) {
SDLoc DL(Flags);
// Now convert the carry flag into a boolean carry. We do this
// using ARMISD:ADDE 0, 0, Carry
return DAG.getNode(ARMISD::ADDE, DL, DAG.getVTList(VT, MVT::i32),
DAG.getConstant(0, DL, MVT::i32),
DAG.getConstant(0, DL, MVT::i32), Flags);
}
SDValue ARMTargetLowering::LowerUnsignedALUO(SDValue Op,
SelectionDAG &DAG) const {
// Let legalize expand this if it isn't a legal type yet.
if (!DAG.getTargetLoweringInfo().isTypeLegal(Op.getValueType()))
return SDValue();
SDValue LHS = Op.getOperand(0);
SDValue RHS = Op.getOperand(1);
SDLoc dl(Op);
EVT VT = Op.getValueType();
SDVTList VTs = DAG.getVTList(VT, MVT::i32);
SDValue Value;
SDValue Overflow;
switch (Op.getOpcode()) {
default:
llvm_unreachable("Unknown overflow instruction!");
case ISD::UADDO:
Value = DAG.getNode(ARMISD::ADDC, dl, VTs, LHS, RHS);
// Convert the carry flag into a boolean value.
Overflow = ConvertCarryFlagToBooleanCarry(Value.getValue(1), VT, DAG);
break;
case ISD::USUBO: {
Value = DAG.getNode(ARMISD::SUBC, dl, VTs, LHS, RHS);
// Convert the carry flag into a boolean value.
Overflow = ConvertCarryFlagToBooleanCarry(Value.getValue(1), VT, DAG);
// ARMISD::SUBC returns 0 when we have to borrow, so make it an overflow
// value. So compute 1 - C.
Overflow = DAG.getNode(ISD::SUB, dl, MVT::i32,
DAG.getConstant(1, dl, MVT::i32), Overflow);
break;
}
}
return DAG.getNode(ISD::MERGE_VALUES, dl, VTs, Value, Overflow);
}
static SDValue LowerADDSUBSAT(SDValue Op, SelectionDAG &DAG,
const ARMSubtarget *Subtarget) {
EVT VT = Op.getValueType();
if (!Subtarget->hasV6Ops() || !Subtarget->hasDSP())
return SDValue();
if (!VT.isSimple())
return SDValue();
unsigned NewOpcode;
switch (VT.getSimpleVT().SimpleTy) {
default:
return SDValue();
case MVT::i8:
switch (Op->getOpcode()) {
case ISD::UADDSAT:
NewOpcode = ARMISD::UQADD8b;
break;
case ISD::SADDSAT:
NewOpcode = ARMISD::QADD8b;
break;
case ISD::USUBSAT:
NewOpcode = ARMISD::UQSUB8b;
break;
case ISD::SSUBSAT:
NewOpcode = ARMISD::QSUB8b;
break;
}
break;
case MVT::i16:
switch (Op->getOpcode()) {
case ISD::UADDSAT:
NewOpcode = ARMISD::UQADD16b;
break;
case ISD::SADDSAT:
NewOpcode = ARMISD::QADD16b;
break;
case ISD::USUBSAT:
NewOpcode = ARMISD::UQSUB16b;
break;
case ISD::SSUBSAT:
NewOpcode = ARMISD::QSUB16b;
break;
}
break;
}
SDLoc dl(Op);
SDValue Add =
DAG.getNode(NewOpcode, dl, MVT::i32,
DAG.getSExtOrTrunc(Op->getOperand(0), dl, MVT::i32),
DAG.getSExtOrTrunc(Op->getOperand(1), dl, MVT::i32));
return DAG.getNode(ISD::TRUNCATE, dl, VT, Add);
}
SDValue ARMTargetLowering::LowerSELECT(SDValue Op, SelectionDAG &DAG) const {
SDValue Cond = Op.getOperand(0);
SDValue SelectTrue = Op.getOperand(1);
SDValue SelectFalse = Op.getOperand(2);
SDLoc dl(Op);
unsigned Opc = Cond.getOpcode();
if (Cond.getResNo() == 1 &&
(Opc == ISD::SADDO || Opc == ISD::UADDO || Opc == ISD::SSUBO ||
Opc == ISD::USUBO)) {
if (!DAG.getTargetLoweringInfo().isTypeLegal(Cond->getValueType(0)))
return SDValue();
SDValue Value, OverflowCmp;
SDValue ARMcc;
std::tie(Value, OverflowCmp) = getARMXALUOOp(Cond, DAG, ARMcc);
SDValue CCR = DAG.getRegister(ARM::CPSR, MVT::i32);
EVT VT = Op.getValueType();
return getCMOV(dl, VT, SelectTrue, SelectFalse, ARMcc, CCR,
OverflowCmp, DAG);
}
// Convert:
//
// (select (cmov 1, 0, cond), t, f) -> (cmov t, f, cond)
// (select (cmov 0, 1, cond), t, f) -> (cmov f, t, cond)
//
if (Cond.getOpcode() == ARMISD::CMOV && Cond.hasOneUse()) {
const ConstantSDNode *CMOVTrue =
dyn_cast<ConstantSDNode>(Cond.getOperand(0));
const ConstantSDNode *CMOVFalse =
dyn_cast<ConstantSDNode>(Cond.getOperand(1));
if (CMOVTrue && CMOVFalse) {
unsigned CMOVTrueVal = CMOVTrue->getZExtValue();
unsigned CMOVFalseVal = CMOVFalse->getZExtValue();
SDValue True;
SDValue False;
if (CMOVTrueVal == 1 && CMOVFalseVal == 0) {
True = SelectTrue;
False = SelectFalse;
} else if (CMOVTrueVal == 0 && CMOVFalseVal == 1) {
True = SelectFalse;
False = SelectTrue;
}
if (True.getNode() && False.getNode()) {
EVT VT = Op.getValueType();
SDValue ARMcc = Cond.getOperand(2);
SDValue CCR = Cond.getOperand(3);
SDValue Cmp = duplicateCmp(Cond.getOperand(4), DAG);
assert(True.getValueType() == VT);
return getCMOV(dl, VT, True, False, ARMcc, CCR, Cmp, DAG);
}
}
}
// ARM's BooleanContents value is UndefinedBooleanContent. Mask out the
// undefined bits before doing a full-word comparison with zero.
Cond = DAG.getNode(ISD::AND, dl, Cond.getValueType(), Cond,
DAG.getConstant(1, dl, Cond.getValueType()));
return DAG.getSelectCC(dl, Cond,
DAG.getConstant(0, dl, Cond.getValueType()),
SelectTrue, SelectFalse, ISD::SETNE);
}
static void checkVSELConstraints(ISD::CondCode CC, ARMCC::CondCodes &CondCode,
bool &swpCmpOps, bool &swpVselOps) {
// Start by selecting the GE condition code for opcodes that return true for
// 'equality'
if (CC == ISD::SETUGE || CC == ISD::SETOGE || CC == ISD::SETOLE ||
CC == ISD::SETULE || CC == ISD::SETGE || CC == ISD::SETLE)
CondCode = ARMCC::GE;
// and GT for opcodes that return false for 'equality'.
else if (CC == ISD::SETUGT || CC == ISD::SETOGT || CC == ISD::SETOLT ||
CC == ISD::SETULT || CC == ISD::SETGT || CC == ISD::SETLT)
CondCode = ARMCC::GT;
// Since we are constrained to GE/GT, if the opcode contains 'less', we need
// to swap the compare operands.
if (CC == ISD::SETOLE || CC == ISD::SETULE || CC == ISD::SETOLT ||
CC == ISD::SETULT || CC == ISD::SETLE || CC == ISD::SETLT)
swpCmpOps = true;
// Both GT and GE are ordered comparisons, and return false for 'unordered'.
// If we have an unordered opcode, we need to swap the operands to the VSEL
// instruction (effectively negating the condition).
//
// This also has the effect of swapping which one of 'less' or 'greater'
// returns true, so we also swap the compare operands. It also switches
// whether we return true for 'equality', so we compensate by picking the
// opposite condition code to our original choice.
if (CC == ISD::SETULE || CC == ISD::SETULT || CC == ISD::SETUGE ||
CC == ISD::SETUGT) {
swpCmpOps = !swpCmpOps;
swpVselOps = !swpVselOps;
CondCode = CondCode == ARMCC::GT ? ARMCC::GE : ARMCC::GT;
}
// 'ordered' is 'anything but unordered', so use the VS condition code and
// swap the VSEL operands.
if (CC == ISD::SETO) {
CondCode = ARMCC::VS;
swpVselOps = true;
}
// 'unordered or not equal' is 'anything but equal', so use the EQ condition
// code and swap the VSEL operands. Also do this if we don't care about the
// unordered case.
if (CC == ISD::SETUNE || CC == ISD::SETNE) {
CondCode = ARMCC::EQ;
swpVselOps = true;
}
}
SDValue ARMTargetLowering::getCMOV(const SDLoc &dl, EVT VT, SDValue FalseVal,
SDValue TrueVal, SDValue ARMcc, SDValue CCR,
SDValue Cmp, SelectionDAG &DAG) const {
if (!Subtarget->hasFP64() && VT == MVT::f64) {
FalseVal = DAG.getNode(ARMISD::VMOVRRD, dl,
DAG.getVTList(MVT::i32, MVT::i32), FalseVal);
TrueVal = DAG.getNode(ARMISD::VMOVRRD, dl,
DAG.getVTList(MVT::i32, MVT::i32), TrueVal);
SDValue TrueLow = TrueVal.getValue(0);
SDValue TrueHigh = TrueVal.getValue(1);
SDValue FalseLow = FalseVal.getValue(0);
SDValue FalseHigh = FalseVal.getValue(1);
SDValue Low = DAG.getNode(ARMISD::CMOV, dl, MVT::i32, FalseLow, TrueLow,
ARMcc, CCR, Cmp);
SDValue High = DAG.getNode(ARMISD::CMOV, dl, MVT::i32, FalseHigh, TrueHigh,
ARMcc, CCR, duplicateCmp(Cmp, DAG));
return DAG.getNode(ARMISD::VMOVDRR, dl, MVT::f64, Low, High);
} else {
return DAG.getNode(ARMISD::CMOV, dl, VT, FalseVal, TrueVal, ARMcc, CCR,
Cmp);
}
}
static bool isGTorGE(ISD::CondCode CC) {
return CC == ISD::SETGT || CC == ISD::SETGE;
}
static bool isLTorLE(ISD::CondCode CC) {
return CC == ISD::SETLT || CC == ISD::SETLE;
}
// See if a conditional (LHS CC RHS ? TrueVal : FalseVal) is lower-saturating.
// All of these conditions (and their <= and >= counterparts) will do:
// x < k ? k : x
// x > k ? x : k
// k < x ? x : k
// k > x ? k : x
static bool isLowerSaturate(const SDValue LHS, const SDValue RHS,
const SDValue TrueVal, const SDValue FalseVal,
const ISD::CondCode CC, const SDValue K) {
return (isGTorGE(CC) &&
((K == LHS && K == TrueVal) || (K == RHS && K == FalseVal))) ||
(isLTorLE(CC) &&
((K == RHS && K == TrueVal) || (K == LHS && K == FalseVal)));
}
// Check if two chained conditionals could be converted into SSAT or USAT.
//
// SSAT can replace a set of two conditional selectors that bound a number to an
// interval of type [k, ~k] when k + 1 is a power of 2. Here are some examples:
//
// x < -k ? -k : (x > k ? k : x)
// x < -k ? -k : (x < k ? x : k)
// x > -k ? (x > k ? k : x) : -k
// x < k ? (x < -k ? -k : x) : k
// etc.
//
// LLVM canonicalizes these to either a min(max()) or a max(min())
// pattern. This function tries to match one of these and will return a SSAT
// node if successful.
//
// USAT works similarily to SSAT but bounds on the interval [0, k] where k + 1
// is a power of 2.
static SDValue LowerSaturatingConditional(SDValue Op, SelectionDAG &DAG) {
EVT VT = Op.getValueType();
SDValue V1 = Op.getOperand(0);
SDValue K1 = Op.getOperand(1);
SDValue TrueVal1 = Op.getOperand(2);
SDValue FalseVal1 = Op.getOperand(3);
ISD::CondCode CC1 = cast<CondCodeSDNode>(Op.getOperand(4))->get();
const SDValue Op2 = isa<ConstantSDNode>(TrueVal1) ? FalseVal1 : TrueVal1;
if (Op2.getOpcode() != ISD::SELECT_CC)
return SDValue();
SDValue V2 = Op2.getOperand(0);
SDValue K2 = Op2.getOperand(1);
SDValue TrueVal2 = Op2.getOperand(2);
SDValue FalseVal2 = Op2.getOperand(3);
ISD::CondCode CC2 = cast<CondCodeSDNode>(Op2.getOperand(4))->get();
SDValue V1Tmp = V1;
SDValue V2Tmp = V2;
// Check that the registers and the constants match a max(min()) or min(max())
// pattern
if (V1Tmp != TrueVal1 || V2Tmp != TrueVal2 || K1 != FalseVal1 ||
K2 != FalseVal2 ||
!((isGTorGE(CC1) && isLTorLE(CC2)) || (isLTorLE(CC1) && isGTorGE(CC2))))
return SDValue();
// Check that the constant in the lower-bound check is
// the opposite of the constant in the upper-bound check
// in 1's complement.
if (!isa<ConstantSDNode>(K1) || !isa<ConstantSDNode>(K2))
return SDValue();
int64_t Val1 = cast<ConstantSDNode>(K1)->getSExtValue();
int64_t Val2 = cast<ConstantSDNode>(K2)->getSExtValue();
int64_t PosVal = std::max(Val1, Val2);
int64_t NegVal = std::min(Val1, Val2);
if (!((Val1 > Val2 && isLTorLE(CC1)) || (Val1 < Val2 && isLTorLE(CC2))) ||
!isPowerOf2_64(PosVal + 1))
return SDValue();
// Handle the difference between USAT (unsigned) and SSAT (signed)
// saturation
// At this point, PosVal is guaranteed to be positive
uint64_t K = PosVal;
SDLoc dl(Op);
if (Val1 == ~Val2)
return DAG.getNode(ARMISD::SSAT, dl, VT, V2Tmp,
DAG.getConstant(countTrailingOnes(K), dl, VT));
if (NegVal == 0)
return DAG.getNode(ARMISD::USAT, dl, VT, V2Tmp,
DAG.getConstant(countTrailingOnes(K), dl, VT));
return SDValue();
}
// Check if a condition of the type x < k ? k : x can be converted into a
// bit operation instead of conditional moves.
// Currently this is allowed given:
// - The conditions and values match up
// - k is 0 or -1 (all ones)
// This function will not check the last condition, thats up to the caller
// It returns true if the transformation can be made, and in such case
// returns x in V, and k in SatK.
static bool isLowerSaturatingConditional(const SDValue &Op, SDValue &V,
SDValue &SatK)
{
SDValue LHS = Op.getOperand(0);
SDValue RHS = Op.getOperand(1);
ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(4))->get();
SDValue TrueVal = Op.getOperand(2);
SDValue FalseVal = Op.getOperand(3);
SDValue *K = isa<ConstantSDNode>(LHS) ? &LHS : isa<ConstantSDNode>(RHS)
? &RHS
: nullptr;
// No constant operation in comparison, early out
if (!K)
return false;
SDValue KTmp = isa<ConstantSDNode>(TrueVal) ? TrueVal : FalseVal;
V = (KTmp == TrueVal) ? FalseVal : TrueVal;
SDValue VTmp = (K && *K == LHS) ? RHS : LHS;
// If the constant on left and right side, or variable on left and right,
// does not match, early out
if (*K != KTmp || V != VTmp)
return false;
if (isLowerSaturate(LHS, RHS, TrueVal, FalseVal, CC, *K)) {
SatK = *K;
return true;
}
return false;
}
bool ARMTargetLowering::isUnsupportedFloatingType(EVT VT) const {
if (VT == MVT::f32)
return !Subtarget->hasVFP2Base();
if (VT == MVT::f64)
return !Subtarget->hasFP64();
if (VT == MVT::f16)
return !Subtarget->hasFullFP16();
return false;
}
SDValue ARMTargetLowering::LowerSELECT_CC(SDValue Op, SelectionDAG &DAG) const {
EVT VT = Op.getValueType();
SDLoc dl(Op);
// Try to convert two saturating conditional selects into a single SSAT
if ((!Subtarget->isThumb() && Subtarget->hasV6Ops()) || Subtarget->isThumb2())
if (SDValue SatValue = LowerSaturatingConditional(Op, DAG))
return SatValue;
// Try to convert expressions of the form x < k ? k : x (and similar forms)
// into more efficient bit operations, which is possible when k is 0 or -1
// On ARM and Thumb-2 which have flexible operand 2 this will result in
// single instructions. On Thumb the shift and the bit operation will be two
// instructions.
// Only allow this transformation on full-width (32-bit) operations
SDValue LowerSatConstant;
SDValue SatValue;
if (VT == MVT::i32 &&
isLowerSaturatingConditional(Op, SatValue, LowerSatConstant)) {
SDValue ShiftV = DAG.getNode(ISD::SRA, dl, VT, SatValue,
DAG.getConstant(31, dl, VT));
if (isNullConstant(LowerSatConstant)) {
SDValue NotShiftV = DAG.getNode(ISD::XOR, dl, VT, ShiftV,
DAG.getAllOnesConstant(dl, VT));
return DAG.getNode(ISD::AND, dl, VT, SatValue, NotShiftV);
} else if (isAllOnesConstant(LowerSatConstant))
return DAG.getNode(ISD::OR, dl, VT, SatValue, ShiftV);
}
SDValue LHS = Op.getOperand(0);
SDValue RHS = Op.getOperand(1);
ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(4))->get();
SDValue TrueVal = Op.getOperand(2);
SDValue FalseVal = Op.getOperand(3);
ConstantSDNode *CFVal = dyn_cast<ConstantSDNode>(FalseVal);
ConstantSDNode *CTVal = dyn_cast<ConstantSDNode>(TrueVal);
if (Subtarget->hasV8_1MMainlineOps() && CFVal && CTVal &&
LHS.getValueType() == MVT::i32 && RHS.getValueType() == MVT::i32) {
unsigned TVal = CTVal->getZExtValue();
unsigned FVal = CFVal->getZExtValue();
unsigned Opcode = 0;
if (TVal == ~FVal) {
Opcode = ARMISD::CSINV;
} else if (TVal == ~FVal + 1) {
Opcode = ARMISD::CSNEG;
} else if (TVal + 1 == FVal) {
Opcode = ARMISD::CSINC;
} else if (TVal == FVal + 1) {
Opcode = ARMISD::CSINC;
std::swap(TrueVal, FalseVal);
std::swap(TVal, FVal);
CC = ISD::getSetCCInverse(CC, LHS.getValueType());
}
if (Opcode) {
// If one of the constants is cheaper than another, materialise the
// cheaper one and let the csel generate the other.
if (Opcode != ARMISD::CSINC &&
HasLowerConstantMaterializationCost(FVal, TVal, Subtarget)) {
std::swap(TrueVal, FalseVal);
std::swap(TVal, FVal);
CC = ISD::getSetCCInverse(CC, LHS.getValueType());
}
// Attempt to use ZR checking TVal is 0, possibly inverting the condition
// to get there. CSINC not is invertable like the other two (~(~a) == a,
// -(-a) == a, but (a+1)+1 != a).
if (FVal == 0 && Opcode != ARMISD::CSINC) {
std::swap(TrueVal, FalseVal);
std::swap(TVal, FVal);
CC = ISD::getSetCCInverse(CC, LHS.getValueType());
}
// Drops F's value because we can get it by inverting/negating TVal.
FalseVal = TrueVal;
SDValue ARMcc;
SDValue Cmp = getARMCmp(LHS, RHS, CC, ARMcc, DAG, dl);
EVT VT = TrueVal.getValueType();
return DAG.getNode(Opcode, dl, VT, TrueVal, FalseVal, ARMcc, Cmp);
}
}
if (isUnsupportedFloatingType(LHS.getValueType())) {
DAG.getTargetLoweringInfo().softenSetCCOperands(
DAG, LHS.getValueType(), LHS, RHS, CC, dl, LHS, RHS);
// If softenSetCCOperands only returned one value, we should compare it to
// zero.
if (!RHS.getNode()) {
RHS = DAG.getConstant(0, dl, LHS.getValueType());
CC = ISD::SETNE;
}
}
if (LHS.getValueType() == MVT::i32) {
// Try to generate VSEL on ARMv8.
// The VSEL instruction can't use all the usual ARM condition
// codes: it only has two bits to select the condition code, so it's
// constrained to use only GE, GT, VS and EQ.
//
// To implement all the various ISD::SETXXX opcodes, we sometimes need to
// swap the operands of the previous compare instruction (effectively
// inverting the compare condition, swapping 'less' and 'greater') and
// sometimes need to swap the operands to the VSEL (which inverts the
// condition in the sense of firing whenever the previous condition didn't)
if (Subtarget->hasFPARMv8Base() && (TrueVal.getValueType() == MVT::f16 ||
TrueVal.getValueType() == MVT::f32 ||
TrueVal.getValueType() == MVT::f64)) {
ARMCC::CondCodes CondCode = IntCCToARMCC(CC);
if (CondCode == ARMCC::LT || CondCode == ARMCC::LE ||
CondCode == ARMCC::VC || CondCode == ARMCC::NE) {
CC = ISD::getSetCCInverse(CC, LHS.getValueType());
std::swap(TrueVal, FalseVal);
}
}
SDValue ARMcc;
SDValue CCR = DAG.getRegister(ARM::CPSR, MVT::i32);
SDValue Cmp = getARMCmp(LHS, RHS, CC, ARMcc, DAG, dl);
// Choose GE over PL, which vsel does now support
if (cast<ConstantSDNode>(ARMcc)->getZExtValue() == ARMCC::PL)
ARMcc = DAG.getConstant(ARMCC::GE, dl, MVT::i32);
return getCMOV(dl, VT, FalseVal, TrueVal, ARMcc, CCR, Cmp, DAG);
}
ARMCC::CondCodes CondCode, CondCode2;
FPCCToARMCC(CC, CondCode, CondCode2);
// Normalize the fp compare. If RHS is zero we prefer to keep it there so we
// match CMPFPw0 instead of CMPFP, though we don't do this for f16 because we
// must use VSEL (limited condition codes), due to not having conditional f16
// moves.
if (Subtarget->hasFPARMv8Base() &&
!(isFloatingPointZero(RHS) && TrueVal.getValueType() != MVT::f16) &&
(TrueVal.getValueType() == MVT::f16 ||
TrueVal.getValueType() == MVT::f32 ||
TrueVal.getValueType() == MVT::f64)) {
bool swpCmpOps = false;
bool swpVselOps = false;
checkVSELConstraints(CC, CondCode, swpCmpOps, swpVselOps);
if (CondCode == ARMCC::GT || CondCode == ARMCC::GE ||
CondCode == ARMCC::VS || CondCode == ARMCC::EQ) {
if (swpCmpOps)
std::swap(LHS, RHS);
if (swpVselOps)
std::swap(TrueVal, FalseVal);
}
}
SDValue ARMcc = DAG.getConstant(CondCode, dl, MVT::i32);
SDValue Cmp = getVFPCmp(LHS, RHS, DAG, dl);
SDValue CCR = DAG.getRegister(ARM::CPSR, MVT::i32);
SDValue Result = getCMOV(dl, VT, FalseVal, TrueVal, ARMcc, CCR, Cmp, DAG);
if (CondCode2 != ARMCC::AL) {
SDValue ARMcc2 = DAG.getConstant(CondCode2, dl, MVT::i32);
// FIXME: Needs another CMP because flag can have but one use.
SDValue Cmp2 = getVFPCmp(LHS, RHS, DAG, dl);
Result = getCMOV(dl, VT, Result, TrueVal, ARMcc2, CCR, Cmp2, DAG);
}
return Result;
}
/// canChangeToInt - Given the fp compare operand, return true if it is suitable
/// to morph to an integer compare sequence.
static bool canChangeToInt(SDValue Op, bool &SeenZero,
const ARMSubtarget *Subtarget) {
SDNode *N = Op.getNode();
if (!N->hasOneUse())
// Otherwise it requires moving the value from fp to integer registers.
return false;
if (!N->getNumValues())
return false;
EVT VT = Op.getValueType();
if (VT != MVT::f32 && !Subtarget->isFPBrccSlow())
// f32 case is generally profitable. f64 case only makes sense when vcmpe +
// vmrs are very slow, e.g. cortex-a8.
return false;
if (isFloatingPointZero(Op)) {
SeenZero = true;
return true;
}
return ISD::isNormalLoad(N);
}
static SDValue bitcastf32Toi32(SDValue Op, SelectionDAG &DAG) {
if (isFloatingPointZero(Op))
return DAG.getConstant(0, SDLoc(Op), MVT::i32);
if (LoadSDNode *Ld = dyn_cast<LoadSDNode>(Op))
return DAG.getLoad(MVT::i32, SDLoc(Op), Ld->getChain(), Ld->getBasePtr(),
Ld->getPointerInfo(), Ld->getAlignment(),
Ld->getMemOperand()->getFlags());
llvm_unreachable("Unknown VFP cmp argument!");
}
static void expandf64Toi32(SDValue Op, SelectionDAG &DAG,
SDValue &RetVal1, SDValue &RetVal2) {
SDLoc dl(Op);
if (isFloatingPointZero(Op)) {
RetVal1 = DAG.getConstant(0, dl, MVT::i32);
RetVal2 = DAG.getConstant(0, dl, MVT::i32);
return;
}
if (LoadSDNode *Ld = dyn_cast<LoadSDNode>(Op)) {
SDValue Ptr = Ld->getBasePtr();
RetVal1 =
DAG.getLoad(MVT::i32, dl, Ld->getChain(), Ptr, Ld->getPointerInfo(),
Ld->getAlignment(), Ld->getMemOperand()->getFlags());
EVT PtrType = Ptr.getValueType();
unsigned NewAlign = MinAlign(Ld->getAlignment(), 4);
SDValue NewPtr = DAG.getNode(ISD::ADD, dl,
PtrType, Ptr, DAG.getConstant(4, dl, PtrType));
RetVal2 = DAG.getLoad(MVT::i32, dl, Ld->getChain(), NewPtr,
Ld->getPointerInfo().getWithOffset(4), NewAlign,
Ld->getMemOperand()->getFlags());
return;
}
llvm_unreachable("Unknown VFP cmp argument!");
}
/// OptimizeVFPBrcond - With -enable-unsafe-fp-math, it's legal to optimize some
/// f32 and even f64 comparisons to integer ones.
SDValue
ARMTargetLowering::OptimizeVFPBrcond(SDValue Op, SelectionDAG &DAG) const {
SDValue Chain = Op.getOperand(0);
ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(1))->get();
SDValue LHS = Op.getOperand(2);
SDValue RHS = Op.getOperand(3);
SDValue Dest = Op.getOperand(4);
SDLoc dl(Op);
bool LHSSeenZero = false;
bool LHSOk = canChangeToInt(LHS, LHSSeenZero, Subtarget);
bool RHSSeenZero = false;
bool RHSOk = canChangeToInt(RHS, RHSSeenZero, Subtarget);
if (LHSOk && RHSOk && (LHSSeenZero || RHSSeenZero)) {
// If unsafe fp math optimization is enabled and there are no other uses of
// the CMP operands, and the condition code is EQ or NE, we can optimize it
// to an integer comparison.
if (CC == ISD::SETOEQ)
CC = ISD::SETEQ;
else if (CC == ISD::SETUNE)
CC = ISD::SETNE;
SDValue Mask = DAG.getConstant(0x7fffffff, dl, MVT::i32);
SDValue ARMcc;
if (LHS.getValueType() == MVT::f32) {
LHS = DAG.getNode(ISD::AND, dl, MVT::i32,
bitcastf32Toi32(LHS, DAG), Mask);
RHS = DAG.getNode(ISD::AND, dl, MVT::i32,
bitcastf32Toi32(RHS, DAG), Mask);
SDValue Cmp = getARMCmp(LHS, RHS, CC, ARMcc, DAG, dl);
SDValue CCR = DAG.getRegister(ARM::CPSR, MVT::i32);
return DAG.getNode(ARMISD::BRCOND, dl, MVT::Other,
Chain, Dest, ARMcc, CCR, Cmp);
}
SDValue LHS1, LHS2;
SDValue RHS1, RHS2;
expandf64Toi32(LHS, DAG, LHS1, LHS2);
expandf64Toi32(RHS, DAG, RHS1, RHS2);
LHS2 = DAG.getNode(ISD::AND, dl, MVT::i32, LHS2, Mask);
RHS2 = DAG.getNode(ISD::AND, dl, MVT::i32, RHS2, Mask);
ARMCC::CondCodes CondCode = IntCCToARMCC(CC);
ARMcc = DAG.getConstant(CondCode, dl, MVT::i32);
SDVTList VTList = DAG.getVTList(MVT::Other, MVT::Glue);
SDValue Ops[] = { Chain, ARMcc, LHS1, LHS2, RHS1, RHS2, Dest };
return DAG.getNode(ARMISD::BCC_i64, dl, VTList, Ops);
}
return SDValue();
}
SDValue ARMTargetLowering::LowerBRCOND(SDValue Op, SelectionDAG &DAG) const {
SDValue Chain = Op.getOperand(0);
SDValue Cond = Op.getOperand(1);
SDValue Dest = Op.getOperand(2);
SDLoc dl(Op);
// Optimize {s|u}{add|sub|mul}.with.overflow feeding into a branch
// instruction.
unsigned Opc = Cond.getOpcode();
bool OptimizeMul = (Opc == ISD::SMULO || Opc == ISD::UMULO) &&
!Subtarget->isThumb1Only();
if (Cond.getResNo() == 1 &&
(Opc == ISD::SADDO || Opc == ISD::UADDO || Opc == ISD::SSUBO ||
Opc == ISD::USUBO || OptimizeMul)) {
// Only lower legal XALUO ops.
if (!DAG.getTargetLoweringInfo().isTypeLegal(Cond->getValueType(0)))
return SDValue();
// The actual operation with overflow check.
SDValue Value, OverflowCmp;
SDValue ARMcc;
std::tie(Value, OverflowCmp) = getARMXALUOOp(Cond, DAG, ARMcc);
// Reverse the condition code.
ARMCC::CondCodes CondCode =
(ARMCC::CondCodes)cast<const ConstantSDNode>(ARMcc)->getZExtValue();
CondCode = ARMCC::getOppositeCondition(CondCode);
ARMcc = DAG.getConstant(CondCode, SDLoc(ARMcc), MVT::i32);
SDValue CCR = DAG.getRegister(ARM::CPSR, MVT::i32);
return DAG.getNode(ARMISD::BRCOND, dl, MVT::Other, Chain, Dest, ARMcc, CCR,
OverflowCmp);
}
return SDValue();
}
SDValue ARMTargetLowering::LowerBR_CC(SDValue Op, SelectionDAG &DAG) const {
SDValue Chain = Op.getOperand(0);
ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(1))->get();
SDValue LHS = Op.getOperand(2);
SDValue RHS = Op.getOperand(3);
SDValue Dest = Op.getOperand(4);
SDLoc dl(Op);
if (isUnsupportedFloatingType(LHS.getValueType())) {
DAG.getTargetLoweringInfo().softenSetCCOperands(
DAG, LHS.getValueType(), LHS, RHS, CC, dl, LHS, RHS);
// If softenSetCCOperands only returned one value, we should compare it to
// zero.
if (!RHS.getNode()) {
RHS = DAG.getConstant(0, dl, LHS.getValueType());
CC = ISD::SETNE;
}
}
// Optimize {s|u}{add|sub|mul}.with.overflow feeding into a branch
// instruction.
unsigned Opc = LHS.getOpcode();
bool OptimizeMul = (Opc == ISD::SMULO || Opc == ISD::UMULO) &&
!Subtarget->isThumb1Only();
if (LHS.getResNo() == 1 && (isOneConstant(RHS) || isNullConstant(RHS)) &&
(Opc == ISD::SADDO || Opc == ISD::UADDO || Opc == ISD::SSUBO ||
Opc == ISD::USUBO || OptimizeMul) &&
(CC == ISD::SETEQ || CC == ISD::SETNE)) {
// Only lower legal XALUO ops.
if (!DAG.getTargetLoweringInfo().isTypeLegal(LHS->getValueType(0)))
return SDValue();
// The actual operation with overflow check.
SDValue Value, OverflowCmp;
SDValue ARMcc;
std::tie(Value, OverflowCmp) = getARMXALUOOp(LHS.getValue(0), DAG, ARMcc);
if ((CC == ISD::SETNE) != isOneConstant(RHS)) {
// Reverse the condition code.
ARMCC::CondCodes CondCode =
(ARMCC::CondCodes)cast<const ConstantSDNode>(ARMcc)->getZExtValue();
CondCode = ARMCC::getOppositeCondition(CondCode);
ARMcc = DAG.getConstant(CondCode, SDLoc(ARMcc), MVT::i32);
}
SDValue CCR = DAG.getRegister(ARM::CPSR, MVT::i32);
return DAG.getNode(ARMISD::BRCOND, dl, MVT::Other, Chain, Dest, ARMcc, CCR,
OverflowCmp);
}
if (LHS.getValueType() == MVT::i32) {
SDValue ARMcc;
SDValue Cmp = getARMCmp(LHS, RHS, CC, ARMcc, DAG, dl);
SDValue CCR = DAG.getRegister(ARM::CPSR, MVT::i32);
return DAG.getNode(ARMISD::BRCOND, dl, MVT::Other,
Chain, Dest, ARMcc, CCR, Cmp);
}
if (getTargetMachine().Options.UnsafeFPMath &&
(CC == ISD::SETEQ || CC == ISD::SETOEQ ||
CC == ISD::SETNE || CC == ISD::SETUNE)) {
if (SDValue Result = OptimizeVFPBrcond(Op, DAG))
return Result;
}
ARMCC::CondCodes CondCode, CondCode2;
FPCCToARMCC(CC, CondCode, CondCode2);
SDValue ARMcc = DAG.getConstant(CondCode, dl, MVT::i32);
SDValue Cmp = getVFPCmp(LHS, RHS, DAG, dl);
SDValue CCR = DAG.getRegister(ARM::CPSR, MVT::i32);
SDVTList VTList = DAG.getVTList(MVT::Other, MVT::Glue);
SDValue Ops[] = { Chain, Dest, ARMcc, CCR, Cmp };
SDValue Res = DAG.getNode(ARMISD::BRCOND, dl, VTList, Ops);
if (CondCode2 != ARMCC::AL) {
ARMcc = DAG.getConstant(CondCode2, dl, MVT::i32);
SDValue Ops[] = { Res, Dest, ARMcc, CCR, Res.getValue(1) };
Res = DAG.getNode(ARMISD::BRCOND, dl, VTList, Ops);
}
return Res;
}
SDValue ARMTargetLowering::LowerBR_JT(SDValue Op, SelectionDAG &DAG) const {
SDValue Chain = Op.getOperand(0);
SDValue Table = Op.getOperand(1);
SDValue Index = Op.getOperand(2);
SDLoc dl(Op);
EVT PTy = getPointerTy(DAG.getDataLayout());
JumpTableSDNode *JT = cast<JumpTableSDNode>(Table);
SDValue JTI = DAG.getTargetJumpTable(JT->getIndex(), PTy);
Table = DAG.getNode(ARMISD::WrapperJT, dl, MVT::i32, JTI);
Index = DAG.getNode(ISD::MUL, dl, PTy, Index, DAG.getConstant(4, dl, PTy));
SDValue Addr = DAG.getNode(ISD::ADD, dl, PTy, Table, Index);
if (Subtarget->isThumb2() || (Subtarget->hasV8MBaselineOps() && Subtarget->isThumb())) {
// Thumb2 and ARMv8-M use a two-level jump. That is, it jumps into the jump table
// which does another jump to the destination. This also makes it easier
// to translate it to TBB / TBH later (Thumb2 only).
// FIXME: This might not work if the function is extremely large.
return DAG.getNode(ARMISD::BR2_JT, dl, MVT::Other, Chain,
Addr, Op.getOperand(2), JTI);
}
if (isPositionIndependent() || Subtarget->isROPI()) {
Addr =
DAG.getLoad((EVT)MVT::i32, dl, Chain, Addr,
MachinePointerInfo::getJumpTable(DAG.getMachineFunction()));
Chain = Addr.getValue(1);
Addr = DAG.getNode(ISD::ADD, dl, PTy, Table, Addr);
return DAG.getNode(ARMISD::BR_JT, dl, MVT::Other, Chain, Addr, JTI);
} else {
Addr =
DAG.getLoad(PTy, dl, Chain, Addr,
MachinePointerInfo::getJumpTable(DAG.getMachineFunction()));
Chain = Addr.getValue(1);
return DAG.getNode(ARMISD::BR_JT, dl, MVT::Other, Chain, Addr, JTI);
}
}
static SDValue LowerVectorFP_TO_INT(SDValue Op, SelectionDAG &DAG) {
EVT VT = Op.getValueType();
SDLoc dl(Op);
if (Op.getValueType().getVectorElementType() == MVT::i32) {
if (Op.getOperand(0).getValueType().getVectorElementType() == MVT::f32)
return Op;
return DAG.UnrollVectorOp(Op.getNode());
}
const bool HasFullFP16 =
static_cast<const ARMSubtarget&>(DAG.getSubtarget()).hasFullFP16();
EVT NewTy;
const EVT OpTy = Op.getOperand(0).getValueType();
if (OpTy == MVT::v4f32)
NewTy = MVT::v4i32;
else if (OpTy == MVT::v4f16 && HasFullFP16)
NewTy = MVT::v4i16;
else if (OpTy == MVT::v8f16 && HasFullFP16)
NewTy = MVT::v8i16;
else
llvm_unreachable("Invalid type for custom lowering!");
if (VT != MVT::v4i16 && VT != MVT::v8i16)
return DAG.UnrollVectorOp(Op.getNode());
Op = DAG.getNode(Op.getOpcode(), dl, NewTy, Op.getOperand(0));
return DAG.getNode(ISD::TRUNCATE, dl, VT, Op);
}
SDValue ARMTargetLowering::LowerFP_TO_INT(SDValue Op, SelectionDAG &DAG) const {
EVT VT = Op.getValueType();
if (VT.isVector())
return LowerVectorFP_TO_INT(Op, DAG);
bool IsStrict = Op->isStrictFPOpcode();
SDValue SrcVal = Op.getOperand(IsStrict ? 1 : 0);
if (isUnsupportedFloatingType(SrcVal.getValueType())) {
RTLIB::Libcall LC;
if (Op.getOpcode() == ISD::FP_TO_SINT ||
Op.getOpcode() == ISD::STRICT_FP_TO_SINT)
LC = RTLIB::getFPTOSINT(SrcVal.getValueType(),
Op.getValueType());
else
LC = RTLIB::getFPTOUINT(SrcVal.getValueType(),
Op.getValueType());
SDLoc Loc(Op);
MakeLibCallOptions CallOptions;
SDValue Chain = IsStrict ? Op.getOperand(0) : SDValue();
SDValue Result;
std::tie(Result, Chain) = makeLibCall(DAG, LC, Op.getValueType(), SrcVal,
CallOptions, Loc, Chain);
return IsStrict ? DAG.getMergeValues({Result, Chain}, Loc) : Result;
}
// FIXME: Remove this when we have strict fp instruction selection patterns
if (IsStrict) {
SDLoc Loc(Op);
SDValue Result =
DAG.getNode(Op.getOpcode() == ISD::STRICT_FP_TO_SINT ? ISD::FP_TO_SINT
: ISD::FP_TO_UINT,
Loc, Op.getValueType(), SrcVal);
return DAG.getMergeValues({Result, Op.getOperand(0)}, Loc);
}
return Op;
}
static SDValue LowerFP_TO_INT_SAT(SDValue Op, SelectionDAG &DAG,
const ARMSubtarget *Subtarget) {
EVT VT = Op.getValueType();
EVT ToVT = cast<VTSDNode>(Op.getOperand(1))->getVT();
EVT FromVT = Op.getOperand(0).getValueType();
if (VT == MVT::i32 && ToVT == MVT::i32 && FromVT == MVT::f32)
return Op;
if (VT == MVT::i32 && ToVT == MVT::i32 && FromVT == MVT::f64 &&
Subtarget->hasFP64())
return Op;
if (VT == MVT::i32 && ToVT == MVT::i32 && FromVT == MVT::f16 &&
Subtarget->hasFullFP16())
return Op;
if (VT == MVT::v4i32 && ToVT == MVT::i32 && FromVT == MVT::v4f32 &&
Subtarget->hasMVEFloatOps())
return Op;
if (VT == MVT::v8i16 && ToVT == MVT::i16 && FromVT == MVT::v8f16 &&
Subtarget->hasMVEFloatOps())
return Op;
if (FromVT != MVT::v4f32 && FromVT != MVT::v8f16)
return SDValue();
SDLoc DL(Op);
bool IsSigned = Op.getOpcode() == ISD::FP_TO_SINT_SAT;
unsigned BW = ToVT.getScalarSizeInBits() - IsSigned;
SDValue CVT = DAG.getNode(Op.getOpcode(), DL, VT, Op.getOperand(0),
DAG.getValueType(VT.getScalarType()));
SDValue Max = DAG.getNode(IsSigned ? ISD::SMIN : ISD::UMIN, DL, VT, CVT,
DAG.getConstant((1 << BW) - 1, DL, VT));
if (IsSigned)
Max = DAG.getNode(ISD::SMAX, DL, VT, Max,
DAG.getConstant(-(1 << BW), DL, VT));
return Max;
}
static SDValue LowerVectorINT_TO_FP(SDValue Op, SelectionDAG &DAG) {
EVT VT = Op.getValueType();
SDLoc dl(Op);
if (Op.getOperand(0).getValueType().getVectorElementType() == MVT::i32) {
if (VT.getVectorElementType() == MVT::f32)
return Op;
return DAG.UnrollVectorOp(Op.getNode());
}
assert((Op.getOperand(0).getValueType() == MVT::v4i16 ||
Op.getOperand(0).getValueType() == MVT::v8i16) &&
"Invalid type for custom lowering!");
const bool HasFullFP16 =
static_cast<const ARMSubtarget&>(DAG.getSubtarget()).hasFullFP16();
EVT DestVecType;
if (VT == MVT::v4f32)
DestVecType = MVT::v4i32;
else if (VT == MVT::v4f16 && HasFullFP16)
DestVecType = MVT::v4i16;
else if (VT == MVT::v8f16 && HasFullFP16)
DestVecType = MVT::v8i16;
else
return DAG.UnrollVectorOp(Op.getNode());
unsigned CastOpc;
unsigned Opc;
switch (Op.getOpcode()) {
default: llvm_unreachable("Invalid opcode!");
case ISD::SINT_TO_FP:
CastOpc = ISD::SIGN_EXTEND;
Opc = ISD::SINT_TO_FP;
break;
case ISD::UINT_TO_FP:
CastOpc = ISD::ZERO_EXTEND;
Opc = ISD::UINT_TO_FP;
break;
}
Op = DAG.getNode(CastOpc, dl, DestVecType, Op.getOperand(0));
return DAG.getNode(Opc, dl, VT, Op);
}
SDValue ARMTargetLowering::LowerINT_TO_FP(SDValue Op, SelectionDAG &DAG) const {
EVT VT = Op.getValueType();
if (VT.isVector())
return LowerVectorINT_TO_FP(Op, DAG);
if (isUnsupportedFloatingType(VT)) {
RTLIB::Libcall LC;
if (Op.getOpcode() == ISD::SINT_TO_FP)
LC = RTLIB::getSINTTOFP(Op.getOperand(0).getValueType(),
Op.getValueType());
else
LC = RTLIB::getUINTTOFP(Op.getOperand(0).getValueType(),
Op.getValueType());
MakeLibCallOptions CallOptions;
return makeLibCall(DAG, LC, Op.getValueType(), Op.getOperand(0),
CallOptions, SDLoc(Op)).first;
}
return Op;
}
SDValue ARMTargetLowering::LowerFCOPYSIGN(SDValue Op, SelectionDAG &DAG) const {
// Implement fcopysign with a fabs and a conditional fneg.
SDValue Tmp0 = Op.getOperand(0);
SDValue Tmp1 = Op.getOperand(1);
SDLoc dl(Op);
EVT VT = Op.getValueType();
EVT SrcVT = Tmp1.getValueType();
bool InGPR = Tmp0.getOpcode() == ISD::BITCAST ||
Tmp0.getOpcode() == ARMISD::VMOVDRR;
bool UseNEON = !InGPR && Subtarget->hasNEON();
if (UseNEON) {
// Use VBSL to copy the sign bit.
unsigned EncodedVal = ARM_AM::createVMOVModImm(0x6, 0x80);
SDValue Mask = DAG.getNode(ARMISD::VMOVIMM, dl, MVT::v2i32,
DAG.getTargetConstant(EncodedVal, dl, MVT::i32));
EVT OpVT = (VT == MVT::f32) ? MVT::v2i32 : MVT::v1i64;
if (VT == MVT::f64)
Mask = DAG.getNode(ARMISD::VSHLIMM, dl, OpVT,
DAG.getNode(ISD::BITCAST, dl, OpVT, Mask),
DAG.getConstant(32, dl, MVT::i32));
else /*if (VT == MVT::f32)*/
Tmp0 = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v2f32, Tmp0);
if (SrcVT == MVT::f32) {
Tmp1 = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v2f32, Tmp1);
if (VT == MVT::f64)
Tmp1 = DAG.getNode(ARMISD::VSHLIMM, dl, OpVT,
DAG.getNode(ISD::BITCAST, dl, OpVT, Tmp1),
DAG.getConstant(32, dl, MVT::i32));
} else if (VT == MVT::f32)
Tmp1 = DAG.getNode(ARMISD::VSHRuIMM, dl, MVT::v1i64,
DAG.getNode(ISD::BITCAST, dl, MVT::v1i64, Tmp1),
DAG.getConstant(32, dl, MVT::i32));
Tmp0 = DAG.getNode(ISD::BITCAST, dl, OpVT, Tmp0);
Tmp1 = DAG.getNode(ISD::BITCAST, dl, OpVT, Tmp1);
SDValue AllOnes = DAG.getTargetConstant(ARM_AM::createVMOVModImm(0xe, 0xff),
dl, MVT::i32);
AllOnes = DAG.getNode(ARMISD::VMOVIMM, dl, MVT::v8i8, AllOnes);
SDValue MaskNot = DAG.getNode(ISD::XOR, dl, OpVT, Mask,
DAG.getNode(ISD::BITCAST, dl, OpVT, AllOnes));
SDValue Res = DAG.getNode(ISD::OR, dl, OpVT,
DAG.getNode(ISD::AND, dl, OpVT, Tmp1, Mask),
DAG.getNode(ISD::AND, dl, OpVT, Tmp0, MaskNot));
if (VT == MVT::f32) {
Res = DAG.getNode(ISD::BITCAST, dl, MVT::v2f32, Res);
Res = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f32, Res,
DAG.getConstant(0, dl, MVT::i32));
} else {
Res = DAG.getNode(ISD::BITCAST, dl, MVT::f64, Res);
}
return Res;
}
// Bitcast operand 1 to i32.
if (SrcVT == MVT::f64)
Tmp1 = DAG.getNode(ARMISD::VMOVRRD, dl, DAG.getVTList(MVT::i32, MVT::i32),
Tmp1).getValue(1);
Tmp1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Tmp1);
// Or in the signbit with integer operations.
SDValue Mask1 = DAG.getConstant(0x80000000, dl, MVT::i32);
SDValue Mask2 = DAG.getConstant(0x7fffffff, dl, MVT::i32);
Tmp1 = DAG.getNode(ISD::AND, dl, MVT::i32, Tmp1, Mask1);
if (VT == MVT::f32) {
Tmp0 = DAG.getNode(ISD::AND, dl, MVT::i32,
DAG.getNode(ISD::BITCAST, dl, MVT::i32, Tmp0), Mask2);
return DAG.getNode(ISD::BITCAST, dl, MVT::f32,
DAG.getNode(ISD::OR, dl, MVT::i32, Tmp0, Tmp1));
}
// f64: Or the high part with signbit and then combine two parts.
Tmp0 = DAG.getNode(ARMISD::VMOVRRD, dl, DAG.getVTList(MVT::i32, MVT::i32),
Tmp0);
SDValue Lo = Tmp0.getValue(0);
SDValue Hi = DAG.getNode(ISD::AND, dl, MVT::i32, Tmp0.getValue(1), Mask2);
Hi = DAG.getNode(ISD::OR, dl, MVT::i32, Hi, Tmp1);
return DAG.getNode(ARMISD::VMOVDRR, dl, MVT::f64, Lo, Hi);
}
SDValue ARMTargetLowering::LowerRETURNADDR(SDValue Op, SelectionDAG &DAG) const{
MachineFunction &MF = DAG.getMachineFunction();
MachineFrameInfo &MFI = MF.getFrameInfo();
MFI.setReturnAddressIsTaken(true);
if (verifyReturnAddressArgumentIsConstant(Op, DAG))
return SDValue();
EVT VT = Op.getValueType();
SDLoc dl(Op);
unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
if (Depth) {
SDValue FrameAddr = LowerFRAMEADDR(Op, DAG);
SDValue Offset = DAG.getConstant(4, dl, MVT::i32);
return DAG.getLoad(VT, dl, DAG.getEntryNode(),
DAG.getNode(ISD::ADD, dl, VT, FrameAddr, Offset),
MachinePointerInfo());
}
// Return LR, which contains the return address. Mark it an implicit live-in.
unsigned Reg = MF.addLiveIn(ARM::LR, getRegClassFor(MVT::i32));
return DAG.getCopyFromReg(DAG.getEntryNode(), dl, Reg, VT);
}
SDValue ARMTargetLowering::LowerFRAMEADDR(SDValue Op, SelectionDAG &DAG) const {
const ARMBaseRegisterInfo &ARI =
*static_cast<const ARMBaseRegisterInfo*>(RegInfo);
MachineFunction &MF = DAG.getMachineFunction();
MachineFrameInfo &MFI = MF.getFrameInfo();
MFI.setFrameAddressIsTaken(true);
EVT VT = Op.getValueType();
SDLoc dl(Op); // FIXME probably not meaningful
unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
Register FrameReg = ARI.getFrameRegister(MF);
SDValue FrameAddr = DAG.getCopyFromReg(DAG.getEntryNode(), dl, FrameReg, VT);
while (Depth--)
FrameAddr = DAG.getLoad(VT, dl, DAG.getEntryNode(), FrameAddr,
MachinePointerInfo());
return FrameAddr;
}
// FIXME? Maybe this could be a TableGen attribute on some registers and
// this table could be generated automatically from RegInfo.
Register ARMTargetLowering::getRegisterByName(const char* RegName, LLT VT,
const MachineFunction &MF) const {
Register Reg = StringSwitch<unsigned>(RegName)
.Case("sp", ARM::SP)
.Default(0);
if (Reg)
return Reg;
report_fatal_error(Twine("Invalid register name \""
+ StringRef(RegName) + "\"."));
}
// Result is 64 bit value so split into two 32 bit values and return as a
// pair of values.
static void ExpandREAD_REGISTER(SDNode *N, SmallVectorImpl<SDValue> &Results,
SelectionDAG &DAG) {
SDLoc DL(N);
// This function is only supposed to be called for i64 type destination.
assert(N->getValueType(0) == MVT::i64
&& "ExpandREAD_REGISTER called for non-i64 type result.");
SDValue Read = DAG.getNode(ISD::READ_REGISTER, DL,
DAG.getVTList(MVT::i32, MVT::i32, MVT::Other),
N->getOperand(0),
N->getOperand(1));
Results.push_back(DAG.getNode(ISD::BUILD_PAIR, DL, MVT::i64, Read.getValue(0),
Read.getValue(1)));
Results.push_back(Read.getOperand(0));
}
/// \p BC is a bitcast that is about to be turned into a VMOVDRR.
/// When \p DstVT, the destination type of \p BC, is on the vector
/// register bank and the source of bitcast, \p Op, operates on the same bank,
/// it might be possible to combine them, such that everything stays on the
/// vector register bank.
/// \p return The node that would replace \p BT, if the combine
/// is possible.
static SDValue CombineVMOVDRRCandidateWithVecOp(const SDNode *BC,
SelectionDAG &DAG) {
SDValue Op = BC->getOperand(0);
EVT DstVT = BC->getValueType(0);
// The only vector instruction that can produce a scalar (remember,
// since the bitcast was about to be turned into VMOVDRR, the source
// type is i64) from a vector is EXTRACT_VECTOR_ELT.
// Moreover, we can do this combine only if there is one use.
// Finally, if the destination type is not a vector, there is not
// much point on forcing everything on the vector bank.
if (!DstVT.isVector() || Op.getOpcode() != ISD::EXTRACT_VECTOR_ELT ||
!Op.hasOneUse())
return SDValue();
// If the index is not constant, we will introduce an additional
// multiply that will stick.
// Give up in that case.
ConstantSDNode *Index = dyn_cast<ConstantSDNode>(Op.getOperand(1));
if (!Index)
return SDValue();
unsigned DstNumElt = DstVT.getVectorNumElements();
// Compute the new index.
const APInt &APIntIndex = Index->getAPIntValue();
APInt NewIndex(APIntIndex.getBitWidth(), DstNumElt);
NewIndex *= APIntIndex;
// Check if the new constant index fits into i32.
if (NewIndex.getBitWidth() > 32)
return SDValue();
// vMTy bitcast(i64 extractelt vNi64 src, i32 index) ->
// vMTy extractsubvector vNxMTy (bitcast vNi64 src), i32 index*M)
SDLoc dl(Op);
SDValue ExtractSrc = Op.getOperand(0);
EVT VecVT = EVT::getVectorVT(
*DAG.getContext(), DstVT.getScalarType(),
ExtractSrc.getValueType().getVectorNumElements() * DstNumElt);
SDValue BitCast = DAG.getNode(ISD::BITCAST, dl, VecVT, ExtractSrc);
return DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, DstVT, BitCast,
DAG.getConstant(NewIndex.getZExtValue(), dl, MVT::i32));
}
/// ExpandBITCAST - If the target supports VFP, this function is called to
/// expand a bit convert where either the source or destination type is i64 to
/// use a VMOVDRR or VMOVRRD node. This should not be done when the non-i64
/// operand type is illegal (e.g., v2f32 for a target that doesn't support
/// vectors), since the legalizer won't know what to do with that.
SDValue ARMTargetLowering::ExpandBITCAST(SDNode *N, SelectionDAG &DAG,
const ARMSubtarget *Subtarget) const {
const TargetLowering &TLI = DAG.getTargetLoweringInfo();
SDLoc dl(N);
SDValue Op = N->getOperand(0);
// This function is only supposed to be called for i16 and i64 types, either
// as the source or destination of the bit convert.
EVT SrcVT = Op.getValueType();
EVT DstVT = N->getValueType(0);
if ((SrcVT == MVT::i16 || SrcVT == MVT::i32) &&
(DstVT == MVT::f16 || DstVT == MVT::bf16))
return MoveToHPR(SDLoc(N), DAG, MVT::i32, DstVT.getSimpleVT(),
DAG.getNode(ISD::ZERO_EXTEND, SDLoc(N), MVT::i32, Op));
if ((DstVT == MVT::i16 || DstVT == MVT::i32) &&
(SrcVT == MVT::f16 || SrcVT == MVT::bf16))
return DAG.getNode(
ISD::TRUNCATE, SDLoc(N), DstVT,
MoveFromHPR(SDLoc(N), DAG, MVT::i32, SrcVT.getSimpleVT(), Op));
if (!(SrcVT == MVT::i64 || DstVT == MVT::i64))
return SDValue();
// Turn i64->f64 into VMOVDRR.
if (SrcVT == MVT::i64 && TLI.isTypeLegal(DstVT)) {
// Do not force values to GPRs (this is what VMOVDRR does for the inputs)
// if we can combine the bitcast with its source.
if (SDValue Val = CombineVMOVDRRCandidateWithVecOp(N, DAG))
return Val;
SDValue Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32, Op,
DAG.getConstant(0, dl, MVT::i32));
SDValue Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32, Op,
DAG.getConstant(1, dl, MVT::i32));
return DAG.getNode(ISD::BITCAST, dl, DstVT,
DAG.getNode(ARMISD::VMOVDRR, dl, MVT::f64, Lo, Hi));
}
// Turn f64->i64 into VMOVRRD.
if (DstVT == MVT::i64 && TLI.isTypeLegal(SrcVT)) {
SDValue Cvt;
if (DAG.getDataLayout().isBigEndian() && SrcVT.isVector() &&
SrcVT.getVectorNumElements() > 1)
Cvt = DAG.getNode(ARMISD::VMOVRRD, dl,
DAG.getVTList(MVT::i32, MVT::i32),
DAG.getNode(ARMISD::VREV64, dl, SrcVT, Op));
else
Cvt = DAG.getNode(ARMISD::VMOVRRD, dl,
DAG.getVTList(MVT::i32, MVT::i32), Op);
// Merge the pieces into a single i64 value.
return DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, Cvt, Cvt.getValue(1));
}
return SDValue();
}
/// getZeroVector - Returns a vector of specified type with all zero elements.
/// Zero vectors are used to represent vector negation and in those cases
/// will be implemented with the NEON VNEG instruction. However, VNEG does
/// not support i64 elements, so sometimes the zero vectors will need to be
/// explicitly constructed. Regardless, use a canonical VMOV to create the
/// zero vector.
static SDValue getZeroVector(EVT VT, SelectionDAG &DAG, const SDLoc &dl) {
assert(VT.isVector() && "Expected a vector type");
// The canonical modified immediate encoding of a zero vector is....0!
SDValue EncodedVal = DAG.getTargetConstant(0, dl, MVT::i32);
EVT VmovVT = VT.is128BitVector() ? MVT::v4i32 : MVT::v2i32;
SDValue Vmov = DAG.getNode(ARMISD::VMOVIMM, dl, VmovVT, EncodedVal);
return DAG.getNode(ISD::BITCAST, dl, VT, Vmov);
}
/// LowerShiftRightParts - Lower SRA_PARTS, which returns two
/// i32 values and take a 2 x i32 value to shift plus a shift amount.
SDValue ARMTargetLowering::LowerShiftRightParts(SDValue Op,
SelectionDAG &DAG) const {
assert(Op.getNumOperands() == 3 && "Not a double-shift!");
EVT VT = Op.getValueType();
unsigned VTBits = VT.getSizeInBits();
SDLoc dl(Op);
SDValue ShOpLo = Op.getOperand(0);
SDValue ShOpHi = Op.getOperand(1);
SDValue ShAmt = Op.getOperand(2);
SDValue ARMcc;
SDValue CCR = DAG.getRegister(ARM::CPSR, MVT::i32);
unsigned Opc = (Op.getOpcode() == ISD::SRA_PARTS) ? ISD::SRA : ISD::SRL;
assert(Op.getOpcode() == ISD::SRA_PARTS || Op.getOpcode() == ISD::SRL_PARTS);
SDValue RevShAmt = DAG.getNode(ISD::SUB, dl, MVT::i32,
DAG.getConstant(VTBits, dl, MVT::i32), ShAmt);
SDValue Tmp1 = DAG.getNode(ISD::SRL, dl, VT, ShOpLo, ShAmt);
SDValue ExtraShAmt = DAG.getNode(ISD::SUB, dl, MVT::i32, ShAmt,
DAG.getConstant(VTBits, dl, MVT::i32));
SDValue Tmp2 = DAG.getNode(ISD::SHL, dl, VT, ShOpHi, RevShAmt);
SDValue LoSmallShift = DAG.getNode(ISD::OR, dl, VT, Tmp1, Tmp2);
SDValue LoBigShift = DAG.getNode(Opc, dl, VT, ShOpHi, ExtraShAmt);
SDValue CmpLo = getARMCmp(ExtraShAmt, DAG.getConstant(0, dl, MVT::i32),
ISD::SETGE, ARMcc, DAG, dl);
SDValue Lo = DAG.getNode(ARMISD::CMOV, dl, VT, LoSmallShift, LoBigShift,
ARMcc, CCR, CmpLo);
SDValue HiSmallShift = DAG.getNode(Opc, dl, VT, ShOpHi, ShAmt);
SDValue HiBigShift = Opc == ISD::SRA
? DAG.getNode(Opc, dl, VT, ShOpHi,
DAG.getConstant(VTBits - 1, dl, VT))
: DAG.getConstant(0, dl, VT);
SDValue CmpHi = getARMCmp(ExtraShAmt, DAG.getConstant(0, dl, MVT::i32),
ISD::SETGE, ARMcc, DAG, dl);
SDValue Hi = DAG.getNode(ARMISD::CMOV, dl, VT, HiSmallShift, HiBigShift,
ARMcc, CCR, CmpHi);
SDValue Ops[2] = { Lo, Hi };
return DAG.getMergeValues(Ops, dl);
}
/// LowerShiftLeftParts - Lower SHL_PARTS, which returns two
/// i32 values and take a 2 x i32 value to shift plus a shift amount.
SDValue ARMTargetLowering::LowerShiftLeftParts(SDValue Op,
SelectionDAG &DAG) const {
assert(Op.getNumOperands() == 3 && "Not a double-shift!");
EVT VT = Op.getValueType();
unsigned VTBits = VT.getSizeInBits();
SDLoc dl(Op);
SDValue ShOpLo = Op.getOperand(0);
SDValue ShOpHi = Op.getOperand(1);
SDValue ShAmt = Op.getOperand(2);
SDValue ARMcc;
SDValue CCR = DAG.getRegister(ARM::CPSR, MVT::i32);
assert(Op.getOpcode() == ISD::SHL_PARTS);
SDValue RevShAmt = DAG.getNode(ISD::SUB, dl, MVT::i32,
DAG.getConstant(VTBits, dl, MVT::i32), ShAmt);
SDValue Tmp1 = DAG.getNode(ISD::SRL, dl, VT, ShOpLo, RevShAmt);
SDValue Tmp2 = DAG.getNode(ISD::SHL, dl, VT, ShOpHi, ShAmt);
SDValue HiSmallShift = DAG.getNode(ISD::OR, dl, VT, Tmp1, Tmp2);
SDValue ExtraShAmt = DAG.getNode(ISD::SUB, dl, MVT::i32, ShAmt,
DAG.getConstant(VTBits, dl, MVT::i32));
SDValue HiBigShift = DAG.getNode(ISD::SHL, dl, VT, ShOpLo, ExtraShAmt);
SDValue CmpHi = getARMCmp(ExtraShAmt, DAG.getConstant(0, dl, MVT::i32),
ISD::SETGE, ARMcc, DAG, dl);
SDValue Hi = DAG.getNode(ARMISD::CMOV, dl, VT, HiSmallShift, HiBigShift,
ARMcc, CCR, CmpHi);
SDValue CmpLo = getARMCmp(ExtraShAmt, DAG.getConstant(0, dl, MVT::i32),
ISD::SETGE, ARMcc, DAG, dl);
SDValue LoSmallShift = DAG.getNode(ISD::SHL, dl, VT, ShOpLo, ShAmt);
SDValue Lo = DAG.getNode(ARMISD::CMOV, dl, VT, LoSmallShift,
DAG.getConstant(0, dl, VT), ARMcc, CCR, CmpLo);
SDValue Ops[2] = { Lo, Hi };
return DAG.getMergeValues(Ops, dl);
}
SDValue ARMTargetLowering::LowerFLT_ROUNDS_(SDValue Op,
SelectionDAG &DAG) const {
// The rounding mode is in bits 23:22 of the FPSCR.
// The ARM rounding mode value to FLT_ROUNDS mapping is 0->1, 1->2, 2->3, 3->0
// The formula we use to implement this is (((FPSCR + 1 << 22) >> 22) & 3)
// so that the shift + and get folded into a bitfield extract.
SDLoc dl(Op);
SDValue Chain = Op.getOperand(0);
SDValue Ops[] = {Chain,
DAG.getConstant(Intrinsic::arm_get_fpscr, dl, MVT::i32)};
SDValue FPSCR =
DAG.getNode(ISD::INTRINSIC_W_CHAIN, dl, {MVT::i32, MVT::Other}, Ops);
Chain = FPSCR.getValue(1);
SDValue FltRounds = DAG.getNode(ISD::ADD, dl, MVT::i32, FPSCR,
DAG.getConstant(1U << 22, dl, MVT::i32));
SDValue RMODE = DAG.getNode(ISD::SRL, dl, MVT::i32, FltRounds,
DAG.getConstant(22, dl, MVT::i32));
SDValue And = DAG.getNode(ISD::AND, dl, MVT::i32, RMODE,
DAG.getConstant(3, dl, MVT::i32));
return DAG.getMergeValues({And, Chain}, dl);
}
SDValue ARMTargetLowering::LowerSET_ROUNDING(SDValue Op,
SelectionDAG &DAG) const {
SDLoc DL(Op);
SDValue Chain = Op->getOperand(0);
SDValue RMValue = Op->getOperand(1);
// The rounding mode is in bits 23:22 of the FPSCR.
// The llvm.set.rounding argument value to ARM rounding mode value mapping
// is 0->3, 1->0, 2->1, 3->2. The formula we use to implement this is
// ((arg - 1) & 3) << 22).
//
// It is expected that the argument of llvm.set.rounding is within the
// segment [0, 3], so NearestTiesToAway (4) is not handled here. It is
// responsibility of the code generated llvm.set.rounding to ensure this
// condition.
// Calculate new value of FPSCR[23:22].
RMValue = DAG.getNode(ISD::SUB, DL, MVT::i32, RMValue,
DAG.getConstant(1, DL, MVT::i32));
RMValue = DAG.getNode(ISD::AND, DL, MVT::i32, RMValue,
DAG.getConstant(0x3, DL, MVT::i32));
RMValue = DAG.getNode(ISD::SHL, DL, MVT::i32, RMValue,
DAG.getConstant(ARM::RoundingBitsPos, DL, MVT::i32));
// Get current value of FPSCR.
SDValue Ops[] = {Chain,
DAG.getConstant(Intrinsic::arm_get_fpscr, DL, MVT::i32)};
SDValue FPSCR =
DAG.getNode(ISD::INTRINSIC_W_CHAIN, DL, {MVT::i32, MVT::Other}, Ops);
Chain = FPSCR.getValue(1);
FPSCR = FPSCR.getValue(0);
// Put new rounding mode into FPSCR[23:22].
const unsigned RMMask = ~(ARM::Rounding::rmMask << ARM::RoundingBitsPos);
FPSCR = DAG.getNode(ISD::AND, DL, MVT::i32, FPSCR,
DAG.getConstant(RMMask, DL, MVT::i32));
FPSCR = DAG.getNode(ISD::OR, DL, MVT::i32, FPSCR, RMValue);
SDValue Ops2[] = {
Chain, DAG.getConstant(Intrinsic::arm_set_fpscr, DL, MVT::i32), FPSCR};
return DAG.getNode(ISD::INTRINSIC_VOID, DL, MVT::Other, Ops2);
}
static SDValue LowerCTTZ(SDNode *N, SelectionDAG &DAG,
const ARMSubtarget *ST) {
SDLoc dl(N);
EVT VT = N->getValueType(0);
if (VT.isVector() && ST->hasNEON()) {
// Compute the least significant set bit: LSB = X & -X
SDValue X = N->getOperand(0);
SDValue NX = DAG.getNode(ISD::SUB, dl, VT, getZeroVector(VT, DAG, dl), X);
SDValue LSB = DAG.getNode(ISD::AND, dl, VT, X, NX);
EVT ElemTy = VT.getVectorElementType();
if (ElemTy == MVT::i8) {
// Compute with: cttz(x) = ctpop(lsb - 1)
SDValue One = DAG.getNode(ARMISD::VMOVIMM, dl, VT,
DAG.getTargetConstant(1, dl, ElemTy));
SDValue Bits = DAG.getNode(ISD::SUB, dl, VT, LSB, One);
return DAG.getNode(ISD::CTPOP, dl, VT, Bits);
}
if ((ElemTy == MVT::i16 || ElemTy == MVT::i32) &&
(N->getOpcode() == ISD::CTTZ_ZERO_UNDEF)) {
// Compute with: cttz(x) = (width - 1) - ctlz(lsb), if x != 0
unsigned NumBits = ElemTy.getSizeInBits();
SDValue WidthMinus1 =
DAG.getNode(ARMISD::VMOVIMM, dl, VT,
DAG.getTargetConstant(NumBits - 1, dl, ElemTy));
SDValue CTLZ = DAG.getNode(ISD::CTLZ, dl, VT, LSB);
return DAG.getNode(ISD::SUB, dl, VT, WidthMinus1, CTLZ);
}
// Compute with: cttz(x) = ctpop(lsb - 1)
// Compute LSB - 1.
SDValue Bits;
if (ElemTy == MVT::i64) {
// Load constant 0xffff'ffff'ffff'ffff to register.
SDValue FF = DAG.getNode(ARMISD::VMOVIMM, dl, VT,
DAG.getTargetConstant(0x1eff, dl, MVT::i32));
Bits = DAG.getNode(ISD::ADD, dl, VT, LSB, FF);
} else {
SDValue One = DAG.getNode(ARMISD::VMOVIMM, dl, VT,
DAG.getTargetConstant(1, dl, ElemTy));
Bits = DAG.getNode(ISD::SUB, dl, VT, LSB, One);
}
return DAG.getNode(ISD::CTPOP, dl, VT, Bits);
}
if (!ST->hasV6T2Ops())
return SDValue();
SDValue rbit = DAG.getNode(ISD::BITREVERSE, dl, VT, N->getOperand(0));
return DAG.getNode(ISD::CTLZ, dl, VT, rbit);
}
static SDValue LowerCTPOP(SDNode *N, SelectionDAG &DAG,
const ARMSubtarget *ST) {
EVT VT = N->getValueType(0);
SDLoc DL(N);
assert(ST->hasNEON() && "Custom ctpop lowering requires NEON.");
assert((VT == MVT::v1i64 || VT == MVT::v2i64 || VT == MVT::v2i32 ||
VT == MVT::v4i32 || VT == MVT::v4i16 || VT == MVT::v8i16) &&
"Unexpected type for custom ctpop lowering");
const TargetLowering &TLI = DAG.getTargetLoweringInfo();
EVT VT8Bit = VT.is64BitVector() ? MVT::v8i8 : MVT::v16i8;
SDValue Res = DAG.getBitcast(VT8Bit, N->getOperand(0));
Res = DAG.getNode(ISD::CTPOP, DL, VT8Bit, Res);
// Widen v8i8/v16i8 CTPOP result to VT by repeatedly widening pairwise adds.
unsigned EltSize = 8;
unsigned NumElts = VT.is64BitVector() ? 8 : 16;
while (EltSize != VT.getScalarSizeInBits()) {
SmallVector<SDValue, 8> Ops;
Ops.push_back(DAG.getConstant(Intrinsic::arm_neon_vpaddlu, DL,
TLI.getPointerTy(DAG.getDataLayout())));
Ops.push_back(Res);
EltSize *= 2;
NumElts /= 2;
MVT WidenVT = MVT::getVectorVT(MVT::getIntegerVT(EltSize), NumElts);
Res = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, WidenVT, Ops);
}
return Res;
}
/// Getvshiftimm - Check if this is a valid build_vector for the immediate
/// operand of a vector shift operation, where all the elements of the
/// build_vector must have the same constant integer value.
static bool getVShiftImm(SDValue Op, unsigned ElementBits, int64_t &Cnt) {
// Ignore bit_converts.
while (Op.getOpcode() == ISD::BITCAST)
Op = Op.getOperand(0);
BuildVectorSDNode *BVN = dyn_cast<BuildVectorSDNode>(Op.getNode());
APInt SplatBits, SplatUndef;
unsigned SplatBitSize;
bool HasAnyUndefs;
if (!BVN ||
!BVN->isConstantSplat(SplatBits, SplatUndef, SplatBitSize, HasAnyUndefs,
ElementBits) ||
SplatBitSize > ElementBits)
return false;
Cnt = SplatBits.getSExtValue();
return true;
}
/// isVShiftLImm - Check if this is a valid build_vector for the immediate
/// operand of a vector shift left operation. That value must be in the range:
/// 0 <= Value < ElementBits for a left shift; or
/// 0 <= Value <= ElementBits for a long left shift.
static bool isVShiftLImm(SDValue Op, EVT VT, bool isLong, int64_t &Cnt) {
assert(VT.isVector() && "vector shift count is not a vector type");
int64_t ElementBits = VT.getScalarSizeInBits();
if (!getVShiftImm(Op, ElementBits, Cnt))
return false;
return (Cnt >= 0 && (isLong ? Cnt - 1 : Cnt) < ElementBits);
}
/// isVShiftRImm - Check if this is a valid build_vector for the immediate
/// operand of a vector shift right operation. For a shift opcode, the value
/// is positive, but for an intrinsic the value count must be negative. The
/// absolute value must be in the range:
/// 1 <= |Value| <= ElementBits for a right shift; or
/// 1 <= |Value| <= ElementBits/2 for a narrow right shift.
static bool isVShiftRImm(SDValue Op, EVT VT, bool isNarrow, bool isIntrinsic,
int64_t &Cnt) {
assert(VT.isVector() && "vector shift count is not a vector type");
int64_t ElementBits = VT.getScalarSizeInBits();
if (!getVShiftImm(Op, ElementBits, Cnt))
return false;
if (!isIntrinsic)
return (Cnt >= 1 && Cnt <= (isNarrow ? ElementBits / 2 : ElementBits));
if (Cnt >= -(isNarrow ? ElementBits / 2 : ElementBits) && Cnt <= -1) {
Cnt = -Cnt;
return true;
}
return false;
}
static SDValue LowerShift(SDNode *N, SelectionDAG &DAG,
const ARMSubtarget *ST) {
EVT VT = N->getValueType(0);
SDLoc dl(N);
int64_t Cnt;
if (!VT.isVector())
return SDValue();
// We essentially have two forms here. Shift by an immediate and shift by a
// vector register (there are also shift by a gpr, but that is just handled
// with a tablegen pattern). We cannot easily match shift by an immediate in
// tablegen so we do that here and generate a VSHLIMM/VSHRsIMM/VSHRuIMM.
// For shifting by a vector, we don't have VSHR, only VSHL (which can be
// signed or unsigned, and a negative shift indicates a shift right).
if (N->getOpcode() == ISD::SHL) {
if (isVShiftLImm(N->getOperand(1), VT, false, Cnt))
return DAG.getNode(ARMISD::VSHLIMM, dl, VT, N->getOperand(0),
DAG.getConstant(Cnt, dl, MVT::i32));
return DAG.getNode(ARMISD::VSHLu, dl, VT, N->getOperand(0),
N->getOperand(1));
}
assert((N->getOpcode() == ISD::SRA || N->getOpcode() == ISD::SRL) &&
"unexpected vector shift opcode");
if (isVShiftRImm(N->getOperand(1), VT, false, false, Cnt)) {
unsigned VShiftOpc =
(N->getOpcode() == ISD::SRA ? ARMISD::VSHRsIMM : ARMISD::VSHRuIMM);
return DAG.getNode(VShiftOpc, dl, VT, N->getOperand(0),
DAG.getConstant(Cnt, dl, MVT::i32));
}
// Other right shifts we don't have operations for (we use a shift left by a
// negative number).
EVT ShiftVT = N->getOperand(1).getValueType();
SDValue NegatedCount = DAG.getNode(
ISD::SUB, dl, ShiftVT, getZeroVector(ShiftVT, DAG, dl), N->getOperand(1));
unsigned VShiftOpc =
(N->getOpcode() == ISD::SRA ? ARMISD::VSHLs : ARMISD::VSHLu);
return DAG.getNode(VShiftOpc, dl, VT, N->getOperand(0), NegatedCount);
}
static SDValue Expand64BitShift(SDNode *N, SelectionDAG &DAG,
const ARMSubtarget *ST) {
EVT VT = N->getValueType(0);
SDLoc dl(N);
// We can get here for a node like i32 = ISD::SHL i32, i64
if (VT != MVT::i64)
return SDValue();
assert((N->getOpcode() == ISD::SRL || N->getOpcode() == ISD::SRA ||
N->getOpcode() == ISD::SHL) &&
"Unknown shift to lower!");
unsigned ShOpc = N->getOpcode();
if (ST->hasMVEIntegerOps()) {
SDValue ShAmt = N->getOperand(1);
unsigned ShPartsOpc = ARMISD::LSLL;
ConstantSDNode *Con = dyn_cast<ConstantSDNode>(ShAmt);
// If the shift amount is greater than 32 or has a greater bitwidth than 64
// then do the default optimisation
if (ShAmt->getValueType(0).getSizeInBits() > 64 ||
(Con && (Con->getZExtValue() == 0 || Con->getZExtValue() >= 32)))
return SDValue();
// Extract the lower 32 bits of the shift amount if it's not an i32
if (ShAmt->getValueType(0) != MVT::i32)
ShAmt = DAG.getZExtOrTrunc(ShAmt, dl, MVT::i32);
if (ShOpc == ISD::SRL) {
if (!Con)
// There is no t2LSRLr instruction so negate and perform an lsll if the
// shift amount is in a register, emulating a right shift.
ShAmt = DAG.getNode(ISD::SUB, dl, MVT::i32,
DAG.getConstant(0, dl, MVT::i32), ShAmt);
else
// Else generate an lsrl on the immediate shift amount
ShPartsOpc = ARMISD::LSRL;
} else if (ShOpc == ISD::SRA)
ShPartsOpc = ARMISD::ASRL;
// Lower 32 bits of the destination/source
SDValue Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32, N->getOperand(0),
DAG.getConstant(0, dl, MVT::i32));
// Upper 32 bits of the destination/source
SDValue Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32, N->getOperand(0),
DAG.getConstant(1, dl, MVT::i32));
// Generate the shift operation as computed above
Lo = DAG.getNode(ShPartsOpc, dl, DAG.getVTList(MVT::i32, MVT::i32), Lo, Hi,
ShAmt);
// The upper 32 bits come from the second return value of lsll
Hi = SDValue(Lo.getNode(), 1);
return DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, Lo, Hi);
}
// We only lower SRA, SRL of 1 here, all others use generic lowering.
if (!isOneConstant(N->getOperand(1)) || N->getOpcode() == ISD::SHL)
return SDValue();
// If we are in thumb mode, we don't have RRX.
if (ST->isThumb1Only())
return SDValue();
// Okay, we have a 64-bit SRA or SRL of 1. Lower this to an RRX expr.
SDValue Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32, N->getOperand(0),
DAG.getConstant(0, dl, MVT::i32));
SDValue Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32, N->getOperand(0),
DAG.getConstant(1, dl, MVT::i32));
// First, build a SRA_FLAG/SRL_FLAG op, which shifts the top part by one and
// captures the result into a carry flag.
unsigned Opc = N->getOpcode() == ISD::SRL ? ARMISD::SRL_FLAG:ARMISD::SRA_FLAG;
Hi = DAG.getNode(Opc, dl, DAG.getVTList(MVT::i32, MVT::Glue), Hi);
// The low part is an ARMISD::RRX operand, which shifts the carry in.
Lo = DAG.getNode(ARMISD::RRX, dl, MVT::i32, Lo, Hi.getValue(1));
// Merge the pieces into a single i64 value.
return DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, Lo, Hi);
}
static SDValue LowerVSETCC(SDValue Op, SelectionDAG &DAG,
const ARMSubtarget *ST) {
bool Invert = false;
bool Swap = false;
unsigned Opc = ARMCC::AL;
SDValue Op0 = Op.getOperand(0);
SDValue Op1 = Op.getOperand(1);
SDValue CC = Op.getOperand(2);
EVT VT = Op.getValueType();
ISD::CondCode SetCCOpcode = cast<CondCodeSDNode>(CC)->get();
SDLoc dl(Op);
EVT CmpVT;
if (ST->hasNEON())
CmpVT = Op0.getValueType().changeVectorElementTypeToInteger();
else {
assert(ST->hasMVEIntegerOps() &&
"No hardware support for integer vector comparison!");
if (Op.getValueType().getVectorElementType() != MVT::i1)
return SDValue();
// Make sure we expand floating point setcc to scalar if we do not have
// mve.fp, so that we can handle them from there.
if (Op0.getValueType().isFloatingPoint() && !ST->hasMVEFloatOps())
return SDValue();
CmpVT = VT;
}
if (Op0.getValueType().getVectorElementType() == MVT::i64 &&
(SetCCOpcode == ISD::SETEQ || SetCCOpcode == ISD::SETNE)) {
// Special-case integer 64-bit equality comparisons. They aren't legal,
// but they can be lowered with a few vector instructions.
unsigned CmpElements = CmpVT.getVectorNumElements() * 2;
EVT SplitVT = EVT::getVectorVT(*DAG.getContext(), MVT::i32, CmpElements);
SDValue CastOp0 = DAG.getNode(ISD::BITCAST, dl, SplitVT, Op0);
SDValue CastOp1 = DAG.getNode(ISD::BITCAST, dl, SplitVT, Op1);
SDValue Cmp = DAG.getNode(ISD::SETCC, dl, SplitVT, CastOp0, CastOp1,
DAG.getCondCode(ISD::SETEQ));
SDValue Reversed = DAG.getNode(ARMISD::VREV64, dl, SplitVT, Cmp);
SDValue Merged = DAG.getNode(ISD::AND, dl, SplitVT, Cmp, Reversed);
Merged = DAG.getNode(ISD::BITCAST, dl, CmpVT, Merged);
if (SetCCOpcode == ISD::SETNE)
Merged = DAG.getNOT(dl, Merged, CmpVT);
Merged = DAG.getSExtOrTrunc(Merged, dl, VT);
return Merged;
}
if (CmpVT.getVectorElementType() == MVT::i64)
// 64-bit comparisons are not legal in general.
return SDValue();
if (Op1.getValueType().isFloatingPoint()) {
switch (SetCCOpcode) {
default: llvm_unreachable("Illegal FP comparison");
case ISD::SETUNE:
case ISD::SETNE:
if (ST->hasMVEFloatOps()) {
Opc = ARMCC::NE; break;
} else {
Invert = true; LLVM_FALLTHROUGH;
}
case ISD::SETOEQ:
case ISD::SETEQ: Opc = ARMCC::EQ; break;
case ISD::SETOLT:
case ISD::SETLT: Swap = true; LLVM_FALLTHROUGH;
case ISD::SETOGT:
case ISD::SETGT: Opc = ARMCC::GT; break;
case ISD::SETOLE:
case ISD::SETLE: Swap = true; LLVM_FALLTHROUGH;
case ISD::SETOGE:
case ISD::SETGE: Opc = ARMCC::GE; break;
case ISD::SETUGE: Swap = true; LLVM_FALLTHROUGH;
case ISD::SETULE: Invert = true; Opc = ARMCC::GT; break;
case ISD::SETUGT: Swap = true; LLVM_FALLTHROUGH;
case ISD::SETULT: Invert = true; Opc = ARMCC::GE; break;
case ISD::SETUEQ: Invert = true; LLVM_FALLTHROUGH;
case ISD::SETONE: {
// Expand this to (OLT | OGT).
SDValue TmpOp0 = DAG.getNode(ARMISD::VCMP, dl, CmpVT, Op1, Op0,
DAG.getConstant(ARMCC::GT, dl, MVT::i32));
SDValue TmpOp1 = DAG.getNode(ARMISD::VCMP, dl, CmpVT, Op0, Op1,
DAG.getConstant(ARMCC::GT, dl, MVT::i32));
SDValue Result = DAG.getNode(ISD::OR, dl, CmpVT, TmpOp0, TmpOp1);
if (Invert)
Result = DAG.getNOT(dl, Result, VT);
return Result;
}
case ISD::SETUO: Invert = true; LLVM_FALLTHROUGH;
case ISD::SETO: {
// Expand this to (OLT | OGE).
SDValue TmpOp0 = DAG.getNode(ARMISD::VCMP, dl, CmpVT, Op1, Op0,
DAG.getConstant(ARMCC::GT, dl, MVT::i32));
SDValue TmpOp1 = DAG.getNode(ARMISD::VCMP, dl, CmpVT, Op0, Op1,
DAG.getConstant(ARMCC::GE, dl, MVT::i32));
SDValue Result = DAG.getNode(ISD::OR, dl, CmpVT, TmpOp0, TmpOp1);
if (Invert)
Result = DAG.getNOT(dl, Result, VT);
return Result;
}
}
} else {
// Integer comparisons.
switch (SetCCOpcode) {
default: llvm_unreachable("Illegal integer comparison");
case ISD::SETNE:
if (ST->hasMVEIntegerOps()) {
Opc = ARMCC::NE; break;
} else {
Invert = true; LLVM_FALLTHROUGH;
}
case ISD::SETEQ: Opc = ARMCC::EQ; break;
case ISD::SETLT: Swap = true; LLVM_FALLTHROUGH;
case ISD::SETGT: Opc = ARMCC::GT; break;
case ISD::SETLE: Swap = true; LLVM_FALLTHROUGH;
case ISD::SETGE: Opc = ARMCC::GE; break;
case ISD::SETULT: Swap = true; LLVM_FALLTHROUGH;
case ISD::SETUGT: Opc = ARMCC::HI; break;
case ISD::SETULE: Swap = true; LLVM_FALLTHROUGH;
case ISD::SETUGE: Opc = ARMCC::HS; break;
}
// Detect VTST (Vector Test Bits) = icmp ne (and (op0, op1), zero).
if (ST->hasNEON() && Opc == ARMCC::EQ) {
SDValue AndOp;
if (ISD::isBuildVectorAllZeros(Op1.getNode()))
AndOp = Op0;
else if (ISD::isBuildVectorAllZeros(Op0.getNode()))
AndOp = Op1;
// Ignore bitconvert.
if (AndOp.getNode() && AndOp.getOpcode() == ISD::BITCAST)
AndOp = AndOp.getOperand(0);
if (AndOp.getNode() && AndOp.getOpcode() == ISD::AND) {
Op0 = DAG.getNode(ISD::BITCAST, dl, CmpVT, AndOp.getOperand(0));
Op1 = DAG.getNode(ISD::BITCAST, dl, CmpVT, AndOp.getOperand(1));
SDValue Result = DAG.getNode(ARMISD::VTST, dl, CmpVT, Op0, Op1);
if (!Invert)
Result = DAG.getNOT(dl, Result, VT);
return Result;
}
}
}
if (Swap)
std::swap(Op0, Op1);
// If one of the operands is a constant vector zero, attempt to fold the
// comparison to a specialized compare-against-zero form.
SDValue SingleOp;
if (ISD::isBuildVectorAllZeros(Op1.getNode()))
SingleOp = Op0;
else if (ISD::isBuildVectorAllZeros(Op0.getNode())) {
if (Opc == ARMCC::GE)
Opc = ARMCC::LE;
else if (Opc == ARMCC::GT)
Opc = ARMCC::LT;
SingleOp = Op1;
}
SDValue Result;
if (SingleOp.getNode()) {
Result = DAG.getNode(ARMISD::VCMPZ, dl, CmpVT, SingleOp,
DAG.getConstant(Opc, dl, MVT::i32));
} else {
Result = DAG.getNode(ARMISD::VCMP, dl, CmpVT, Op0, Op1,
DAG.getConstant(Opc, dl, MVT::i32));
}
Result = DAG.getSExtOrTrunc(Result, dl, VT);
if (Invert)
Result = DAG.getNOT(dl, Result, VT);
return Result;
}
static SDValue LowerSETCCCARRY(SDValue Op, SelectionDAG &DAG) {
SDValue LHS = Op.getOperand(0);
SDValue RHS = Op.getOperand(1);
SDValue Carry = Op.getOperand(2);
SDValue Cond = Op.getOperand(3);
SDLoc DL(Op);
assert(LHS.getSimpleValueType().isInteger() && "SETCCCARRY is integer only.");
// ARMISD::SUBE expects a carry not a borrow like ISD::SUBCARRY so we
// have to invert the carry first.
Carry = DAG.getNode(ISD::SUB, DL, MVT::i32,
DAG.getConstant(1, DL, MVT::i32), Carry);
// This converts the boolean value carry into the carry flag.
Carry = ConvertBooleanCarryToCarryFlag(Carry, DAG);
SDVTList VTs = DAG.getVTList(LHS.getValueType(), MVT::i32);
SDValue Cmp = DAG.getNode(ARMISD::SUBE, DL, VTs, LHS, RHS, Carry);
SDValue FVal = DAG.getConstant(0, DL, MVT::i32);
SDValue TVal = DAG.getConstant(1, DL, MVT::i32);
SDValue ARMcc = DAG.getConstant(
IntCCToARMCC(cast<CondCodeSDNode>(Cond)->get()), DL, MVT::i32);
SDValue CCR = DAG.getRegister(ARM::CPSR, MVT::i32);
SDValue Chain = DAG.getCopyToReg(DAG.getEntryNode(), DL, ARM::CPSR,
Cmp.getValue(1), SDValue());
return DAG.getNode(ARMISD::CMOV, DL, Op.getValueType(), FVal, TVal, ARMcc,
CCR, Chain.getValue(1));
}
/// isVMOVModifiedImm - Check if the specified splat value corresponds to a
/// valid vector constant for a NEON or MVE instruction with a "modified
/// immediate" operand (e.g., VMOV). If so, return the encoded value.
static SDValue isVMOVModifiedImm(uint64_t SplatBits, uint64_t SplatUndef,
unsigned SplatBitSize, SelectionDAG &DAG,
const SDLoc &dl, EVT &VT, EVT VectorVT,
VMOVModImmType type) {
unsigned OpCmode, Imm;
bool is128Bits = VectorVT.is128BitVector();
// SplatBitSize is set to the smallest size that splats the vector, so a
// zero vector will always have SplatBitSize == 8. However, NEON modified
// immediate instructions others than VMOV do not support the 8-bit encoding
// of a zero vector, and the default encoding of zero is supposed to be the
// 32-bit version.
if (SplatBits == 0)
SplatBitSize = 32;
switch (SplatBitSize) {
case 8:
if (type != VMOVModImm)
return SDValue();
// Any 1-byte value is OK. Op=0, Cmode=1110.
assert((SplatBits & ~0xff) == 0 && "one byte splat value is too big");
OpCmode = 0xe;
Imm = SplatBits;
VT = is128Bits ? MVT::v16i8 : MVT::v8i8;
break;
case 16:
// NEON's 16-bit VMOV supports splat values where only one byte is nonzero.
VT = is128Bits ? MVT::v8i16 : MVT::v4i16;
if ((SplatBits & ~0xff) == 0) {
// Value = 0x00nn: Op=x, Cmode=100x.
OpCmode = 0x8;
Imm = SplatBits;
break;
}
if ((SplatBits & ~0xff00) == 0) {
// Value = 0xnn00: Op=x, Cmode=101x.
OpCmode = 0xa;
Imm = SplatBits >> 8;
break;
}
return SDValue();
case 32:
// NEON's 32-bit VMOV supports splat values where:
// * only one byte is nonzero, or
// * the least significant byte is 0xff and the second byte is nonzero, or
// * the least significant 2 bytes are 0xff and the third is nonzero.
VT = is128Bits ? MVT::v4i32 : MVT::v2i32;
if ((SplatBits & ~0xff) == 0) {
// Value = 0x000000nn: Op=x, Cmode=000x.
OpCmode = 0;
Imm = SplatBits;
break;
}
if ((SplatBits & ~0xff00) == 0) {
// Value = 0x0000nn00: Op=x, Cmode=001x.
OpCmode = 0x2;
Imm = SplatBits >> 8;
break;
}
if ((SplatBits & ~0xff0000) == 0) {
// Value = 0x00nn0000: Op=x, Cmode=010x.
OpCmode = 0x4;
Imm = SplatBits >> 16;
break;
}
if ((SplatBits & ~0xff000000) == 0) {
// Value = 0xnn000000: Op=x, Cmode=011x.
OpCmode = 0x6;
Imm = SplatBits >> 24;
break;
}
// cmode == 0b1100 and cmode == 0b1101 are not supported for VORR or VBIC
if (type == OtherModImm) return SDValue();
if ((SplatBits & ~0xffff) == 0 &&
((SplatBits | SplatUndef) & 0xff) == 0xff) {
// Value = 0x0000nnff: Op=x, Cmode=1100.
OpCmode = 0xc;
Imm = SplatBits >> 8;
break;
}
// cmode == 0b1101 is not supported for MVE VMVN
if (type == MVEVMVNModImm)
return SDValue();
if ((SplatBits & ~0xffffff) == 0 &&
((SplatBits | SplatUndef) & 0xffff) == 0xffff) {
// Value = 0x00nnffff: Op=x, Cmode=1101.
OpCmode = 0xd;
Imm = SplatBits >> 16;
break;
}
// Note: there are a few 32-bit splat values (specifically: 00ffff00,
// ff000000, ff0000ff, and ffff00ff) that are valid for VMOV.I64 but not
// VMOV.I32. A (very) minor optimization would be to replicate the value
// and fall through here to test for a valid 64-bit splat. But, then the
// caller would also need to check and handle the change in size.
return SDValue();
case 64: {
if (type != VMOVModImm)
return SDValue();
// NEON has a 64-bit VMOV splat where each byte is either 0 or 0xff.
uint64_t BitMask = 0xff;
unsigned ImmMask = 1;
Imm = 0;
for (int ByteNum = 0; ByteNum < 8; ++ByteNum) {
if (((SplatBits | SplatUndef) & BitMask) == BitMask) {
Imm |= ImmMask;
} else if ((SplatBits & BitMask) != 0) {
return SDValue();
}
BitMask <<= 8;
ImmMask <<= 1;
}
if (DAG.getDataLayout().isBigEndian()) {
// Reverse the order of elements within the vector.
unsigned BytesPerElem = VectorVT.getScalarSizeInBits() / 8;
unsigned Mask = (1 << BytesPerElem) - 1;
unsigned NumElems = 8 / BytesPerElem;
unsigned NewImm = 0;
for (unsigned ElemNum = 0; ElemNum < NumElems; ++ElemNum) {
unsigned Elem = ((Imm >> ElemNum * BytesPerElem) & Mask);
NewImm |= Elem << (NumElems - ElemNum - 1) * BytesPerElem;
}
Imm = NewImm;
}
// Op=1, Cmode=1110.
OpCmode = 0x1e;
VT = is128Bits ? MVT::v2i64 : MVT::v1i64;
break;
}
default:
llvm_unreachable("unexpected size for isVMOVModifiedImm");
}
unsigned EncodedVal = ARM_AM::createVMOVModImm(OpCmode, Imm);
return DAG.getTargetConstant(EncodedVal, dl, MVT::i32);
}
SDValue ARMTargetLowering::LowerConstantFP(SDValue Op, SelectionDAG &DAG,
const ARMSubtarget *ST) const {
EVT VT = Op.getValueType();
bool IsDouble = (VT == MVT::f64);
ConstantFPSDNode *CFP = cast<ConstantFPSDNode>(Op);
const APFloat &FPVal = CFP->getValueAPF();
// Prevent floating-point constants from using literal loads
// when execute-only is enabled.
if (ST->genExecuteOnly()) {
// If we can represent the constant as an immediate, don't lower it
if (isFPImmLegal(FPVal, VT))
return Op;
// Otherwise, construct as integer, and move to float register
APInt INTVal = FPVal.bitcastToAPInt();
SDLoc DL(CFP);
switch (VT.getSimpleVT().SimpleTy) {
default:
llvm_unreachable("Unknown floating point type!");
break;
case MVT::f64: {
SDValue Lo = DAG.getConstant(INTVal.trunc(32), DL, MVT::i32);
SDValue Hi = DAG.getConstant(INTVal.lshr(32).trunc(32), DL, MVT::i32);
return DAG.getNode(ARMISD::VMOVDRR, DL, MVT::f64, Lo, Hi);
}
case MVT::f32:
return DAG.getNode(ARMISD::VMOVSR, DL, VT,
DAG.getConstant(INTVal, DL, MVT::i32));
}
}
if (!ST->hasVFP3Base())
return SDValue();
// Use the default (constant pool) lowering for double constants when we have
// an SP-only FPU
if (IsDouble && !Subtarget->hasFP64())
return SDValue();
// Try splatting with a VMOV.f32...
int ImmVal = IsDouble ? ARM_AM::getFP64Imm(FPVal) : ARM_AM::getFP32Imm(FPVal);
if (ImmVal != -1) {
if (IsDouble || !ST->useNEONForSinglePrecisionFP()) {
// We have code in place to select a valid ConstantFP already, no need to
// do any mangling.
return Op;
}
// It's a float and we are trying to use NEON operations where
// possible. Lower it to a splat followed by an extract.
SDLoc DL(Op);
SDValue NewVal = DAG.getTargetConstant(ImmVal, DL, MVT::i32);
SDValue VecConstant = DAG.getNode(ARMISD::VMOVFPIMM, DL, MVT::v2f32,
NewVal);
return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, MVT::f32, VecConstant,
DAG.getConstant(0, DL, MVT::i32));
}
// The rest of our options are NEON only, make sure that's allowed before
// proceeding..
if (!ST->hasNEON() || (!IsDouble && !ST->useNEONForSinglePrecisionFP()))
return SDValue();
EVT VMovVT;
uint64_t iVal = FPVal.bitcastToAPInt().getZExtValue();
// It wouldn't really be worth bothering for doubles except for one very
// important value, which does happen to match: 0.0. So make sure we don't do
// anything stupid.
if (IsDouble && (iVal & 0xffffffff) != (iVal >> 32))
return SDValue();
// Try a VMOV.i32 (FIXME: i8, i16, or i64 could work too).
SDValue NewVal = isVMOVModifiedImm(iVal & 0xffffffffU, 0, 32, DAG, SDLoc(Op),
VMovVT, VT, VMOVModImm);
if (NewVal != SDValue()) {
SDLoc DL(Op);
SDValue VecConstant = DAG.getNode(ARMISD::VMOVIMM, DL, VMovVT,
NewVal);
if (IsDouble)
return DAG.getNode(ISD::BITCAST, DL, MVT::f64, VecConstant);
// It's a float: cast and extract a vector element.
SDValue VecFConstant = DAG.getNode(ISD::BITCAST, DL, MVT::v2f32,
VecConstant);
return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, MVT::f32, VecFConstant,
DAG.getConstant(0, DL, MVT::i32));
}
// Finally, try a VMVN.i32
NewVal = isVMOVModifiedImm(~iVal & 0xffffffffU, 0, 32, DAG, SDLoc(Op), VMovVT,
VT, VMVNModImm);
if (NewVal != SDValue()) {
SDLoc DL(Op);
SDValue VecConstant = DAG.getNode(ARMISD::VMVNIMM, DL, VMovVT, NewVal);
if (IsDouble)
return DAG.getNode(ISD::BITCAST, DL, MVT::f64, VecConstant);
// It's a float: cast and extract a vector element.
SDValue VecFConstant = DAG.getNode(ISD::BITCAST, DL, MVT::v2f32,
VecConstant);
return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, MVT::f32, VecFConstant,
DAG.getConstant(0, DL, MVT::i32));
}
return SDValue();
}
// check if an VEXT instruction can handle the shuffle mask when the
// vector sources of the shuffle are the same.
static bool isSingletonVEXTMask(ArrayRef<int> M, EVT VT, unsigned &Imm) {
unsigned NumElts = VT.getVectorNumElements();
// Assume that the first shuffle index is not UNDEF. Fail if it is.
if (M[0] < 0)
return false;
Imm = M[0];
// If this is a VEXT shuffle, the immediate value is the index of the first
// element. The other shuffle indices must be the successive elements after
// the first one.
unsigned ExpectedElt = Imm;
for (unsigned i = 1; i < NumElts; ++i) {
// Increment the expected index. If it wraps around, just follow it
// back to index zero and keep going.
++ExpectedElt;
if (ExpectedElt == NumElts)
ExpectedElt = 0;
if (M[i] < 0) continue; // ignore UNDEF indices
if (ExpectedElt != static_cast<unsigned>(M[i]))
return false;
}
return true;
}
static bool isVEXTMask(ArrayRef<int> M, EVT VT,
bool &ReverseVEXT, unsigned &Imm) {
unsigned NumElts = VT.getVectorNumElements();
ReverseVEXT = false;
// Assume that the first shuffle index is not UNDEF. Fail if it is.
if (M[0] < 0)
return false;
Imm = M[0];
// If this is a VEXT shuffle, the immediate value is the index of the first
// element. The other shuffle indices must be the successive elements after
// the first one.
unsigned ExpectedElt = Imm;
for (unsigned i = 1; i < NumElts; ++i) {
// Increment the expected index. If it wraps around, it may still be
// a VEXT but the source vectors must be swapped.
ExpectedElt += 1;
if (ExpectedElt == NumElts * 2) {
ExpectedElt = 0;
ReverseVEXT = true;
}
if (M[i] < 0) continue; // ignore UNDEF indices
if (ExpectedElt != static_cast<unsigned>(M[i]))
return false;
}
// Adjust the index value if the source operands will be swapped.
if (ReverseVEXT)
Imm -= NumElts;
return true;
}
static bool isVTBLMask(ArrayRef<int> M, EVT VT) {
// We can handle <8 x i8> vector shuffles. If the index in the mask is out of
// range, then 0 is placed into the resulting vector. So pretty much any mask
// of 8 elements can work here.
return VT == MVT::v8i8 && M.size() == 8;
}
static unsigned SelectPairHalf(unsigned Elements, ArrayRef<int> Mask,
unsigned Index) {
if (Mask.size() == Elements * 2)
return Index / Elements;
return Mask[Index] == 0 ? 0 : 1;
}
// Checks whether the shuffle mask represents a vector transpose (VTRN) by
// checking that pairs of elements in the shuffle mask represent the same index
// in each vector, incrementing the expected index by 2 at each step.
// e.g. For v1,v2 of type v4i32 a valid shuffle mask is: [0, 4, 2, 6]
// v1={a,b,c,d} => x=shufflevector v1, v2 shufflemask => x={a,e,c,g}
// v2={e,f,g,h}
// WhichResult gives the offset for each element in the mask based on which
// of the two results it belongs to.
//
// The transpose can be represented either as:
// result1 = shufflevector v1, v2, result1_shuffle_mask
// result2 = shufflevector v1, v2, result2_shuffle_mask
// where v1/v2 and the shuffle masks have the same number of elements
// (here WhichResult (see below) indicates which result is being checked)
//
// or as:
// results = shufflevector v1, v2, shuffle_mask
// where both results are returned in one vector and the shuffle mask has twice
// as many elements as v1/v2 (here WhichResult will always be 0 if true) here we
// want to check the low half and high half of the shuffle mask as if it were
// the other case
static bool isVTRNMask(ArrayRef<int> M, EVT VT, unsigned &WhichResult) {
unsigned EltSz = VT.getScalarSizeInBits();
if (EltSz == 64)
return false;
unsigned NumElts = VT.getVectorNumElements();
if (M.size() != NumElts && M.size() != NumElts*2)
return false;
// If the mask is twice as long as the input vector then we need to check the
// upper and lower parts of the mask with a matching value for WhichResult
// FIXME: A mask with only even values will be rejected in case the first
// element is undefined, e.g. [-1, 4, 2, 6] will be rejected, because only
// M[0] is used to determine WhichResult
for (unsigned i = 0; i < M.size(); i += NumElts) {
WhichResult = SelectPairHalf(NumElts, M, i);
for (unsigned j = 0; j < NumElts; j += 2) {
if ((M[i+j] >= 0 && (unsigned) M[i+j] != j + WhichResult) ||
(M[i+j+1] >= 0 && (unsigned) M[i+j+1] != j + NumElts + WhichResult))
return false;
}
}
if (M.size() == NumElts*2)
WhichResult = 0;
return true;
}
/// isVTRN_v_undef_Mask - Special case of isVTRNMask for canonical form of
/// "vector_shuffle v, v", i.e., "vector_shuffle v, undef".
/// Mask is e.g., <0, 0, 2, 2> instead of <0, 4, 2, 6>.
static bool isVTRN_v_undef_Mask(ArrayRef<int> M, EVT VT, unsigned &WhichResult){
unsigned EltSz = VT.getScalarSizeInBits();
if (EltSz == 64)
return false;
unsigned NumElts = VT.getVectorNumElements();
if (M.size() != NumElts && M.size() != NumElts*2)
return false;
for (unsigned i = 0; i < M.size(); i += NumElts) {
WhichResult = SelectPairHalf(NumElts, M, i);
for (unsigned j = 0; j < NumElts; j += 2) {
if ((M[i+j] >= 0 && (unsigned) M[i+j] != j + WhichResult) ||
(M[i+j+1] >= 0 && (unsigned) M[i+j+1] != j + WhichResult))
return false;
}
}
if (M.size() == NumElts*2)
WhichResult = 0;
return true;
}
// Checks whether the shuffle mask represents a vector unzip (VUZP) by checking
// that the mask elements are either all even and in steps of size 2 or all odd
// and in steps of size 2.
// e.g. For v1,v2 of type v4i32 a valid shuffle mask is: [0, 2, 4, 6]
// v1={a,b,c,d} => x=shufflevector v1, v2 shufflemask => x={a,c,e,g}
// v2={e,f,g,h}
// Requires similar checks to that of isVTRNMask with
// respect the how results are returned.
static bool isVUZPMask(ArrayRef<int> M, EVT VT, unsigned &WhichResult) {
unsigned EltSz = VT.getScalarSizeInBits();
if (EltSz == 64)
return false;
unsigned NumElts = VT.getVectorNumElements();
if (M.size() != NumElts && M.size() != NumElts*2)
return false;
for (unsigned i = 0; i < M.size(); i += NumElts) {
WhichResult = SelectPairHalf(NumElts, M, i);
for (unsigned j = 0; j < NumElts; ++j) {
if (M[i+j] >= 0 && (unsigned) M[i+j] != 2 * j + WhichResult)
return false;
}
}
if (M.size() == NumElts*2)
WhichResult = 0;
// VUZP.32 for 64-bit vectors is a pseudo-instruction alias for VTRN.32.
if (VT.is64BitVector() && EltSz == 32)
return false;
return true;
}
/// isVUZP_v_undef_Mask - Special case of isVUZPMask for canonical form of
/// "vector_shuffle v, v", i.e., "vector_shuffle v, undef".
/// Mask is e.g., <0, 2, 0, 2> instead of <0, 2, 4, 6>,
static bool isVUZP_v_undef_Mask(ArrayRef<int> M, EVT VT, unsigned &WhichResult){
unsigned EltSz = VT.getScalarSizeInBits();
if (EltSz == 64)
return false;
unsigned NumElts = VT.getVectorNumElements();
if (M.size() != NumElts && M.size() != NumElts*2)
return false;
unsigned Half = NumElts / 2;
for (unsigned i = 0; i < M.size(); i += NumElts) {
WhichResult = SelectPairHalf(NumElts, M, i);
for (unsigned j = 0; j < NumElts; j += Half) {
unsigned Idx = WhichResult;
for (unsigned k = 0; k < Half; ++k) {
int MIdx = M[i + j + k];
if (MIdx >= 0 && (unsigned) MIdx != Idx)
return false;
Idx += 2;
}
}
}
if (M.size() == NumElts*2)
WhichResult = 0;
// VUZP.32 for 64-bit vectors is a pseudo-instruction alias for VTRN.32.
if (VT.is64BitVector() && EltSz == 32)
return false;
return true;
}
// Checks whether the shuffle mask represents a vector zip (VZIP) by checking
// that pairs of elements of the shufflemask represent the same index in each
// vector incrementing sequentially through the vectors.
// e.g. For v1,v2 of type v4i32 a valid shuffle mask is: [0, 4, 1, 5]
// v1={a,b,c,d} => x=shufflevector v1, v2 shufflemask => x={a,e,b,f}
// v2={e,f,g,h}
// Requires similar checks to that of isVTRNMask with respect the how results
// are returned.
static bool isVZIPMask(ArrayRef<int> M, EVT VT, unsigned &WhichResult) {
unsigned EltSz = VT.getScalarSizeInBits();
if (EltSz == 64)
return false;
unsigned NumElts = VT.getVectorNumElements();
if (M.size() != NumElts && M.size() != NumElts*2)
return false;
for (unsigned i = 0; i < M.size(); i += NumElts) {
WhichResult = SelectPairHalf(NumElts, M, i);
unsigned Idx = WhichResult * NumElts / 2;
for (unsigned j = 0; j < NumElts; j += 2) {
if ((M[i+j] >= 0 && (unsigned) M[i+j] != Idx) ||
(M[i+j+1] >= 0 && (unsigned) M[i+j+1] != Idx + NumElts))
return false;
Idx += 1;
}
}
if (M.size() == NumElts*2)
WhichResult = 0;
// VZIP.32 for 64-bit vectors is a pseudo-instruction alias for VTRN.32.
if (VT.is64BitVector() && EltSz == 32)
return false;
return true;
}
/// isVZIP_v_undef_Mask - Special case of isVZIPMask for canonical form of
/// "vector_shuffle v, v", i.e., "vector_shuffle v, undef".
/// Mask is e.g., <0, 0, 1, 1> instead of <0, 4, 1, 5>.
static bool isVZIP_v_undef_Mask(ArrayRef<int> M, EVT VT, unsigned &WhichResult){
unsigned EltSz = VT.getScalarSizeInBits();
if (EltSz == 64)
return false;
unsigned NumElts = VT.getVectorNumElements();
if (M.size() != NumElts && M.size() != NumElts*2)
return false;
for (unsigned i = 0; i < M.size(); i += NumElts) {
WhichResult = SelectPairHalf(NumElts, M, i);
unsigned Idx = WhichResult * NumElts / 2;
for (unsigned j = 0; j < NumElts; j += 2) {
if ((M[i+j] >= 0 && (unsigned) M[i+j] != Idx) ||
(M[i+j+1] >= 0 && (unsigned) M[i+j+1] != Idx))
return false;
Idx += 1;
}
}
if (M.size() == NumElts*2)
WhichResult = 0;
// VZIP.32 for 64-bit vectors is a pseudo-instruction alias for VTRN.32.
if (VT.is64BitVector() && EltSz == 32)
return false;
return true;
}
/// Check if \p ShuffleMask is a NEON two-result shuffle (VZIP, VUZP, VTRN),
/// and return the corresponding ARMISD opcode if it is, or 0 if it isn't.
static unsigned isNEONTwoResultShuffleMask(ArrayRef<int> ShuffleMask, EVT VT,
unsigned &WhichResult,
bool &isV_UNDEF) {
isV_UNDEF = false;
if (isVTRNMask(ShuffleMask, VT, WhichResult))
return ARMISD::VTRN;
if (isVUZPMask(ShuffleMask, VT, WhichResult))
return ARMISD::VUZP;
if (isVZIPMask(ShuffleMask, VT, WhichResult))
return ARMISD::VZIP;
isV_UNDEF = true;
if (isVTRN_v_undef_Mask(ShuffleMask, VT, WhichResult))
return ARMISD::VTRN;
if (isVUZP_v_undef_Mask(ShuffleMask, VT, WhichResult))
return ARMISD::VUZP;
if (isVZIP_v_undef_Mask(ShuffleMask, VT, WhichResult))
return ARMISD::VZIP;
return 0;
}
/// \return true if this is a reverse operation on an vector.
static bool isReverseMask(ArrayRef<int> M, EVT VT) {
unsigned NumElts = VT.getVectorNumElements();
// Make sure the mask has the right size.
if (NumElts != M.size())
return false;
// Look for <15, ..., 3, -1, 1, 0>.
for (unsigned i = 0; i != NumElts; ++i)
if (M[i] >= 0 && M[i] != (int) (NumElts - 1 - i))
return false;
return true;
}
static bool isVMOVNMask(ArrayRef<int> M, EVT VT, bool Top, bool SingleSource) {
unsigned NumElts = VT.getVectorNumElements();
// Make sure the mask has the right size.
if (NumElts != M.size() || (VT != MVT::v8i16 && VT != MVT::v16i8))
return false;
// If Top
// Look for <0, N, 2, N+2, 4, N+4, ..>.
// This inserts Input2 into Input1
// else if not Top
// Look for <0, N+1, 2, N+3, 4, N+5, ..>
// This inserts Input1 into Input2
unsigned Offset = Top ? 0 : 1;
unsigned N = SingleSource ? 0 : NumElts;
for (unsigned i = 0; i < NumElts; i += 2) {
if (M[i] >= 0 && M[i] != (int)i)
return false;
if (M[i + 1] >= 0 && M[i + 1] != (int)(N + i + Offset))
return false;
}
return true;
}
static bool isVMOVNTruncMask(ArrayRef<int> M, EVT ToVT, bool rev) {
unsigned NumElts = ToVT.getVectorNumElements();
if (NumElts != M.size())
return false;
// Test if the Trunc can be convertable to a VMOVN with this shuffle. We are
// looking for patterns of:
// !rev: 0 N/2 1 N/2+1 2 N/2+2 ...
// rev: N/2 0 N/2+1 1 N/2+2 2 ...
unsigned Off0 = rev ? NumElts / 2 : 0;
unsigned Off1 = rev ? 0 : NumElts / 2;
for (unsigned i = 0; i < NumElts; i += 2) {
if (M[i] >= 0 && M[i] != (int)(Off0 + i / 2))
return false;
if (M[i + 1] >= 0 && M[i + 1] != (int)(Off1 + i / 2))
return false;
}
return true;
}
// Reconstruct an MVE VCVT from a BuildVector of scalar fptrunc, all extracted
// from a pair of inputs. For example:
// BUILDVECTOR(FP_ROUND(EXTRACT_ELT(X, 0),
// FP_ROUND(EXTRACT_ELT(Y, 0),
// FP_ROUND(EXTRACT_ELT(X, 1),
// FP_ROUND(EXTRACT_ELT(Y, 1), ...)
static SDValue LowerBuildVectorOfFPTrunc(SDValue BV, SelectionDAG &DAG,
const ARMSubtarget *ST) {
assert(BV.getOpcode() == ISD::BUILD_VECTOR && "Unknown opcode!");
if (!ST->hasMVEFloatOps())
return SDValue();
SDLoc dl(BV);
EVT VT = BV.getValueType();
if (VT != MVT::v8f16)
return SDValue();
// We are looking for a buildvector of fptrunc elements, where all the
// elements are interleavingly extracted from two sources. Check the first two
// items are valid enough and extract some info from them (they are checked
// properly in the loop below).
if (BV.getOperand(0).getOpcode() != ISD::FP_ROUND ||
BV.getOperand(0).getOperand(0).getOpcode() != ISD::EXTRACT_VECTOR_ELT ||
BV.getOperand(0).getOperand(0).getConstantOperandVal(1) != 0)
return SDValue();
if (BV.getOperand(1).getOpcode() != ISD::FP_ROUND ||
BV.getOperand(1).getOperand(0).getOpcode() != ISD::EXTRACT_VECTOR_ELT ||
BV.getOperand(1).getOperand(0).getConstantOperandVal(1) != 0)
return SDValue();
SDValue Op0 = BV.getOperand(0).getOperand(0).getOperand(0);
SDValue Op1 = BV.getOperand(1).getOperand(0).getOperand(0);
if (Op0.getValueType() != MVT::v4f32 || Op1.getValueType() != MVT::v4f32)
return SDValue();
// Check all the values in the BuildVector line up with our expectations.
for (unsigned i = 1; i < 4; i++) {
auto Check = [](SDValue Trunc, SDValue Op, unsigned Idx) {
return Trunc.getOpcode() == ISD::FP_ROUND &&
Trunc.getOperand(0).getOpcode() == ISD::EXTRACT_VECTOR_ELT &&
Trunc.getOperand(0).getOperand(0) == Op &&
Trunc.getOperand(0).getConstantOperandVal(1) == Idx;
};
if (!Check(BV.getOperand(i * 2 + 0), Op0, i))
return SDValue();
if (!Check(BV.getOperand(i * 2 + 1), Op1, i))
return SDValue();
}
SDValue N1 = DAG.getNode(ARMISD::VCVTN, dl, VT, DAG.getUNDEF(VT), Op0,
DAG.getConstant(0, dl, MVT::i32));
return DAG.getNode(ARMISD::VCVTN, dl, VT, N1, Op1,
DAG.getConstant(1, dl, MVT::i32));
}
// Reconstruct an MVE VCVT from a BuildVector of scalar fpext, all extracted
// from a single input on alternating lanes. For example:
// BUILDVECTOR(FP_ROUND(EXTRACT_ELT(X, 0),
// FP_ROUND(EXTRACT_ELT(X, 2),
// FP_ROUND(EXTRACT_ELT(X, 4), ...)
static SDValue LowerBuildVectorOfFPExt(SDValue BV, SelectionDAG &DAG,
const ARMSubtarget *ST) {
assert(BV.getOpcode() == ISD::BUILD_VECTOR && "Unknown opcode!");
if (!ST->hasMVEFloatOps())
return SDValue();
SDLoc dl(BV);
EVT VT = BV.getValueType();
if (VT != MVT::v4f32)
return SDValue();
// We are looking for a buildvector of fptext elements, where all the
// elements are alternating lanes from a single source. For example <0,2,4,6>
// or <1,3,5,7>. Check the first two items are valid enough and extract some
// info from them (they are checked properly in the loop below).
if (BV.getOperand(0).getOpcode() != ISD::FP_EXTEND ||
BV.getOperand(0).getOperand(0).getOpcode() != ISD::EXTRACT_VECTOR_ELT)
return SDValue();
SDValue Op0 = BV.getOperand(0).getOperand(0).getOperand(0);
int Offset = BV.getOperand(0).getOperand(0).getConstantOperandVal(1);
if (Op0.getValueType() != MVT::v8f16 || (Offset != 0 && Offset != 1))
return SDValue();
// Check all the values in the BuildVector line up with our expectations.
for (unsigned i = 1; i < 4; i++) {
auto Check = [](SDValue Trunc, SDValue Op, unsigned Idx) {
return Trunc.getOpcode() == ISD::FP_EXTEND &&
Trunc.getOperand(0).getOpcode() == ISD::EXTRACT_VECTOR_ELT &&
Trunc.getOperand(0).getOperand(0) == Op &&
Trunc.getOperand(0).getConstantOperandVal(1) == Idx;
};
if (!Check(BV.getOperand(i), Op0, 2 * i + Offset))
return SDValue();
}
return DAG.getNode(ARMISD::VCVTL, dl, VT, Op0,
DAG.getConstant(Offset, dl, MVT::i32));
}
// If N is an integer constant that can be moved into a register in one
// instruction, return an SDValue of such a constant (will become a MOV
// instruction). Otherwise return null.
static SDValue IsSingleInstrConstant(SDValue N, SelectionDAG &DAG,
const ARMSubtarget *ST, const SDLoc &dl) {
uint64_t Val;
if (!isa<ConstantSDNode>(N))
return SDValue();
Val = cast<ConstantSDNode>(N)->getZExtValue();
if (ST->isThumb1Only()) {
if (Val <= 255 || ~Val <= 255)
return DAG.getConstant(Val, dl, MVT::i32);
} else {
if (ARM_AM::getSOImmVal(Val) != -1 || ARM_AM::getSOImmVal(~Val) != -1)
return DAG.getConstant(Val, dl, MVT::i32);
}
return SDValue();
}
static SDValue LowerBUILD_VECTOR_i1(SDValue Op, SelectionDAG &DAG,
const ARMSubtarget *ST) {
SDLoc dl(Op);
EVT VT = Op.getValueType();
assert(ST->hasMVEIntegerOps() && "LowerBUILD_VECTOR_i1 called without MVE!");
unsigned NumElts = VT.getVectorNumElements();
unsigned BoolMask;
unsigned BitsPerBool;
if (NumElts == 4) {
BitsPerBool = 4;
BoolMask = 0xf;
} else if (NumElts == 8) {
BitsPerBool = 2;
BoolMask = 0x3;
} else if (NumElts == 16) {
BitsPerBool = 1;
BoolMask = 0x1;
} else
return SDValue();
// If this is a single value copied into all lanes (a splat), we can just sign
// extend that single value
SDValue FirstOp = Op.getOperand(0);
if (!isa<ConstantSDNode>(FirstOp) &&
std::all_of(std::next(Op->op_begin()), Op->op_end(),
[&FirstOp](SDUse &U) {
return U.get().isUndef() || U.get() == FirstOp;
})) {
SDValue Ext = DAG.getNode(ISD::SIGN_EXTEND_INREG, dl, MVT::i32, FirstOp,
DAG.getValueType(MVT::i1));
return DAG.getNode(ARMISD::PREDICATE_CAST, dl, Op.getValueType(), Ext);
}
// First create base with bits set where known
unsigned Bits32 = 0;
for (unsigned i = 0; i < NumElts; ++i) {
SDValue V = Op.getOperand(i);
if (!isa<ConstantSDNode>(V) && !V.isUndef())
continue;
bool BitSet = V.isUndef() ? false : cast<ConstantSDNode>(V)->getZExtValue();
if (BitSet)
Bits32 |= BoolMask << (i * BitsPerBool);
}
// Add in unknown nodes
SDValue Base = DAG.getNode(ARMISD::PREDICATE_CAST, dl, VT,
DAG.getConstant(Bits32, dl, MVT::i32));
for (unsigned i = 0; i < NumElts; ++i) {
SDValue V = Op.getOperand(i);
if (isa<ConstantSDNode>(V) || V.isUndef())
continue;
Base = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, VT, Base, V,
DAG.getConstant(i, dl, MVT::i32));
}
return Base;
}
static SDValue LowerBUILD_VECTORToVIDUP(SDValue Op, SelectionDAG &DAG,
const ARMSubtarget *ST) {
if (!ST->hasMVEIntegerOps())
return SDValue();
// We are looking for a buildvector where each element is Op[0] + i*N
EVT VT = Op.getValueType();
SDValue Op0 = Op.getOperand(0);
unsigned NumElts = VT.getVectorNumElements();
// Get the increment value from operand 1
SDValue Op1 = Op.getOperand(1);
if (Op1.getOpcode() != ISD::ADD || Op1.getOperand(0) != Op0 ||
!isa<ConstantSDNode>(Op1.getOperand(1)))
return SDValue();
unsigned N = Op1.getConstantOperandVal(1);
if (N != 1 && N != 2 && N != 4 && N != 8)
return SDValue();
// Check that each other operand matches
for (unsigned I = 2; I < NumElts; I++) {
SDValue OpI = Op.getOperand(I);
if (OpI.getOpcode() != ISD::ADD || OpI.getOperand(0) != Op0 ||
!isa<ConstantSDNode>(OpI.getOperand(1)) ||
OpI.getConstantOperandVal(1) != I * N)
return SDValue();
}
SDLoc DL(Op);
return DAG.getNode(ARMISD::VIDUP, DL, DAG.getVTList(VT, MVT::i32), Op0,
DAG.getConstant(N, DL, MVT::i32));
}
// If this is a case we can't handle, return null and let the default
// expansion code take care of it.
SDValue ARMTargetLowering::LowerBUILD_VECTOR(SDValue Op, SelectionDAG &DAG,
const ARMSubtarget *ST) const {
BuildVectorSDNode *BVN = cast<BuildVectorSDNode>(Op.getNode());
SDLoc dl(Op);
EVT VT = Op.getValueType();
if (ST->hasMVEIntegerOps() && VT.getScalarSizeInBits() == 1)
return LowerBUILD_VECTOR_i1(Op, DAG, ST);
if (SDValue R = LowerBUILD_VECTORToVIDUP(Op, DAG, ST))
return R;
APInt SplatBits, SplatUndef;
unsigned SplatBitSize;
bool HasAnyUndefs;
if (BVN->isConstantSplat(SplatBits, SplatUndef, SplatBitSize, HasAnyUndefs)) {
if (SplatUndef.isAllOnes())
return DAG.getUNDEF(VT);
if ((ST->hasNEON() && SplatBitSize <= 64) ||
(ST->hasMVEIntegerOps() && SplatBitSize <= 64)) {
// Check if an immediate VMOV works.
EVT VmovVT;
SDValue Val =
isVMOVModifiedImm(SplatBits.getZExtValue(), SplatUndef.getZExtValue(),
SplatBitSize, DAG, dl, VmovVT, VT, VMOVModImm);
if (Val.getNode()) {
SDValue Vmov = DAG.getNode(ARMISD::VMOVIMM, dl, VmovVT, Val);
return DAG.getNode(ISD::BITCAST, dl, VT, Vmov);
}
// Try an immediate VMVN.
uint64_t NegatedImm = (~SplatBits).getZExtValue();
Val = isVMOVModifiedImm(
NegatedImm, SplatUndef.getZExtValue(), SplatBitSize, DAG, dl, VmovVT,
VT, ST->hasMVEIntegerOps() ? MVEVMVNModImm : VMVNModImm);
if (Val.getNode()) {
SDValue Vmov = DAG.getNode(ARMISD::VMVNIMM, dl, VmovVT, Val);
return DAG.getNode(ISD::BITCAST, dl, VT, Vmov);
}
// Use vmov.f32 to materialize other v2f32 and v4f32 splats.
if ((VT == MVT::v2f32 || VT == MVT::v4f32) && SplatBitSize == 32) {
int ImmVal = ARM_AM::getFP32Imm(SplatBits);
if (ImmVal != -1) {
SDValue Val = DAG.getTargetConstant(ImmVal, dl, MVT::i32);
return DAG.getNode(ARMISD::VMOVFPIMM, dl, VT, Val);
}
}
// If we are under MVE, generate a VDUP(constant), bitcast to the original
// type.
if (ST->hasMVEIntegerOps() &&
(SplatBitSize == 8 || SplatBitSize == 16 || SplatBitSize == 32)) {
EVT DupVT = SplatBitSize == 32 ? MVT::v4i32
: SplatBitSize == 16 ? MVT::v8i16
: MVT::v16i8;
SDValue Const = DAG.getConstant(SplatBits.getZExtValue(), dl, MVT::i32);
SDValue VDup = DAG.getNode(ARMISD::VDUP, dl, DupVT, Const);
return DAG.getNode(ARMISD::VECTOR_REG_CAST, dl, VT, VDup);
}
}
}
// Scan through the operands to see if only one value is used.
//
// As an optimisation, even if more than one value is used it may be more
// profitable to splat with one value then change some lanes.
//
// Heuristically we decide to do this if the vector has a "dominant" value,
// defined as splatted to more than half of the lanes.
unsigned NumElts = VT.getVectorNumElements();
bool isOnlyLowElement = true;
bool usesOnlyOneValue = true;
bool hasDominantValue = false;
bool isConstant = true;
// Map of the number of times a particular SDValue appears in the
// element list.
DenseMap<SDValue, unsigned> ValueCounts;
SDValue Value;
for (unsigned i = 0; i < NumElts; ++i) {
SDValue V = Op.getOperand(i);
if (V.isUndef())
continue;
if (i > 0)
isOnlyLowElement = false;
if (!isa<ConstantFPSDNode>(V) && !isa<ConstantSDNode>(V))
isConstant = false;
ValueCounts.insert(std::make_pair(V, 0));
unsigned &Count = ValueCounts[V];
// Is this value dominant? (takes up more than half of the lanes)
if (++Count > (NumElts / 2)) {
hasDominantValue = true;
Value = V;
}
}
if (ValueCounts.size() != 1)
usesOnlyOneValue = false;
if (!Value.getNode() && !ValueCounts.empty())
Value = ValueCounts.begin()->first;
if (ValueCounts.empty())
return DAG.getUNDEF(VT);
// Loads are better lowered with insert_vector_elt/ARMISD::BUILD_VECTOR.
// Keep going if we are hitting this case.
if (isOnlyLowElement && !ISD::isNormalLoad(Value.getNode()))
return DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Value);
unsigned EltSize = VT.getScalarSizeInBits();
// Use VDUP for non-constant splats. For f32 constant splats, reduce to
// i32 and try again.
if (hasDominantValue && EltSize <= 32) {
if (!isConstant) {
SDValue N;
// If we are VDUPing a value that comes directly from a vector, that will
// cause an unnecessary move to and from a GPR, where instead we could
// just use VDUPLANE. We can only do this if the lane being extracted
// is at a constant index, as the VDUP from lane instructions only have
// constant-index forms.
ConstantSDNode *constIndex;
if (Value->getOpcode() == ISD::EXTRACT_VECTOR_ELT &&
(constIndex = dyn_cast<ConstantSDNode>(Value->getOperand(1)))) {
// We need to create a new undef vector to use for the VDUPLANE if the
// size of the vector from which we get the value is different than the
// size of the vector that we need to create. We will insert the element
// such that the register coalescer will remove unnecessary copies.
if (VT != Value->getOperand(0).getValueType()) {
unsigned index = constIndex->getAPIntValue().getLimitedValue() %
VT.getVectorNumElements();
N = DAG.getNode(ARMISD::VDUPLANE, dl, VT,
DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, VT, DAG.getUNDEF(VT),
Value, DAG.getConstant(index, dl, MVT::i32)),
DAG.getConstant(index, dl, MVT::i32));
} else
N = DAG.getNode(ARMISD::VDUPLANE, dl, VT,
Value->getOperand(0), Value->getOperand(1));
} else
N = DAG.getNode(ARMISD::VDUP, dl, VT, Value);
if (!usesOnlyOneValue) {
// The dominant value was splatted as 'N', but we now have to insert
// all differing elements.
for (unsigned I = 0; I < NumElts; ++I) {
if (Op.getOperand(I) == Value)
continue;
SmallVector<SDValue, 3> Ops;
Ops.push_back(N);
Ops.push_back(Op.getOperand(I));
Ops.push_back(DAG.getConstant(I, dl, MVT::i32));
N = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, VT, Ops);
}
}
return N;
}
if (VT.getVectorElementType().isFloatingPoint()) {
SmallVector<SDValue, 8> Ops;
MVT FVT = VT.getVectorElementType().getSimpleVT();
assert(FVT == MVT::f32 || FVT == MVT::f16);
MVT IVT = (FVT == MVT::f32) ? MVT::i32 : MVT::i16;
for (unsigned i = 0; i < NumElts; ++i)
Ops.push_back(DAG.getNode(ISD::BITCAST, dl, IVT,
Op.getOperand(i)));
EVT VecVT = EVT::getVectorVT(*DAG.getContext(), IVT, NumElts);
SDValue Val = DAG.getBuildVector(VecVT, dl, Ops);
Val = LowerBUILD_VECTOR(Val, DAG, ST);
if (Val.getNode())
return DAG.getNode(ISD::BITCAST, dl, VT, Val);
}
if (usesOnlyOneValue) {
SDValue Val = IsSingleInstrConstant(Value, DAG, ST, dl);
if (isConstant && Val.getNode())
return DAG.getNode(ARMISD::VDUP, dl, VT, Val);
}
}
// If all elements are constants and the case above didn't get hit, fall back
// to the default expansion, which will generate a load from the constant
// pool.
if (isConstant)
return SDValue();
// Reconstruct the BUILDVECTOR to one of the legal shuffles (such as vext and
// vmovn). Empirical tests suggest this is rarely worth it for vectors of
// length <= 2.
if (NumElts >= 4)
if (SDValue shuffle = ReconstructShuffle(Op, DAG))
return shuffle;
// Attempt to turn a buildvector of scalar fptrunc's or fpext's back into
// VCVT's
if (SDValue VCVT = LowerBuildVectorOfFPTrunc(Op, DAG, Subtarget))
return VCVT;
if (SDValue VCVT = LowerBuildVectorOfFPExt(Op, DAG, Subtarget))
return VCVT;
if (ST->hasNEON() && VT.is128BitVector() && VT != MVT::v2f64 && VT != MVT::v4f32) {
// If we haven't found an efficient lowering, try splitting a 128-bit vector
// into two 64-bit vectors; we might discover a better way to lower it.
SmallVector<SDValue, 64> Ops(Op->op_begin(), Op->op_begin() + NumElts);
EVT ExtVT = VT.getVectorElementType();
EVT HVT = EVT::getVectorVT(*DAG.getContext(), ExtVT, NumElts / 2);
SDValue Lower =
DAG.getBuildVector(HVT, dl, makeArrayRef(&Ops[0], NumElts / 2));
if (Lower.getOpcode() == ISD::BUILD_VECTOR)
Lower = LowerBUILD_VECTOR(Lower, DAG, ST);
SDValue Upper = DAG.getBuildVector(
HVT, dl, makeArrayRef(&Ops[NumElts / 2], NumElts / 2));
if (Upper.getOpcode() == ISD::BUILD_VECTOR)
Upper = LowerBUILD_VECTOR(Upper, DAG, ST);
if (Lower && Upper)
return DAG.getNode(ISD::CONCAT_VECTORS, dl, VT, Lower, Upper);
}
// Vectors with 32- or 64-bit elements can be built by directly assigning
// the subregisters. Lower it to an ARMISD::BUILD_VECTOR so the operands
// will be legalized.
if (EltSize >= 32) {
// Do the expansion with floating-point types, since that is what the VFP
// registers are defined to use, and since i64 is not legal.
EVT EltVT = EVT::getFloatingPointVT(EltSize);
EVT VecVT = EVT::getVectorVT(*DAG.getContext(), EltVT, NumElts);
SmallVector<SDValue, 8> Ops;
for (unsigned i = 0; i < NumElts; ++i)
Ops.push_back(DAG.getNode(ISD::BITCAST, dl, EltVT, Op.getOperand(i)));
SDValue Val = DAG.getNode(ARMISD::BUILD_VECTOR, dl, VecVT, Ops);
return DAG.getNode(ISD::BITCAST, dl, VT, Val);
}
// If all else fails, just use a sequence of INSERT_VECTOR_ELT when we
// know the default expansion would otherwise fall back on something even
// worse. For a vector with one or two non-undef values, that's
// scalar_to_vector for the elements followed by a shuffle (provided the
// shuffle is valid for the target) and materialization element by element
// on the stack followed by a load for everything else.
if (!isConstant && !usesOnlyOneValue) {
SDValue Vec = DAG.getUNDEF(VT);
for (unsigned i = 0 ; i < NumElts; ++i) {
SDValue V = Op.getOperand(i);
if (V.isUndef())
continue;
SDValue LaneIdx = DAG.getConstant(i, dl, MVT::i32);
Vec = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, VT, Vec, V, LaneIdx);
}
return Vec;
}
return SDValue();
}
// Gather data to see if the operation can be modelled as a
// shuffle in combination with VEXTs.
SDValue ARMTargetLowering::ReconstructShuffle(SDValue Op,
SelectionDAG &DAG) const {
assert(Op.getOpcode() == ISD::BUILD_VECTOR && "Unknown opcode!");
SDLoc dl(Op);
EVT VT = Op.getValueType();
unsigned NumElts = VT.getVectorNumElements();
struct ShuffleSourceInfo {
SDValue Vec;
unsigned MinElt = std::numeric_limits<unsigned>::max();
unsigned MaxElt = 0;
// We may insert some combination of BITCASTs and VEXT nodes to force Vec to
// be compatible with the shuffle we intend to construct. As a result
// ShuffleVec will be some sliding window into the original Vec.
SDValue ShuffleVec;
// Code should guarantee that element i in Vec starts at element "WindowBase
// + i * WindowScale in ShuffleVec".
int WindowBase = 0;
int WindowScale = 1;
ShuffleSourceInfo(SDValue Vec) : Vec(Vec), ShuffleVec(Vec) {}
bool operator ==(SDValue OtherVec) { return Vec == OtherVec; }
};
// First gather all vectors used as an immediate source for this BUILD_VECTOR
// node.
SmallVector<ShuffleSourceInfo, 2> Sources;
for (unsigned i = 0; i < NumElts; ++i) {
SDValue V = Op.getOperand(i);
if (V.isUndef())
continue;
else if (V.getOpcode() != ISD::EXTRACT_VECTOR_ELT) {
// A shuffle can only come from building a vector from various
// elements of other vectors.
return SDValue();
} else if (!isa<ConstantSDNode>(V.getOperand(1))) {
// Furthermore, shuffles require a constant mask, whereas extractelts
// accept variable indices.
return SDValue();
}
// Add this element source to the list if it's not already there.
SDValue SourceVec = V.getOperand(0);
auto Source = llvm::find(Sources, SourceVec);
if (Source == Sources.end())
Source = Sources.insert(Sources.end(), ShuffleSourceInfo(SourceVec));
// Update the minimum and maximum lane number seen.
unsigned EltNo = cast<ConstantSDNode>(V.getOperand(1))->getZExtValue();
Source->MinElt = std::min(Source->MinElt, EltNo);
Source->MaxElt = std::max(Source->MaxElt, EltNo);
}
// Currently only do something sane when at most two source vectors
// are involved.
if (Sources.size() > 2)
return SDValue();
// Find out the smallest element size among result and two sources, and use
// it as element size to build the shuffle_vector.
EVT SmallestEltTy = VT.getVectorElementType();
for (auto &Source : Sources) {
EVT SrcEltTy = Source.Vec.getValueType().getVectorElementType();
if (SrcEltTy.bitsLT(SmallestEltTy))
SmallestEltTy = SrcEltTy;
}
unsigned ResMultiplier =
VT.getScalarSizeInBits() / SmallestEltTy.getSizeInBits();
NumElts = VT.getSizeInBits() / SmallestEltTy.getSizeInBits();
EVT ShuffleVT = EVT::getVectorVT(*DAG.getContext(), SmallestEltTy, NumElts);
// If the source vector is too wide or too narrow, we may nevertheless be able
// to construct a compatible shuffle either by concatenating it with UNDEF or
// extracting a suitable range of elements.
for (auto &Src : Sources) {
EVT SrcVT = Src.ShuffleVec.getValueType();
uint64_t SrcVTSize = SrcVT.getFixedSizeInBits();
uint64_t VTSize = VT.getFixedSizeInBits();
if (SrcVTSize == VTSize)
continue;
// This stage of the search produces a source with the same element type as
// the original, but with a total width matching the BUILD_VECTOR output.
EVT EltVT = SrcVT.getVectorElementType();
unsigned NumSrcElts = VTSize / EltVT.getFixedSizeInBits();
EVT DestVT = EVT::getVectorVT(*DAG.getContext(), EltVT, NumSrcElts);
if (SrcVTSize < VTSize) {
if (2 * SrcVTSize != VTSize)
return SDValue();
// We can pad out the smaller vector for free, so if it's part of a
// shuffle...
Src.ShuffleVec =
DAG.getNode(ISD::CONCAT_VECTORS, dl, DestVT, Src.ShuffleVec,
DAG.getUNDEF(Src.ShuffleVec.getValueType()));
continue;
}
if (SrcVTSize != 2 * VTSize)
return SDValue();
if (Src.MaxElt - Src.MinElt >= NumSrcElts) {
// Span too large for a VEXT to cope
return SDValue();
}
if (Src.MinElt >= NumSrcElts) {
// The extraction can just take the second half
Src.ShuffleVec =
DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, DestVT, Src.ShuffleVec,
DAG.getConstant(NumSrcElts, dl, MVT::i32));
Src.WindowBase = -NumSrcElts;
} else if (Src.MaxElt < NumSrcElts) {
// The extraction can just take the first half
Src.ShuffleVec =
DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, DestVT, Src.ShuffleVec,
DAG.getConstant(0, dl, MVT::i32));
} else {
// An actual VEXT is needed
SDValue VEXTSrc1 =
DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, DestVT, Src.ShuffleVec,
DAG.getConstant(0, dl, MVT::i32));
SDValue VEXTSrc2 =
DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, DestVT, Src.ShuffleVec,
DAG.getConstant(NumSrcElts, dl, MVT::i32));
Src.ShuffleVec = DAG.getNode(ARMISD::VEXT, dl, DestVT, VEXTSrc1,
VEXTSrc2,
DAG.getConstant(Src.MinElt, dl, MVT::i32));
Src.WindowBase = -Src.MinElt;
}
}
// Another possible incompatibility occurs from the vector element types. We
// can fix this by bitcasting the source vectors to the same type we intend
// for the shuffle.
for (auto &Src : Sources) {
EVT SrcEltTy = Src.ShuffleVec.getValueType().getVectorElementType();
if (SrcEltTy == SmallestEltTy)
continue;
assert(ShuffleVT.getVectorElementType() == SmallestEltTy);
Src.ShuffleVec = DAG.getNode(ARMISD::VECTOR_REG_CAST, dl, ShuffleVT, Src.ShuffleVec);
Src.WindowScale = SrcEltTy.getSizeInBits() / SmallestEltTy.getSizeInBits();
Src.WindowBase *= Src.WindowScale;
}
// Final check before we try to actually produce a shuffle.
LLVM_DEBUG(for (auto Src
: Sources)
assert(Src.ShuffleVec.getValueType() == ShuffleVT););
// The stars all align, our next step is to produce the mask for the shuffle.
SmallVector<int, 8> Mask(ShuffleVT.getVectorNumElements(), -1);
int BitsPerShuffleLane = ShuffleVT.getScalarSizeInBits();
for (unsigned i = 0; i < VT.getVectorNumElements(); ++i) {
SDValue Entry = Op.getOperand(i);
if (Entry.isUndef())
continue;
auto Src = llvm::find(Sources, Entry.getOperand(0));
int EltNo = cast<ConstantSDNode>(Entry.getOperand(1))->getSExtValue();
// EXTRACT_VECTOR_ELT performs an implicit any_ext; BUILD_VECTOR an implicit
// trunc. So only std::min(SrcBits, DestBits) actually get defined in this
// segment.
EVT OrigEltTy = Entry.getOperand(0).getValueType().getVectorElementType();
int BitsDefined = std::min(OrigEltTy.getScalarSizeInBits(),
VT.getScalarSizeInBits());
int LanesDefined = BitsDefined / BitsPerShuffleLane;
// This source is expected to fill ResMultiplier lanes of the final shuffle,
// starting at the appropriate offset.
int *LaneMask = &Mask[i * ResMultiplier];
int ExtractBase = EltNo * Src->WindowScale + Src->WindowBase;
ExtractBase += NumElts * (Src - Sources.begin());
for (int j = 0; j < LanesDefined; ++j)
LaneMask[j] = ExtractBase + j;
}
// We can't handle more than two sources. This should have already
// been checked before this point.
assert(Sources.size() <= 2 && "Too many sources!");
SDValue ShuffleOps[] = { DAG.getUNDEF(ShuffleVT), DAG.getUNDEF(ShuffleVT) };
for (unsigned i = 0; i < Sources.size(); ++i)
ShuffleOps[i] = Sources[i].ShuffleVec;
SDValue Shuffle = buildLegalVectorShuffle(ShuffleVT, dl, ShuffleOps[0],
ShuffleOps[1], Mask, DAG);
if (!Shuffle)
return SDValue();
return DAG.getNode(ARMISD::VECTOR_REG_CAST, dl, VT, Shuffle);
}
enum ShuffleOpCodes {
OP_COPY = 0, // Copy, used for things like <u,u,u,3> to say it is <0,1,2,3>
OP_VREV,
OP_VDUP0,
OP_VDUP1,
OP_VDUP2,
OP_VDUP3,
OP_VEXT1,
OP_VEXT2,
OP_VEXT3,
OP_VUZPL, // VUZP, left result
OP_VUZPR, // VUZP, right result
OP_VZIPL, // VZIP, left result
OP_VZIPR, // VZIP, right result
OP_VTRNL, // VTRN, left result
OP_VTRNR // VTRN, right result
};
static bool isLegalMVEShuffleOp(unsigned PFEntry) {
unsigned OpNum = (PFEntry >> 26) & 0x0F;
switch (OpNum) {
case OP_COPY:
case OP_VREV:
case OP_VDUP0:
case OP_VDUP1:
case OP_VDUP2:
case OP_VDUP3:
return true;
}
return false;
}
/// isShuffleMaskLegal - Targets can use this to indicate that they only
/// support *some* VECTOR_SHUFFLE operations, those with specific masks.
/// By default, if a target supports the VECTOR_SHUFFLE node, all mask values
/// are assumed to be legal.
bool ARMTargetLowering::isShuffleMaskLegal(ArrayRef<int> M, EVT VT) const {
if (VT.getVectorNumElements() == 4 &&
(VT.is128BitVector() || VT.is64BitVector())) {
unsigned PFIndexes[4];
for (unsigned i = 0; i != 4; ++i) {
if (M[i] < 0)
PFIndexes[i] = 8;
else
PFIndexes[i] = M[i];
}
// Compute the index in the perfect shuffle table.
unsigned PFTableIndex =
PFIndexes[0]*9*9*9+PFIndexes[1]*9*9+PFIndexes[2]*9+PFIndexes[3];
unsigned PFEntry = PerfectShuffleTable[PFTableIndex];
unsigned Cost = (PFEntry >> 30);
if (Cost <= 4 && (Subtarget->hasNEON() || isLegalMVEShuffleOp(PFEntry)))
return true;
}
bool ReverseVEXT, isV_UNDEF;
unsigned Imm, WhichResult;
unsigned EltSize = VT.getScalarSizeInBits();
if (EltSize >= 32 ||
ShuffleVectorSDNode::isSplatMask(&M[0], VT) ||
ShuffleVectorInst::isIdentityMask(M) ||
isVREVMask(M, VT, 64) ||
isVREVMask(M, VT, 32) ||
isVREVMask(M, VT, 16))
return true;
else if (Subtarget->hasNEON() &&
(isVEXTMask(M, VT, ReverseVEXT, Imm) ||
isVTBLMask(M, VT) ||
isNEONTwoResultShuffleMask(M, VT, WhichResult, isV_UNDEF)))
return true;
else if ((VT == MVT::v8i16 || VT == MVT::v8f16 || VT == MVT::v16i8) &&
isReverseMask(M, VT))
return true;
else if (Subtarget->hasMVEIntegerOps() &&
(isVMOVNMask(M, VT, true, false) ||
isVMOVNMask(M, VT, false, false) || isVMOVNMask(M, VT, true, true)))
return true;
else
return false;
}
/// GeneratePerfectShuffle - Given an entry in the perfect-shuffle table, emit
/// the specified operations to build the shuffle.
static SDValue GeneratePerfectShuffle(unsigned PFEntry, SDValue LHS,
SDValue RHS, SelectionDAG &DAG,
const SDLoc &dl) {
unsigned OpNum = (PFEntry >> 26) & 0x0F;
unsigned LHSID = (PFEntry >> 13) & ((1 << 13)-1);
unsigned RHSID = (PFEntry >> 0) & ((1 << 13)-1);
if (OpNum == OP_COPY) {
if (LHSID == (1*9+2)*9+3) return LHS;
assert(LHSID == ((4*9+5)*9+6)*9+7 && "Illegal OP_COPY!");
return RHS;
}
SDValue OpLHS, OpRHS;
OpLHS = GeneratePerfectShuffle(PerfectShuffleTable[LHSID], LHS, RHS, DAG, dl);
OpRHS = GeneratePerfectShuffle(PerfectShuffleTable[RHSID], LHS, RHS, DAG, dl);
EVT VT = OpLHS.getValueType();
switch (OpNum) {
default: llvm_unreachable("Unknown shuffle opcode!");
case OP_VREV:
// VREV divides the vector in half and swaps within the half.
if (VT.getVectorElementType() == MVT::i32 ||
VT.getVectorElementType() == MVT::f32)
return DAG.getNode(ARMISD::VREV64, dl, VT, OpLHS);
// vrev <4 x i16> -> VREV32
if (VT.getVectorElementType() == MVT::i16 ||
VT.getVectorElementType() == MVT::f16)
return DAG.getNode(ARMISD::VREV32, dl, VT, OpLHS);
// vrev <4 x i8> -> VREV16
assert(VT.getVectorElementType() == MVT::i8);
return DAG.getNode(ARMISD::VREV16, dl, VT, OpLHS);
case OP_VDUP0:
case OP_VDUP1:
case OP_VDUP2:
case OP_VDUP3:
return DAG.getNode(ARMISD::VDUPLANE, dl, VT,
OpLHS, DAG.getConstant(OpNum-OP_VDUP0, dl, MVT::i32));
case OP_VEXT1:
case OP_VEXT2:
case OP_VEXT3:
return DAG.getNode(ARMISD::VEXT, dl, VT,
OpLHS, OpRHS,
DAG.getConstant(OpNum - OP_VEXT1 + 1, dl, MVT::i32));
case OP_VUZPL:
case OP_VUZPR:
return DAG.getNode(ARMISD::VUZP, dl, DAG.getVTList(VT, VT),
OpLHS, OpRHS).getValue(OpNum-OP_VUZPL);
case OP_VZIPL:
case OP_VZIPR:
return DAG.getNode(ARMISD::VZIP, dl, DAG.getVTList(VT, VT),
OpLHS, OpRHS).getValue(OpNum-OP_VZIPL);
case OP_VTRNL:
case OP_VTRNR:
return DAG.getNode(ARMISD::VTRN, dl, DAG.getVTList(VT, VT),
OpLHS, OpRHS).getValue(OpNum-OP_VTRNL);
}
}
static SDValue LowerVECTOR_SHUFFLEv8i8(SDValue Op,
ArrayRef<int> ShuffleMask,
SelectionDAG &DAG) {
// Check to see if we can use the VTBL instruction.
SDValue V1 = Op.getOperand(0);
SDValue V2 = Op.getOperand(1);
SDLoc DL(Op);
SmallVector<SDValue, 8> VTBLMask;
for (ArrayRef<int>::iterator
I = ShuffleMask.begin(), E = ShuffleMask.end(); I != E; ++I)
VTBLMask.push_back(DAG.getConstant(*I, DL, MVT::i32));
if (V2.getNode()->isUndef())
return DAG.getNode(ARMISD::VTBL1, DL, MVT::v8i8, V1,
DAG.getBuildVector(MVT::v8i8, DL, VTBLMask));
return DAG.getNode(ARMISD::VTBL2, DL, MVT::v8i8, V1, V2,
DAG.getBuildVector(MVT::v8i8, DL, VTBLMask));
}
static SDValue LowerReverse_VECTOR_SHUFFLE(SDValue Op, SelectionDAG &DAG) {
SDLoc DL(Op);
EVT VT = Op.getValueType();
assert((VT == MVT::v8i16 || VT == MVT::v8f16 || VT == MVT::v16i8) &&
"Expect an v8i16/v16i8 type");
SDValue OpLHS = DAG.getNode(ARMISD::VREV64, DL, VT, Op.getOperand(0));
// For a v16i8 type: After the VREV, we have got <7, ..., 0, 15, ..., 8>. Now,
// extract the first 8 bytes into the top double word and the last 8 bytes
// into the bottom double word, through a new vector shuffle that will be
// turned into a VEXT on Neon, or a couple of VMOVDs on MVE.
std::vector<int> NewMask;
for (unsigned i = 0; i < VT.getVectorNumElements() / 2; i++)
NewMask.push_back(VT.getVectorNumElements() / 2 + i);
for (unsigned i = 0; i < VT.getVectorNumElements() / 2; i++)
NewMask.push_back(i);
return DAG.getVectorShuffle(VT, DL, OpLHS, OpLHS, NewMask);
}
static EVT getVectorTyFromPredicateVector(EVT VT) {
switch (VT.getSimpleVT().SimpleTy) {
case MVT::v4i1:
return MVT::v4i32;
case MVT::v8i1:
return MVT::v8i16;
case MVT::v16i1:
return MVT::v16i8;
default:
llvm_unreachable("Unexpected vector predicate type");
}
}
static SDValue PromoteMVEPredVector(SDLoc dl, SDValue Pred, EVT VT,
SelectionDAG &DAG) {
// Converting from boolean predicates to integers involves creating a vector
// of all ones or all zeroes and selecting the lanes based upon the real
// predicate.
SDValue AllOnes =
DAG.getTargetConstant(ARM_AM::createVMOVModImm(0xe, 0xff), dl, MVT::i32);
AllOnes = DAG.getNode(ARMISD::VMOVIMM, dl, MVT::v16i8, AllOnes);
SDValue AllZeroes =
DAG.getTargetConstant(ARM_AM::createVMOVModImm(0xe, 0x0), dl, MVT::i32);
AllZeroes = DAG.getNode(ARMISD::VMOVIMM, dl, MVT::v16i8, AllZeroes);
// Get full vector type from predicate type
EVT NewVT = getVectorTyFromPredicateVector(VT);
SDValue RecastV1;
// If the real predicate is an v8i1 or v4i1 (not v16i1) then we need to recast
// this to a v16i1. This cannot be done with an ordinary bitcast because the
// sizes are not the same. We have to use a MVE specific PREDICATE_CAST node,
// since we know in hardware the sizes are really the same.
if (VT != MVT::v16i1)
RecastV1 = DAG.getNode(ARMISD::PREDICATE_CAST, dl, MVT::v16i1, Pred);
else
RecastV1 = Pred;
// Select either all ones or zeroes depending upon the real predicate bits.
SDValue PredAsVector =
DAG.getNode(ISD::VSELECT, dl, MVT::v16i8, RecastV1, AllOnes, AllZeroes);
// Recast our new predicate-as-integer v16i8 vector into something
// appropriate for the shuffle, i.e. v4i32 for a real v4i1 predicate.
return DAG.getNode(ISD::BITCAST, dl, NewVT, PredAsVector);
}
static SDValue LowerVECTOR_SHUFFLE_i1(SDValue Op, SelectionDAG &DAG,
const ARMSubtarget *ST) {
EVT VT = Op.getValueType();
ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(Op.getNode());
ArrayRef<int> ShuffleMask = SVN->getMask();
assert(ST->hasMVEIntegerOps() &&
"No support for vector shuffle of boolean predicates");
SDValue V1 = Op.getOperand(0);
SDLoc dl(Op);
if (isReverseMask(ShuffleMask, VT)) {
SDValue cast = DAG.getNode(ARMISD::PREDICATE_CAST, dl, MVT::i32, V1);
SDValue rbit = DAG.getNode(ISD::BITREVERSE, dl, MVT::i32, cast);
SDValue srl = DAG.getNode(ISD::SRL, dl, MVT::i32, rbit,
DAG.getConstant(16, dl, MVT::i32));
return DAG.getNode(ARMISD::PREDICATE_CAST, dl, VT, srl);
}
// Until we can come up with optimised cases for every single vector
// shuffle in existence we have chosen the least painful strategy. This is
// to essentially promote the boolean predicate to a 8-bit integer, where
// each predicate represents a byte. Then we fall back on a normal integer
// vector shuffle and convert the result back into a predicate vector. In
// many cases the generated code might be even better than scalar code
// operating on bits. Just imagine trying to shuffle 8 arbitrary 2-bit
// fields in a register into 8 other arbitrary 2-bit fields!
SDValue PredAsVector = PromoteMVEPredVector(dl, V1, VT, DAG);
EVT NewVT = PredAsVector.getValueType();
// Do the shuffle!
SDValue Shuffled = DAG.getVectorShuffle(NewVT, dl, PredAsVector,
DAG.getUNDEF(NewVT), ShuffleMask);
// Now return the result of comparing the shuffled vector with zero,
// which will generate a real predicate, i.e. v4i1, v8i1 or v16i1.
return DAG.getNode(ARMISD::VCMPZ, dl, VT, Shuffled,
DAG.getConstant(ARMCC::NE, dl, MVT::i32));
}
static SDValue LowerVECTOR_SHUFFLEUsingMovs(SDValue Op,
ArrayRef<int> ShuffleMask,
SelectionDAG &DAG) {
// Attempt to lower the vector shuffle using as many whole register movs as
// possible. This is useful for types smaller than 32bits, which would
// often otherwise become a series for grp movs.
SDLoc dl(Op);
EVT VT = Op.getValueType();
if (VT.getScalarSizeInBits() >= 32)
return SDValue();
assert((VT == MVT::v8i16 || VT == MVT::v8f16 || VT == MVT::v16i8) &&
"Unexpected vector type");
int NumElts = VT.getVectorNumElements();
int QuarterSize = NumElts / 4;
// The four final parts of the vector, as i32's
SDValue Parts[4];
// Look for full lane vmovs like <0,1,2,3> or <u,5,6,7> etc, (but not
// <u,u,u,u>), returning the vmov lane index
auto getMovIdx = [](ArrayRef<int> ShuffleMask, int Start, int Length) {
// Detect which mov lane this would be from the first non-undef element.
int MovIdx = -1;
for (int i = 0; i < Length; i++) {
if (ShuffleMask[Start + i] >= 0) {
if (ShuffleMask[Start + i] % Length != i)
return -1;
MovIdx = ShuffleMask[Start + i] / Length;
break;
}
}
// If all items are undef, leave this for other combines
if (MovIdx == -1)
return -1;
// Check the remaining values are the correct part of the same mov
for (int i = 1; i < Length; i++) {
if (ShuffleMask[Start + i] >= 0 &&
(ShuffleMask[Start + i] / Length != MovIdx ||
ShuffleMask[Start + i] % Length != i))
return -1;
}
return MovIdx;
};
for (int Part = 0; Part < 4; ++Part) {
// Does this part look like a mov
int Elt = getMovIdx(ShuffleMask, Part * QuarterSize, QuarterSize);
if (Elt != -1) {
SDValue Input = Op->getOperand(0);
if (Elt >= 4) {
Input = Op->getOperand(1);
Elt -= 4;
}
SDValue BitCast = DAG.getBitcast(MVT::v4f32, Input);
Parts[Part] = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f32, BitCast,
DAG.getConstant(Elt, dl, MVT::i32));
}
}
// Nothing interesting found, just return
if (!Parts[0] && !Parts[1] && !Parts[2] && !Parts[3])
return SDValue();
// The other parts need to be built with the old shuffle vector, cast to a
// v4i32 and extract_vector_elts
if (!Parts[0] || !Parts[1] || !Parts[2] || !Parts[3]) {
SmallVector<int, 16> NewShuffleMask;
for (int Part = 0; Part < 4; ++Part)
for (int i = 0; i < QuarterSize; i++)
NewShuffleMask.push_back(
Parts[Part] ? -1 : ShuffleMask[Part * QuarterSize + i]);
SDValue NewShuffle = DAG.getVectorShuffle(
VT, dl, Op->getOperand(0), Op->getOperand(1), NewShuffleMask);
SDValue BitCast = DAG.getBitcast(MVT::v4f32, NewShuffle);
for (int Part = 0; Part < 4; ++Part)
if (!Parts[Part])
Parts[Part] = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f32,
BitCast, DAG.getConstant(Part, dl, MVT::i32));
}
// Build a vector out of the various parts and bitcast it back to the original
// type.
SDValue NewVec = DAG.getNode(ARMISD::BUILD_VECTOR, dl, MVT::v4f32, Parts);
return DAG.getBitcast(VT, NewVec);
}
static SDValue LowerVECTOR_SHUFFLEUsingOneOff(SDValue Op,
ArrayRef<int> ShuffleMask,
SelectionDAG &DAG) {
SDValue V1 = Op.getOperand(0);
SDValue V2 = Op.getOperand(1);
EVT VT = Op.getValueType();
unsigned NumElts = VT.getVectorNumElements();
// An One-Off Identity mask is one that is mostly an identity mask from as
// single source but contains a single element out-of-place, either from a
// different vector or from another position in the same vector. As opposed to
// lowering this via a ARMISD::BUILD_VECTOR we can generate an extract/insert
// pair directly.
auto isOneOffIdentityMask = [](ArrayRef<int> Mask, EVT VT, int BaseOffset,
int &OffElement) {
OffElement = -1;
int NonUndef = 0;
for (int i = 0, NumMaskElts = Mask.size(); i < NumMaskElts; ++i) {
if (Mask[i] == -1)
continue;
NonUndef++;
if (Mask[i] != i + BaseOffset) {
if (OffElement == -1)
OffElement = i;
else
return false;
}
}
return NonUndef > 2 && OffElement != -1;
};
int OffElement;
SDValue VInput;
if (isOneOffIdentityMask(ShuffleMask, VT, 0, OffElement))
VInput = V1;
else if (isOneOffIdentityMask(ShuffleMask, VT, NumElts, OffElement))
VInput = V2;
else
return SDValue();
SDLoc dl(Op);
EVT SVT = VT.getScalarType() == MVT::i8 || VT.getScalarType() == MVT::i16
? MVT::i32
: VT.getScalarType();
SDValue Elt = DAG.getNode(
ISD::EXTRACT_VECTOR_ELT, dl, SVT,
ShuffleMask[OffElement] < (int)NumElts ? V1 : V2,
DAG.getVectorIdxConstant(ShuffleMask[OffElement] % NumElts, dl));
return DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, VT, VInput, Elt,
DAG.getVectorIdxConstant(OffElement % NumElts, dl));
}
static SDValue LowerVECTOR_SHUFFLE(SDValue Op, SelectionDAG &DAG,
const ARMSubtarget *ST) {
SDValue V1 = Op.getOperand(0);
SDValue V2 = Op.getOperand(1);
SDLoc dl(Op);
EVT VT = Op.getValueType();
ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(Op.getNode());
unsigned EltSize = VT.getScalarSizeInBits();
if (ST->hasMVEIntegerOps() && EltSize == 1)
return LowerVECTOR_SHUFFLE_i1(Op, DAG, ST);
// Convert shuffles that are directly supported on NEON to target-specific
// DAG nodes, instead of keeping them as shuffles and matching them again
// during code selection. This is more efficient and avoids the possibility
// of inconsistencies between legalization and selection.
// FIXME: floating-point vectors should be canonicalized to integer vectors
// of the same time so that they get CSEd properly.
ArrayRef<int> ShuffleMask = SVN->getMask();
if (EltSize <= 32) {
if (SVN->isSplat()) {
int Lane = SVN->getSplatIndex();
// If this is undef splat, generate it via "just" vdup, if possible.
if (Lane == -1) Lane = 0;
// Test if V1 is a SCALAR_TO_VECTOR.
if (Lane == 0 && V1.getOpcode() == ISD::SCALAR_TO_VECTOR) {
return DAG.getNode(ARMISD::VDUP, dl, VT, V1.getOperand(0));
}
// Test if V1 is a BUILD_VECTOR which is equivalent to a SCALAR_TO_VECTOR
// (and probably will turn into a SCALAR_TO_VECTOR once legalization
// reaches it).
if (Lane == 0 && V1.getOpcode() == ISD::BUILD_VECTOR &&
!isa<ConstantSDNode>(V1.getOperand(0))) {
bool IsScalarToVector = true;
for (unsigned i = 1, e = V1.getNumOperands(); i != e; ++i)
if (!V1.getOperand(i).isUndef()) {
IsScalarToVector = false;
break;
}
if (IsScalarToVector)
return DAG.getNode(ARMISD::VDUP, dl, VT, V1.getOperand(0));
}
return DAG.getNode(ARMISD::VDUPLANE, dl, VT, V1,
DAG.getConstant(Lane, dl, MVT::i32));
}
bool ReverseVEXT = false;
unsigned Imm = 0;
if (ST->hasNEON() && isVEXTMask(ShuffleMask, VT, ReverseVEXT, Imm)) {
if (ReverseVEXT)
std::swap(V1, V2);
return DAG.getNode(ARMISD::VEXT, dl, VT, V1, V2,
DAG.getConstant(Imm, dl, MVT::i32));
}
if (isVREVMask(ShuffleMask, VT, 64))
return DAG.getNode(ARMISD::VREV64, dl, VT, V1);
if (isVREVMask(ShuffleMask, VT, 32))
return DAG.getNode(ARMISD::VREV32, dl, VT, V1);
if (isVREVMask(ShuffleMask, VT, 16))
return DAG.getNode(ARMISD::VREV16, dl, VT, V1);
if (ST->hasNEON() && V2->isUndef() && isSingletonVEXTMask(ShuffleMask, VT, Imm)) {
return DAG.getNode(ARMISD::VEXT, dl, VT, V1, V1,
DAG.getConstant(Imm, dl, MVT::i32));
}
// Check for Neon shuffles that modify both input vectors in place.
// If both results are used, i.e., if there are two shuffles with the same
// source operands and with masks corresponding to both results of one of
// these operations, DAG memoization will ensure that a single node is
// used for both shuffles.
unsigned WhichResult = 0;
bool isV_UNDEF = false;
if (ST->hasNEON()) {
if (unsigned ShuffleOpc = isNEONTwoResultShuffleMask(
ShuffleMask, VT, WhichResult, isV_UNDEF)) {
if (isV_UNDEF)
V2 = V1;
return DAG.getNode(ShuffleOpc, dl, DAG.getVTList(VT, VT), V1, V2)
.getValue(WhichResult);
}
}
if (ST->hasMVEIntegerOps()) {
if (isVMOVNMask(ShuffleMask, VT, false, false))
return DAG.getNode(ARMISD::VMOVN, dl, VT, V2, V1,
DAG.getConstant(0, dl, MVT::i32));
if (isVMOVNMask(ShuffleMask, VT, true, false))
return DAG.getNode(ARMISD::VMOVN, dl, VT, V1, V2,
DAG.getConstant(1, dl, MVT::i32));
if (isVMOVNMask(ShuffleMask, VT, true, true))
return DAG.getNode(ARMISD::VMOVN, dl, VT, V1, V1,
DAG.getConstant(1, dl, MVT::i32));
}
// Also check for these shuffles through CONCAT_VECTORS: we canonicalize
// shuffles that produce a result larger than their operands with:
// shuffle(concat(v1, undef), concat(v2, undef))
// ->
// shuffle(concat(v1, v2), undef)
// because we can access quad vectors (see PerformVECTOR_SHUFFLECombine).
//
// This is useful in the general case, but there are special cases where
// native shuffles produce larger results: the two-result ops.
//
// Look through the concat when lowering them:
// shuffle(concat(v1, v2), undef)
// ->
// concat(VZIP(v1, v2):0, :1)
//
if (ST->hasNEON() && V1->getOpcode() == ISD::CONCAT_VECTORS && V2->isUndef()) {
SDValue SubV1 = V1->getOperand(0);
SDValue SubV2 = V1->getOperand(1);
EVT SubVT = SubV1.getValueType();
// We expect these to have been canonicalized to -1.
assert(llvm::all_of(ShuffleMask, [&](int i) {
return i < (int)VT.getVectorNumElements();
}) && "Unexpected shuffle index into UNDEF operand!");
if (unsigned ShuffleOpc = isNEONTwoResultShuffleMask(
ShuffleMask, SubVT, WhichResult, isV_UNDEF)) {
if (isV_UNDEF)
SubV2 = SubV1;
assert((WhichResult == 0) &&
"In-place shuffle of concat can only have one result!");
SDValue Res = DAG.getNode(ShuffleOpc, dl, DAG.getVTList(SubVT, SubVT),
SubV1, SubV2);
return DAG.getNode(ISD::CONCAT_VECTORS, dl, VT, Res.getValue(0),
Res.getValue(1));
}
}
}
if (ST->hasMVEIntegerOps() && EltSize <= 32)
if (SDValue V = LowerVECTOR_SHUFFLEUsingOneOff(Op, ShuffleMask, DAG))
return V;
// If the shuffle is not directly supported and it has 4 elements, use
// the PerfectShuffle-generated table to synthesize it from other shuffles.
unsigned NumElts = VT.getVectorNumElements();
if (NumElts == 4) {
unsigned PFIndexes[4];
for (unsigned i = 0; i != 4; ++i) {
if (ShuffleMask[i] < 0)
PFIndexes[i] = 8;
else
PFIndexes[i] = ShuffleMask[i];
}
// Compute the index in the perfect shuffle table.
unsigned PFTableIndex =
PFIndexes[0]*9*9*9+PFIndexes[1]*9*9+PFIndexes[2]*9+PFIndexes[3];
unsigned PFEntry = PerfectShuffleTable[PFTableIndex];
unsigned Cost = (PFEntry >> 30);
if (Cost <= 4) {
if (ST->hasNEON())
return GeneratePerfectShuffle(PFEntry, V1, V2, DAG, dl);
else if (isLegalMVEShuffleOp(PFEntry)) {
unsigned LHSID = (PFEntry >> 13) & ((1 << 13)-1);
unsigned RHSID = (PFEntry >> 0) & ((1 << 13)-1);
unsigned PFEntryLHS = PerfectShuffleTable[LHSID];
unsigned PFEntryRHS = PerfectShuffleTable[RHSID];
if (isLegalMVEShuffleOp(PFEntryLHS) && isLegalMVEShuffleOp(PFEntryRHS))
return GeneratePerfectShuffle(PFEntry, V1, V2, DAG, dl);
}
}
}
// Implement shuffles with 32- or 64-bit elements as ARMISD::BUILD_VECTORs.
if (EltSize >= 32) {
// Do the expansion with floating-point types, since that is what the VFP
// registers are defined to use, and since i64 is not legal.
EVT EltVT = EVT::getFloatingPointVT(EltSize);
EVT VecVT = EVT::getVectorVT(*DAG.getContext(), EltVT, NumElts);
V1 = DAG.getNode(ISD::BITCAST, dl, VecVT, V1);
V2 = DAG.getNode(ISD::BITCAST, dl, VecVT, V2);
SmallVector<SDValue, 8> Ops;
for (unsigned i = 0; i < NumElts; ++i) {
if (ShuffleMask[i] < 0)
Ops.push_back(DAG.getUNDEF(EltVT));
else
Ops.push_back(DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, EltVT,
ShuffleMask[i] < (int)NumElts ? V1 : V2,
DAG.getConstant(ShuffleMask[i] & (NumElts-1),
dl, MVT::i32)));
}
SDValue Val = DAG.getNode(ARMISD::BUILD_VECTOR, dl, VecVT, Ops);
return DAG.getNode(ISD::BITCAST, dl, VT, Val);
}
if ((VT == MVT::v8i16 || VT == MVT::v8f16 || VT == MVT::v16i8) &&
isReverseMask(ShuffleMask, VT))
return LowerReverse_VECTOR_SHUFFLE(Op, DAG);
if (ST->hasNEON() && VT == MVT::v8i8)
if (SDValue NewOp = LowerVECTOR_SHUFFLEv8i8(Op, ShuffleMask, DAG))
return NewOp;
if (ST->hasMVEIntegerOps())
if (SDValue NewOp = LowerVECTOR_SHUFFLEUsingMovs(Op, ShuffleMask, DAG))
return NewOp;
return SDValue();
}
static SDValue LowerINSERT_VECTOR_ELT_i1(SDValue Op, SelectionDAG &DAG,
const ARMSubtarget *ST) {
EVT VecVT = Op.getOperand(0).getValueType();
SDLoc dl(Op);
assert(ST->hasMVEIntegerOps() &&
"LowerINSERT_VECTOR_ELT_i1 called without MVE!");
SDValue Conv =
DAG.getNode(ARMISD::PREDICATE_CAST, dl, MVT::i32, Op->getOperand(0));
unsigned Lane = cast<ConstantSDNode>(Op.getOperand(2))->getZExtValue();
unsigned LaneWidth =
getVectorTyFromPredicateVector(VecVT).getScalarSizeInBits() / 8;
unsigned Mask = ((1 << LaneWidth) - 1) << Lane * LaneWidth;
SDValue Ext = DAG.getNode(ISD::SIGN_EXTEND_INREG, dl, MVT::i32,
Op.getOperand(1), DAG.getValueType(MVT::i1));
SDValue BFI = DAG.getNode(ARMISD::BFI, dl, MVT::i32, Conv, Ext,
DAG.getConstant(~Mask, dl, MVT::i32));
return DAG.getNode(ARMISD::PREDICATE_CAST, dl, Op.getValueType(), BFI);
}
SDValue ARMTargetLowering::LowerINSERT_VECTOR_ELT(SDValue Op,
SelectionDAG &DAG) const {
// INSERT_VECTOR_ELT is legal only for immediate indexes.
SDValue Lane = Op.getOperand(2);
if (!isa<ConstantSDNode>(Lane))
return SDValue();
SDValue Elt = Op.getOperand(1);
EVT EltVT = Elt.getValueType();
if (Subtarget->hasMVEIntegerOps() &&
Op.getValueType().getScalarSizeInBits() == 1)
return LowerINSERT_VECTOR_ELT_i1(Op, DAG, Subtarget);
if (getTypeAction(*DAG.getContext(), EltVT) ==
TargetLowering::TypePromoteFloat) {
// INSERT_VECTOR_ELT doesn't want f16 operands promoting to f32,
// but the type system will try to do that if we don't intervene.
// Reinterpret any such vector-element insertion as one with the
// corresponding integer types.
SDLoc dl(Op);
EVT IEltVT = MVT::getIntegerVT(EltVT.getScalarSizeInBits());
assert(getTypeAction(*DAG.getContext(), IEltVT) !=
TargetLowering::TypePromoteFloat);
SDValue VecIn = Op.getOperand(0);
EVT VecVT = VecIn.getValueType();
EVT IVecVT = EVT::getVectorVT(*DAG.getContext(), IEltVT,
VecVT.getVectorNumElements());
SDValue IElt = DAG.getNode(ISD::BITCAST, dl, IEltVT, Elt);
SDValue IVecIn = DAG.getNode(ISD::BITCAST, dl, IVecVT, VecIn);
SDValue IVecOut = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, IVecVT,
IVecIn, IElt, Lane);
return DAG.getNode(ISD::BITCAST, dl, VecVT, IVecOut);
}
return Op;
}
static SDValue LowerEXTRACT_VECTOR_ELT_i1(SDValue Op, SelectionDAG &DAG,
const ARMSubtarget *ST) {
EVT VecVT = Op.getOperand(0).getValueType();
SDLoc dl(Op);
assert(ST->hasMVEIntegerOps() &&
"LowerINSERT_VECTOR_ELT_i1 called without MVE!");
SDValue Conv =
DAG.getNode(ARMISD::PREDICATE_CAST, dl, MVT::i32, Op->getOperand(0));
unsigned Lane = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue();
unsigned LaneWidth =
getVectorTyFromPredicateVector(VecVT).getScalarSizeInBits() / 8;
SDValue Shift = DAG.getNode(ISD::SRL, dl, MVT::i32, Conv,
DAG.getConstant(Lane * LaneWidth, dl, MVT::i32));
return Shift;
}
static SDValue LowerEXTRACT_VECTOR_ELT(SDValue Op, SelectionDAG &DAG,
const ARMSubtarget *ST) {
// EXTRACT_VECTOR_ELT is legal only for immediate indexes.
SDValue Lane = Op.getOperand(1);
if (!isa<ConstantSDNode>(Lane))
return SDValue();
SDValue Vec = Op.getOperand(0);
EVT VT = Vec.getValueType();
if (ST->hasMVEIntegerOps() && VT.getScalarSizeInBits() == 1)
return LowerEXTRACT_VECTOR_ELT_i1(Op, DAG, ST);
if (Op.getValueType() == MVT::i32 && Vec.getScalarValueSizeInBits() < 32) {
SDLoc dl(Op);
return DAG.getNode(ARMISD::VGETLANEu, dl, MVT::i32, Vec, Lane);
}
return Op;
}
static SDValue LowerCONCAT_VECTORS_i1(SDValue Op, SelectionDAG &DAG,
const ARMSubtarget *ST) {
SDLoc dl(Op);
assert(Op.getValueType().getScalarSizeInBits() == 1 &&
"Unexpected custom CONCAT_VECTORS lowering");
assert(isPowerOf2_32(Op.getNumOperands()) &&
"Unexpected custom CONCAT_VECTORS lowering");
assert(ST->hasMVEIntegerOps() &&
"CONCAT_VECTORS lowering only supported for MVE");
auto ConcatPair = [&](SDValue V1, SDValue V2) {
EVT Op1VT = V1.getValueType();
EVT Op2VT = V2.getValueType();
assert(Op1VT == Op2VT && "Operand types don't match!");
EVT VT = Op1VT.getDoubleNumVectorElementsVT(*DAG.getContext());
SDValue NewV1 = PromoteMVEPredVector(dl, V1, Op1VT, DAG);
SDValue NewV2 = PromoteMVEPredVector(dl, V2, Op2VT, DAG);
// We now have Op1 + Op2 promoted to vectors of integers, where v8i1 gets
// promoted to v8i16, etc.
MVT ElType =
getVectorTyFromPredicateVector(VT).getScalarType().getSimpleVT();
unsigned NumElts = 2 * Op1VT.getVectorNumElements();
// Extract the vector elements from Op1 and Op2 one by one and truncate them
// to be the right size for the destination. For example, if Op1 is v4i1
// then the promoted vector is v4i32. The result of concatentation gives a
// v8i1, which when promoted is v8i16. That means each i32 element from Op1
// needs truncating to i16 and inserting in the result.
EVT ConcatVT = MVT::getVectorVT(ElType, NumElts);
SDValue ConVec = DAG.getNode(ISD::UNDEF, dl, ConcatVT);
auto ExtractInto = [&DAG, &dl](SDValue NewV, SDValue ConVec, unsigned &j) {
EVT NewVT = NewV.getValueType();
EVT ConcatVT = ConVec.getValueType();
for (unsigned i = 0, e = NewVT.getVectorNumElements(); i < e; i++, j++) {
SDValue Elt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i32, NewV,
DAG.getIntPtrConstant(i, dl));
ConVec = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, ConcatVT, ConVec, Elt,
DAG.getConstant(j, dl, MVT::i32));
}
return ConVec;
};
unsigned j = 0;
ConVec = ExtractInto(NewV1, ConVec, j);
ConVec = ExtractInto(NewV2, ConVec, j);
// Now return the result of comparing the subvector with zero,
// which will generate a real predicate, i.e. v4i1, v8i1 or v16i1.
return DAG.getNode(ARMISD::VCMPZ, dl, VT, ConVec,
DAG.getConstant(ARMCC::NE, dl, MVT::i32));
};
// Concat each pair of subvectors and pack into the lower half of the array.
SmallVector<SDValue> ConcatOps(Op->op_begin(), Op->op_end());
while (ConcatOps.size() > 1) {
for (unsigned I = 0, E = ConcatOps.size(); I != E; I += 2) {
SDValue V1 = ConcatOps[I];
SDValue V2 = ConcatOps[I + 1];
ConcatOps[I / 2] = ConcatPair(V1, V2);
}
ConcatOps.resize(ConcatOps.size() / 2);
}
return ConcatOps[0];
}
static SDValue LowerCONCAT_VECTORS(SDValue Op, SelectionDAG &DAG,
const ARMSubtarget *ST) {
EVT VT = Op->getValueType(0);
if (ST->hasMVEIntegerOps() && VT.getScalarSizeInBits() == 1)
return LowerCONCAT_VECTORS_i1(Op, DAG, ST);
// The only time a CONCAT_VECTORS operation can have legal types is when
// two 64-bit vectors are concatenated to a 128-bit vector.
assert(Op.getValueType().is128BitVector() && Op.getNumOperands() == 2 &&
"unexpected CONCAT_VECTORS");
SDLoc dl(Op);
SDValue Val = DAG.getUNDEF(MVT::v2f64);
SDValue Op0 = Op.getOperand(0);
SDValue Op1 = Op.getOperand(1);
if (!Op0.isUndef())
Val = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v2f64, Val,
DAG.getNode(ISD::BITCAST, dl, MVT::f64, Op0),
DAG.getIntPtrConstant(0, dl));
if (!Op1.isUndef())
Val = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v2f64, Val,
DAG.getNode(ISD::BITCAST, dl, MVT::f64, Op1),
DAG.getIntPtrConstant(1, dl));
return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Val);
}
static SDValue LowerEXTRACT_SUBVECTOR(SDValue Op, SelectionDAG &DAG,
const ARMSubtarget *ST) {
SDValue V1 = Op.getOperand(0);
SDValue V2 = Op.getOperand(1);
SDLoc dl(Op);
EVT VT = Op.getValueType();
EVT Op1VT = V1.getValueType();
unsigned NumElts = VT.getVectorNumElements();
unsigned Index = cast<ConstantSDNode>(V2)->getZExtValue();
assert(VT.getScalarSizeInBits() == 1 &&
"Unexpected custom EXTRACT_SUBVECTOR lowering");
assert(ST->hasMVEIntegerOps() &&
"EXTRACT_SUBVECTOR lowering only supported for MVE");
SDValue NewV1 = PromoteMVEPredVector(dl, V1, Op1VT, DAG);
// We now have Op1 promoted to a vector of integers, where v8i1 gets
// promoted to v8i16, etc.
MVT ElType = getVectorTyFromPredicateVector(VT).getScalarType().getSimpleVT();
EVT SubVT = MVT::getVectorVT(ElType, NumElts);
SDValue SubVec = DAG.getNode(ISD::UNDEF, dl, SubVT);
for (unsigned i = Index, j = 0; i < (Index + NumElts); i++, j++) {
SDValue Elt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i32, NewV1,
DAG.getIntPtrConstant(i, dl));
SubVec = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, SubVT, SubVec, Elt,
DAG.getConstant(j, dl, MVT::i32));
}
// Now return the result of comparing the subvector with zero,
// which will generate a real predicate, i.e. v4i1, v8i1 or v16i1.
return DAG.getNode(ARMISD::VCMPZ, dl, VT, SubVec,
DAG.getConstant(ARMCC::NE, dl, MVT::i32));
}
// Turn a truncate into a predicate (an i1 vector) into icmp(and(x, 1), 0).
static SDValue LowerTruncatei1(SDNode *N, SelectionDAG &DAG,
const ARMSubtarget *ST) {
assert(ST->hasMVEIntegerOps() && "Expected MVE!");
EVT VT = N->getValueType(0);
assert((VT == MVT::v16i1 || VT == MVT::v8i1 || VT == MVT::v4i1) &&
"Expected a vector i1 type!");
SDValue Op = N->getOperand(0);
EVT FromVT = Op.getValueType();
SDLoc DL(N);
SDValue And =
DAG.getNode(ISD::AND, DL, FromVT, Op, DAG.getConstant(1, DL, FromVT));
return DAG.getNode(ISD::SETCC, DL, VT, And, DAG.getConstant(0, DL, FromVT),
DAG.getCondCode(ISD::SETNE));
}
static SDValue LowerTruncate(SDNode *N, SelectionDAG &DAG,
const ARMSubtarget *Subtarget) {
if (!Subtarget->hasMVEIntegerOps())
return SDValue();
EVT ToVT = N->getValueType(0);
if (ToVT.getScalarType() == MVT::i1)
return LowerTruncatei1(N, DAG, Subtarget);
// MVE does not have a single instruction to perform the truncation of a v4i32
// into the lower half of a v8i16, in the same way that a NEON vmovn would.
// Most of the instructions in MVE follow the 'Beats' system, where moving
// values from different lanes is usually something that the instructions
// avoid.
//
// Instead it has top/bottom instructions such as VMOVLT/B and VMOVNT/B,
// which take a the top/bottom half of a larger lane and extend it (or do the
// opposite, truncating into the top/bottom lane from a larger lane). Note
// that because of the way we widen lanes, a v4i16 is really a v4i32 using the
// bottom 16bits from each vector lane. This works really well with T/B
// instructions, but that doesn't extend to v8i32->v8i16 where the lanes need
// to move order.
//
// But truncates and sext/zext are always going to be fairly common from llvm.
// We have several options for how to deal with them:
// - Wherever possible combine them into an instruction that makes them
// "free". This includes loads/stores, which can perform the trunc as part
// of the memory operation. Or certain shuffles that can be turned into
// VMOVN/VMOVL.
// - Lane Interleaving to transform blocks surrounded by ext/trunc. So
// trunc(mul(sext(a), sext(b))) may become
// VMOVNT(VMUL(VMOVLB(a), VMOVLB(b)), VMUL(VMOVLT(a), VMOVLT(b))). (Which in
// this case can use VMULL). This is performed in the
// MVELaneInterleavingPass.
// - Otherwise we have an option. By default we would expand the
// zext/sext/trunc into a series of lane extract/inserts going via GPR
// registers. One for each vector lane in the vector. This can obviously be
// very expensive.
// - The other option is to use the fact that loads/store can extend/truncate
// to turn a trunc into two truncating stack stores and a stack reload. This
// becomes 3 back-to-back memory operations, but at least that is less than
// all the insert/extracts.
//
// In order to do the last, we convert certain trunc's into MVETRUNC, which
// are either optimized where they can be, or eventually lowered into stack
// stores/loads. This prevents us from splitting a v8i16 trunc into two stores
// two early, where other instructions would be better, and stops us from
// having to reconstruct multiple buildvector shuffles into loads/stores.
if (ToVT != MVT::v8i16 && ToVT != MVT::v16i8)
return SDValue();
EVT FromVT = N->getOperand(0).getValueType();
if (FromVT != MVT::v8i32 && FromVT != MVT::v16i16)
return SDValue();
SDValue Lo, Hi;
std::tie(Lo, Hi) = DAG.SplitVectorOperand(N, 0);
SDLoc DL(N);
return DAG.getNode(ARMISD::MVETRUNC, DL, ToVT, Lo, Hi);
}
static SDValue LowerVectorExtend(SDNode *N, SelectionDAG &DAG,
const ARMSubtarget *Subtarget) {
if (!Subtarget->hasMVEIntegerOps())
return SDValue();
// See LowerTruncate above for an explanation of MVEEXT/MVETRUNC.
EVT ToVT = N->getValueType(0);
if (ToVT != MVT::v16i32 && ToVT != MVT::v8i32 && ToVT != MVT::v16i16)
return SDValue();
SDValue Op = N->getOperand(0);
EVT FromVT = Op.getValueType();
if (FromVT != MVT::v8i16 && FromVT != MVT::v16i8)
return SDValue();
SDLoc DL(N);
EVT ExtVT = ToVT.getHalfNumVectorElementsVT(*DAG.getContext());
if (ToVT.getScalarType() == MVT::i32 && FromVT.getScalarType() == MVT::i8)
ExtVT = MVT::v8i16;
unsigned Opcode =
N->getOpcode() == ISD::SIGN_EXTEND ? ARMISD::MVESEXT : ARMISD::MVEZEXT;
SDValue Ext = DAG.getNode(Opcode, DL, DAG.getVTList(ExtVT, ExtVT), Op);
SDValue Ext1 = Ext.getValue(1);
if (ToVT.getScalarType() == MVT::i32 && FromVT.getScalarType() == MVT::i8) {
Ext = DAG.getNode(N->getOpcode(), DL, MVT::v8i32, Ext);
Ext1 = DAG.getNode(N->getOpcode(), DL, MVT::v8i32, Ext1);
}
return DAG.getNode(ISD::CONCAT_VECTORS, DL, ToVT, Ext, Ext1);
}
/// isExtendedBUILD_VECTOR - Check if N is a constant BUILD_VECTOR where each
/// element has been zero/sign-extended, depending on the isSigned parameter,
/// from an integer type half its size.
static bool isExtendedBUILD_VECTOR(SDNode *N, SelectionDAG &DAG,
bool isSigned) {
// A v2i64 BUILD_VECTOR will have been legalized to a BITCAST from v4i32.
EVT VT = N->getValueType(0);
if (VT == MVT::v2i64 && N->getOpcode() == ISD::BITCAST) {
SDNode *BVN = N->getOperand(0).getNode();
if (BVN->getValueType(0) != MVT::v4i32 ||
BVN->getOpcode() != ISD::BUILD_VECTOR)
return false;
unsigned LoElt = DAG.getDataLayout().isBigEndian() ? 1 : 0;
unsigned HiElt = 1 - LoElt;
ConstantSDNode *Lo0 = dyn_cast<ConstantSDNode>(BVN->getOperand(LoElt));
ConstantSDNode *Hi0 = dyn_cast<ConstantSDNode>(BVN->getOperand(HiElt));
ConstantSDNode *Lo1 = dyn_cast<ConstantSDNode>(BVN->getOperand(LoElt+2));
ConstantSDNode *Hi1 = dyn_cast<ConstantSDNode>(BVN->getOperand(HiElt+2));
if (!Lo0 || !Hi0 || !Lo1 || !Hi1)
return false;
if (isSigned) {
if (Hi0->getSExtValue() == Lo0->getSExtValue() >> 32 &&
Hi1->getSExtValue() == Lo1->getSExtValue() >> 32)
return true;
} else {
if (Hi0->isZero() && Hi1->isZero())
return true;
}
return false;
}
if (N->getOpcode() != ISD::BUILD_VECTOR)
return false;
for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
SDNode *Elt = N->getOperand(i).getNode();
if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Elt)) {
unsigned EltSize = VT.getScalarSizeInBits();
unsigned HalfSize = EltSize / 2;
if (isSigned) {
if (!isIntN(HalfSize, C->getSExtValue()))
return false;
} else {
if (!isUIntN(HalfSize, C->getZExtValue()))
return false;
}
continue;
}
return false;
}
return true;
}
/// isSignExtended - Check if a node is a vector value that is sign-extended
/// or a constant BUILD_VECTOR with sign-extended elements.
static bool isSignExtended(SDNode *N, SelectionDAG &DAG) {
if (N->getOpcode() == ISD::SIGN_EXTEND || ISD::isSEXTLoad(N))
return true;
if (isExtendedBUILD_VECTOR(N, DAG, true))
return true;
return false;
}
/// isZeroExtended - Check if a node is a vector value that is zero-extended (or
/// any-extended) or a constant BUILD_VECTOR with zero-extended elements.
static bool isZeroExtended(SDNode *N, SelectionDAG &DAG) {
if (N->getOpcode() == ISD::ZERO_EXTEND || N->getOpcode() == ISD::ANY_EXTEND ||
ISD::isZEXTLoad(N))
return true;
if (isExtendedBUILD_VECTOR(N, DAG, false))
return true;
return false;
}
static EVT getExtensionTo64Bits(const EVT &OrigVT) {
if (OrigVT.getSizeInBits() >= 64)
return OrigVT;
assert(OrigVT.isSimple() && "Expecting a simple value type");
MVT::SimpleValueType OrigSimpleTy = OrigVT.getSimpleVT().SimpleTy;
switch (OrigSimpleTy) {
default: llvm_unreachable("Unexpected Vector Type");
case MVT::v2i8:
case MVT::v2i16:
return MVT::v2i32;
case MVT::v4i8:
return MVT::v4i16;
}
}
/// AddRequiredExtensionForVMULL - Add a sign/zero extension to extend the total
/// value size to 64 bits. We need a 64-bit D register as an operand to VMULL.
/// We insert the required extension here to get the vector to fill a D register.
static SDValue AddRequiredExtensionForVMULL(SDValue N, SelectionDAG &DAG,
const EVT &OrigTy,
const EVT &ExtTy,
unsigned ExtOpcode) {
// The vector originally had a size of OrigTy. It was then extended to ExtTy.
// We expect the ExtTy to be 128-bits total. If the OrigTy is less than
// 64-bits we need to insert a new extension so that it will be 64-bits.
assert(ExtTy.is128BitVector() && "Unexpected extension size");
if (OrigTy.getSizeInBits() >= 64)
return N;
// Must extend size to at least 64 bits to be used as an operand for VMULL.
EVT NewVT = getExtensionTo64Bits(OrigTy);
return DAG.getNode(ExtOpcode, SDLoc(N), NewVT, N);
}
/// SkipLoadExtensionForVMULL - return a load of the original vector size that
/// does not do any sign/zero extension. If the original vector is less
/// than 64 bits, an appropriate extension will be added after the load to
/// reach a total size of 64 bits. We have to add the extension separately
/// because ARM does not have a sign/zero extending load for vectors.
static SDValue SkipLoadExtensionForVMULL(LoadSDNode *LD, SelectionDAG& DAG) {
EVT ExtendedTy = getExtensionTo64Bits(LD->getMemoryVT());
// The load already has the right type.
if (ExtendedTy == LD->getMemoryVT())
return DAG.getLoad(LD->getMemoryVT(), SDLoc(LD), LD->getChain(),
LD->getBasePtr(), LD->getPointerInfo(),
LD->getAlignment(), LD->getMemOperand()->getFlags());
// We need to create a zextload/sextload. We cannot just create a load
// followed by a zext/zext node because LowerMUL is also run during normal
// operation legalization where we can't create illegal types.
return DAG.getExtLoad(LD->getExtensionType(), SDLoc(LD), ExtendedTy,
LD->getChain(), LD->getBasePtr(), LD->getPointerInfo(),
LD->getMemoryVT(), LD->getAlignment(),
LD->getMemOperand()->getFlags());
}
/// SkipExtensionForVMULL - For a node that is a SIGN_EXTEND, ZERO_EXTEND,
/// ANY_EXTEND, extending load, or BUILD_VECTOR with extended elements, return
/// the unextended value. The unextended vector should be 64 bits so that it can
/// be used as an operand to a VMULL instruction. If the original vector size
/// before extension is less than 64 bits we add a an extension to resize
/// the vector to 64 bits.
static SDValue SkipExtensionForVMULL(SDNode *N, SelectionDAG &DAG) {
if (N->getOpcode() == ISD::SIGN_EXTEND ||
N->getOpcode() == ISD::ZERO_EXTEND || N->getOpcode() == ISD::ANY_EXTEND)
return AddRequiredExtensionForVMULL(N->getOperand(0), DAG,
N->getOperand(0)->getValueType(0),
N->getValueType(0),
N->getOpcode());
if (LoadSDNode *LD = dyn_cast<LoadSDNode>(N)) {
assert((ISD::isSEXTLoad(LD) || ISD::isZEXTLoad(LD)) &&
"Expected extending load");
SDValue newLoad = SkipLoadExtensionForVMULL(LD, DAG);
DAG.ReplaceAllUsesOfValueWith(SDValue(LD, 1), newLoad.getValue(1));
unsigned Opcode = ISD::isSEXTLoad(LD) ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND;
SDValue extLoad =
DAG.getNode(Opcode, SDLoc(newLoad), LD->getValueType(0), newLoad);
DAG.ReplaceAllUsesOfValueWith(SDValue(LD, 0), extLoad);
return newLoad;
}
// Otherwise, the value must be a BUILD_VECTOR. For v2i64, it will
// have been legalized as a BITCAST from v4i32.
if (N->getOpcode() == ISD::BITCAST) {
SDNode *BVN = N->getOperand(0).getNode();
assert(BVN->getOpcode() == ISD::BUILD_VECTOR &&
BVN->getValueType(0) == MVT::v4i32 && "expected v4i32 BUILD_VECTOR");
unsigned LowElt = DAG.getDataLayout().isBigEndian() ? 1 : 0;
return DAG.getBuildVector(
MVT::v2i32, SDLoc(N),
{BVN->getOperand(LowElt), BVN->getOperand(LowElt + 2)});
}
// Construct a new BUILD_VECTOR with elements truncated to half the size.
assert(N->getOpcode() == ISD::BUILD_VECTOR && "expected BUILD_VECTOR");
EVT VT = N->getValueType(0);
unsigned EltSize = VT.getScalarSizeInBits() / 2;
unsigned NumElts = VT.getVectorNumElements();
MVT TruncVT = MVT::getIntegerVT(EltSize);
SmallVector<SDValue, 8> Ops;
SDLoc dl(N);
for (unsigned i = 0; i != NumElts; ++i) {
ConstantSDNode *C = cast<ConstantSDNode>(N->getOperand(i));
const APInt &CInt = C->getAPIntValue();
// Element types smaller than 32 bits are not legal, so use i32 elements.
// The values are implicitly truncated so sext vs. zext doesn't matter.
Ops.push_back(DAG.getConstant(CInt.zextOrTrunc(32), dl, MVT::i32));
}
return DAG.getBuildVector(MVT::getVectorVT(TruncVT, NumElts), dl, Ops);
}
static bool isAddSubSExt(SDNode *N, SelectionDAG &DAG) {
unsigned Opcode = N->getOpcode();
if (Opcode == ISD::ADD || Opcode == ISD::SUB) {
SDNode *N0 = N->getOperand(0).getNode();
SDNode *N1 = N->getOperand(1).getNode();
return N0->hasOneUse() && N1->hasOneUse() &&
isSignExtended(N0, DAG) && isSignExtended(N1, DAG);
}
return false;
}
static bool isAddSubZExt(SDNode *N, SelectionDAG &DAG) {
unsigned Opcode = N->getOpcode();
if (Opcode == ISD::ADD || Opcode == ISD::SUB) {
SDNode *N0 = N->getOperand(0).getNode();
SDNode *N1 = N->getOperand(1).getNode();
return N0->hasOneUse() && N1->hasOneUse() &&
isZeroExtended(N0, DAG) && isZeroExtended(N1, DAG);
}
return false;
}
static SDValue LowerMUL(SDValue Op, SelectionDAG &DAG) {
// Multiplications are only custom-lowered for 128-bit vectors so that
// VMULL can be detected. Otherwise v2i64 multiplications are not legal.
EVT VT = Op.getValueType();
assert(VT.is128BitVector() && VT.isInteger() &&
"unexpected type for custom-lowering ISD::MUL");
SDNode *N0 = Op.getOperand(0).getNode();
SDNode *N1 = Op.getOperand(1).getNode();
unsigned NewOpc = 0;
bool isMLA = false;
bool isN0SExt = isSignExtended(N0, DAG);
bool isN1SExt = isSignExtended(N1, DAG);
if (isN0SExt && isN1SExt)
NewOpc = ARMISD::VMULLs;
else {
bool isN0ZExt = isZeroExtended(N0, DAG);
bool isN1ZExt = isZeroExtended(N1, DAG);
if (isN0ZExt && isN1ZExt)
NewOpc = ARMISD::VMULLu;
else if (isN1SExt || isN1ZExt) {
// Look for (s/zext A + s/zext B) * (s/zext C). We want to turn these
// into (s/zext A * s/zext C) + (s/zext B * s/zext C)
if (isN1SExt && isAddSubSExt(N0, DAG)) {
NewOpc = ARMISD::VMULLs;
isMLA = true;
} else if (isN1ZExt && isAddSubZExt(N0, DAG)) {
NewOpc = ARMISD::VMULLu;
isMLA = true;
} else if (isN0ZExt && isAddSubZExt(N1, DAG)) {
std::swap(N0, N1);
NewOpc = ARMISD::VMULLu;
isMLA = true;
}
}
if (!NewOpc) {
if (VT == MVT::v2i64)
// Fall through to expand this. It is not legal.
return SDValue();
else
// Other vector multiplications are legal.
return Op;
}
}
// Legalize to a VMULL instruction.
SDLoc DL(Op);
SDValue Op0;
SDValue Op1 = SkipExtensionForVMULL(N1, DAG);
if (!isMLA) {
Op0 = SkipExtensionForVMULL(N0, DAG);
assert(Op0.getValueType().is64BitVector() &&
Op1.getValueType().is64BitVector() &&
"unexpected types for extended operands to VMULL");
return DAG.getNode(NewOpc, DL, VT, Op0, Op1);
}
// Optimizing (zext A + zext B) * C, to (VMULL A, C) + (VMULL B, C) during
// isel lowering to take advantage of no-stall back to back vmul + vmla.
// vmull q0, d4, d6
// vmlal q0, d5, d6
// is faster than
// vaddl q0, d4, d5
// vmovl q1, d6
// vmul q0, q0, q1
SDValue N00 = SkipExtensionForVMULL(N0->getOperand(0).getNode(), DAG);
SDValue N01 = SkipExtensionForVMULL(N0->getOperand(1).getNode(), DAG);
EVT Op1VT = Op1.getValueType();
return DAG.getNode(N0->getOpcode(), DL, VT,
DAG.getNode(NewOpc, DL, VT,
DAG.getNode(ISD::BITCAST, DL, Op1VT, N00), Op1),
DAG.getNode(NewOpc, DL, VT,
DAG.getNode(ISD::BITCAST, DL, Op1VT, N01), Op1));
}
static SDValue LowerSDIV_v4i8(SDValue X, SDValue Y, const SDLoc &dl,
SelectionDAG &DAG) {
// TODO: Should this propagate fast-math-flags?
// Convert to float
// float4 xf = vcvt_f32_s32(vmovl_s16(a.lo));
// float4 yf = vcvt_f32_s32(vmovl_s16(b.lo));
X = DAG.getNode(ISD::SIGN_EXTEND, dl, MVT::v4i32, X);
Y = DAG.getNode(ISD::SIGN_EXTEND, dl, MVT::v4i32, Y);
X = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::v4f32, X);
Y = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::v4f32, Y);
// Get reciprocal estimate.
// float4 recip = vrecpeq_f32(yf);
Y = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, MVT::v4f32,
DAG.getConstant(Intrinsic::arm_neon_vrecpe, dl, MVT::i32),
Y);
// Because char has a smaller range than uchar, we can actually get away
// without any newton steps. This requires that we use a weird bias
// of 0xb000, however (again, this has been exhaustively tested).
// float4 result = as_float4(as_int4(xf*recip) + 0xb000);
X = DAG.getNode(ISD::FMUL, dl, MVT::v4f32, X, Y);
X = DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, X);
Y = DAG.getConstant(0xb000, dl, MVT::v4i32);
X = DAG.getNode(ISD::ADD, dl, MVT::v4i32, X, Y);
X = DAG.getNode(ISD::BITCAST, dl, MVT::v4f32, X);
// Convert back to short.
X = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::v4i32, X);
X = DAG.getNode(ISD::TRUNCATE, dl, MVT::v4i16, X);
return X;
}
static SDValue LowerSDIV_v4i16(SDValue N0, SDValue N1, const SDLoc &dl,
SelectionDAG &DAG) {
// TODO: Should this propagate fast-math-flags?
SDValue N2;
// Convert to float.
// float4 yf = vcvt_f32_s32(vmovl_s16(y));
// float4 xf = vcvt_f32_s32(vmovl_s16(x));
N0 = DAG.getNode(ISD::SIGN_EXTEND, dl, MVT::v4i32, N0);
N1 = DAG.getNode(ISD::SIGN_EXTEND, dl, MVT::v4i32, N1);
N0 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::v4f32, N0);
N1 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::v4f32, N1);
// Use reciprocal estimate and one refinement step.
// float4 recip = vrecpeq_f32(yf);
// recip *= vrecpsq_f32(yf, recip);
N2 = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, MVT::v4f32,
DAG.getConstant(Intrinsic::arm_neon_vrecpe, dl, MVT::i32),
N1);
N1 = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, MVT::v4f32,
DAG.getConstant(Intrinsic::arm_neon_vrecps, dl, MVT::i32),
N1, N2);
N2 = DAG.getNode(ISD::FMUL, dl, MVT::v4f32, N1, N2);
// Because short has a smaller range than ushort, we can actually get away
// with only a single newton step. This requires that we use a weird bias
// of 89, however (again, this has been exhaustively tested).
// float4 result = as_float4(as_int4(xf*recip) + 0x89);
N0 = DAG.getNode(ISD::FMUL, dl, MVT::v4f32, N0, N2);
N0 = DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, N0);
N1 = DAG.getConstant(0x89, dl, MVT::v4i32);
N0 = DAG.getNode(ISD::ADD, dl, MVT::v4i32, N0, N1);
N0 = DAG.getNode(ISD::BITCAST, dl, MVT::v4f32, N0);
// Convert back to integer and return.
// return vmovn_s32(vcvt_s32_f32(result));
N0 = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::v4i32, N0);
N0 = DAG.getNode(ISD::TRUNCATE, dl, MVT::v4i16, N0);
return N0;
}
static SDValue LowerSDIV(SDValue Op, SelectionDAG &DAG,
const ARMSubtarget *ST) {
EVT VT = Op.getValueType();
assert((VT == MVT::v4i16 || VT == MVT::v8i8) &&
"unexpected type for custom-lowering ISD::SDIV");
SDLoc dl(Op);
SDValue N0 = Op.getOperand(0);
SDValue N1 = Op.getOperand(1);
SDValue N2, N3;
if (VT == MVT::v8i8) {
N0 = DAG.getNode(ISD::SIGN_EXTEND, dl, MVT::v8i16, N0);
N1 = DAG.getNode(ISD::SIGN_EXTEND, dl, MVT::v8i16, N1);
N2 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, MVT::v4i16, N0,
DAG.getIntPtrConstant(4, dl));
N3 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, MVT::v4i16, N1,
DAG.getIntPtrConstant(4, dl));
N0 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, MVT::v4i16, N0,
DAG.getIntPtrConstant(0, dl));
N1 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, MVT::v4i16, N1,
DAG.getIntPtrConstant(0, dl));
N0 = LowerSDIV_v4i8(N0, N1, dl, DAG); // v4i16
N2 = LowerSDIV_v4i8(N2, N3, dl, DAG); // v4i16
N0 = DAG.getNode(ISD::CONCAT_VECTORS, dl, MVT::v8i16, N0, N2);
N0 = LowerCONCAT_VECTORS(N0, DAG, ST);
N0 = DAG.getNode(ISD::TRUNCATE, dl, MVT::v8i8, N0);
return N0;
}
return LowerSDIV_v4i16(N0, N1, dl, DAG);
}
static SDValue LowerUDIV(SDValue Op, SelectionDAG &DAG,
const ARMSubtarget *ST) {
// TODO: Should this propagate fast-math-flags?
EVT VT = Op.getValueType();
assert((VT == MVT::v4i16 || VT == MVT::v8i8) &&
"unexpected type for custom-lowering ISD::UDIV");
SDLoc dl(Op);
SDValue N0 = Op.getOperand(0);
SDValue N1 = Op.getOperand(1);
SDValue N2, N3;
if (VT == MVT::v8i8) {
N0 = DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::v8i16, N0);
N1 = DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::v8i16, N1);
N2 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, MVT::v4i16, N0,
DAG.getIntPtrConstant(4, dl));
N3 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, MVT::v4i16, N1,
DAG.getIntPtrConstant(4, dl));
N0 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, MVT::v4i16, N0,
DAG.getIntPtrConstant(0, dl));
N1 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, MVT::v4i16, N1,
DAG.getIntPtrConstant(0, dl));
N0 = LowerSDIV_v4i16(N0, N1, dl, DAG); // v4i16
N2 = LowerSDIV_v4i16(N2, N3, dl, DAG); // v4i16
N0 = DAG.getNode(ISD::CONCAT_VECTORS, dl, MVT::v8i16, N0, N2);
N0 = LowerCONCAT_VECTORS(N0, DAG, ST);
N0 = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, MVT::v8i8,
DAG.getConstant(Intrinsic::arm_neon_vqmovnsu, dl,
MVT::i32),
N0);
return N0;
}
// v4i16 sdiv ... Convert to float.
// float4 yf = vcvt_f32_s32(vmovl_u16(y));
// float4 xf = vcvt_f32_s32(vmovl_u16(x));
N0 = DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::v4i32, N0);
N1 = DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::v4i32, N1);
N0 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::v4f32, N0);
SDValue BN1 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::v4f32, N1);
// Use reciprocal estimate and two refinement steps.
// float4 recip = vrecpeq_f32(yf);
// recip *= vrecpsq_f32(yf, recip);
// recip *= vrecpsq_f32(yf, recip);
N2 = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, MVT::v4f32,
DAG.getConstant(Intrinsic::arm_neon_vrecpe, dl, MVT::i32),
BN1);
N1 = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, MVT::v4f32,
DAG.getConstant(Intrinsic::arm_neon_vrecps, dl, MVT::i32),
BN1, N2);
N2 = DAG.getNode(ISD::FMUL, dl, MVT::v4f32, N1, N2);
N1 = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, MVT::v4f32,
DAG.getConstant(Intrinsic::arm_neon_vrecps, dl, MVT::i32),
BN1, N2);
N2 = DAG.getNode(ISD::FMUL, dl, MVT::v4f32, N1, N2);
// Simply multiplying by the reciprocal estimate can leave us a few ulps
// too low, so we add 2 ulps (exhaustive testing shows that this is enough,
// and that it will never cause us to return an answer too large).
// float4 result = as_float4(as_int4(xf*recip) + 2);
N0 = DAG.getNode(ISD::FMUL, dl, MVT::v4f32, N0, N2);
N0 = DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, N0);
N1 = DAG.getConstant(2, dl, MVT::v4i32);
N0 = DAG.getNode(ISD::ADD, dl, MVT::v4i32, N0, N1);
N0 = DAG.getNode(ISD::BITCAST, dl, MVT::v4f32, N0);
// Convert back to integer and return.
// return vmovn_u32(vcvt_s32_f32(result));
N0 = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::v4i32, N0);
N0 = DAG.getNode(ISD::TRUNCATE, dl, MVT::v4i16, N0);
return N0;
}
static SDValue LowerADDSUBCARRY(SDValue Op, SelectionDAG &DAG) {
SDNode *N = Op.getNode();
EVT VT = N->getValueType(0);
SDVTList VTs = DAG.getVTList(VT, MVT::i32);
SDValue Carry = Op.getOperand(2);
SDLoc DL(Op);
SDValue Result;
if (Op.getOpcode() == ISD::ADDCARRY) {
// This converts the boolean value carry into the carry flag.
Carry = ConvertBooleanCarryToCarryFlag(Carry, DAG);
// Do the addition proper using the carry flag we wanted.
Result = DAG.getNode(ARMISD::ADDE, DL, VTs, Op.getOperand(0),
Op.getOperand(1), Carry);
// Now convert the carry flag into a boolean value.
Carry = ConvertCarryFlagToBooleanCarry(Result.getValue(1), VT, DAG);
} else {
// ARMISD::SUBE expects a carry not a borrow like ISD::SUBCARRY so we
// have to invert the carry first.
Carry = DAG.getNode(ISD::SUB, DL, MVT::i32,
DAG.getConstant(1, DL, MVT::i32), Carry);
// This converts the boolean value carry into the carry flag.
Carry = ConvertBooleanCarryToCarryFlag(Carry, DAG);
// Do the subtraction proper using the carry flag we wanted.
Result = DAG.getNode(ARMISD::SUBE, DL, VTs, Op.getOperand(0),
Op.getOperand(1), Carry);
// Now convert the carry flag into a boolean value.
Carry = ConvertCarryFlagToBooleanCarry(Result.getValue(1), VT, DAG);
// But the carry returned by ARMISD::SUBE is not a borrow as expected
// by ISD::SUBCARRY, so compute 1 - C.
Carry = DAG.getNode(ISD::SUB, DL, MVT::i32,
DAG.getConstant(1, DL, MVT::i32), Carry);
}
// Return both values.
return DAG.getNode(ISD::MERGE_VALUES, DL, N->getVTList(), Result, Carry);
}
SDValue ARMTargetLowering::LowerFSINCOS(SDValue Op, SelectionDAG &DAG) const {
assert(Subtarget->isTargetDarwin());
// For iOS, we want to call an alternative entry point: __sincos_stret,
// return values are passed via sret.
SDLoc dl(Op);
SDValue Arg = Op.getOperand(0);
EVT ArgVT = Arg.getValueType();
Type *ArgTy = ArgVT.getTypeForEVT(*DAG.getContext());
auto PtrVT = getPointerTy(DAG.getDataLayout());
MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo();
const TargetLowering &TLI = DAG.getTargetLoweringInfo();
// Pair of floats / doubles used to pass the result.
Type *RetTy = StructType::get(ArgTy, ArgTy);
auto &DL = DAG.getDataLayout();
ArgListTy Args;
bool ShouldUseSRet = Subtarget->isAPCS_ABI();
SDValue SRet;
if (ShouldUseSRet) {
// Create stack object for sret.
const uint64_t ByteSize = DL.getTypeAllocSize(RetTy);
const Align StackAlign = DL.getPrefTypeAlign(RetTy);
int FrameIdx = MFI.CreateStackObject(ByteSize, StackAlign, false);
SRet = DAG.getFrameIndex(FrameIdx, TLI.getPointerTy(DL));
ArgListEntry Entry;
Entry.Node = SRet;
Entry.Ty = RetTy->getPointerTo();
Entry.IsSExt = false;
Entry.IsZExt = false;
Entry.IsSRet = true;
Args.push_back(Entry);
RetTy = Type::getVoidTy(*DAG.getContext());
}
ArgListEntry Entry;
Entry.Node = Arg;
Entry.Ty = ArgTy;
Entry.IsSExt = false;
Entry.IsZExt = false;
Args.push_back(Entry);
RTLIB::Libcall LC =
(ArgVT == MVT::f64) ? RTLIB::SINCOS_STRET_F64 : RTLIB::SINCOS_STRET_F32;
const char *LibcallName = getLibcallName(LC);
CallingConv::ID CC = getLibcallCallingConv(LC);
SDValue Callee = DAG.getExternalSymbol(LibcallName, getPointerTy(DL));
TargetLowering::CallLoweringInfo CLI(DAG);
CLI.setDebugLoc(dl)
.setChain(DAG.getEntryNode())
.setCallee(CC, RetTy, Callee, std::move(Args))
.setDiscardResult(ShouldUseSRet);
std::pair<SDValue, SDValue> CallResult = LowerCallTo(CLI);
if (!ShouldUseSRet)
return CallResult.first;
SDValue LoadSin =
DAG.getLoad(ArgVT, dl, CallResult.second, SRet, MachinePointerInfo());
// Address of cos field.
SDValue Add = DAG.getNode(ISD::ADD, dl, PtrVT, SRet,
DAG.getIntPtrConstant(ArgVT.getStoreSize(), dl));
SDValue LoadCos =
DAG.getLoad(ArgVT, dl, LoadSin.getValue(1), Add, MachinePointerInfo());
SDVTList Tys = DAG.getVTList(ArgVT, ArgVT);
return DAG.getNode(ISD::MERGE_VALUES, dl, Tys,
LoadSin.getValue(0), LoadCos.getValue(0));
}
SDValue ARMTargetLowering::LowerWindowsDIVLibCall(SDValue Op, SelectionDAG &DAG,
bool Signed,
SDValue &Chain) const {
EVT VT = Op.getValueType();
assert((VT == MVT::i32 || VT == MVT::i64) &&
"unexpected type for custom lowering DIV");
SDLoc dl(Op);
const auto &DL = DAG.getDataLayout();
const auto &TLI = DAG.getTargetLoweringInfo();
const char *Name = nullptr;
if (Signed)
Name = (VT == MVT::i32) ? "__rt_sdiv" : "__rt_sdiv64";
else
Name = (VT == MVT::i32) ? "__rt_udiv" : "__rt_udiv64";
SDValue ES = DAG.getExternalSymbol(Name, TLI.getPointerTy(DL));
ARMTargetLowering::ArgListTy Args;
for (auto AI : {1, 0}) {
ArgListEntry Arg;
Arg.Node = Op.getOperand(AI);
Arg.Ty = Arg.Node.getValueType().getTypeForEVT(*DAG.getContext());
Args.push_back(Arg);
}
CallLoweringInfo CLI(DAG);
CLI.setDebugLoc(dl)
.setChain(Chain)
.setCallee(CallingConv::ARM_AAPCS_VFP, VT.getTypeForEVT(*DAG.getContext()),
ES, std::move(Args));
return LowerCallTo(CLI).first;
}
// This is a code size optimisation: return the original SDIV node to
// DAGCombiner when we don't want to expand SDIV into a sequence of
// instructions, and an empty node otherwise which will cause the
// SDIV to be expanded in DAGCombine.
SDValue
ARMTargetLowering::BuildSDIVPow2(SDNode *N, const APInt &Divisor,
SelectionDAG &DAG,
SmallVectorImpl<SDNode *> &Created) const {
// TODO: Support SREM
if (N->getOpcode() != ISD::SDIV)
return SDValue();
const auto &ST = static_cast<const ARMSubtarget&>(DAG.getSubtarget());
const bool MinSize = ST.hasMinSize();
const bool HasDivide = ST.isThumb() ? ST.hasDivideInThumbMode()
: ST.hasDivideInARMMode();
// Don't touch vector types; rewriting this may lead to scalarizing
// the int divs.
if (N->getOperand(0).getValueType().isVector())
return SDValue();
// Bail if MinSize is not set, and also for both ARM and Thumb mode we need
// hwdiv support for this to be really profitable.
if (!(MinSize && HasDivide))
return SDValue();
// ARM mode is a bit simpler than Thumb: we can handle large power
// of 2 immediates with 1 mov instruction; no further checks required,
// just return the sdiv node.
if (!ST.isThumb())
return SDValue(N, 0);
// In Thumb mode, immediates larger than 128 need a wide 4-byte MOV,
// and thus lose the code size benefits of a MOVS that requires only 2.
// TargetTransformInfo and 'getIntImmCodeSizeCost' could be helpful here,
// but as it's doing exactly this, it's not worth the trouble to get TTI.
if (Divisor.sgt(128))
return SDValue();
return SDValue(N, 0);
}
SDValue ARMTargetLowering::LowerDIV_Windows(SDValue Op, SelectionDAG &DAG,
bool Signed) const {
assert(Op.getValueType() == MVT::i32 &&
"unexpected type for custom lowering DIV");
SDLoc dl(Op);
SDValue DBZCHK = DAG.getNode(ARMISD::WIN__DBZCHK, dl, MVT::Other,
DAG.getEntryNode(), Op.getOperand(1));
return LowerWindowsDIVLibCall(Op, DAG, Signed, DBZCHK);
}
static SDValue WinDBZCheckDenominator(SelectionDAG &DAG, SDNode *N, SDValue InChain) {
SDLoc DL(N);
SDValue Op = N->getOperand(1);
if (N->getValueType(0) == MVT::i32)
return DAG.getNode(ARMISD::WIN__DBZCHK, DL, MVT::Other, InChain, Op);
SDValue Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i32, Op,
DAG.getConstant(0, DL, MVT::i32));
SDValue Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i32, Op,
DAG.getConstant(1, DL, MVT::i32));
return DAG.getNode(ARMISD::WIN__DBZCHK, DL, MVT::Other, InChain,
DAG.getNode(ISD::OR, DL, MVT::i32, Lo, Hi));
}
void ARMTargetLowering::ExpandDIV_Windows(
SDValue Op, SelectionDAG &DAG, bool Signed,
SmallVectorImpl<SDValue> &Results) const {
const auto &DL = DAG.getDataLayout();
const auto &TLI = DAG.getTargetLoweringInfo();
assert(Op.getValueType() == MVT::i64 &&
"unexpected type for custom lowering DIV");
SDLoc dl(Op);
SDValue DBZCHK = WinDBZCheckDenominator(DAG, Op.getNode(), DAG.getEntryNode());
SDValue Result = LowerWindowsDIVLibCall(Op, DAG, Signed, DBZCHK);
SDValue Lower = DAG.getNode(ISD::TRUNCATE, dl, MVT::i32, Result);
SDValue Upper = DAG.getNode(ISD::SRL, dl, MVT::i64, Result,
DAG.getConstant(32, dl, TLI.getPointerTy(DL)));
Upper = DAG.getNode(ISD::TRUNCATE, dl, MVT::i32, Upper);
Results.push_back(DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, Lower, Upper));
}
static SDValue LowerPredicateLoad(SDValue Op, SelectionDAG &DAG) {
LoadSDNode *LD = cast<LoadSDNode>(Op.getNode());
EVT MemVT = LD->getMemoryVT();
assert((MemVT == MVT::v4i1 || MemVT == MVT::v8i1 || MemVT == MVT::v16i1) &&
"Expected a predicate type!");
assert(MemVT == Op.getValueType());
assert(LD->getExtensionType() == ISD::NON_EXTLOAD &&
"Expected a non-extending load");
assert(LD->isUnindexed() && "Expected a unindexed load");
// The basic MVE VLDR on a v4i1/v8i1 actually loads the entire 16bit
// predicate, with the "v4i1" bits spread out over the 16 bits loaded. We
// need to make sure that 8/4 bits are actually loaded into the correct
// place, which means loading the value and then shuffling the values into
// the bottom bits of the predicate.
// Equally, VLDR for an v16i1 will actually load 32bits (so will be incorrect
// for BE).
// Speaking of BE, apparently the rest of llvm will assume a reverse order to
// a natural VMSR(load), so needs to be reversed.
SDLoc dl(Op);
SDValue Load = DAG.getExtLoad(
ISD::EXTLOAD, dl, MVT::i32, LD->getChain(), LD->getBasePtr(),
EVT::getIntegerVT(*DAG.getContext(), MemVT.getSizeInBits()),
LD->getMemOperand());
SDValue Val = Load;
if (DAG.getDataLayout().isBigEndian())
Val = DAG.getNode(ISD::SRL, dl, MVT::i32,
DAG.getNode(ISD::BITREVERSE, dl, MVT::i32, Load),
DAG.getConstant(32 - MemVT.getSizeInBits(), dl, MVT::i32));
SDValue Pred = DAG.getNode(ARMISD::PREDICATE_CAST, dl, MVT::v16i1, Val);
if (MemVT != MVT::v16i1)
Pred = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, MemVT, Pred,
DAG.getConstant(0, dl, MVT::i32));
return DAG.getMergeValues({Pred, Load.getValue(1)}, dl);
}
void ARMTargetLowering::LowerLOAD(SDNode *N, SmallVectorImpl<SDValue> &Results,
SelectionDAG &DAG) const {
LoadSDNode *LD = cast<LoadSDNode>(N);
EVT MemVT = LD->getMemoryVT();
assert(LD->isUnindexed() && "Loads should be unindexed at this point.");
if (MemVT == MVT::i64 && Subtarget->hasV5TEOps() &&
!Subtarget->isThumb1Only() && LD->isVolatile()) {
SDLoc dl(N);
SDValue Result = DAG.getMemIntrinsicNode(
ARMISD::LDRD, dl, DAG.getVTList({MVT::i32, MVT::i32, MVT::Other}),
{LD->getChain(), LD->getBasePtr()}, MemVT, LD->getMemOperand());
SDValue Lo = Result.getValue(DAG.getDataLayout().isLittleEndian() ? 0 : 1);
SDValue Hi = Result.getValue(DAG.getDataLayout().isLittleEndian() ? 1 : 0);
SDValue Pair = DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, Lo, Hi);
Results.append({Pair, Result.getValue(2)});
}
}
static SDValue LowerPredicateStore(SDValue Op, SelectionDAG &DAG) {
StoreSDNode *ST = cast<StoreSDNode>(Op.getNode());
EVT MemVT = ST->getMemoryVT();
assert((MemVT == MVT::v4i1 || MemVT == MVT::v8i1 || MemVT == MVT::v16i1) &&
"Expected a predicate type!");
assert(MemVT == ST->getValue().getValueType());
assert(!ST->isTruncatingStore() && "Expected a non-extending store");
assert(ST->isUnindexed() && "Expected a unindexed store");
// Only store the v4i1 or v8i1 worth of bits, via a buildvector with top bits
// unset and a scalar store.
SDLoc dl(Op);
SDValue Build = ST->getValue();
if (MemVT != MVT::v16i1) {
SmallVector<SDValue, 16> Ops;
for (unsigned I = 0; I < MemVT.getVectorNumElements(); I++) {
unsigned Elt = DAG.getDataLayout().isBigEndian()
? MemVT.getVectorNumElements() - I - 1
: I;
Ops.push_back(DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i32, Build,
DAG.getConstant(Elt, dl, MVT::i32)));
}
for (unsigned I = MemVT.getVectorNumElements(); I < 16; I++)
Ops.push_back(DAG.getUNDEF(MVT::i32));
Build = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v16i1, Ops);
}
SDValue GRP = DAG.getNode(ARMISD::PREDICATE_CAST, dl, MVT::i32, Build);
if (MemVT == MVT::v16i1 && DAG.getDataLayout().isBigEndian())
GRP = DAG.getNode(ISD::SRL, dl, MVT::i32,
DAG.getNode(ISD::BITREVERSE, dl, MVT::i32, GRP),
DAG.getConstant(16, dl, MVT::i32));
return DAG.getTruncStore(
ST->getChain(), dl, GRP, ST->getBasePtr(),
EVT::getIntegerVT(*DAG.getContext(), MemVT.getSizeInBits()),
ST->getMemOperand());
}
static SDValue LowerSTORE(SDValue Op, SelectionDAG &DAG,
const ARMSubtarget *Subtarget) {
StoreSDNode *ST = cast<StoreSDNode>(Op.getNode());
EVT MemVT = ST->getMemoryVT();
assert(ST->isUnindexed() && "Stores should be unindexed at this point.");
if (MemVT == MVT::i64 && Subtarget->hasV5TEOps() &&
!Subtarget->isThumb1Only() && ST->isVolatile()) {
SDNode *N = Op.getNode();
SDLoc dl(N);
SDValue Lo = DAG.getNode(
ISD::EXTRACT_ELEMENT, dl, MVT::i32, ST->getValue(),
DAG.getTargetConstant(DAG.getDataLayout().isLittleEndian() ? 0 : 1, dl,
MVT::i32));
SDValue Hi = DAG.getNode(
ISD::EXTRACT_ELEMENT, dl, MVT::i32, ST->getValue(),
DAG.getTargetConstant(DAG.getDataLayout().isLittleEndian() ? 1 : 0, dl,
MVT::i32));
return DAG.getMemIntrinsicNode(ARMISD::STRD, dl, DAG.getVTList(MVT::Other),
{ST->getChain(), Lo, Hi, ST->getBasePtr()},
MemVT, ST->getMemOperand());
} else if (Subtarget->hasMVEIntegerOps() &&
((MemVT == MVT::v4i1 || MemVT == MVT::v8i1 ||
MemVT == MVT::v16i1))) {
return LowerPredicateStore(Op, DAG);
}
return SDValue();
}
static bool isZeroVector(SDValue N) {
return (ISD::isBuildVectorAllZeros(N.getNode()) ||
(N->getOpcode() == ARMISD::VMOVIMM &&
isNullConstant(N->getOperand(0))));
}
static SDValue LowerMLOAD(SDValue Op, SelectionDAG &DAG) {
MaskedLoadSDNode *N = cast<MaskedLoadSDNode>(Op.getNode());
MVT VT = Op.getSimpleValueType();
SDValue Mask = N->getMask();
SDValue PassThru = N->getPassThru();
SDLoc dl(Op);
if (isZeroVector(PassThru))
return Op;
// MVE Masked loads use zero as the passthru value. Here we convert undef to
// zero too, and other values are lowered to a select.
SDValue ZeroVec = DAG.getNode(ARMISD::VMOVIMM, dl, VT,
DAG.getTargetConstant(0, dl, MVT::i32));
SDValue NewLoad = DAG.getMaskedLoad(
VT, dl, N->getChain(), N->getBasePtr(), N->getOffset(), Mask, ZeroVec,
N->getMemoryVT(), N->getMemOperand(), N->getAddressingMode(),
N->getExtensionType(), N->isExpandingLoad());
SDValue Combo = NewLoad;
bool PassThruIsCastZero = (PassThru.getOpcode() == ISD::BITCAST ||
PassThru.getOpcode() == ARMISD::VECTOR_REG_CAST) &&
isZeroVector(PassThru->getOperand(0));
if (!PassThru.isUndef() && !PassThruIsCastZero)
Combo = DAG.getNode(ISD::VSELECT, dl, VT, Mask, NewLoad, PassThru);
return DAG.getMergeValues({Combo, NewLoad.getValue(1)}, dl);
}
static SDValue LowerVecReduce(SDValue Op, SelectionDAG &DAG,
const ARMSubtarget *ST) {
if (!ST->hasMVEIntegerOps())
return SDValue();
SDLoc dl(Op);
unsigned BaseOpcode = 0;
switch (Op->getOpcode()) {
default: llvm_unreachable("Expected VECREDUCE opcode");
case ISD::VECREDUCE_FADD: BaseOpcode = ISD::FADD; break;
case ISD::VECREDUCE_FMUL: BaseOpcode = ISD::FMUL; break;
case ISD::VECREDUCE_MUL: BaseOpcode = ISD::MUL; break;
case ISD::VECREDUCE_AND: BaseOpcode = ISD::AND; break;
case ISD::VECREDUCE_OR: BaseOpcode = ISD::OR; break;
case ISD::VECREDUCE_XOR: BaseOpcode = ISD::XOR; break;
case ISD::VECREDUCE_FMAX: BaseOpcode = ISD::FMAXNUM; break;
case ISD::VECREDUCE_FMIN: BaseOpcode = ISD::FMINNUM; break;
}
SDValue Op0 = Op->getOperand(0);
EVT VT = Op0.getValueType();
EVT EltVT = VT.getVectorElementType();
unsigned NumElts = VT.getVectorNumElements();
unsigned NumActiveLanes = NumElts;
assert((NumActiveLanes == 16 || NumActiveLanes == 8 || NumActiveLanes == 4 ||
NumActiveLanes == 2) &&
"Only expected a power 2 vector size");
// Use Mul(X, Rev(X)) until 4 items remain. Going down to 4 vector elements
// allows us to easily extract vector elements from the lanes.
while (NumActiveLanes > 4) {
unsigned RevOpcode = NumActiveLanes == 16 ? ARMISD::VREV16 : ARMISD::VREV32;
SDValue Rev = DAG.getNode(RevOpcode, dl, VT, Op0);
Op0 = DAG.getNode(BaseOpcode, dl, VT, Op0, Rev);
NumActiveLanes /= 2;
}
SDValue Res;
if (NumActiveLanes == 4) {
// The remaining 4 elements are summed sequentially
SDValue Ext0 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, EltVT, Op0,
DAG.getConstant(0 * NumElts / 4, dl, MVT::i32));
SDValue Ext1 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, EltVT, Op0,
DAG.getConstant(1 * NumElts / 4, dl, MVT::i32));
SDValue Ext2 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, EltVT, Op0,
DAG.getConstant(2 * NumElts / 4, dl, MVT::i32));
SDValue Ext3 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, EltVT, Op0,
DAG.getConstant(3 * NumElts / 4, dl, MVT::i32));
SDValue Res0 = DAG.getNode(BaseOpcode, dl, EltVT, Ext0, Ext1, Op->getFlags());
SDValue Res1 = DAG.getNode(BaseOpcode, dl, EltVT, Ext2, Ext3, Op->getFlags());
Res = DAG.getNode(BaseOpcode, dl, EltVT, Res0, Res1, Op->getFlags());
} else {
SDValue Ext0 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, EltVT, Op0,
DAG.getConstant(0, dl, MVT::i32));
SDValue Ext1 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, EltVT, Op0,
DAG.getConstant(1, dl, MVT::i32));
Res = DAG.getNode(BaseOpcode, dl, EltVT, Ext0, Ext1, Op->getFlags());
}
// Result type may be wider than element type.
if (EltVT != Op->getValueType(0))
Res = DAG.getNode(ISD::ANY_EXTEND, dl, Op->getValueType(0), Res);
return Res;
}
static SDValue LowerVecReduceF(SDValue Op, SelectionDAG &DAG,
const ARMSubtarget *ST) {
if (!ST->hasMVEFloatOps())
return SDValue();
return LowerVecReduce(Op, DAG, ST);
}
static SDValue LowerAtomicLoadStore(SDValue Op, SelectionDAG &DAG) {
if (isStrongerThanMonotonic(cast<AtomicSDNode>(Op)->getSuccessOrdering()))
// Acquire/Release load/store is not legal for targets without a dmb or
// equivalent available.
return SDValue();
// Monotonic load/store is legal for all targets.
return Op;
}
static void ReplaceREADCYCLECOUNTER(SDNode *N,
SmallVectorImpl<SDValue> &Results,
SelectionDAG &DAG,
const ARMSubtarget *Subtarget) {
SDLoc DL(N);
// Under Power Management extensions, the cycle-count is:
// mrc p15, #0, <Rt>, c9, c13, #0
SDValue Ops[] = { N->getOperand(0), // Chain
DAG.getTargetConstant(Intrinsic::arm_mrc, DL, MVT::i32),
DAG.getTargetConstant(15, DL, MVT::i32),
DAG.getTargetConstant(0, DL, MVT::i32),
DAG.getTargetConstant(9, DL, MVT::i32),
DAG.getTargetConstant(13, DL, MVT::i32),
DAG.getTargetConstant(0, DL, MVT::i32)
};
SDValue Cycles32 = DAG.getNode(ISD::INTRINSIC_W_CHAIN, DL,
DAG.getVTList(MVT::i32, MVT::Other), Ops);
Results.push_back(DAG.getNode(ISD::BUILD_PAIR, DL, MVT::i64, Cycles32,
DAG.getConstant(0, DL, MVT::i32)));
Results.push_back(Cycles32.getValue(1));
}
static SDValue createGPRPairNode(SelectionDAG &DAG, SDValue V) {
SDLoc dl(V.getNode());
SDValue VLo = DAG.getAnyExtOrTrunc(V, dl, MVT::i32);
SDValue VHi = DAG.getAnyExtOrTrunc(
DAG.getNode(ISD::SRL, dl, MVT::i64, V, DAG.getConstant(32, dl, MVT::i32)),
dl, MVT::i32);
bool isBigEndian = DAG.getDataLayout().isBigEndian();
if (isBigEndian)
std::swap (VLo, VHi);
SDValue RegClass =
DAG.getTargetConstant(ARM::GPRPairRegClassID, dl, MVT::i32);
SDValue SubReg0 = DAG.getTargetConstant(ARM::gsub_0, dl, MVT::i32);
SDValue SubReg1 = DAG.getTargetConstant(ARM::gsub_1, dl, MVT::i32);
const SDValue Ops[] = { RegClass, VLo, SubReg0, VHi, SubReg1 };
return SDValue(
DAG.getMachineNode(TargetOpcode::REG_SEQUENCE, dl, MVT::Untyped, Ops), 0);
}
static void ReplaceCMP_SWAP_64Results(SDNode *N,
SmallVectorImpl<SDValue> & Results,
SelectionDAG &DAG) {
assert(N->getValueType(0) == MVT::i64 &&
"AtomicCmpSwap on types less than 64 should be legal");
SDValue Ops[] = {N->getOperand(1),
createGPRPairNode(DAG, N->getOperand(2)),
createGPRPairNode(DAG, N->getOperand(3)),
N->getOperand(0)};
SDNode *CmpSwap = DAG.getMachineNode(
ARM::CMP_SWAP_64, SDLoc(N),
DAG.getVTList(MVT::Untyped, MVT::i32, MVT::Other), Ops);
MachineMemOperand *MemOp = cast<MemSDNode>(N)->getMemOperand();
DAG.setNodeMemRefs(cast<MachineSDNode>(CmpSwap), {MemOp});
bool isBigEndian = DAG.getDataLayout().isBigEndian();
SDValue Lo =
DAG.getTargetExtractSubreg(isBigEndian ? ARM::gsub_1 : ARM::gsub_0,
SDLoc(N), MVT::i32, SDValue(CmpSwap, 0));
SDValue Hi =
DAG.getTargetExtractSubreg(isBigEndian ? ARM::gsub_0 : ARM::gsub_1,
SDLoc(N), MVT::i32, SDValue(CmpSwap, 0));
Results.push_back(DAG.getNode(ISD::BUILD_PAIR, SDLoc(N), MVT::i64, Lo, Hi));
Results.push_back(SDValue(CmpSwap, 2));
}
SDValue ARMTargetLowering::LowerFSETCC(SDValue Op, SelectionDAG &DAG) const {
SDLoc dl(Op);
EVT VT = Op.getValueType();
SDValue Chain = Op.getOperand(0);
SDValue LHS = Op.getOperand(1);
SDValue RHS = Op.getOperand(2);
ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(3))->get();
bool IsSignaling = Op.getOpcode() == ISD::STRICT_FSETCCS;
// If we don't have instructions of this float type then soften to a libcall
// and use SETCC instead.
if (isUnsupportedFloatingType(LHS.getValueType())) {
DAG.getTargetLoweringInfo().softenSetCCOperands(
DAG, LHS.getValueType(), LHS, RHS, CC, dl, LHS, RHS, Chain, IsSignaling);
if (!RHS.getNode()) {
RHS = DAG.getConstant(0, dl, LHS.getValueType());
CC = ISD::SETNE;
}
SDValue Result = DAG.getNode(ISD::SETCC, dl, VT, LHS, RHS,
DAG.getCondCode(CC));
return DAG.getMergeValues({Result, Chain}, dl);
}
ARMCC::CondCodes CondCode, CondCode2;
FPCCToARMCC(CC, CondCode, CondCode2);
// FIXME: Chain is not handled correctly here. Currently the FPSCR is implicit
// in CMPFP and CMPFPE, but instead it should be made explicit by these
// instructions using a chain instead of glue. This would also fix the problem
// here (and also in LowerSELECT_CC) where we generate two comparisons when
// CondCode2 != AL.
SDValue True = DAG.getConstant(1, dl, VT);
SDValue False = DAG.getConstant(0, dl, VT);
SDValue ARMcc = DAG.getConstant(CondCode, dl, MVT::i32);
SDValue CCR = DAG.getRegister(ARM::CPSR, MVT::i32);
SDValue Cmp = getVFPCmp(LHS, RHS, DAG, dl, IsSignaling);
SDValue Result = getCMOV(dl, VT, False, True, ARMcc, CCR, Cmp, DAG);
if (CondCode2 != ARMCC::AL) {
ARMcc = DAG.getConstant(CondCode2, dl, MVT::i32);
Cmp = getVFPCmp(LHS, RHS, DAG, dl, IsSignaling);
Result = getCMOV(dl, VT, Result, True, ARMcc, CCR, Cmp, DAG);
}
return DAG.getMergeValues({Result, Chain}, dl);
}
SDValue ARMTargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const {
LLVM_DEBUG(dbgs() << "Lowering node: "; Op.dump());
switch (Op.getOpcode()) {
default: llvm_unreachable("Don't know how to custom lower this!");
case ISD::WRITE_REGISTER: return LowerWRITE_REGISTER(Op, DAG);
case ISD::ConstantPool: return LowerConstantPool(Op, DAG);
case ISD::BlockAddress: return LowerBlockAddress(Op, DAG);
case ISD::GlobalAddress: return LowerGlobalAddress(Op, DAG);
case ISD::GlobalTLSAddress: return LowerGlobalTLSAddress(Op, DAG);
case ISD::SELECT: return LowerSELECT(Op, DAG);
case ISD::SELECT_CC: return LowerSELECT_CC(Op, DAG);
case ISD::BRCOND: return LowerBRCOND(Op, DAG);
case ISD::BR_CC: return LowerBR_CC(Op, DAG);
case ISD::BR_JT: return LowerBR_JT(Op, DAG);
case ISD::VASTART: return LowerVASTART(Op, DAG);
case ISD::ATOMIC_FENCE: return LowerATOMIC_FENCE(Op, DAG, Subtarget);
case ISD::PREFETCH: return LowerPREFETCH(Op, DAG, Subtarget);
case ISD::SINT_TO_FP:
case ISD::UINT_TO_FP: return LowerINT_TO_FP(Op, DAG);
case ISD::STRICT_FP_TO_SINT:
case ISD::STRICT_FP_TO_UINT:
case ISD::FP_TO_SINT:
case ISD::FP_TO_UINT: return LowerFP_TO_INT(Op, DAG);
case ISD::FP_TO_SINT_SAT:
case ISD::FP_TO_UINT_SAT: return LowerFP_TO_INT_SAT(Op, DAG, Subtarget);
case ISD::FCOPYSIGN: return LowerFCOPYSIGN(Op, DAG);
case ISD::RETURNADDR: return LowerRETURNADDR(Op, DAG);
case ISD::FRAMEADDR: return LowerFRAMEADDR(Op, DAG);
case ISD::EH_SJLJ_SETJMP: return LowerEH_SJLJ_SETJMP(Op, DAG);
case ISD::EH_SJLJ_LONGJMP: return LowerEH_SJLJ_LONGJMP(Op, DAG);
case ISD::EH_SJLJ_SETUP_DISPATCH: return LowerEH_SJLJ_SETUP_DISPATCH(Op, DAG);
case ISD::INTRINSIC_VOID: return LowerINTRINSIC_VOID(Op, DAG, Subtarget);
case ISD::INTRINSIC_WO_CHAIN: return LowerINTRINSIC_WO_CHAIN(Op, DAG,
Subtarget);
case ISD::BITCAST: return ExpandBITCAST(Op.getNode(), DAG, Subtarget);
case ISD::SHL:
case ISD::SRL:
case ISD::SRA: return LowerShift(Op.getNode(), DAG, Subtarget);
case ISD::SREM: return LowerREM(Op.getNode(), DAG);
case ISD::UREM: return LowerREM(Op.getNode(), DAG);
case ISD::SHL_PARTS: return LowerShiftLeftParts(Op, DAG);
case ISD::SRL_PARTS:
case ISD::SRA_PARTS: return LowerShiftRightParts(Op, DAG);
case ISD::CTTZ:
case ISD::CTTZ_ZERO_UNDEF: return LowerCTTZ(Op.getNode(), DAG, Subtarget);
case ISD::CTPOP: return LowerCTPOP(Op.getNode(), DAG, Subtarget);
case ISD::SETCC: return LowerVSETCC(Op, DAG, Subtarget);
case ISD::SETCCCARRY: return LowerSETCCCARRY(Op, DAG);
case ISD::ConstantFP: return LowerConstantFP(Op, DAG, Subtarget);
case ISD::BUILD_VECTOR: return LowerBUILD_VECTOR(Op, DAG, Subtarget);
case ISD::VECTOR_SHUFFLE: return LowerVECTOR_SHUFFLE(Op, DAG, Subtarget);
case ISD::EXTRACT_SUBVECTOR: return LowerEXTRACT_SUBVECTOR(Op, DAG, Subtarget);
case ISD::INSERT_VECTOR_ELT: return LowerINSERT_VECTOR_ELT(Op, DAG);
case ISD::EXTRACT_VECTOR_ELT: return LowerEXTRACT_VECTOR_ELT(Op, DAG, Subtarget);
case ISD::CONCAT_VECTORS: return LowerCONCAT_VECTORS(Op, DAG, Subtarget);
case ISD::TRUNCATE: return LowerTruncate(Op.getNode(), DAG, Subtarget);
case ISD::SIGN_EXTEND:
case ISD::ZERO_EXTEND: return LowerVectorExtend(Op.getNode(), DAG, Subtarget);
case ISD::FLT_ROUNDS_: return LowerFLT_ROUNDS_(Op, DAG);
case ISD::SET_ROUNDING: return LowerSET_ROUNDING(Op, DAG);
case ISD::MUL: return LowerMUL(Op, DAG);
case ISD::SDIV:
if (Subtarget->isTargetWindows() && !Op.getValueType().isVector())
return LowerDIV_Windows(Op, DAG, /* Signed */ true);
return LowerSDIV(Op, DAG, Subtarget);
case ISD::UDIV:
if (Subtarget->isTargetWindows() && !Op.getValueType().isVector())
return LowerDIV_Windows(Op, DAG, /* Signed */ false);
return LowerUDIV(Op, DAG, Subtarget);
case ISD::ADDCARRY:
case ISD::SUBCARRY: return LowerADDSUBCARRY(Op, DAG);
case ISD::SADDO:
case ISD::SSUBO:
return LowerSignedALUO(Op, DAG);
case ISD::UADDO:
case ISD::USUBO:
return LowerUnsignedALUO(Op, DAG);
case ISD::SADDSAT:
case ISD::SSUBSAT:
case ISD::UADDSAT:
case ISD::USUBSAT:
return LowerADDSUBSAT(Op, DAG, Subtarget);
case ISD::LOAD:
return LowerPredicateLoad(Op, DAG);
case ISD::STORE:
return LowerSTORE(Op, DAG, Subtarget);
case ISD::MLOAD:
return LowerMLOAD(Op, DAG);
case ISD::VECREDUCE_MUL:
case ISD::VECREDUCE_AND:
case ISD::VECREDUCE_OR:
case ISD::VECREDUCE_XOR:
return LowerVecReduce(Op, DAG, Subtarget);
case ISD::VECREDUCE_FADD:
case ISD::VECREDUCE_FMUL:
case ISD::VECREDUCE_FMIN:
case ISD::VECREDUCE_FMAX:
return LowerVecReduceF(Op, DAG, Subtarget);
case ISD::ATOMIC_LOAD:
case ISD::ATOMIC_STORE: return LowerAtomicLoadStore(Op, DAG);
case ISD::FSINCOS: return LowerFSINCOS(Op, DAG);
case ISD::SDIVREM:
case ISD::UDIVREM: return LowerDivRem(Op, DAG);
case ISD::DYNAMIC_STACKALLOC:
if (Subtarget->isTargetWindows())
return LowerDYNAMIC_STACKALLOC(Op, DAG);
llvm_unreachable("Don't know how to custom lower this!");
case ISD::STRICT_FP_ROUND:
case ISD::FP_ROUND: return LowerFP_ROUND(Op, DAG);
case ISD::STRICT_FP_EXTEND:
case ISD::FP_EXTEND: return LowerFP_EXTEND(Op, DAG);
case ISD::STRICT_FSETCC:
case ISD::STRICT_FSETCCS: return LowerFSETCC(Op, DAG);
case ARMISD::WIN__DBZCHK: return SDValue();
}
}
static void ReplaceLongIntrinsic(SDNode *N, SmallVectorImpl<SDValue> &Results,
SelectionDAG &DAG) {
unsigned IntNo = cast<ConstantSDNode>(N->getOperand(0))->getZExtValue();
unsigned Opc = 0;
if (IntNo == Intrinsic::arm_smlald)
Opc = ARMISD::SMLALD;
else if (IntNo == Intrinsic::arm_smlaldx)
Opc = ARMISD::SMLALDX;
else if (IntNo == Intrinsic::arm_smlsld)
Opc = ARMISD::SMLSLD;
else if (IntNo == Intrinsic::arm_smlsldx)
Opc = ARMISD::SMLSLDX;
else
return;
SDLoc dl(N);
SDValue Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32,
N->getOperand(3),
DAG.getConstant(0, dl, MVT::i32));
SDValue Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32,
N->getOperand(3),
DAG.getConstant(1, dl, MVT::i32));
SDValue LongMul = DAG.getNode(Opc, dl,
DAG.getVTList(MVT::i32, MVT::i32),
N->getOperand(1), N->getOperand(2),
Lo, Hi);
Results.push_back(DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64,
LongMul.getValue(0), LongMul.getValue(1)));
}
/// ReplaceNodeResults - Replace the results of node with an illegal result
/// type with new values built out of custom code.
void ARMTargetLowering::ReplaceNodeResults(SDNode *N,
SmallVectorImpl<SDValue> &Results,
SelectionDAG &DAG) const {
SDValue Res;
switch (N->getOpcode()) {
default:
llvm_unreachable("Don't know how to custom expand this!");
case ISD::READ_REGISTER:
ExpandREAD_REGISTER(N, Results, DAG);
break;
case ISD::BITCAST:
Res = ExpandBITCAST(N, DAG, Subtarget);
break;
case ISD::SRL:
case ISD::SRA:
case ISD::SHL:
Res = Expand64BitShift(N, DAG, Subtarget);
break;
case ISD::SREM:
case ISD::UREM:
Res = LowerREM(N, DAG);
break;
case ISD::SDIVREM:
case ISD::UDIVREM:
Res = LowerDivRem(SDValue(N, 0), DAG);
assert(Res.getNumOperands() == 2 && "DivRem needs two values");
Results.push_back(Res.getValue(0));
Results.push_back(Res.getValue(1));
return;
case ISD::SADDSAT:
case ISD::SSUBSAT:
case ISD::UADDSAT:
case ISD::USUBSAT:
Res = LowerADDSUBSAT(SDValue(N, 0), DAG, Subtarget);
break;
case ISD::READCYCLECOUNTER:
ReplaceREADCYCLECOUNTER(N, Results, DAG, Subtarget);
return;
case ISD::UDIV:
case ISD::SDIV:
assert(Subtarget->isTargetWindows() && "can only expand DIV on Windows");
return ExpandDIV_Windows(SDValue(N, 0), DAG, N->getOpcode() == ISD::SDIV,
Results);
case ISD::ATOMIC_CMP_SWAP:
ReplaceCMP_SWAP_64Results(N, Results, DAG);
return;
case ISD::INTRINSIC_WO_CHAIN:
return ReplaceLongIntrinsic(N, Results, DAG);
case ISD::ABS:
lowerABS(N, Results, DAG);
return ;
case ISD::LOAD:
LowerLOAD(N, Results, DAG);
break;
case ISD::TRUNCATE:
Res = LowerTruncate(N, DAG, Subtarget);
break;
case ISD::SIGN_EXTEND:
case ISD::ZERO_EXTEND:
Res = LowerVectorExtend(N, DAG, Subtarget);
break;
case ISD::FP_TO_SINT_SAT:
case ISD::FP_TO_UINT_SAT:
Res = LowerFP_TO_INT_SAT(SDValue(N, 0), DAG, Subtarget);
break;
}
if (Res.getNode())
Results.push_back(Res);
}
//===----------------------------------------------------------------------===//
// ARM Scheduler Hooks
//===----------------------------------------------------------------------===//
/// SetupEntryBlockForSjLj - Insert code into the entry block that creates and
/// registers the function context.
void ARMTargetLowering::SetupEntryBlockForSjLj(MachineInstr &MI,
MachineBasicBlock *MBB,
MachineBasicBlock *DispatchBB,
int FI) const {
assert(!Subtarget->isROPI() && !Subtarget->isRWPI() &&
"ROPI/RWPI not currently supported with SjLj");
const TargetInstrInfo *TII = Subtarget->getInstrInfo();
DebugLoc dl = MI.getDebugLoc();
MachineFunction *MF = MBB->getParent();
MachineRegisterInfo *MRI = &MF->getRegInfo();
MachineConstantPool *MCP = MF->getConstantPool();
ARMFunctionInfo *AFI = MF->getInfo<ARMFunctionInfo>();
const Function &F = MF->getFunction();
bool isThumb = Subtarget->isThumb();
bool isThumb2 = Subtarget->isThumb2();
unsigned PCLabelId = AFI->createPICLabelUId();
unsigned PCAdj = (isThumb || isThumb2) ? 4 : 8;
ARMConstantPoolValue *CPV =
ARMConstantPoolMBB::Create(F.getContext(), DispatchBB, PCLabelId, PCAdj);
unsigned CPI = MCP->getConstantPoolIndex(CPV, Align(4));
const TargetRegisterClass *TRC = isThumb ? &ARM::tGPRRegClass
: &ARM::GPRRegClass;
// Grab constant pool and fixed stack memory operands.
MachineMemOperand *CPMMO =
MF->getMachineMemOperand(MachinePointerInfo::getConstantPool(*MF),
MachineMemOperand::MOLoad, 4, Align(4));
MachineMemOperand *FIMMOSt =
MF->getMachineMemOperand(MachinePointerInfo::getFixedStack(*MF, FI),
MachineMemOperand::MOStore, 4, Align(4));
// Load the address of the dispatch MBB into the jump buffer.
if (isThumb2) {
// Incoming value: jbuf
// ldr.n r5, LCPI1_1
// orr r5, r5, #1
// add r5, pc
// str r5, [$jbuf, #+4] ; &jbuf[1]
Register NewVReg1 = MRI->createVirtualRegister(TRC);
BuildMI(*MBB, MI, dl, TII->get(ARM::t2LDRpci), NewVReg1)
.addConstantPoolIndex(CPI)
.addMemOperand(CPMMO)
.add(predOps(ARMCC::AL));
// Set the low bit because of thumb mode.
Register NewVReg2 = MRI->createVirtualRegister(TRC);
BuildMI(*MBB, MI, dl, TII->get(ARM::t2ORRri), NewVReg2)
.addReg(NewVReg1, RegState::Kill)
.addImm(0x01)
.add(predOps(ARMCC::AL))
.add(condCodeOp());
Register NewVReg3 = MRI->createVirtualRegister(TRC);
BuildMI(*MBB, MI, dl, TII->get(ARM::tPICADD), NewVReg3)
.addReg(NewVReg2, RegState::Kill)
.addImm(PCLabelId);
BuildMI(*MBB, MI, dl, TII->get(ARM::t2STRi12))
.addReg(NewVReg3, RegState::Kill)
.addFrameIndex(FI)
.addImm(36) // &jbuf[1] :: pc
.addMemOperand(FIMMOSt)
.add(predOps(ARMCC::AL));
} else if (isThumb) {
// Incoming value: jbuf
// ldr.n r1, LCPI1_4
// add r1, pc
// mov r2, #1
// orrs r1, r2
// add r2, $jbuf, #+4 ; &jbuf[1]
// str r1, [r2]
Register NewVReg1 = MRI->createVirtualRegister(TRC);
BuildMI(*MBB, MI, dl, TII->get(ARM::tLDRpci), NewVReg1)
.addConstantPoolIndex(CPI)
.addMemOperand(CPMMO)
.add(predOps(ARMCC::AL));
Register NewVReg2 = MRI->createVirtualRegister(TRC);
BuildMI(*MBB, MI, dl, TII->get(ARM::tPICADD), NewVReg2)
.addReg(NewVReg1, RegState::Kill)
.addImm(PCLabelId);
// Set the low bit because of thumb mode.
Register NewVReg3 = MRI->createVirtualRegister(TRC);
BuildMI(*MBB, MI, dl, TII->get(ARM::tMOVi8), NewVReg3)
.addReg(ARM::CPSR, RegState::Define)
.addImm(1)
.add(predOps(ARMCC::AL));
Register NewVReg4 = MRI->createVirtualRegister(TRC);
BuildMI(*MBB, MI, dl, TII->get(ARM::tORR), NewVReg4)
.addReg(ARM::CPSR, RegState::Define)
.addReg(NewVReg2, RegState::Kill)
.addReg(NewVReg3, RegState::Kill)
.add(predOps(ARMCC::AL));
Register NewVReg5 = MRI->createVirtualRegister(TRC);
BuildMI(*MBB, MI, dl, TII->get(ARM::tADDframe), NewVReg5)
.addFrameIndex(FI)
.addImm(36); // &jbuf[1] :: pc
BuildMI(*MBB, MI, dl, TII->get(ARM::tSTRi))
.addReg(NewVReg4, RegState::Kill)
.addReg(NewVReg5, RegState::Kill)
.addImm(0)
.addMemOperand(FIMMOSt)
.add(predOps(ARMCC::AL));
} else {
// Incoming value: jbuf
// ldr r1, LCPI1_1
// add r1, pc, r1
// str r1, [$jbuf, #+4] ; &jbuf[1]
Register NewVReg1 = MRI->createVirtualRegister(TRC);
BuildMI(*MBB, MI, dl, TII->get(ARM::LDRi12), NewVReg1)
.addConstantPoolIndex(CPI)
.addImm(0)
.addMemOperand(CPMMO)
.add(predOps(ARMCC::AL));
Register NewVReg2 = MRI->createVirtualRegister(TRC);
BuildMI(*MBB, MI, dl, TII->get(ARM::PICADD), NewVReg2)
.addReg(NewVReg1, RegState::Kill)
.addImm(PCLabelId)
.add(predOps(ARMCC::AL));
BuildMI(*MBB, MI, dl, TII->get(ARM::STRi12))
.addReg(NewVReg2, RegState::Kill)
.addFrameIndex(FI)
.addImm(36) // &jbuf[1] :: pc
.addMemOperand(FIMMOSt)
.add(predOps(ARMCC::AL));
}
}
void ARMTargetLowering::EmitSjLjDispatchBlock(MachineInstr &MI,
MachineBasicBlock *MBB) const {
const TargetInstrInfo *TII = Subtarget->getInstrInfo();
DebugLoc dl = MI.getDebugLoc();
MachineFunction *MF = MBB->getParent();
MachineRegisterInfo *MRI = &MF->getRegInfo();
MachineFrameInfo &MFI = MF->getFrameInfo();
int FI = MFI.getFunctionContextIndex();
const TargetRegisterClass *TRC = Subtarget->isThumb() ? &ARM::tGPRRegClass
: &ARM::GPRnopcRegClass;
// Get a mapping of the call site numbers to all of the landing pads they're
// associated with.
DenseMap<unsigned, SmallVector<MachineBasicBlock*, 2>> CallSiteNumToLPad;
unsigned MaxCSNum = 0;
for (MachineFunction::iterator BB = MF->begin(), E = MF->end(); BB != E;
++BB) {
if (!BB->isEHPad()) continue;
// FIXME: We should assert that the EH_LABEL is the first MI in the landing
// pad.
for (MachineBasicBlock::iterator
II = BB->begin(), IE = BB->end(); II != IE; ++II) {
if (!II->isEHLabel()) continue;
MCSymbol *Sym = II->getOperand(0).getMCSymbol();
if (!MF->hasCallSiteLandingPad(Sym)) continue;
SmallVectorImpl<unsigned> &CallSiteIdxs = MF->getCallSiteLandingPad(Sym);
for (SmallVectorImpl<unsigned>::iterator
CSI = CallSiteIdxs.begin(), CSE = CallSiteIdxs.end();
CSI != CSE; ++CSI) {
CallSiteNumToLPad[*CSI].push_back(&*BB);
MaxCSNum = std::max(MaxCSNum, *CSI);
}
break;
}
}
// Get an ordered list of the machine basic blocks for the jump table.
std::vector<MachineBasicBlock*> LPadList;
SmallPtrSet<MachineBasicBlock*, 32> InvokeBBs;
LPadList.reserve(CallSiteNumToLPad.size());
for (unsigned I = 1; I <= MaxCSNum; ++I) {
SmallVectorImpl<MachineBasicBlock*> &MBBList = CallSiteNumToLPad[I];
for (MachineBasicBlock *MBB : MBBList) {
LPadList.push_back(MBB);
InvokeBBs.insert(MBB->pred_begin(), MBB->pred_end());
}
}
assert(!LPadList.empty() &&
"No landing pad destinations for the dispatch jump table!");
// Create the jump table and associated information.
MachineJumpTableInfo *JTI =
MF->getOrCreateJumpTableInfo(MachineJumpTableInfo::EK_Inline);
unsigned MJTI = JTI->createJumpTableIndex(LPadList);
// Create the MBBs for the dispatch code.
// Shove the dispatch's address into the return slot in the function context.
MachineBasicBlock *DispatchBB = MF->CreateMachineBasicBlock();
DispatchBB->setIsEHPad();
MachineBasicBlock *TrapBB = MF->CreateMachineBasicBlock();
unsigned trap_opcode;
if (Subtarget->isThumb())
trap_opcode = ARM::tTRAP;
else
trap_opcode = Subtarget->useNaClTrap() ? ARM::TRAPNaCl : ARM::TRAP;
BuildMI(TrapBB, dl, TII->get(trap_opcode));
DispatchBB->addSuccessor(TrapBB);
MachineBasicBlock *DispContBB = MF->CreateMachineBasicBlock();
DispatchBB->addSuccessor(DispContBB);
// Insert and MBBs.
MF->insert(MF->end(), DispatchBB);
MF->insert(MF->end(), DispContBB);
MF->insert(MF->end(), TrapBB);
// Insert code into the entry block that creates and registers the function
// context.
SetupEntryBlockForSjLj(MI, MBB, DispatchBB, FI);
MachineMemOperand *FIMMOLd = MF->getMachineMemOperand(
MachinePointerInfo::getFixedStack(*MF, FI),
MachineMemOperand::MOLoad | MachineMemOperand::MOVolatile, 4, Align(4));
MachineInstrBuilder MIB;
MIB = BuildMI(DispatchBB, dl, TII->get(ARM::Int_eh_sjlj_dispatchsetup));
const ARMBaseInstrInfo *AII = static_cast<const ARMBaseInstrInfo*>(TII);
const ARMBaseRegisterInfo &RI = AII->getRegisterInfo();
// Add a register mask with no preserved registers. This results in all
// registers being marked as clobbered. This can't work if the dispatch block
// is in a Thumb1 function and is linked with ARM code which uses the FP
// registers, as there is no way to preserve the FP registers in Thumb1 mode.
MIB.addRegMask(RI.getSjLjDispatchPreservedMask(*MF));
bool IsPositionIndependent = isPositionIndependent();
unsigned NumLPads = LPadList.size();
if (Subtarget->isThumb2()) {
Register NewVReg1 = MRI->createVirtualRegister(TRC);
BuildMI(DispatchBB, dl, TII->get(ARM::t2LDRi12), NewVReg1)
.addFrameIndex(FI)
.addImm(4)
.addMemOperand(FIMMOLd)
.add(predOps(ARMCC::AL));
if (NumLPads < 256) {
BuildMI(DispatchBB, dl, TII->get(ARM::t2CMPri))
.addReg(NewVReg1)
.addImm(LPadList.size())
.add(predOps(ARMCC::AL));
} else {
Register VReg1 = MRI->createVirtualRegister(TRC);
BuildMI(DispatchBB, dl, TII->get(ARM::t2MOVi16), VReg1)
.addImm(NumLPads & 0xFFFF)
.add(predOps(ARMCC::AL));
unsigned VReg2 = VReg1;
if ((NumLPads & 0xFFFF0000) != 0) {
VReg2 = MRI->createVirtualRegister(TRC);
BuildMI(DispatchBB, dl, TII->get(ARM::t2MOVTi16), VReg2)
.addReg(VReg1)
.addImm(NumLPads >> 16)
.add(predOps(ARMCC::AL));
}
BuildMI(DispatchBB, dl, TII->get(ARM::t2CMPrr))
.addReg(NewVReg1)
.addReg(VReg2)
.add(predOps(ARMCC::AL));
}
BuildMI(DispatchBB, dl, TII->get(ARM::t2Bcc))
.addMBB(TrapBB)
.addImm(ARMCC::HI)
.addReg(ARM::CPSR);
Register NewVReg3 = MRI->createVirtualRegister(TRC);
BuildMI(DispContBB, dl, TII->get(ARM::t2LEApcrelJT), NewVReg3)
.addJumpTableIndex(MJTI)
.add(predOps(ARMCC::AL));
Register NewVReg4 = MRI->createVirtualRegister(TRC);
BuildMI(DispContBB, dl, TII->get(ARM::t2ADDrs), NewVReg4)
.addReg(NewVReg3, RegState::Kill)
.addReg(NewVReg1)
.addImm(ARM_AM::getSORegOpc(ARM_AM::lsl, 2))
.add(predOps(ARMCC::AL))
.add(condCodeOp());
BuildMI(DispContBB, dl, TII->get(ARM::t2BR_JT))
.addReg(NewVReg4, RegState::Kill)
.addReg(NewVReg1)
.addJumpTableIndex(MJTI);
} else if (Subtarget->isThumb()) {
Register NewVReg1 = MRI->createVirtualRegister(TRC);
BuildMI(DispatchBB, dl, TII->get(ARM::tLDRspi), NewVReg1)
.addFrameIndex(FI)
.addImm(1)
.addMemOperand(FIMMOLd)
.add(predOps(ARMCC::AL));
if (NumLPads < 256) {
BuildMI(DispatchBB, dl, TII->get(ARM::tCMPi8))
.addReg(NewVReg1)
.addImm(NumLPads)
.add(predOps(ARMCC::AL));
} else {
MachineConstantPool *ConstantPool = MF->getConstantPool();
Type *Int32Ty = Type::getInt32Ty(MF->getFunction().getContext());
const Constant *C = ConstantInt::get(Int32Ty, NumLPads);
// MachineConstantPool wants an explicit alignment.
Align Alignment = MF->getDataLayout().getPrefTypeAlign(Int32Ty);
unsigned Idx = ConstantPool->getConstantPoolIndex(C, Alignment);
Register VReg1 = MRI->createVirtualRegister(TRC);
BuildMI(DispatchBB, dl, TII->get(ARM::tLDRpci))
.addReg(VReg1, RegState::Define)
.addConstantPoolIndex(Idx)
.add(predOps(ARMCC::AL));
BuildMI(DispatchBB, dl, TII->get(ARM::tCMPr))
.addReg(NewVReg1)
.addReg(VReg1)
.add(predOps(ARMCC::AL));
}
BuildMI(DispatchBB, dl, TII->get(ARM::tBcc))
.addMBB(TrapBB)
.addImm(ARMCC::HI)
.addReg(ARM::CPSR);
Register NewVReg2 = MRI->createVirtualRegister(TRC);
BuildMI(DispContBB, dl, TII->get(ARM::tLSLri), NewVReg2)
.addReg(ARM::CPSR, RegState::Define)
.addReg(NewVReg1)
.addImm(2)
.add(predOps(ARMCC::AL));
Register NewVReg3 = MRI->createVirtualRegister(TRC);
BuildMI(DispContBB, dl, TII->get(ARM::tLEApcrelJT), NewVReg3)
.addJumpTableIndex(MJTI)
.add(predOps(ARMCC::AL));
Register NewVReg4 = MRI->createVirtualRegister(TRC);
BuildMI(DispContBB, dl, TII->get(ARM::tADDrr), NewVReg4)
.addReg(ARM::CPSR, RegState::Define)
.addReg(NewVReg2, RegState::Kill)
.addReg(NewVReg3)
.add(predOps(ARMCC::AL));
MachineMemOperand *JTMMOLd =
MF->getMachineMemOperand(MachinePointerInfo::getJumpTable(*MF),
MachineMemOperand::MOLoad, 4, Align(4));
Register NewVReg5 = MRI->createVirtualRegister(TRC);
BuildMI(DispContBB, dl, TII->get(ARM::tLDRi), NewVReg5)
.addReg(NewVReg4, RegState::Kill)
.addImm(0)
.addMemOperand(JTMMOLd)
.add(predOps(ARMCC::AL));
unsigned NewVReg6 = NewVReg5;
if (IsPositionIndependent) {
NewVReg6 = MRI->createVirtualRegister(TRC);
BuildMI(DispContBB, dl, TII->get(ARM::tADDrr), NewVReg6)
.addReg(ARM::CPSR, RegState::Define)
.addReg(NewVReg5, RegState::Kill)
.addReg(NewVReg3)
.add(predOps(ARMCC::AL));
}
BuildMI(DispContBB, dl, TII->get(ARM::tBR_JTr))
.addReg(NewVReg6, RegState::Kill)
.addJumpTableIndex(MJTI);
} else {
Register NewVReg1 = MRI->createVirtualRegister(TRC);
BuildMI(DispatchBB, dl, TII->get(ARM::LDRi12), NewVReg1)
.addFrameIndex(FI)
.addImm(4)
.addMemOperand(FIMMOLd)
.add(predOps(ARMCC::AL));
if (NumLPads < 256) {
BuildMI(DispatchBB, dl, TII->get(ARM::CMPri))
.addReg(NewVReg1)
.addImm(NumLPads)
.add(predOps(ARMCC::AL));
} else if (Subtarget->hasV6T2Ops() && isUInt<16>(NumLPads)) {
Register VReg1 = MRI->createVirtualRegister(TRC);
BuildMI(DispatchBB, dl, TII->get(ARM::MOVi16), VReg1)
.addImm(NumLPads & 0xFFFF)
.add(predOps(ARMCC::AL));
unsigned VReg2 = VReg1;
if ((NumLPads & 0xFFFF0000) != 0) {
VReg2 = MRI->createVirtualRegister(TRC);
BuildMI(DispatchBB, dl, TII->get(ARM::MOVTi16), VReg2)
.addReg(VReg1)
.addImm(NumLPads >> 16)
.add(predOps(ARMCC::AL));
}
BuildMI(DispatchBB, dl, TII->get(ARM::CMPrr))
.addReg(NewVReg1)
.addReg(VReg2)
.add(predOps(ARMCC::AL));
} else {
MachineConstantPool *ConstantPool = MF->getConstantPool();
Type *Int32Ty = Type::getInt32Ty(MF->getFunction().getContext());
const Constant *C = ConstantInt::get(Int32Ty, NumLPads);
// MachineConstantPool wants an explicit alignment.
Align Alignment = MF->getDataLayout().getPrefTypeAlign(Int32Ty);
unsigned Idx = ConstantPool->getConstantPoolIndex(C, Alignment);
Register VReg1 = MRI->createVirtualRegister(TRC);
BuildMI(DispatchBB, dl, TII->get(ARM::LDRcp))
.addReg(VReg1, RegState::Define)
.addConstantPoolIndex(Idx)
.addImm(0)
.add(predOps(ARMCC::AL));
BuildMI(DispatchBB, dl, TII->get(ARM::CMPrr))
.addReg(NewVReg1)
.addReg(VReg1, RegState::Kill)
.add(predOps(ARMCC::AL));
}
BuildMI(DispatchBB, dl, TII->get(ARM::Bcc))
.addMBB(TrapBB)
.addImm(ARMCC::HI)
.addReg(ARM::CPSR);
Register NewVReg3 = MRI->createVirtualRegister(TRC);
BuildMI(DispContBB, dl, TII->get(ARM::MOVsi), NewVReg3)
.addReg(NewVReg1)
.addImm(ARM_AM::getSORegOpc(ARM_AM::lsl, 2))
.add(predOps(ARMCC::AL))
.add(condCodeOp());
Register NewVReg4 = MRI->createVirtualRegister(TRC);
BuildMI(DispContBB, dl, TII->get(ARM::LEApcrelJT), NewVReg4)
.addJumpTableIndex(MJTI)
.add(predOps(ARMCC::AL));
MachineMemOperand *JTMMOLd =
MF->getMachineMemOperand(MachinePointerInfo::getJumpTable(*MF),
MachineMemOperand::MOLoad, 4, Align(4));
Register NewVReg5 = MRI->createVirtualRegister(TRC);
BuildMI(DispContBB, dl, TII->get(ARM::LDRrs), NewVReg5)
.addReg(NewVReg3, RegState::Kill)
.addReg(NewVReg4)
.addImm(0)
.addMemOperand(JTMMOLd)
.add(predOps(ARMCC::AL));
if (IsPositionIndependent) {
BuildMI(DispContBB, dl, TII->get(ARM::BR_JTadd))
.addReg(NewVReg5, RegState::Kill)
.addReg(NewVReg4)
.addJumpTableIndex(MJTI);
} else {
BuildMI(DispContBB, dl, TII->get(ARM::BR_JTr))
.addReg(NewVReg5, RegState::Kill)
.addJumpTableIndex(MJTI);
}
}
// Add the jump table entries as successors to the MBB.
SmallPtrSet<MachineBasicBlock*, 8> SeenMBBs;
for (MachineBasicBlock *CurMBB : LPadList) {
if (SeenMBBs.insert(CurMBB).second)
DispContBB->addSuccessor(CurMBB);
}
// N.B. the order the invoke BBs are processed in doesn't matter here.
const MCPhysReg *SavedRegs = RI.getCalleeSavedRegs(MF);
SmallVector<MachineBasicBlock*, 64> MBBLPads;
for (MachineBasicBlock *BB : InvokeBBs) {
// Remove the landing pad successor from the invoke block and replace it
// with the new dispatch block.
SmallVector<MachineBasicBlock*, 4> Successors(BB->successors());
while (!Successors.empty()) {
MachineBasicBlock *SMBB = Successors.pop_back_val();
if (SMBB->isEHPad()) {
BB->removeSuccessor(SMBB);
MBBLPads.push_back(SMBB);
}
}
BB->addSuccessor(DispatchBB, BranchProbability::getZero());
BB->normalizeSuccProbs();
// Find the invoke call and mark all of the callee-saved registers as
// 'implicit defined' so that they're spilled. This prevents code from
// moving instructions to before the EH block, where they will never be
// executed.
for (MachineBasicBlock::reverse_iterator
II = BB->rbegin(), IE = BB->rend(); II != IE; ++II) {
if (!II->isCall()) continue;
DenseMap<unsigned, bool> DefRegs;
for (MachineInstr::mop_iterator
OI = II->operands_begin(), OE = II->operands_end();
OI != OE; ++OI) {
if (!OI->isReg()) continue;
DefRegs[OI->getReg()] = true;
}
MachineInstrBuilder MIB(*MF, &*II);
for (unsigned i = 0; SavedRegs[i] != 0; ++i) {
unsigned Reg = SavedRegs[i];
if (Subtarget->isThumb2() &&
!ARM::tGPRRegClass.contains(Reg) &&
!ARM::hGPRRegClass.contains(Reg))
continue;
if (Subtarget->isThumb1Only() && !ARM::tGPRRegClass.contains(Reg))
continue;
if (!Subtarget->isThumb() && !ARM::GPRRegClass.contains(Reg))
continue;
if (!DefRegs[Reg])
MIB.addReg(Reg, RegState::ImplicitDefine | RegState::Dead);
}
break;
}
}
// Mark all former landing pads as non-landing pads. The dispatch is the only
// landing pad now.
for (MachineBasicBlock *MBBLPad : MBBLPads)
MBBLPad->setIsEHPad(false);
// The instruction is gone now.
MI.eraseFromParent();
}
static
MachineBasicBlock *OtherSucc(MachineBasicBlock *MBB, MachineBasicBlock *Succ) {
for (MachineBasicBlock *S : MBB->successors())
if (S != Succ)
return S;
llvm_unreachable("Expecting a BB with two successors!");
}
/// Return the load opcode for a given load size. If load size >= 8,
/// neon opcode will be returned.
static unsigned getLdOpcode(unsigned LdSize, bool IsThumb1, bool IsThumb2) {
if (LdSize >= 8)
return LdSize == 16 ? ARM::VLD1q32wb_fixed
: LdSize == 8 ? ARM::VLD1d32wb_fixed : 0;
if (IsThumb1)
return LdSize == 4 ? ARM::tLDRi
: LdSize == 2 ? ARM::tLDRHi
: LdSize == 1 ? ARM::tLDRBi : 0;
if (IsThumb2)
return LdSize == 4 ? ARM::t2LDR_POST
: LdSize == 2 ? ARM::t2LDRH_POST
: LdSize == 1 ? ARM::t2LDRB_POST : 0;
return LdSize == 4 ? ARM::LDR_POST_IMM
: LdSize == 2 ? ARM::LDRH_POST
: LdSize == 1 ? ARM::LDRB_POST_IMM : 0;
}
/// Return the store opcode for a given store size. If store size >= 8,
/// neon opcode will be returned.
static unsigned getStOpcode(unsigned StSize, bool IsThumb1, bool IsThumb2) {
if (StSize >= 8)
return StSize == 16 ? ARM::VST1q32wb_fixed
: StSize == 8 ? ARM::VST1d32wb_fixed : 0;
if (IsThumb1)
return StSize == 4 ? ARM::tSTRi
: StSize == 2 ? ARM::tSTRHi
: StSize == 1 ? ARM::tSTRBi : 0;
if (IsThumb2)
return StSize == 4 ? ARM::t2STR_POST
: StSize == 2 ? ARM::t2STRH_POST
: StSize == 1 ? ARM::t2STRB_POST : 0;
return StSize == 4 ? ARM::STR_POST_IMM
: StSize == 2 ? ARM::STRH_POST
: StSize == 1 ? ARM::STRB_POST_IMM : 0;
}
/// Emit a post-increment load operation with given size. The instructions
/// will be added to BB at Pos.
static void emitPostLd(MachineBasicBlock *BB, MachineBasicBlock::iterator Pos,
const TargetInstrInfo *TII, const DebugLoc &dl,
unsigned LdSize, unsigned Data, unsigned AddrIn,
unsigned AddrOut, bool IsThumb1, bool IsThumb2) {
unsigned LdOpc = getLdOpcode(LdSize, IsThumb1, IsThumb2);
assert(LdOpc != 0 && "Should have a load opcode");
if (LdSize >= 8) {
BuildMI(*BB, Pos, dl, TII->get(LdOpc), Data)
.addReg(AddrOut, RegState::Define)
.addReg(AddrIn)
.addImm(0)
.add(predOps(ARMCC::AL));
} else if (IsThumb1) {
// load + update AddrIn
BuildMI(*BB, Pos, dl, TII->get(LdOpc), Data)
.addReg(AddrIn)
.addImm(0)
.add(predOps(ARMCC::AL));
BuildMI(*BB, Pos, dl, TII->get(ARM::tADDi8), AddrOut)
.add(t1CondCodeOp())
.addReg(AddrIn)
.addImm(LdSize)
.add(predOps(ARMCC::AL));
} else if (IsThumb2) {
BuildMI(*BB, Pos, dl, TII->get(LdOpc), Data)
.addReg(AddrOut, RegState::Define)
.addReg(AddrIn)
.addImm(LdSize)
.add(predOps(ARMCC::AL));
} else { // arm
BuildMI(*BB, Pos, dl, TII->get(LdOpc), Data)
.addReg(AddrOut, RegState::Define)
.addReg(AddrIn)
.addReg(0)
.addImm(LdSize)
.add(predOps(ARMCC::AL));
}
}
/// Emit a post-increment store operation with given size. The instructions
/// will be added to BB at Pos.
static void emitPostSt(MachineBasicBlock *BB, MachineBasicBlock::iterator Pos,
const TargetInstrInfo *TII, const DebugLoc &dl,
unsigned StSize, unsigned Data, unsigned AddrIn,
unsigned AddrOut, bool IsThumb1, bool IsThumb2) {
unsigned StOpc = getStOpcode(StSize, IsThumb1, IsThumb2);
assert(StOpc != 0 && "Should have a store opcode");
if (StSize >= 8) {
BuildMI(*BB, Pos, dl, TII->get(StOpc), AddrOut)
.addReg(AddrIn)
.addImm(0)
.addReg(Data)
.add(predOps(ARMCC::AL));
} else if (IsThumb1) {
// store + update AddrIn
BuildMI(*BB, Pos, dl, TII->get(StOpc))
.addReg(Data)
.addReg(AddrIn)
.addImm(0)
.add(predOps(ARMCC::AL));
BuildMI(*BB, Pos, dl, TII->get(ARM::tADDi8), AddrOut)
.add(t1CondCodeOp())
.addReg(AddrIn)
.addImm(StSize)
.add(predOps(ARMCC::AL));
} else if (IsThumb2) {
BuildMI(*BB, Pos, dl, TII->get(StOpc), AddrOut)
.addReg(Data)
.addReg(AddrIn)
.addImm(StSize)
.add(predOps(ARMCC::AL));
} else { // arm
BuildMI(*BB, Pos, dl, TII->get(StOpc), AddrOut)
.addReg(Data)
.addReg(AddrIn)
.addReg(0)
.addImm(StSize)
.add(predOps(ARMCC::AL));
}
}
MachineBasicBlock *
ARMTargetLowering::EmitStructByval(MachineInstr &MI,
MachineBasicBlock *BB) const {
// This pseudo instruction has 3 operands: dst, src, size
// We expand it to a loop if size > Subtarget->getMaxInlineSizeThreshold().
// Otherwise, we will generate unrolled scalar copies.
const TargetInstrInfo *TII = Subtarget->getInstrInfo();
const BasicBlock *LLVM_BB = BB->getBasicBlock();
MachineFunction::iterator It = ++BB->getIterator();
Register dest = MI.getOperand(0).getReg();
Register src = MI.getOperand(1).getReg();
unsigned SizeVal = MI.getOperand(2).getImm();
unsigned Alignment = MI.getOperand(3).getImm();
DebugLoc dl = MI.getDebugLoc();
MachineFunction *MF = BB->getParent();
MachineRegisterInfo &MRI = MF->getRegInfo();
unsigned UnitSize = 0;
const TargetRegisterClass *TRC = nullptr;
const TargetRegisterClass *VecTRC = nullptr;
bool IsThumb1 = Subtarget->isThumb1Only();
bool IsThumb2 = Subtarget->isThumb2();
bool IsThumb = Subtarget->isThumb();
if (Alignment & 1) {
UnitSize = 1;
} else if (Alignment & 2) {
UnitSize = 2;
} else {
// Check whether we can use NEON instructions.
if (!MF->getFunction().hasFnAttribute(Attribute::NoImplicitFloat) &&
Subtarget->hasNEON()) {
if ((Alignment % 16 == 0) && SizeVal >= 16)
UnitSize = 16;
else if ((Alignment % 8 == 0) && SizeVal >= 8)
UnitSize = 8;
}
// Can't use NEON instructions.
if (UnitSize == 0)
UnitSize = 4;
}
// Select the correct opcode and register class for unit size load/store
bool IsNeon = UnitSize >= 8;
TRC = IsThumb ? &ARM::tGPRRegClass : &ARM::GPRRegClass;
if (IsNeon)
VecTRC = UnitSize == 16 ? &ARM::DPairRegClass
: UnitSize == 8 ? &ARM::DPRRegClass
: nullptr;
unsigned BytesLeft = SizeVal % UnitSize;
unsigned LoopSize = SizeVal - BytesLeft;
if (SizeVal <= Subtarget->getMaxInlineSizeThreshold()) {
// Use LDR and STR to copy.
// [scratch, srcOut] = LDR_POST(srcIn, UnitSize)
// [destOut] = STR_POST(scratch, destIn, UnitSize)
unsigned srcIn = src;
unsigned destIn = dest;
for (unsigned i = 0; i < LoopSize; i+=UnitSize) {
Register srcOut = MRI.createVirtualRegister(TRC);
Register destOut = MRI.createVirtualRegister(TRC);
Register scratch = MRI.createVirtualRegister(IsNeon ? VecTRC : TRC);
emitPostLd(BB, MI, TII, dl, UnitSize, scratch, srcIn, srcOut,
IsThumb1, IsThumb2);
emitPostSt(BB, MI, TII, dl, UnitSize, scratch, destIn, destOut,
IsThumb1, IsThumb2);
srcIn = srcOut;
destIn = destOut;
}
// Handle the leftover bytes with LDRB and STRB.
// [scratch, srcOut] = LDRB_POST(srcIn, 1)
// [destOut] = STRB_POST(scratch, destIn, 1)
for (unsigned i = 0; i < BytesLeft; i++) {
Register srcOut = MRI.createVirtualRegister(TRC);
Register destOut = MRI.createVirtualRegister(TRC);
Register scratch = MRI.createVirtualRegister(TRC);
emitPostLd(BB, MI, TII, dl, 1, scratch, srcIn, srcOut,
IsThumb1, IsThumb2);
emitPostSt(BB, MI, TII, dl, 1, scratch, destIn, destOut,
IsThumb1, IsThumb2);
srcIn = srcOut;
destIn = destOut;
}
MI.eraseFromParent(); // The instruction is gone now.
return BB;
}
// Expand the pseudo op to a loop.
// thisMBB:
// ...
// movw varEnd, # --> with thumb2
// movt varEnd, #
// ldrcp varEnd, idx --> without thumb2
// fallthrough --> loopMBB
// loopMBB:
// PHI varPhi, varEnd, varLoop
// PHI srcPhi, src, srcLoop
// PHI destPhi, dst, destLoop
// [scratch, srcLoop] = LDR_POST(srcPhi, UnitSize)
// [destLoop] = STR_POST(scratch, destPhi, UnitSize)
// subs varLoop, varPhi, #UnitSize
// bne loopMBB
// fallthrough --> exitMBB
// exitMBB:
// epilogue to handle left-over bytes
// [scratch, srcOut] = LDRB_POST(srcLoop, 1)
// [destOut] = STRB_POST(scratch, destLoop, 1)
MachineBasicBlock *loopMBB = MF->CreateMachineBasicBlock(LLVM_BB);
MachineBasicBlock *exitMBB = MF->CreateMachineBasicBlock(LLVM_BB);
MF->insert(It, loopMBB);
MF->insert(It, exitMBB);
// Transfer the remainder of BB and its successor edges to exitMBB.
exitMBB->splice(exitMBB->begin(), BB,
std::next(MachineBasicBlock::iterator(MI)), BB->end());
exitMBB->transferSuccessorsAndUpdatePHIs(BB);
// Load an immediate to varEnd.
Register varEnd = MRI.createVirtualRegister(TRC);
if (Subtarget->useMovt()) {
unsigned Vtmp = varEnd;
if ((LoopSize & 0xFFFF0000) != 0)
Vtmp = MRI.createVirtualRegister(TRC);
BuildMI(BB, dl, TII->get(IsThumb ? ARM::t2MOVi16 : ARM::MOVi16), Vtmp)
.addImm(LoopSize & 0xFFFF)
.add(predOps(ARMCC::AL));
if ((LoopSize & 0xFFFF0000) != 0)
BuildMI(BB, dl, TII->get(IsThumb ? ARM::t2MOVTi16 : ARM::MOVTi16), varEnd)
.addReg(Vtmp)
.addImm(LoopSize >> 16)
.add(predOps(ARMCC::AL));
} else {
MachineConstantPool *ConstantPool = MF->getConstantPool();
Type *Int32Ty = Type::getInt32Ty(MF->getFunction().getContext());
const Constant *C = ConstantInt::get(Int32Ty, LoopSize);
// MachineConstantPool wants an explicit alignment.
Align Alignment = MF->getDataLayout().getPrefTypeAlign(Int32Ty);
unsigned Idx = ConstantPool->getConstantPoolIndex(C, Alignment);
MachineMemOperand *CPMMO =
MF->getMachineMemOperand(MachinePointerInfo::getConstantPool(*MF),
MachineMemOperand::MOLoad, 4, Align(4));
if (IsThumb)
BuildMI(*BB, MI, dl, TII->get(ARM::tLDRpci))
.addReg(varEnd, RegState::Define)
.addConstantPoolIndex(Idx)
.add(predOps(ARMCC::AL))
.addMemOperand(CPMMO);
else
BuildMI(*BB, MI, dl, TII->get(ARM::LDRcp))
.addReg(varEnd, RegState::Define)
.addConstantPoolIndex(Idx)
.addImm(0)
.add(predOps(ARMCC::AL))
.addMemOperand(CPMMO);
}
BB->addSuccessor(loopMBB);
// Generate the loop body:
// varPhi = PHI(varLoop, varEnd)
// srcPhi = PHI(srcLoop, src)
// destPhi = PHI(destLoop, dst)
MachineBasicBlock *entryBB = BB;
BB = loopMBB;
Register varLoop = MRI.createVirtualRegister(TRC);
Register varPhi = MRI.createVirtualRegister(TRC);
Register srcLoop = MRI.createVirtualRegister(TRC);
Register srcPhi = MRI.createVirtualRegister(TRC);
Register destLoop = MRI.createVirtualRegister(TRC);
Register destPhi = MRI.createVirtualRegister(TRC);
BuildMI(*BB, BB->begin(), dl, TII->get(ARM::PHI), varPhi)
.addReg(varLoop).addMBB(loopMBB)
.addReg(varEnd).addMBB(entryBB);
BuildMI(BB, dl, TII->get(ARM::PHI), srcPhi)
.addReg(srcLoop).addMBB(loopMBB)
.addReg(src).addMBB(entryBB);
BuildMI(BB, dl, TII->get(ARM::PHI), destPhi)
.addReg(destLoop).addMBB(loopMBB)
.addReg(dest).addMBB(entryBB);
// [scratch, srcLoop] = LDR_POST(srcPhi, UnitSize)
// [destLoop] = STR_POST(scratch, destPhi, UnitSiz)
Register scratch = MRI.createVirtualRegister(IsNeon ? VecTRC : TRC);
emitPostLd(BB, BB->end(), TII, dl, UnitSize, scratch, srcPhi, srcLoop,
IsThumb1, IsThumb2);
emitPostSt(BB, BB->end(), TII, dl, UnitSize, scratch, destPhi, destLoop,
IsThumb1, IsThumb2);
// Decrement loop variable by UnitSize.
if (IsThumb1) {
BuildMI(*BB, BB->end(), dl, TII->get(ARM::tSUBi8), varLoop)
.add(t1CondCodeOp())
.addReg(varPhi)
.addImm(UnitSize)
.add(predOps(ARMCC::AL));
} else {
MachineInstrBuilder MIB =
BuildMI(*BB, BB->end(), dl,
TII->get(IsThumb2 ? ARM::t2SUBri : ARM::SUBri), varLoop);
MIB.addReg(varPhi)
.addImm(UnitSize)
.add(predOps(ARMCC::AL))
.add(condCodeOp());
MIB->getOperand(5).setReg(ARM::CPSR);
MIB->getOperand(5).setIsDef(true);
}
BuildMI(*BB, BB->end(), dl,
TII->get(IsThumb1 ? ARM::tBcc : IsThumb2 ? ARM::t2Bcc : ARM::Bcc))
.addMBB(loopMBB).addImm(ARMCC::NE).addReg(ARM::CPSR);
// loopMBB can loop back to loopMBB or fall through to exitMBB.
BB->addSuccessor(loopMBB);
BB->addSuccessor(exitMBB);
// Add epilogue to handle BytesLeft.
BB = exitMBB;
auto StartOfExit = exitMBB->begin();
// [scratch, srcOut] = LDRB_POST(srcLoop, 1)
// [destOut] = STRB_POST(scratch, destLoop, 1)
unsigned srcIn = srcLoop;
unsigned destIn = destLoop;
for (unsigned i = 0; i < BytesLeft; i++) {
Register srcOut = MRI.createVirtualRegister(TRC);
Register destOut = MRI.createVirtualRegister(TRC);
Register scratch = MRI.createVirtualRegister(TRC);
emitPostLd(BB, StartOfExit, TII, dl, 1, scratch, srcIn, srcOut,
IsThumb1, IsThumb2);
emitPostSt(BB, StartOfExit, TII, dl, 1, scratch, destIn, destOut,
IsThumb1, IsThumb2);
srcIn = srcOut;
destIn = destOut;
}
MI.eraseFromParent(); // The instruction is gone now.
return BB;
}
MachineBasicBlock *
ARMTargetLowering::EmitLowered__chkstk(MachineInstr &MI,
MachineBasicBlock *MBB) const {
const TargetMachine &TM = getTargetMachine();
const TargetInstrInfo &TII = *Subtarget->getInstrInfo();
DebugLoc DL = MI.getDebugLoc();
assert(Subtarget->isTargetWindows() &&
"__chkstk is only supported on Windows");
assert(Subtarget->isThumb2() && "Windows on ARM requires Thumb-2 mode");
// __chkstk takes the number of words to allocate on the stack in R4, and
// returns the stack adjustment in number of bytes in R4. This will not
// clober any other registers (other than the obvious lr).
//
// Although, technically, IP should be considered a register which may be
// clobbered, the call itself will not touch it. Windows on ARM is a pure
// thumb-2 environment, so there is no interworking required. As a result, we
// do not expect a veneer to be emitted by the linker, clobbering IP.
//
// Each module receives its own copy of __chkstk, so no import thunk is
// required, again, ensuring that IP is not clobbered.
//
// Finally, although some linkers may theoretically provide a trampoline for
// out of range calls (which is quite common due to a 32M range limitation of
// branches for Thumb), we can generate the long-call version via
// -mcmodel=large, alleviating the need for the trampoline which may clobber
// IP.
switch (TM.getCodeModel()) {
case CodeModel::Tiny:
llvm_unreachable("Tiny code model not available on ARM.");
case CodeModel::Small:
case CodeModel::Medium:
case CodeModel::Kernel:
BuildMI(*MBB, MI, DL, TII.get(ARM::tBL))
.add(predOps(ARMCC::AL))
.addExternalSymbol("__chkstk")
.addReg(ARM::R4, RegState::Implicit | RegState::Kill)
.addReg(ARM::R4, RegState::Implicit | RegState::Define)
.addReg(ARM::R12,
RegState::Implicit | RegState::Define | RegState::Dead)
.addReg(ARM::CPSR,
RegState::Implicit | RegState::Define | RegState::Dead);
break;
case CodeModel::Large: {
MachineRegisterInfo &MRI = MBB->getParent()->getRegInfo();
Register Reg = MRI.createVirtualRegister(&ARM::rGPRRegClass);
BuildMI(*MBB, MI, DL, TII.get(ARM::t2MOVi32imm), Reg)
.addExternalSymbol("__chkstk");
BuildMI(*MBB, MI, DL, TII.get(gettBLXrOpcode(*MBB->getParent())))
.add(predOps(ARMCC::AL))
.addReg(Reg, RegState::Kill)
.addReg(ARM::R4, RegState::Implicit | RegState::Kill)
.addReg(ARM::R4, RegState::Implicit | RegState::Define)
.addReg(ARM::R12,
RegState::Implicit | RegState::Define | RegState::Dead)
.addReg(ARM::CPSR,
RegState::Implicit | RegState::Define | RegState::Dead);
break;
}
}
BuildMI(*MBB, MI, DL, TII.get(ARM::t2SUBrr), ARM::SP)
.addReg(ARM::SP, RegState::Kill)
.addReg(ARM::R4, RegState::Kill)
.setMIFlags(MachineInstr::FrameSetup)
.add(predOps(ARMCC::AL))
.add(condCodeOp());
MI.eraseFromParent();
return MBB;
}
MachineBasicBlock *
ARMTargetLowering::EmitLowered__dbzchk(MachineInstr &MI,
MachineBasicBlock *MBB) const {
DebugLoc DL = MI.getDebugLoc();
MachineFunction *MF = MBB->getParent();
const TargetInstrInfo *TII = Subtarget->getInstrInfo();
MachineBasicBlock *ContBB = MF->CreateMachineBasicBlock();
MF->insert(++MBB->getIterator(), ContBB);
ContBB->splice(ContBB->begin(), MBB,
std::next(MachineBasicBlock::iterator(MI)), MBB->end());
ContBB->transferSuccessorsAndUpdatePHIs(MBB);
MBB->addSuccessor(ContBB);
MachineBasicBlock *TrapBB = MF->CreateMachineBasicBlock();
BuildMI(TrapBB, DL, TII->get(ARM::t__brkdiv0));
MF->push_back(TrapBB);
MBB->addSuccessor(TrapBB);
BuildMI(*MBB, MI, DL, TII->get(ARM::tCMPi8))
.addReg(MI.getOperand(0).getReg())
.addImm(0)
.add(predOps(ARMCC::AL));
BuildMI(*MBB, MI, DL, TII->get(ARM::t2Bcc))
.addMBB(TrapBB)
.addImm(ARMCC::EQ)
.addReg(ARM::CPSR);
MI.eraseFromParent();
return ContBB;
}
// The CPSR operand of SelectItr might be missing a kill marker
// because there were multiple uses of CPSR, and ISel didn't know
// which to mark. Figure out whether SelectItr should have had a
// kill marker, and set it if it should. Returns the correct kill
// marker value.
static bool checkAndUpdateCPSRKill(MachineBasicBlock::iterator SelectItr,
MachineBasicBlock* BB,
const TargetRegisterInfo* TRI) {
// Scan forward through BB for a use/def of CPSR.
MachineBasicBlock::iterator miI(std::next(SelectItr));
for (MachineBasicBlock::iterator miE = BB->end(); miI != miE; ++miI) {
const MachineInstr& mi = *miI;
if (mi.readsRegister(ARM::CPSR))
return false;
if (mi.definesRegister(ARM::CPSR))
break; // Should have kill-flag - update below.
}
// If we hit the end of the block, check whether CPSR is live into a
// successor.
if (miI == BB->end()) {
for (MachineBasicBlock *Succ : BB->successors())
if (Succ->isLiveIn(ARM::CPSR))
return false;
}
// We found a def, or hit the end of the basic block and CPSR wasn't live
// out. SelectMI should have a kill flag on CPSR.
SelectItr->addRegisterKilled(ARM::CPSR, TRI);
return true;
}
/// Adds logic in loop entry MBB to calculate loop iteration count and adds
/// t2WhileLoopSetup and t2WhileLoopStart to generate WLS loop
static Register genTPEntry(MachineBasicBlock *TpEntry,
MachineBasicBlock *TpLoopBody,
MachineBasicBlock *TpExit, Register OpSizeReg,
const TargetInstrInfo *TII, DebugLoc Dl,
MachineRegisterInfo &MRI) {
// Calculates loop iteration count = ceil(n/16) = (n + 15) >> 4.
Register AddDestReg = MRI.createVirtualRegister(&ARM::rGPRRegClass);
BuildMI(TpEntry, Dl, TII->get(ARM::t2ADDri), AddDestReg)
.addUse(OpSizeReg)
.addImm(15)
.add(predOps(ARMCC::AL))
.addReg(0);
Register LsrDestReg = MRI.createVirtualRegister(&ARM::rGPRRegClass);
BuildMI(TpEntry, Dl, TII->get(ARM::t2LSRri), LsrDestReg)
.addUse(AddDestReg, RegState::Kill)
.addImm(4)
.add(predOps(ARMCC::AL))
.addReg(0);
Register TotalIterationsReg = MRI.createVirtualRegister(&ARM::GPRlrRegClass);
BuildMI(TpEntry, Dl, TII->get(ARM::t2WhileLoopSetup), TotalIterationsReg)
.addUse(LsrDestReg, RegState::Kill);
BuildMI(TpEntry, Dl, TII->get(ARM::t2WhileLoopStart))
.addUse(TotalIterationsReg)
.addMBB(TpExit);
BuildMI(TpEntry, Dl, TII->get(ARM::t2B))
.addMBB(TpLoopBody)
.add(predOps(ARMCC::AL));
return TotalIterationsReg;
}
/// Adds logic in the loopBody MBB to generate MVE_VCTP, t2DoLoopDec and
/// t2DoLoopEnd. These are used by later passes to generate tail predicated
/// loops.
static void genTPLoopBody(MachineBasicBlock *TpLoopBody,
MachineBasicBlock *TpEntry, MachineBasicBlock *TpExit,
const TargetInstrInfo *TII, DebugLoc Dl,
MachineRegisterInfo &MRI, Register OpSrcReg,
Register OpDestReg, Register ElementCountReg,
Register TotalIterationsReg, bool IsMemcpy) {
// First insert 4 PHI nodes for: Current pointer to Src (if memcpy), Dest
// array, loop iteration counter, predication counter.
Register SrcPhiReg, CurrSrcReg;
if (IsMemcpy) {
// Current position in the src array
SrcPhiReg = MRI.createVirtualRegister(&ARM::rGPRRegClass);
CurrSrcReg = MRI.createVirtualRegister(&ARM::rGPRRegClass);
BuildMI(TpLoopBody, Dl, TII->get(ARM::PHI), SrcPhiReg)
.addUse(OpSrcReg)
.addMBB(TpEntry)
.addUse(CurrSrcReg)
.addMBB(TpLoopBody);
}
// Current position in the dest array
Register DestPhiReg = MRI.createVirtualRegister(&ARM::rGPRRegClass);
Register CurrDestReg = MRI.createVirtualRegister(&ARM::rGPRRegClass);
BuildMI(TpLoopBody, Dl, TII->get(ARM::PHI), DestPhiReg)
.addUse(OpDestReg)
.addMBB(TpEntry)
.addUse(CurrDestReg)
.addMBB(TpLoopBody);
// Current loop counter
Register LoopCounterPhiReg = MRI.createVirtualRegister(&ARM::GPRlrRegClass);
Register RemainingLoopIterationsReg =
MRI.createVirtualRegister(&ARM::GPRlrRegClass);
BuildMI(TpLoopBody, Dl, TII->get(ARM::PHI), LoopCounterPhiReg)
.addUse(TotalIterationsReg)
.addMBB(TpEntry)
.addUse(RemainingLoopIterationsReg)
.addMBB(TpLoopBody);
// Predication counter
Register PredCounterPhiReg = MRI.createVirtualRegister(&ARM::rGPRRegClass);
Register RemainingElementsReg = MRI.createVirtualRegister(&ARM::rGPRRegClass);
BuildMI(TpLoopBody, Dl, TII->get(ARM::PHI), PredCounterPhiReg)
.addUse(ElementCountReg)
.addMBB(TpEntry)
.addUse(RemainingElementsReg)
.addMBB(TpLoopBody);
// Pass predication counter to VCTP
Register VccrReg = MRI.createVirtualRegister(&ARM::VCCRRegClass);
BuildMI(TpLoopBody, Dl, TII->get(ARM::MVE_VCTP8), VccrReg)
.addUse(PredCounterPhiReg)
.addImm(ARMVCC::None)
.addReg(0)
.addReg(0);
BuildMI(TpLoopBody, Dl, TII->get(ARM::t2SUBri), RemainingElementsReg)
.addUse(PredCounterPhiReg)
.addImm(16)
.add(predOps(ARMCC::AL))
.addReg(0);
// VLDRB (only if memcpy) and VSTRB instructions, predicated using VPR
Register SrcValueReg;
if (IsMemcpy) {
SrcValueReg = MRI.createVirtualRegister(&ARM::MQPRRegClass);
BuildMI(TpLoopBody, Dl, TII->get(ARM::MVE_VLDRBU8_post))
.addDef(CurrSrcReg)
.addDef(SrcValueReg)
.addReg(SrcPhiReg)
.addImm(16)
.addImm(ARMVCC::Then)
.addUse(VccrReg)
.addReg(0);
} else
SrcValueReg = OpSrcReg;
BuildMI(TpLoopBody, Dl, TII->get(ARM::MVE_VSTRBU8_post))
.addDef(CurrDestReg)
.addUse(SrcValueReg)
.addReg(DestPhiReg)
.addImm(16)
.addImm(ARMVCC::Then)
.addUse(VccrReg)
.addReg(0);
// Add the pseudoInstrs for decrementing the loop counter and marking the
// end:t2DoLoopDec and t2DoLoopEnd
BuildMI(TpLoopBody, Dl, TII->get(ARM::t2LoopDec), RemainingLoopIterationsReg)
.addUse(LoopCounterPhiReg)
.addImm(1);
BuildMI(TpLoopBody, Dl, TII->get(ARM::t2LoopEnd))
.addUse(RemainingLoopIterationsReg)
.addMBB(TpLoopBody);
BuildMI(TpLoopBody, Dl, TII->get(ARM::t2B))
.addMBB(TpExit)
.add(predOps(ARMCC::AL));
}
MachineBasicBlock *
ARMTargetLowering::EmitInstrWithCustomInserter(MachineInstr &MI,
MachineBasicBlock *BB) const {
const TargetInstrInfo *TII = Subtarget->getInstrInfo();
DebugLoc dl = MI.getDebugLoc();
bool isThumb2 = Subtarget->isThumb2();
switch (MI.getOpcode()) {
default: {
MI.print(errs());
llvm_unreachable("Unexpected instr type to insert");
}
// Thumb1 post-indexed loads are really just single-register LDMs.
case ARM::tLDR_postidx: {
MachineOperand Def(MI.getOperand(1));
BuildMI(*BB, MI, dl, TII->get(ARM::tLDMIA_UPD))
.add(Def) // Rn_wb
.add(MI.getOperand(2)) // Rn
.add(MI.getOperand(3)) // PredImm
.add(MI.getOperand(4)) // PredReg
.add(MI.getOperand(0)) // Rt
.cloneMemRefs(MI);
MI.eraseFromParent();
return BB;
}
case ARM::MVE_MEMCPYLOOPINST:
case ARM::MVE_MEMSETLOOPINST: {
// Transformation below expands MVE_MEMCPYLOOPINST/MVE_MEMSETLOOPINST Pseudo
// into a Tail Predicated (TP) Loop. It adds the instructions to calculate
// the iteration count =ceil(size_in_bytes/16)) in the TP entry block and
// adds the relevant instructions in the TP loop Body for generation of a
// WLSTP loop.
// Below is relevant portion of the CFG after the transformation.
// The Machine Basic Blocks are shown along with branch conditions (in
// brackets). Note that TP entry/exit MBBs depict the entry/exit of this
// portion of the CFG and may not necessarily be the entry/exit of the
// function.
// (Relevant) CFG after transformation:
// TP entry MBB
// |
// |-----------------|
// (n <= 0) (n > 0)
// | |
// | TP loop Body MBB<--|
// | | |
// \ |___________|
// \ /
// TP exit MBB
MachineFunction *MF = BB->getParent();
MachineFunctionProperties &Properties = MF->getProperties();
MachineRegisterInfo &MRI = MF->getRegInfo();
Register OpDestReg = MI.getOperand(0).getReg();
Register OpSrcReg = MI.getOperand(1).getReg();
Register OpSizeReg = MI.getOperand(2).getReg();
// Allocate the required MBBs and add to parent function.
MachineBasicBlock *TpEntry = BB;
MachineBasicBlock *TpLoopBody = MF->CreateMachineBasicBlock();
MachineBasicBlock *TpExit;
MF->push_back(TpLoopBody);
// If any instructions are present in the current block after
// MVE_MEMCPYLOOPINST or MVE_MEMSETLOOPINST, split the current block and
// move the instructions into the newly created exit block. If there are no
// instructions add an explicit branch to the FallThrough block and then
// split.
//
// The split is required for two reasons:
// 1) A terminator(t2WhileLoopStart) will be placed at that site.
// 2) Since a TPLoopBody will be added later, any phis in successive blocks
// need to be updated. splitAt() already handles this.
TpExit = BB->splitAt(MI, false);
if (TpExit == BB) {
assert(BB->canFallThrough() && "Exit Block must be Fallthrough of the "
"block containing memcpy/memset Pseudo");
TpExit = BB->getFallThrough();
BuildMI(BB, dl, TII->get(ARM::t2B))
.addMBB(TpExit)
.add(predOps(ARMCC::AL));
TpExit = BB->splitAt(MI, false);
}
// Add logic for iteration count
Register TotalIterationsReg =
genTPEntry(TpEntry, TpLoopBody, TpExit, OpSizeReg, TII, dl, MRI);
// Add the vectorized (and predicated) loads/store instructions
bool IsMemcpy = MI.getOpcode() == ARM::MVE_MEMCPYLOOPINST;
genTPLoopBody(TpLoopBody, TpEntry, TpExit, TII, dl, MRI, OpSrcReg,
OpDestReg, OpSizeReg, TotalIterationsReg, IsMemcpy);
// Required to avoid conflict with the MachineVerifier during testing.
Properties.reset(MachineFunctionProperties::Property::NoPHIs);
// Connect the blocks
TpEntry->addSuccessor(TpLoopBody);
TpLoopBody->addSuccessor(TpLoopBody);
TpLoopBody->addSuccessor(TpExit);
// Reorder for a more natural layout
TpLoopBody->moveAfter(TpEntry);
TpExit->moveAfter(TpLoopBody);
// Finally, remove the memcpy Psuedo Instruction
MI.eraseFromParent();
// Return the exit block as it may contain other instructions requiring a
// custom inserter
return TpExit;
}
// The Thumb2 pre-indexed stores have the same MI operands, they just
// define them differently in the .td files from the isel patterns, so
// they need pseudos.
case ARM::t2STR_preidx:
MI.setDesc(TII->get(ARM::t2STR_PRE));
return BB;
case ARM::t2STRB_preidx:
MI.setDesc(TII->get(ARM::t2STRB_PRE));
return BB;
case ARM::t2STRH_preidx:
MI.setDesc(TII->get(ARM::t2STRH_PRE));
return BB;
case ARM::STRi_preidx:
case ARM::STRBi_preidx: {
unsigned NewOpc = MI.getOpcode() == ARM::STRi_preidx ? ARM::STR_PRE_IMM
: ARM::STRB_PRE_IMM;
// Decode the offset.
unsigned Offset = MI.getOperand(4).getImm();
bool isSub = ARM_AM::getAM2Op(Offset) == ARM_AM::sub;
Offset = ARM_AM::getAM2Offset(Offset);
if (isSub)
Offset = -Offset;
MachineMemOperand *MMO = *MI.memoperands_begin();
BuildMI(*BB, MI, dl, TII->get(NewOpc))
.add(MI.getOperand(0)) // Rn_wb
.add(MI.getOperand(1)) // Rt
.add(MI.getOperand(2)) // Rn
.addImm(Offset) // offset (skip GPR==zero_reg)
.add(MI.getOperand(5)) // pred
.add(MI.getOperand(6))
.addMemOperand(MMO);
MI.eraseFromParent();
return BB;
}
case ARM::STRr_preidx:
case ARM::STRBr_preidx:
case ARM::STRH_preidx: {
unsigned NewOpc;
switch (MI.getOpcode()) {
default: llvm_unreachable("unexpected opcode!");
case ARM::STRr_preidx: NewOpc = ARM::STR_PRE_REG; break;
case ARM::STRBr_preidx: NewOpc = ARM::STRB_PRE_REG; break;
case ARM::STRH_preidx: NewOpc = ARM::STRH_PRE; break;
}
MachineInstrBuilder MIB = BuildMI(*BB, MI, dl, TII->get(NewOpc));
for (const MachineOperand &MO : MI.operands())
MIB.add(MO);
MI.eraseFromParent();
return BB;
}
case ARM::tMOVCCr_pseudo: {
// To "insert" a SELECT_CC instruction, we actually have to insert the
// diamond control-flow pattern. The incoming instruction knows the
// destination vreg to set, the condition code register to branch on, the
// true/false values to select between, and a branch opcode to use.
const BasicBlock *LLVM_BB = BB->getBasicBlock();
MachineFunction::iterator It = ++BB->getIterator();
// thisMBB:
// ...
// TrueVal = ...
// cmpTY ccX, r1, r2
// bCC copy1MBB
// fallthrough --> copy0MBB
MachineBasicBlock *thisMBB = BB;
MachineFunction *F = BB->getParent();
MachineBasicBlock *copy0MBB = F->CreateMachineBasicBlock(LLVM_BB);
MachineBasicBlock *sinkMBB = F->CreateMachineBasicBlock(LLVM_BB);
F->insert(It, copy0MBB);
F->insert(It, sinkMBB);
// Check whether CPSR is live past the tMOVCCr_pseudo.
const TargetRegisterInfo *TRI = Subtarget->getRegisterInfo();
if (!MI.killsRegister(ARM::CPSR) &&
!checkAndUpdateCPSRKill(MI, thisMBB, TRI)) {
copy0MBB->addLiveIn(ARM::CPSR);
sinkMBB->addLiveIn(ARM::CPSR);
}
// Transfer the remainder of BB and its successor edges to sinkMBB.
sinkMBB->splice(sinkMBB->begin(), BB,
std::next(MachineBasicBlock::iterator(MI)), BB->end());
sinkMBB->transferSuccessorsAndUpdatePHIs(BB);
BB->addSuccessor(copy0MBB);
BB->addSuccessor(sinkMBB);
BuildMI(BB, dl, TII->get(ARM::tBcc))
.addMBB(sinkMBB)
.addImm(MI.getOperand(3).getImm())
.addReg(MI.getOperand(4).getReg());
// copy0MBB:
// %FalseValue = ...
// # fallthrough to sinkMBB
BB = copy0MBB;
// Update machine-CFG edges
BB->addSuccessor(sinkMBB);
// sinkMBB:
// %Result = phi [ %FalseValue, copy0MBB ], [ %TrueValue, thisMBB ]
// ...
BB = sinkMBB;
BuildMI(*BB, BB->begin(), dl, TII->get(ARM::PHI), MI.getOperand(0).getReg())
.addReg(MI.getOperand(1).getReg())
.addMBB(copy0MBB)
.addReg(MI.getOperand(2).getReg())
.addMBB(thisMBB);
MI.eraseFromParent(); // The pseudo instruction is gone now.
return BB;
}
case ARM::BCCi64:
case ARM::BCCZi64: {
// If there is an unconditional branch to the other successor, remove it.
BB->erase(std::next(MachineBasicBlock::iterator(MI)), BB->end());
// Compare both parts that make up the double comparison separately for
// equality.
bool RHSisZero = MI.getOpcode() == ARM::BCCZi64;
Register LHS1 = MI.getOperand(1).getReg();
Register LHS2 = MI.getOperand(2).getReg();
if (RHSisZero) {
BuildMI(BB, dl, TII->get(isThumb2 ? ARM::t2CMPri : ARM::CMPri))
.addReg(LHS1)
.addImm(0)
.add(predOps(ARMCC::AL));
BuildMI(BB, dl, TII->get(isThumb2 ? ARM::t2CMPri : ARM::CMPri))
.addReg(LHS2).addImm(0)
.addImm(ARMCC::EQ).addReg(ARM::CPSR);
} else {
Register RHS1 = MI.getOperand(3).getReg();
Register RHS2 = MI.getOperand(4).getReg();
BuildMI(BB, dl, TII->get(isThumb2 ? ARM::t2CMPrr : ARM::CMPrr))
.addReg(LHS1)
.addReg(RHS1)
.add(predOps(ARMCC::AL));
BuildMI(BB, dl, TII->get(isThumb2 ? ARM::t2CMPrr : ARM::CMPrr))
.addReg(LHS2).addReg(RHS2)
.addImm(ARMCC::EQ).addReg(ARM::CPSR);
}
MachineBasicBlock *destMBB = MI.getOperand(RHSisZero ? 3 : 5).getMBB();
MachineBasicBlock *exitMBB = OtherSucc(BB, destMBB);
if (MI.getOperand(0).getImm() == ARMCC::NE)
std::swap(destMBB, exitMBB);
BuildMI(BB, dl, TII->get(isThumb2 ? ARM::t2Bcc : ARM::Bcc))
.addMBB(destMBB).addImm(ARMCC::EQ).addReg(ARM::CPSR);
if (isThumb2)
BuildMI(BB, dl, TII->get(ARM::t2B))
.addMBB(exitMBB)
.add(predOps(ARMCC::AL));
else
BuildMI(BB, dl, TII->get(ARM::B)) .addMBB(exitMBB);
MI.eraseFromParent(); // The pseudo instruction is gone now.
return BB;
}
case ARM::Int_eh_sjlj_setjmp:
case ARM::Int_eh_sjlj_setjmp_nofp:
case ARM::tInt_eh_sjlj_setjmp:
case ARM::t2Int_eh_sjlj_setjmp:
case ARM::t2Int_eh_sjlj_setjmp_nofp:
return BB;
case ARM::Int_eh_sjlj_setup_dispatch:
EmitSjLjDispatchBlock(MI, BB);
return BB;
case ARM::ABS:
case ARM::t2ABS: {
// To insert an ABS instruction, we have to insert the
// diamond control-flow pattern. The incoming instruction knows the
// source vreg to test against 0, the destination vreg to set,
// the condition code register to branch on, the
// true/false values to select between, and a branch opcode to use.
// It transforms
// V1 = ABS V0
// into
// V2 = MOVS V0
// BCC (branch to SinkBB if V0 >= 0)
// RSBBB: V3 = RSBri V2, 0 (compute ABS if V2 < 0)
// SinkBB: V1 = PHI(V2, V3)
const BasicBlock *LLVM_BB = BB->getBasicBlock();
MachineFunction::iterator BBI = ++BB->getIterator();
MachineFunction *Fn = BB->getParent();
MachineBasicBlock *RSBBB = Fn->CreateMachineBasicBlock(LLVM_BB);
MachineBasicBlock *SinkBB = Fn->CreateMachineBasicBlock(LLVM_BB);
Fn->insert(BBI, RSBBB);
Fn->insert(BBI, SinkBB);
Register ABSSrcReg = MI.getOperand(1).getReg();
Register ABSDstReg = MI.getOperand(0).getReg();
bool ABSSrcKIll = MI.getOperand(1).isKill();
bool isThumb2 = Subtarget->isThumb2();
MachineRegisterInfo &MRI = Fn->getRegInfo();
// In Thumb mode S must not be specified if source register is the SP or
// PC and if destination register is the SP, so restrict register class
Register NewRsbDstReg = MRI.createVirtualRegister(
isThumb2 ? &ARM::rGPRRegClass : &ARM::GPRRegClass);
// Transfer the remainder of BB and its successor edges to sinkMBB.
SinkBB->splice(SinkBB->begin(), BB,
std::next(MachineBasicBlock::iterator(MI)), BB->end());
SinkBB->transferSuccessorsAndUpdatePHIs(BB);
BB->addSuccessor(RSBBB);
BB->addSuccessor(SinkBB);
// fall through to SinkMBB
RSBBB->addSuccessor(SinkBB);
// insert a cmp at the end of BB
BuildMI(BB, dl, TII->get(isThumb2 ? ARM::t2CMPri : ARM::CMPri))
.addReg(ABSSrcReg)
.addImm(0)
.add(predOps(ARMCC::AL));
// insert a bcc with opposite CC to ARMCC::MI at the end of BB
BuildMI(BB, dl,
TII->get(isThumb2 ? ARM::t2Bcc : ARM::Bcc)).addMBB(SinkBB)
.addImm(ARMCC::getOppositeCondition(ARMCC::MI)).addReg(ARM::CPSR);
// insert rsbri in RSBBB
// Note: BCC and rsbri will be converted into predicated rsbmi
// by if-conversion pass
BuildMI(*RSBBB, RSBBB->begin(), dl,
TII->get(isThumb2 ? ARM::t2RSBri : ARM::RSBri), NewRsbDstReg)
.addReg(ABSSrcReg, ABSSrcKIll ? RegState::Kill : 0)
.addImm(0)
.add(predOps(ARMCC::AL))
.add(condCodeOp());
// insert PHI in SinkBB,
// reuse ABSDstReg to not change uses of ABS instruction
BuildMI(*SinkBB, SinkBB->begin(), dl,
TII->get(ARM::PHI), ABSDstReg)
.addReg(NewRsbDstReg).addMBB(RSBBB)
.addReg(ABSSrcReg).addMBB(BB);
// remove ABS instruction
MI.eraseFromParent();
// return last added BB
return SinkBB;
}
case ARM::COPY_STRUCT_BYVAL_I32:
++NumLoopByVals;
return EmitStructByval(MI, BB);
case ARM::WIN__CHKSTK: