| //===- X86_64.cpp ---------------------------------------------------------===// |
| // |
| // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
| // See https://llvm.org/LICENSE.txt for license information. |
| // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
| // |
| //===----------------------------------------------------------------------===// |
| |
| #include "InputFiles.h" |
| #include "OutputSections.h" |
| #include "Symbols.h" |
| #include "SyntheticSections.h" |
| #include "Target.h" |
| #include "lld/Common/ErrorHandler.h" |
| #include "llvm/Object/ELF.h" |
| #include "llvm/Support/Endian.h" |
| |
| using namespace llvm; |
| using namespace llvm::object; |
| using namespace llvm::support::endian; |
| using namespace llvm::ELF; |
| using namespace lld; |
| using namespace lld::elf; |
| |
| namespace { |
| class X86_64 : public TargetInfo { |
| public: |
| X86_64(); |
| int getTlsGdRelaxSkip(RelType type) const override; |
| RelExpr getRelExpr(RelType type, const Symbol &s, |
| const uint8_t *loc) const override; |
| RelType getDynRel(RelType type) const override; |
| void writeGotPltHeader(uint8_t *buf) const override; |
| void writeGotPlt(uint8_t *buf, const Symbol &s) const override; |
| void writeIgotPlt(uint8_t *buf, const Symbol &s) const override; |
| void writePltHeader(uint8_t *buf) const override; |
| void writePlt(uint8_t *buf, const Symbol &sym, |
| uint64_t pltEntryAddr) const override; |
| void relocate(uint8_t *loc, const Relocation &rel, |
| uint64_t val) const override; |
| int64_t getImplicitAddend(const uint8_t *buf, RelType type) const override; |
| void applyJumpInstrMod(uint8_t *loc, JumpModType type, |
| unsigned size) const override; |
| |
| RelExpr adjustGotPcExpr(RelType type, int64_t addend, |
| const uint8_t *loc) const override; |
| void relaxGot(uint8_t *loc, const Relocation &rel, |
| uint64_t val) const override; |
| void relaxTlsGdToIe(uint8_t *loc, const Relocation &rel, |
| uint64_t val) const override; |
| void relaxTlsGdToLe(uint8_t *loc, const Relocation &rel, |
| uint64_t val) const override; |
| void relaxTlsIeToLe(uint8_t *loc, const Relocation &rel, |
| uint64_t val) const override; |
| void relaxTlsLdToLe(uint8_t *loc, const Relocation &rel, |
| uint64_t val) const override; |
| bool adjustPrologueForCrossSplitStack(uint8_t *loc, uint8_t *end, |
| uint8_t stOther) const override; |
| bool deleteFallThruJmpInsn(InputSection &is, InputFile *file, |
| InputSection *nextIS) const override; |
| }; |
| } // namespace |
| |
| // This is vector of NOP instructions of sizes from 1 to 8 bytes. The |
| // appropriately sized instructions are used to fill the gaps between sections |
| // which are executed during fall through. |
| static const std::vector<std::vector<uint8_t>> nopInstructions = { |
| {0x90}, |
| {0x66, 0x90}, |
| {0x0f, 0x1f, 0x00}, |
| {0x0f, 0x1f, 0x40, 0x00}, |
| {0x0f, 0x1f, 0x44, 0x00, 0x00}, |
| {0x66, 0x0f, 0x1f, 0x44, 0x00, 0x00}, |
| {0x0F, 0x1F, 0x80, 0x00, 0x00, 0x00, 0x00}, |
| {0x0F, 0x1F, 0x84, 0x00, 0x00, 0x00, 0x00, 0x00}, |
| {0x66, 0x0F, 0x1F, 0x84, 0x00, 0x00, 0x00, 0x00, 0x00}}; |
| |
| X86_64::X86_64() { |
| copyRel = R_X86_64_COPY; |
| gotRel = R_X86_64_GLOB_DAT; |
| pltRel = R_X86_64_JUMP_SLOT; |
| relativeRel = R_X86_64_RELATIVE; |
| iRelativeRel = R_X86_64_IRELATIVE; |
| symbolicRel = R_X86_64_64; |
| tlsDescRel = R_X86_64_TLSDESC; |
| tlsGotRel = R_X86_64_TPOFF64; |
| tlsModuleIndexRel = R_X86_64_DTPMOD64; |
| tlsOffsetRel = R_X86_64_DTPOFF64; |
| gotBaseSymInGotPlt = true; |
| gotEntrySize = 8; |
| pltHeaderSize = 16; |
| pltEntrySize = 16; |
| ipltEntrySize = 16; |
| trapInstr = {0xcc, 0xcc, 0xcc, 0xcc}; // 0xcc = INT3 |
| nopInstrs = nopInstructions; |
| |
| // Align to the large page size (known as a superpage or huge page). |
| // FreeBSD automatically promotes large, superpage-aligned allocations. |
| defaultImageBase = 0x200000; |
| } |
| |
| int X86_64::getTlsGdRelaxSkip(RelType type) const { |
| // TLSDESC relocations are processed separately. See relaxTlsGdToLe below. |
| return type == R_X86_64_GOTPC32_TLSDESC || type == R_X86_64_TLSDESC_CALL ? 1 |
| : 2; |
| } |
| |
| // Opcodes for the different X86_64 jmp instructions. |
| enum JmpInsnOpcode : uint32_t { |
| J_JMP_32, |
| J_JNE_32, |
| J_JE_32, |
| J_JG_32, |
| J_JGE_32, |
| J_JB_32, |
| J_JBE_32, |
| J_JL_32, |
| J_JLE_32, |
| J_JA_32, |
| J_JAE_32, |
| J_UNKNOWN, |
| }; |
| |
| // Given the first (optional) and second byte of the insn's opcode, this |
| // returns the corresponding enum value. |
| static JmpInsnOpcode getJmpInsnType(const uint8_t *first, |
| const uint8_t *second) { |
| if (*second == 0xe9) |
| return J_JMP_32; |
| |
| if (first == nullptr) |
| return J_UNKNOWN; |
| |
| if (*first == 0x0f) { |
| switch (*second) { |
| case 0x84: |
| return J_JE_32; |
| case 0x85: |
| return J_JNE_32; |
| case 0x8f: |
| return J_JG_32; |
| case 0x8d: |
| return J_JGE_32; |
| case 0x82: |
| return J_JB_32; |
| case 0x86: |
| return J_JBE_32; |
| case 0x8c: |
| return J_JL_32; |
| case 0x8e: |
| return J_JLE_32; |
| case 0x87: |
| return J_JA_32; |
| case 0x83: |
| return J_JAE_32; |
| } |
| } |
| return J_UNKNOWN; |
| } |
| |
| // Return the relocation index for input section IS with a specific Offset. |
| // Returns the maximum size of the vector if no such relocation is found. |
| static unsigned getRelocationWithOffset(const InputSection &is, |
| uint64_t offset) { |
| unsigned size = is.relocations.size(); |
| for (unsigned i = size - 1; i + 1 > 0; --i) { |
| if (is.relocations[i].offset == offset && is.relocations[i].expr != R_NONE) |
| return i; |
| } |
| return size; |
| } |
| |
| // Returns true if R corresponds to a relocation used for a jump instruction. |
| // TODO: Once special relocations for relaxable jump instructions are available, |
| // this should be modified to use those relocations. |
| static bool isRelocationForJmpInsn(Relocation &R) { |
| return R.type == R_X86_64_PLT32 || R.type == R_X86_64_PC32 || |
| R.type == R_X86_64_PC8; |
| } |
| |
| // Return true if Relocation R points to the first instruction in the |
| // next section. |
| // TODO: Delete this once psABI reserves a new relocation type for fall thru |
| // jumps. |
| static bool isFallThruRelocation(InputSection &is, InputFile *file, |
| InputSection *nextIS, Relocation &r) { |
| if (!isRelocationForJmpInsn(r)) |
| return false; |
| |
| uint64_t addrLoc = is.getOutputSection()->addr + is.outSecOff + r.offset; |
| uint64_t targetOffset = InputSectionBase::getRelocTargetVA( |
| file, r.type, r.addend, addrLoc, *r.sym, r.expr); |
| |
| // If this jmp is a fall thru, the target offset is the beginning of the |
| // next section. |
| uint64_t nextSectionOffset = |
| nextIS->getOutputSection()->addr + nextIS->outSecOff; |
| return (addrLoc + 4 + targetOffset) == nextSectionOffset; |
| } |
| |
| // Return the jmp instruction opcode that is the inverse of the given |
| // opcode. For example, JE inverted is JNE. |
| static JmpInsnOpcode invertJmpOpcode(const JmpInsnOpcode opcode) { |
| switch (opcode) { |
| case J_JE_32: |
| return J_JNE_32; |
| case J_JNE_32: |
| return J_JE_32; |
| case J_JG_32: |
| return J_JLE_32; |
| case J_JGE_32: |
| return J_JL_32; |
| case J_JB_32: |
| return J_JAE_32; |
| case J_JBE_32: |
| return J_JA_32; |
| case J_JL_32: |
| return J_JGE_32; |
| case J_JLE_32: |
| return J_JG_32; |
| case J_JA_32: |
| return J_JBE_32; |
| case J_JAE_32: |
| return J_JB_32; |
| default: |
| return J_UNKNOWN; |
| } |
| } |
| |
| // Deletes direct jump instruction in input sections that jumps to the |
| // following section as it is not required. If there are two consecutive jump |
| // instructions, it checks if they can be flipped and one can be deleted. |
| // For example: |
| // .section .text |
| // a.BB.foo: |
| // ... |
| // 10: jne aa.BB.foo |
| // 16: jmp bar |
| // aa.BB.foo: |
| // ... |
| // |
| // can be converted to: |
| // a.BB.foo: |
| // ... |
| // 10: je bar #jne flipped to je and the jmp is deleted. |
| // aa.BB.foo: |
| // ... |
| bool X86_64::deleteFallThruJmpInsn(InputSection &is, InputFile *file, |
| InputSection *nextIS) const { |
| const unsigned sizeOfDirectJmpInsn = 5; |
| |
| if (nextIS == nullptr) |
| return false; |
| |
| if (is.getSize() < sizeOfDirectJmpInsn) |
| return false; |
| |
| // If this jmp insn can be removed, it is the last insn and the |
| // relocation is 4 bytes before the end. |
| unsigned rIndex = getRelocationWithOffset(is, is.getSize() - 4); |
| if (rIndex == is.relocations.size()) |
| return false; |
| |
| Relocation &r = is.relocations[rIndex]; |
| |
| // Check if the relocation corresponds to a direct jmp. |
| const uint8_t *secContents = is.data().data(); |
| // If it is not a direct jmp instruction, there is nothing to do here. |
| if (*(secContents + r.offset - 1) != 0xe9) |
| return false; |
| |
| if (isFallThruRelocation(is, file, nextIS, r)) { |
| // This is a fall thru and can be deleted. |
| r.expr = R_NONE; |
| r.offset = 0; |
| is.drop_back(sizeOfDirectJmpInsn); |
| is.nopFiller = true; |
| return true; |
| } |
| |
| // Now, check if flip and delete is possible. |
| const unsigned sizeOfJmpCCInsn = 6; |
| // To flip, there must be atleast one JmpCC and one direct jmp. |
| if (is.getSize() < sizeOfDirectJmpInsn + sizeOfJmpCCInsn) |
| return 0; |
| |
| unsigned rbIndex = |
| getRelocationWithOffset(is, (is.getSize() - sizeOfDirectJmpInsn - 4)); |
| if (rbIndex == is.relocations.size()) |
| return 0; |
| |
| Relocation &rB = is.relocations[rbIndex]; |
| |
| const uint8_t *jmpInsnB = secContents + rB.offset - 1; |
| JmpInsnOpcode jmpOpcodeB = getJmpInsnType(jmpInsnB - 1, jmpInsnB); |
| if (jmpOpcodeB == J_UNKNOWN) |
| return false; |
| |
| if (!isFallThruRelocation(is, file, nextIS, rB)) |
| return false; |
| |
| // jmpCC jumps to the fall thru block, the branch can be flipped and the |
| // jmp can be deleted. |
| JmpInsnOpcode jInvert = invertJmpOpcode(jmpOpcodeB); |
| if (jInvert == J_UNKNOWN) |
| return false; |
| is.jumpInstrMods.push_back({jInvert, (rB.offset - 1), 4}); |
| // Move R's values to rB except the offset. |
| rB = {r.expr, r.type, rB.offset, r.addend, r.sym}; |
| // Cancel R |
| r.expr = R_NONE; |
| r.offset = 0; |
| is.drop_back(sizeOfDirectJmpInsn); |
| is.nopFiller = true; |
| return true; |
| } |
| |
| RelExpr X86_64::getRelExpr(RelType type, const Symbol &s, |
| const uint8_t *loc) const { |
| if (type == R_X86_64_GOTTPOFF) |
| config->hasTlsIe = true; |
| |
| switch (type) { |
| case R_X86_64_8: |
| case R_X86_64_16: |
| case R_X86_64_32: |
| case R_X86_64_32S: |
| case R_X86_64_64: |
| return R_ABS; |
| case R_X86_64_DTPOFF32: |
| case R_X86_64_DTPOFF64: |
| return R_DTPREL; |
| case R_X86_64_TPOFF32: |
| return R_TPREL; |
| case R_X86_64_TLSDESC_CALL: |
| return R_TLSDESC_CALL; |
| case R_X86_64_TLSLD: |
| return R_TLSLD_PC; |
| case R_X86_64_TLSGD: |
| return R_TLSGD_PC; |
| case R_X86_64_SIZE32: |
| case R_X86_64_SIZE64: |
| return R_SIZE; |
| case R_X86_64_PLT32: |
| return R_PLT_PC; |
| case R_X86_64_PC8: |
| case R_X86_64_PC16: |
| case R_X86_64_PC32: |
| case R_X86_64_PC64: |
| return R_PC; |
| case R_X86_64_GOT32: |
| case R_X86_64_GOT64: |
| return R_GOTPLT; |
| case R_X86_64_GOTPC32_TLSDESC: |
| return R_TLSDESC_PC; |
| case R_X86_64_GOTPCREL: |
| case R_X86_64_GOTPCRELX: |
| case R_X86_64_REX_GOTPCRELX: |
| case R_X86_64_GOTTPOFF: |
| return R_GOT_PC; |
| case R_X86_64_GOTOFF64: |
| return R_GOTPLTREL; |
| case R_X86_64_PLTOFF64: |
| return R_PLT_GOTPLT; |
| case R_X86_64_GOTPC32: |
| case R_X86_64_GOTPC64: |
| return R_GOTPLTONLY_PC; |
| case R_X86_64_NONE: |
| return R_NONE; |
| default: |
| error(getErrorLocation(loc) + "unknown relocation (" + Twine(type) + |
| ") against symbol " + toString(s)); |
| return R_NONE; |
| } |
| } |
| |
| void X86_64::writeGotPltHeader(uint8_t *buf) const { |
| // The first entry holds the value of _DYNAMIC. It is not clear why that is |
| // required, but it is documented in the psabi and the glibc dynamic linker |
| // seems to use it (note that this is relevant for linking ld.so, not any |
| // other program). |
| write64le(buf, mainPart->dynamic->getVA()); |
| } |
| |
| void X86_64::writeGotPlt(uint8_t *buf, const Symbol &s) const { |
| // See comments in X86::writeGotPlt. |
| write64le(buf, s.getPltVA() + 6); |
| } |
| |
| void X86_64::writeIgotPlt(uint8_t *buf, const Symbol &s) const { |
| // An x86 entry is the address of the ifunc resolver function (for -z rel). |
| if (config->writeAddends) |
| write64le(buf, s.getVA()); |
| } |
| |
| void X86_64::writePltHeader(uint8_t *buf) const { |
| const uint8_t pltData[] = { |
| 0xff, 0x35, 0, 0, 0, 0, // pushq GOTPLT+8(%rip) |
| 0xff, 0x25, 0, 0, 0, 0, // jmp *GOTPLT+16(%rip) |
| 0x0f, 0x1f, 0x40, 0x00, // nop |
| }; |
| memcpy(buf, pltData, sizeof(pltData)); |
| uint64_t gotPlt = in.gotPlt->getVA(); |
| uint64_t plt = in.ibtPlt ? in.ibtPlt->getVA() : in.plt->getVA(); |
| write32le(buf + 2, gotPlt - plt + 2); // GOTPLT+8 |
| write32le(buf + 8, gotPlt - plt + 4); // GOTPLT+16 |
| } |
| |
| void X86_64::writePlt(uint8_t *buf, const Symbol &sym, |
| uint64_t pltEntryAddr) const { |
| const uint8_t inst[] = { |
| 0xff, 0x25, 0, 0, 0, 0, // jmpq *got(%rip) |
| 0x68, 0, 0, 0, 0, // pushq <relocation index> |
| 0xe9, 0, 0, 0, 0, // jmpq plt[0] |
| }; |
| memcpy(buf, inst, sizeof(inst)); |
| |
| write32le(buf + 2, sym.getGotPltVA() - pltEntryAddr - 6); |
| write32le(buf + 7, sym.pltIndex); |
| write32le(buf + 12, in.plt->getVA() - pltEntryAddr - 16); |
| } |
| |
| RelType X86_64::getDynRel(RelType type) const { |
| if (type == R_X86_64_64 || type == R_X86_64_PC64 || type == R_X86_64_SIZE32 || |
| type == R_X86_64_SIZE64) |
| return type; |
| return R_X86_64_NONE; |
| } |
| |
| void X86_64::relaxTlsGdToLe(uint8_t *loc, const Relocation &rel, |
| uint64_t val) const { |
| if (rel.type == R_X86_64_TLSGD) { |
| // Convert |
| // .byte 0x66 |
| // leaq x@tlsgd(%rip), %rdi |
| // .word 0x6666 |
| // rex64 |
| // call __tls_get_addr@plt |
| // to the following two instructions. |
| const uint8_t inst[] = { |
| 0x64, 0x48, 0x8b, 0x04, 0x25, 0x00, 0x00, |
| 0x00, 0x00, // mov %fs:0x0,%rax |
| 0x48, 0x8d, 0x80, 0, 0, 0, 0, // lea x@tpoff,%rax |
| }; |
| memcpy(loc - 4, inst, sizeof(inst)); |
| |
| // The original code used a pc relative relocation and so we have to |
| // compensate for the -4 in had in the addend. |
| write32le(loc + 8, val + 4); |
| } else if (rel.type == R_X86_64_GOTPC32_TLSDESC) { |
| // Convert leaq x@tlsdesc(%rip), %REG to movq $x@tpoff, %REG. |
| if ((loc[-3] & 0xfb) != 0x48 || loc[-2] != 0x8d || |
| (loc[-1] & 0xc7) != 0x05) { |
| errorOrWarn(getErrorLocation(loc - 3) + |
| "R_X86_64_GOTPC32_TLSDESC must be used " |
| "in leaq x@tlsdesc(%rip), %REG"); |
| return; |
| } |
| loc[-3] = 0x48 | ((loc[-3] >> 2) & 1); |
| loc[-2] = 0xc7; |
| loc[-1] = 0xc0 | ((loc[-1] >> 3) & 7); |
| write32le(loc, val + 4); |
| } else { |
| // Convert call *x@tlsdesc(%REG) to xchg ax, ax. |
| assert(rel.type == R_X86_64_TLSDESC_CALL); |
| loc[0] = 0x66; |
| loc[1] = 0x90; |
| } |
| } |
| |
| void X86_64::relaxTlsGdToIe(uint8_t *loc, const Relocation &rel, |
| uint64_t val) const { |
| if (rel.type == R_X86_64_TLSGD) { |
| // Convert |
| // .byte 0x66 |
| // leaq x@tlsgd(%rip), %rdi |
| // .word 0x6666 |
| // rex64 |
| // call __tls_get_addr@plt |
| // to the following two instructions. |
| const uint8_t inst[] = { |
| 0x64, 0x48, 0x8b, 0x04, 0x25, 0x00, 0x00, |
| 0x00, 0x00, // mov %fs:0x0,%rax |
| 0x48, 0x03, 0x05, 0, 0, 0, 0, // addq x@gottpoff(%rip),%rax |
| }; |
| memcpy(loc - 4, inst, sizeof(inst)); |
| |
| // Both code sequences are PC relatives, but since we are moving the |
| // constant forward by 8 bytes we have to subtract the value by 8. |
| write32le(loc + 8, val - 8); |
| } else if (rel.type == R_X86_64_GOTPC32_TLSDESC) { |
| // Convert leaq x@tlsdesc(%rip), %REG to movq x@gottpoff(%rip), %REG. |
| assert(rel.type == R_X86_64_GOTPC32_TLSDESC); |
| if ((loc[-3] & 0xfb) != 0x48 || loc[-2] != 0x8d || |
| (loc[-1] & 0xc7) != 0x05) { |
| errorOrWarn(getErrorLocation(loc - 3) + |
| "R_X86_64_GOTPC32_TLSDESC must be used " |
| "in leaq x@tlsdesc(%rip), %REG"); |
| return; |
| } |
| loc[-2] = 0x8b; |
| write32le(loc, val); |
| } else { |
| // Convert call *x@tlsdesc(%rax) to xchg ax, ax. |
| assert(rel.type == R_X86_64_TLSDESC_CALL); |
| loc[0] = 0x66; |
| loc[1] = 0x90; |
| } |
| } |
| |
| // In some conditions, R_X86_64_GOTTPOFF relocation can be optimized to |
| // R_X86_64_TPOFF32 so that it does not use GOT. |
| void X86_64::relaxTlsIeToLe(uint8_t *loc, const Relocation &, |
| uint64_t val) const { |
| uint8_t *inst = loc - 3; |
| uint8_t reg = loc[-1] >> 3; |
| uint8_t *regSlot = loc - 1; |
| |
| // Note that ADD with RSP or R12 is converted to ADD instead of LEA |
| // because LEA with these registers needs 4 bytes to encode and thus |
| // wouldn't fit the space. |
| |
| if (memcmp(inst, "\x48\x03\x25", 3) == 0) { |
| // "addq foo@gottpoff(%rip),%rsp" -> "addq $foo,%rsp" |
| memcpy(inst, "\x48\x81\xc4", 3); |
| } else if (memcmp(inst, "\x4c\x03\x25", 3) == 0) { |
| // "addq foo@gottpoff(%rip),%r12" -> "addq $foo,%r12" |
| memcpy(inst, "\x49\x81\xc4", 3); |
| } else if (memcmp(inst, "\x4c\x03", 2) == 0) { |
| // "addq foo@gottpoff(%rip),%r[8-15]" -> "leaq foo(%r[8-15]),%r[8-15]" |
| memcpy(inst, "\x4d\x8d", 2); |
| *regSlot = 0x80 | (reg << 3) | reg; |
| } else if (memcmp(inst, "\x48\x03", 2) == 0) { |
| // "addq foo@gottpoff(%rip),%reg -> "leaq foo(%reg),%reg" |
| memcpy(inst, "\x48\x8d", 2); |
| *regSlot = 0x80 | (reg << 3) | reg; |
| } else if (memcmp(inst, "\x4c\x8b", 2) == 0) { |
| // "movq foo@gottpoff(%rip),%r[8-15]" -> "movq $foo,%r[8-15]" |
| memcpy(inst, "\x49\xc7", 2); |
| *regSlot = 0xc0 | reg; |
| } else if (memcmp(inst, "\x48\x8b", 2) == 0) { |
| // "movq foo@gottpoff(%rip),%reg" -> "movq $foo,%reg" |
| memcpy(inst, "\x48\xc7", 2); |
| *regSlot = 0xc0 | reg; |
| } else { |
| error(getErrorLocation(loc - 3) + |
| "R_X86_64_GOTTPOFF must be used in MOVQ or ADDQ instructions only"); |
| } |
| |
| // The original code used a PC relative relocation. |
| // Need to compensate for the -4 it had in the addend. |
| write32le(loc, val + 4); |
| } |
| |
| void X86_64::relaxTlsLdToLe(uint8_t *loc, const Relocation &rel, |
| uint64_t val) const { |
| if (rel.type == R_X86_64_DTPOFF64) { |
| write64le(loc, val); |
| return; |
| } |
| if (rel.type == R_X86_64_DTPOFF32) { |
| write32le(loc, val); |
| return; |
| } |
| |
| const uint8_t inst[] = { |
| 0x66, 0x66, // .word 0x6666 |
| 0x66, // .byte 0x66 |
| 0x64, 0x48, 0x8b, 0x04, 0x25, 0x00, 0x00, 0x00, 0x00, // mov %fs:0,%rax |
| }; |
| |
| if (loc[4] == 0xe8) { |
| // Convert |
| // leaq bar@tlsld(%rip), %rdi # 48 8d 3d <Loc> |
| // callq __tls_get_addr@PLT # e8 <disp32> |
| // leaq bar@dtpoff(%rax), %rcx |
| // to |
| // .word 0x6666 |
| // .byte 0x66 |
| // mov %fs:0,%rax |
| // leaq bar@tpoff(%rax), %rcx |
| memcpy(loc - 3, inst, sizeof(inst)); |
| return; |
| } |
| |
| if (loc[4] == 0xff && loc[5] == 0x15) { |
| // Convert |
| // leaq x@tlsld(%rip),%rdi # 48 8d 3d <Loc> |
| // call *__tls_get_addr@GOTPCREL(%rip) # ff 15 <disp32> |
| // to |
| // .long 0x66666666 |
| // movq %fs:0,%rax |
| // See "Table 11.9: LD -> LE Code Transition (LP64)" in |
| // https://raw.githubusercontent.com/wiki/hjl-tools/x86-psABI/x86-64-psABI-1.0.pdf |
| loc[-3] = 0x66; |
| memcpy(loc - 2, inst, sizeof(inst)); |
| return; |
| } |
| |
| error(getErrorLocation(loc - 3) + |
| "expected R_X86_64_PLT32 or R_X86_64_GOTPCRELX after R_X86_64_TLSLD"); |
| } |
| |
| // A JumpInstrMod at a specific offset indicates that the jump instruction |
| // opcode at that offset must be modified. This is specifically used to relax |
| // jump instructions with basic block sections. This function looks at the |
| // JumpMod and effects the change. |
| void X86_64::applyJumpInstrMod(uint8_t *loc, JumpModType type, |
| unsigned size) const { |
| switch (type) { |
| case J_JMP_32: |
| if (size == 4) |
| *loc = 0xe9; |
| else |
| *loc = 0xeb; |
| break; |
| case J_JE_32: |
| if (size == 4) { |
| loc[-1] = 0x0f; |
| *loc = 0x84; |
| } else |
| *loc = 0x74; |
| break; |
| case J_JNE_32: |
| if (size == 4) { |
| loc[-1] = 0x0f; |
| *loc = 0x85; |
| } else |
| *loc = 0x75; |
| break; |
| case J_JG_32: |
| if (size == 4) { |
| loc[-1] = 0x0f; |
| *loc = 0x8f; |
| } else |
| *loc = 0x7f; |
| break; |
| case J_JGE_32: |
| if (size == 4) { |
| loc[-1] = 0x0f; |
| *loc = 0x8d; |
| } else |
| *loc = 0x7d; |
| break; |
| case J_JB_32: |
| if (size == 4) { |
| loc[-1] = 0x0f; |
| *loc = 0x82; |
| } else |
| *loc = 0x72; |
| break; |
| case J_JBE_32: |
| if (size == 4) { |
| loc[-1] = 0x0f; |
| *loc = 0x86; |
| } else |
| *loc = 0x76; |
| break; |
| case J_JL_32: |
| if (size == 4) { |
| loc[-1] = 0x0f; |
| *loc = 0x8c; |
| } else |
| *loc = 0x7c; |
| break; |
| case J_JLE_32: |
| if (size == 4) { |
| loc[-1] = 0x0f; |
| *loc = 0x8e; |
| } else |
| *loc = 0x7e; |
| break; |
| case J_JA_32: |
| if (size == 4) { |
| loc[-1] = 0x0f; |
| *loc = 0x87; |
| } else |
| *loc = 0x77; |
| break; |
| case J_JAE_32: |
| if (size == 4) { |
| loc[-1] = 0x0f; |
| *loc = 0x83; |
| } else |
| *loc = 0x73; |
| break; |
| case J_UNKNOWN: |
| llvm_unreachable("Unknown Jump Relocation"); |
| } |
| } |
| |
| int64_t X86_64::getImplicitAddend(const uint8_t *buf, RelType type) const { |
| switch (type) { |
| case R_X86_64_8: |
| case R_X86_64_PC8: |
| return SignExtend64<8>(*buf); |
| case R_X86_64_16: |
| case R_X86_64_PC16: |
| return SignExtend64<16>(read16le(buf)); |
| case R_X86_64_32: |
| case R_X86_64_32S: |
| case R_X86_64_TPOFF32: |
| case R_X86_64_GOT32: |
| case R_X86_64_GOTPC32: |
| case R_X86_64_GOTPC32_TLSDESC: |
| case R_X86_64_GOTPCREL: |
| case R_X86_64_GOTPCRELX: |
| case R_X86_64_REX_GOTPCRELX: |
| case R_X86_64_PC32: |
| case R_X86_64_GOTTPOFF: |
| case R_X86_64_PLT32: |
| case R_X86_64_TLSGD: |
| case R_X86_64_TLSLD: |
| case R_X86_64_DTPOFF32: |
| case R_X86_64_SIZE32: |
| return SignExtend64<32>(read32le(buf)); |
| case R_X86_64_64: |
| case R_X86_64_TPOFF64: |
| case R_X86_64_DTPOFF64: |
| case R_X86_64_DTPMOD64: |
| case R_X86_64_PC64: |
| case R_X86_64_SIZE64: |
| case R_X86_64_GLOB_DAT: |
| case R_X86_64_GOT64: |
| case R_X86_64_GOTOFF64: |
| case R_X86_64_GOTPC64: |
| case R_X86_64_PLTOFF64: |
| case R_X86_64_IRELATIVE: |
| case R_X86_64_RELATIVE: |
| return read64le(buf); |
| case R_X86_64_TLSDESC: |
| return read64le(buf + 8); |
| case R_X86_64_JUMP_SLOT: |
| case R_X86_64_NONE: |
| // These relocations are defined as not having an implicit addend. |
| return 0; |
| default: |
| internalLinkerError(getErrorLocation(buf), |
| "cannot read addend for relocation " + toString(type)); |
| return 0; |
| } |
| } |
| |
| void X86_64::relocate(uint8_t *loc, const Relocation &rel, uint64_t val) const { |
| switch (rel.type) { |
| case R_X86_64_8: |
| checkIntUInt(loc, val, 8, rel); |
| *loc = val; |
| break; |
| case R_X86_64_PC8: |
| checkInt(loc, val, 8, rel); |
| *loc = val; |
| break; |
| case R_X86_64_16: |
| checkIntUInt(loc, val, 16, rel); |
| write16le(loc, val); |
| break; |
| case R_X86_64_PC16: |
| checkInt(loc, val, 16, rel); |
| write16le(loc, val); |
| break; |
| case R_X86_64_32: |
| checkUInt(loc, val, 32, rel); |
| write32le(loc, val); |
| break; |
| case R_X86_64_32S: |
| case R_X86_64_TPOFF32: |
| case R_X86_64_GOT32: |
| case R_X86_64_GOTPC32: |
| case R_X86_64_GOTPC32_TLSDESC: |
| case R_X86_64_GOTPCREL: |
| case R_X86_64_GOTPCRELX: |
| case R_X86_64_REX_GOTPCRELX: |
| case R_X86_64_PC32: |
| case R_X86_64_GOTTPOFF: |
| case R_X86_64_PLT32: |
| case R_X86_64_TLSGD: |
| case R_X86_64_TLSLD: |
| case R_X86_64_DTPOFF32: |
| case R_X86_64_SIZE32: |
| checkInt(loc, val, 32, rel); |
| write32le(loc, val); |
| break; |
| case R_X86_64_64: |
| case R_X86_64_DTPOFF64: |
| case R_X86_64_PC64: |
| case R_X86_64_SIZE64: |
| case R_X86_64_GOT64: |
| case R_X86_64_GOTOFF64: |
| case R_X86_64_GOTPC64: |
| case R_X86_64_PLTOFF64: |
| write64le(loc, val); |
| break; |
| case R_X86_64_TLSDESC: |
| // The addend is stored in the second 64-bit word. |
| write64le(loc + 8, val); |
| break; |
| default: |
| llvm_unreachable("unknown relocation"); |
| } |
| } |
| |
| RelExpr X86_64::adjustGotPcExpr(RelType type, int64_t addend, |
| const uint8_t *loc) const { |
| // Only R_X86_64_[REX_]GOTPCRELX can be relaxed. GNU as may emit GOTPCRELX |
| // with addend != -4. Such an instruction does not load the full GOT entry, so |
| // we cannot relax the relocation. E.g. movl x@GOTPCREL+4(%rip), %rax |
| // (addend=0) loads the high 32 bits of the GOT entry. |
| if (!config->relax || addend != -4 || |
| (type != R_X86_64_GOTPCRELX && type != R_X86_64_REX_GOTPCRELX)) |
| return R_GOT_PC; |
| const uint8_t op = loc[-2]; |
| const uint8_t modRm = loc[-1]; |
| |
| // FIXME: When PIC is disabled and foo is defined locally in the |
| // lower 32 bit address space, memory operand in mov can be converted into |
| // immediate operand. Otherwise, mov must be changed to lea. We support only |
| // latter relaxation at this moment. |
| if (op == 0x8b) |
| return R_RELAX_GOT_PC; |
| |
| // Relax call and jmp. |
| if (op == 0xff && (modRm == 0x15 || modRm == 0x25)) |
| return R_RELAX_GOT_PC; |
| |
| // We don't support test/binop instructions without a REX prefix. |
| if (type == R_X86_64_GOTPCRELX) |
| return R_GOT_PC; |
| |
| // Relaxation of test, adc, add, and, cmp, or, sbb, sub, xor. |
| // If PIC then no relaxation is available. |
| return config->isPic ? R_GOT_PC : R_RELAX_GOT_PC_NOPIC; |
| } |
| |
| // A subset of relaxations can only be applied for no-PIC. This method |
| // handles such relaxations. Instructions encoding information was taken from: |
| // "Intel 64 and IA-32 Architectures Software Developer's Manual V2" |
| // (http://www.intel.com/content/dam/www/public/us/en/documents/manuals/ |
| // 64-ia-32-architectures-software-developer-instruction-set-reference-manual-325383.pdf) |
| static void relaxGotNoPic(uint8_t *loc, uint64_t val, uint8_t op, |
| uint8_t modRm) { |
| const uint8_t rex = loc[-3]; |
| // Convert "test %reg, foo@GOTPCREL(%rip)" to "test $foo, %reg". |
| if (op == 0x85) { |
| // See "TEST-Logical Compare" (4-428 Vol. 2B), |
| // TEST r/m64, r64 uses "full" ModR / M byte (no opcode extension). |
| |
| // ModR/M byte has form XX YYY ZZZ, where |
| // YYY is MODRM.reg(register 2), ZZZ is MODRM.rm(register 1). |
| // XX has different meanings: |
| // 00: The operand's memory address is in reg1. |
| // 01: The operand's memory address is reg1 + a byte-sized displacement. |
| // 10: The operand's memory address is reg1 + a word-sized displacement. |
| // 11: The operand is reg1 itself. |
| // If an instruction requires only one operand, the unused reg2 field |
| // holds extra opcode bits rather than a register code |
| // 0xC0 == 11 000 000 binary. |
| // 0x38 == 00 111 000 binary. |
| // We transfer reg2 to reg1 here as operand. |
| // See "2.1.3 ModR/M and SIB Bytes" (Vol. 2A 2-3). |
| loc[-1] = 0xc0 | (modRm & 0x38) >> 3; // ModR/M byte. |
| |
| // Change opcode from TEST r/m64, r64 to TEST r/m64, imm32 |
| // See "TEST-Logical Compare" (4-428 Vol. 2B). |
| loc[-2] = 0xf7; |
| |
| // Move R bit to the B bit in REX byte. |
| // REX byte is encoded as 0100WRXB, where |
| // 0100 is 4bit fixed pattern. |
| // REX.W When 1, a 64-bit operand size is used. Otherwise, when 0, the |
| // default operand size is used (which is 32-bit for most but not all |
| // instructions). |
| // REX.R This 1-bit value is an extension to the MODRM.reg field. |
| // REX.X This 1-bit value is an extension to the SIB.index field. |
| // REX.B This 1-bit value is an extension to the MODRM.rm field or the |
| // SIB.base field. |
| // See "2.2.1.2 More on REX Prefix Fields " (2-8 Vol. 2A). |
| loc[-3] = (rex & ~0x4) | (rex & 0x4) >> 2; |
| write32le(loc, val); |
| return; |
| } |
| |
| // If we are here then we need to relax the adc, add, and, cmp, or, sbb, sub |
| // or xor operations. |
| |
| // Convert "binop foo@GOTPCREL(%rip), %reg" to "binop $foo, %reg". |
| // Logic is close to one for test instruction above, but we also |
| // write opcode extension here, see below for details. |
| loc[-1] = 0xc0 | (modRm & 0x38) >> 3 | (op & 0x3c); // ModR/M byte. |
| |
| // Primary opcode is 0x81, opcode extension is one of: |
| // 000b = ADD, 001b is OR, 010b is ADC, 011b is SBB, |
| // 100b is AND, 101b is SUB, 110b is XOR, 111b is CMP. |
| // This value was wrote to MODRM.reg in a line above. |
| // See "3.2 INSTRUCTIONS (A-M)" (Vol. 2A 3-15), |
| // "INSTRUCTION SET REFERENCE, N-Z" (Vol. 2B 4-1) for |
| // descriptions about each operation. |
| loc[-2] = 0x81; |
| loc[-3] = (rex & ~0x4) | (rex & 0x4) >> 2; |
| write32le(loc, val); |
| } |
| |
| void X86_64::relaxGot(uint8_t *loc, const Relocation &rel, uint64_t val) const { |
| checkInt(loc, val, 32, rel); |
| const uint8_t op = loc[-2]; |
| const uint8_t modRm = loc[-1]; |
| |
| // Convert "mov foo@GOTPCREL(%rip),%reg" to "lea foo(%rip),%reg". |
| if (op == 0x8b) { |
| loc[-2] = 0x8d; |
| write32le(loc, val); |
| return; |
| } |
| |
| if (op != 0xff) { |
| // We are relaxing a rip relative to an absolute, so compensate |
| // for the old -4 addend. |
| assert(!config->isPic); |
| relaxGotNoPic(loc, val + 4, op, modRm); |
| return; |
| } |
| |
| // Convert call/jmp instructions. |
| if (modRm == 0x15) { |
| // ABI says we can convert "call *foo@GOTPCREL(%rip)" to "nop; call foo". |
| // Instead we convert to "addr32 call foo" where addr32 is an instruction |
| // prefix. That makes result expression to be a single instruction. |
| loc[-2] = 0x67; // addr32 prefix |
| loc[-1] = 0xe8; // call |
| write32le(loc, val); |
| return; |
| } |
| |
| // Convert "jmp *foo@GOTPCREL(%rip)" to "jmp foo; nop". |
| // jmp doesn't return, so it is fine to use nop here, it is just a stub. |
| assert(modRm == 0x25); |
| loc[-2] = 0xe9; // jmp |
| loc[3] = 0x90; // nop |
| write32le(loc - 1, val + 1); |
| } |
| |
| // A split-stack prologue starts by checking the amount of stack remaining |
| // in one of two ways: |
| // A) Comparing of the stack pointer to a field in the tcb. |
| // B) Or a load of a stack pointer offset with an lea to r10 or r11. |
| bool X86_64::adjustPrologueForCrossSplitStack(uint8_t *loc, uint8_t *end, |
| uint8_t stOther) const { |
| if (!config->is64) { |
| error("Target doesn't support split stacks."); |
| return false; |
| } |
| |
| if (loc + 8 >= end) |
| return false; |
| |
| // Replace "cmp %fs:0x70,%rsp" and subsequent branch |
| // with "stc, nopl 0x0(%rax,%rax,1)" |
| if (memcmp(loc, "\x64\x48\x3b\x24\x25", 5) == 0) { |
| memcpy(loc, "\xf9\x0f\x1f\x84\x00\x00\x00\x00", 8); |
| return true; |
| } |
| |
| // Adjust "lea X(%rsp),%rYY" to lea "(X - 0x4000)(%rsp),%rYY" where rYY could |
| // be r10 or r11. The lea instruction feeds a subsequent compare which checks |
| // if there is X available stack space. Making X larger effectively reserves |
| // that much additional space. The stack grows downward so subtract the value. |
| if (memcmp(loc, "\x4c\x8d\x94\x24", 4) == 0 || |
| memcmp(loc, "\x4c\x8d\x9c\x24", 4) == 0) { |
| // The offset bytes are encoded four bytes after the start of the |
| // instruction. |
| write32le(loc + 4, read32le(loc + 4) - 0x4000); |
| return true; |
| } |
| return false; |
| } |
| |
| // If Intel Indirect Branch Tracking is enabled, we have to emit special PLT |
| // entries containing endbr64 instructions. A PLT entry will be split into two |
| // parts, one in .plt.sec (writePlt), and the other in .plt (writeIBTPlt). |
| namespace { |
| class IntelIBT : public X86_64 { |
| public: |
| IntelIBT(); |
| void writeGotPlt(uint8_t *buf, const Symbol &s) const override; |
| void writePlt(uint8_t *buf, const Symbol &sym, |
| uint64_t pltEntryAddr) const override; |
| void writeIBTPlt(uint8_t *buf, size_t numEntries) const override; |
| |
| static const unsigned IBTPltHeaderSize = 16; |
| }; |
| } // namespace |
| |
| IntelIBT::IntelIBT() { pltHeaderSize = 0; } |
| |
| void IntelIBT::writeGotPlt(uint8_t *buf, const Symbol &s) const { |
| uint64_t va = |
| in.ibtPlt->getVA() + IBTPltHeaderSize + s.pltIndex * pltEntrySize; |
| write64le(buf, va); |
| } |
| |
| void IntelIBT::writePlt(uint8_t *buf, const Symbol &sym, |
| uint64_t pltEntryAddr) const { |
| const uint8_t Inst[] = { |
| 0xf3, 0x0f, 0x1e, 0xfa, // endbr64 |
| 0xff, 0x25, 0, 0, 0, 0, // jmpq *got(%rip) |
| 0x66, 0x0f, 0x1f, 0x44, 0, 0, // nop |
| }; |
| memcpy(buf, Inst, sizeof(Inst)); |
| write32le(buf + 6, sym.getGotPltVA() - pltEntryAddr - 10); |
| } |
| |
| void IntelIBT::writeIBTPlt(uint8_t *buf, size_t numEntries) const { |
| writePltHeader(buf); |
| buf += IBTPltHeaderSize; |
| |
| const uint8_t inst[] = { |
| 0xf3, 0x0f, 0x1e, 0xfa, // endbr64 |
| 0x68, 0, 0, 0, 0, // pushq <relocation index> |
| 0xe9, 0, 0, 0, 0, // jmpq plt[0] |
| 0x66, 0x90, // nop |
| }; |
| |
| for (size_t i = 0; i < numEntries; ++i) { |
| memcpy(buf, inst, sizeof(inst)); |
| write32le(buf + 5, i); |
| write32le(buf + 10, -pltHeaderSize - sizeof(inst) * i - 30); |
| buf += sizeof(inst); |
| } |
| } |
| |
| // These nonstandard PLT entries are to migtigate Spectre v2 security |
| // vulnerability. In order to mitigate Spectre v2, we want to avoid indirect |
| // branch instructions such as `jmp *GOTPLT(%rip)`. So, in the following PLT |
| // entries, we use a CALL followed by MOV and RET to do the same thing as an |
| // indirect jump. That instruction sequence is so-called "retpoline". |
| // |
| // We have two types of retpoline PLTs as a size optimization. If `-z now` |
| // is specified, all dynamic symbols are resolved at load-time. Thus, when |
| // that option is given, we can omit code for symbol lazy resolution. |
| namespace { |
| class Retpoline : public X86_64 { |
| public: |
| Retpoline(); |
| void writeGotPlt(uint8_t *buf, const Symbol &s) const override; |
| void writePltHeader(uint8_t *buf) const override; |
| void writePlt(uint8_t *buf, const Symbol &sym, |
| uint64_t pltEntryAddr) const override; |
| }; |
| |
| class RetpolineZNow : public X86_64 { |
| public: |
| RetpolineZNow(); |
| void writeGotPlt(uint8_t *buf, const Symbol &s) const override {} |
| void writePltHeader(uint8_t *buf) const override; |
| void writePlt(uint8_t *buf, const Symbol &sym, |
| uint64_t pltEntryAddr) const override; |
| }; |
| } // namespace |
| |
| Retpoline::Retpoline() { |
| pltHeaderSize = 48; |
| pltEntrySize = 32; |
| ipltEntrySize = 32; |
| } |
| |
| void Retpoline::writeGotPlt(uint8_t *buf, const Symbol &s) const { |
| write64le(buf, s.getPltVA() + 17); |
| } |
| |
| void Retpoline::writePltHeader(uint8_t *buf) const { |
| const uint8_t insn[] = { |
| 0xff, 0x35, 0, 0, 0, 0, // 0: pushq GOTPLT+8(%rip) |
| 0x4c, 0x8b, 0x1d, 0, 0, 0, 0, // 6: mov GOTPLT+16(%rip), %r11 |
| 0xe8, 0x0e, 0x00, 0x00, 0x00, // d: callq next |
| 0xf3, 0x90, // 12: loop: pause |
| 0x0f, 0xae, 0xe8, // 14: lfence |
| 0xeb, 0xf9, // 17: jmp loop |
| 0xcc, 0xcc, 0xcc, 0xcc, 0xcc, 0xcc, 0xcc, // 19: int3; .align 16 |
| 0x4c, 0x89, 0x1c, 0x24, // 20: next: mov %r11, (%rsp) |
| 0xc3, // 24: ret |
| 0xcc, 0xcc, 0xcc, 0xcc, 0xcc, 0xcc, 0xcc, // 25: int3; padding |
| 0xcc, 0xcc, 0xcc, 0xcc, // 2c: int3; padding |
| }; |
| memcpy(buf, insn, sizeof(insn)); |
| |
| uint64_t gotPlt = in.gotPlt->getVA(); |
| uint64_t plt = in.plt->getVA(); |
| write32le(buf + 2, gotPlt - plt - 6 + 8); |
| write32le(buf + 9, gotPlt - plt - 13 + 16); |
| } |
| |
| void Retpoline::writePlt(uint8_t *buf, const Symbol &sym, |
| uint64_t pltEntryAddr) const { |
| const uint8_t insn[] = { |
| 0x4c, 0x8b, 0x1d, 0, 0, 0, 0, // 0: mov foo@GOTPLT(%rip), %r11 |
| 0xe8, 0, 0, 0, 0, // 7: callq plt+0x20 |
| 0xe9, 0, 0, 0, 0, // c: jmp plt+0x12 |
| 0x68, 0, 0, 0, 0, // 11: pushq <relocation index> |
| 0xe9, 0, 0, 0, 0, // 16: jmp plt+0 |
| 0xcc, 0xcc, 0xcc, 0xcc, 0xcc, // 1b: int3; padding |
| }; |
| memcpy(buf, insn, sizeof(insn)); |
| |
| uint64_t off = pltEntryAddr - in.plt->getVA(); |
| |
| write32le(buf + 3, sym.getGotPltVA() - pltEntryAddr - 7); |
| write32le(buf + 8, -off - 12 + 32); |
| write32le(buf + 13, -off - 17 + 18); |
| write32le(buf + 18, sym.pltIndex); |
| write32le(buf + 23, -off - 27); |
| } |
| |
| RetpolineZNow::RetpolineZNow() { |
| pltHeaderSize = 32; |
| pltEntrySize = 16; |
| ipltEntrySize = 16; |
| } |
| |
| void RetpolineZNow::writePltHeader(uint8_t *buf) const { |
| const uint8_t insn[] = { |
| 0xe8, 0x0b, 0x00, 0x00, 0x00, // 0: call next |
| 0xf3, 0x90, // 5: loop: pause |
| 0x0f, 0xae, 0xe8, // 7: lfence |
| 0xeb, 0xf9, // a: jmp loop |
| 0xcc, 0xcc, 0xcc, 0xcc, // c: int3; .align 16 |
| 0x4c, 0x89, 0x1c, 0x24, // 10: next: mov %r11, (%rsp) |
| 0xc3, // 14: ret |
| 0xcc, 0xcc, 0xcc, 0xcc, 0xcc, // 15: int3; padding |
| 0xcc, 0xcc, 0xcc, 0xcc, 0xcc, // 1a: int3; padding |
| 0xcc, // 1f: int3; padding |
| }; |
| memcpy(buf, insn, sizeof(insn)); |
| } |
| |
| void RetpolineZNow::writePlt(uint8_t *buf, const Symbol &sym, |
| uint64_t pltEntryAddr) const { |
| const uint8_t insn[] = { |
| 0x4c, 0x8b, 0x1d, 0, 0, 0, 0, // mov foo@GOTPLT(%rip), %r11 |
| 0xe9, 0, 0, 0, 0, // jmp plt+0 |
| 0xcc, 0xcc, 0xcc, 0xcc, // int3; padding |
| }; |
| memcpy(buf, insn, sizeof(insn)); |
| |
| write32le(buf + 3, sym.getGotPltVA() - pltEntryAddr - 7); |
| write32le(buf + 8, in.plt->getVA() - pltEntryAddr - 12); |
| } |
| |
| static TargetInfo *getTargetInfo() { |
| if (config->zRetpolineplt) { |
| if (config->zNow) { |
| static RetpolineZNow t; |
| return &t; |
| } |
| static Retpoline t; |
| return &t; |
| } |
| |
| if (config->andFeatures & GNU_PROPERTY_X86_FEATURE_1_IBT) { |
| static IntelIBT t; |
| return &t; |
| } |
| |
| static X86_64 t; |
| return &t; |
| } |
| |
| TargetInfo *elf::getX86_64TargetInfo() { return getTargetInfo(); } |