[analyzer] Remove some false negatives in StackAddrEscapeChecker (#125638)

Fixes https://github.com/llvm/llvm-project/issues/123459.

Previously, when the StackAddrEscapeChecker checked return values, it
did not scan into the structure of the return SVal. Now it does, and we
can catch some more false negatives that were already mocked out in the
tests in addition to those mentioned in
https://github.com/llvm/llvm-project/issues/123459.

The warning message at the moment for these newly caught leaks is not
great. I think they would be better if they had a better trace of why
and how the region leaks. If y'all are happy with these changes, I would
try to improve these warnings and work on normalizing this SVal checking
on the `checkEndFunction` side of the checker also.

Two of the stack address leak test cases now have two warnings, one
warning from return expression checking and another from`
checkEndFunction` `iterBindings` checking. For these two cases, I prefer
the warnings from the return expression checking, but I couldn't figure
out a way to drop the `checkEndFunction` without breaking other
`checkEndFunction` warnings that we do want. Thoughts here?
5 files changed
tree: 5a2b2a0aa4356ba31e6ebf94c149a7137a15b907
  1. .ci/
  2. .github/
  3. bolt/
  4. clang/
  5. clang-tools-extra/
  6. cmake/
  7. compiler-rt/
  8. cross-project-tests/
  9. flang/
  10. libc/
  11. libclc/
  12. libcxx/
  13. libcxxabi/
  14. libunwind/
  15. lld/
  16. lldb/
  17. llvm/
  18. llvm-libgcc/
  19. mlir/
  20. offload/
  21. openmp/
  22. polly/
  23. pstl/
  24. runtimes/
  25. third-party/
  26. utils/
  27. .clang-format
  28. .clang-tidy
  29. .git-blame-ignore-revs
  30. .gitattributes
  31. .gitignore
  32. .mailmap
  33. CODE_OF_CONDUCT.md
  34. CONTRIBUTING.md
  35. LICENSE.TXT
  36. pyproject.toml
  37. README.md
  38. SECURITY.md
README.md

The LLVM Compiler Infrastructure

OpenSSF Scorecard OpenSSF Best Practices libc++

Welcome to the LLVM project!

This repository contains the source code for LLVM, a toolkit for the construction of highly optimized compilers, optimizers, and run-time environments.

The LLVM project has multiple components. The core of the project is itself called “LLVM”. This contains all of the tools, libraries, and header files needed to process intermediate representations and convert them into object files. Tools include an assembler, disassembler, bitcode analyzer, and bitcode optimizer.

C-like languages use the Clang frontend. This component compiles C, C++, Objective-C, and Objective-C++ code into LLVM bitcode -- and from there into object files, using LLVM.

Other components include: the libc++ C++ standard library, the LLD linker, and more.

Getting the Source Code and Building LLVM

Consult the Getting Started with LLVM page for information on building and running LLVM.

For information on how to contribute to the LLVM project, please take a look at the Contributing to LLVM guide.

Getting in touch

Join the LLVM Discourse forums, Discord chat, LLVM Office Hours or Regular sync-ups.

The LLVM project has adopted a code of conduct for participants to all modes of communication within the project.