| //===- AArch64ErrataFix.cpp -----------------------------------------------===// |
| // |
| // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
| // See https://llvm.org/LICENSE.txt for license information. |
| // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
| // |
| //===----------------------------------------------------------------------===// |
| // This file implements Section Patching for the purpose of working around |
| // the AArch64 Cortex-53 errata 843419 that affects r0p0, r0p1, r0p2 and r0p4 |
| // versions of the core. |
| // |
| // The general principle is that an erratum sequence of one or |
| // more instructions is detected in the instruction stream, one of the |
| // instructions in the sequence is replaced with a branch to a patch sequence |
| // of replacement instructions. At the end of the replacement sequence the |
| // patch branches back to the instruction stream. |
| |
| // This technique is only suitable for fixing an erratum when: |
| // - There is a set of necessary conditions required to trigger the erratum that |
| // can be detected at static link time. |
| // - There is a set of replacement instructions that can be used to remove at |
| // least one of the necessary conditions that trigger the erratum. |
| // - We can overwrite an instruction in the erratum sequence with a branch to |
| // the replacement sequence. |
| // - We can place the replacement sequence within range of the branch. |
| //===----------------------------------------------------------------------===// |
| |
| #include "AArch64ErrataFix.h" |
| #include "Config.h" |
| #include "LinkerScript.h" |
| #include "OutputSections.h" |
| #include "Relocations.h" |
| #include "Symbols.h" |
| #include "SyntheticSections.h" |
| #include "Target.h" |
| #include "lld/Common/Memory.h" |
| #include "lld/Common/Strings.h" |
| #include "llvm/Support/Endian.h" |
| #include "llvm/Support/raw_ostream.h" |
| #include <algorithm> |
| |
| using namespace llvm; |
| using namespace llvm::ELF; |
| using namespace llvm::object; |
| using namespace llvm::support; |
| using namespace llvm::support::endian; |
| using namespace lld; |
| using namespace lld::elf; |
| |
| // Helper functions to identify instructions and conditions needed to trigger |
| // the Cortex-A53-843419 erratum. |
| |
| // ADRP |
| // | 1 | immlo (2) | 1 | 0 0 0 0 | immhi (19) | Rd (5) | |
| static bool isADRP(uint32_t instr) { |
| return (instr & 0x9f000000) == 0x90000000; |
| } |
| |
| // Load and store bit patterns from ARMv8-A ARM ARM. |
| // Instructions appear in order of appearance starting from table in |
| // C4.1.3 Loads and Stores. |
| |
| // All loads and stores have 1 (at bit position 27), (0 at bit position 25). |
| // | op0 x op1 (2) | 1 op2 0 op3 (2) | x | op4 (5) | xxxx | op5 (2) | x (10) | |
| static bool isLoadStoreClass(uint32_t instr) { |
| return (instr & 0x0a000000) == 0x08000000; |
| } |
| |
| // LDN/STN multiple no offset |
| // | 0 Q 00 | 1100 | 0 L 00 | 0000 | opcode (4) | size (2) | Rn (5) | Rt (5) | |
| // LDN/STN multiple post-indexed |
| // | 0 Q 00 | 1100 | 1 L 0 | Rm (5)| opcode (4) | size (2) | Rn (5) | Rt (5) | |
| // L == 0 for stores. |
| |
| // Utility routine to decode opcode field of LDN/STN multiple structure |
| // instructions to find the ST1 instructions. |
| // opcode == 0010 ST1 4 registers. |
| // opcode == 0110 ST1 3 registers. |
| // opcode == 0111 ST1 1 register. |
| // opcode == 1010 ST1 2 registers. |
| static bool isST1MultipleOpcode(uint32_t instr) { |
| return (instr & 0x0000f000) == 0x00002000 || |
| (instr & 0x0000f000) == 0x00006000 || |
| (instr & 0x0000f000) == 0x00007000 || |
| (instr & 0x0000f000) == 0x0000a000; |
| } |
| |
| static bool isST1Multiple(uint32_t instr) { |
| return (instr & 0xbfff0000) == 0x0c000000 && isST1MultipleOpcode(instr); |
| } |
| |
| // Writes to Rn (writeback). |
| static bool isST1MultiplePost(uint32_t instr) { |
| return (instr & 0xbfe00000) == 0x0c800000 && isST1MultipleOpcode(instr); |
| } |
| |
| // LDN/STN single no offset |
| // | 0 Q 00 | 1101 | 0 L R 0 | 0000 | opc (3) S | size (2) | Rn (5) | Rt (5)| |
| // LDN/STN single post-indexed |
| // | 0 Q 00 | 1101 | 1 L R | Rm (5) | opc (3) S | size (2) | Rn (5) | Rt (5)| |
| // L == 0 for stores |
| |
| // Utility routine to decode opcode field of LDN/STN single structure |
| // instructions to find the ST1 instructions. |
| // R == 0 for ST1 and ST3, R == 1 for ST2 and ST4. |
| // opcode == 000 ST1 8-bit. |
| // opcode == 010 ST1 16-bit. |
| // opcode == 100 ST1 32 or 64-bit (Size determines which). |
| static bool isST1SingleOpcode(uint32_t instr) { |
| return (instr & 0x0040e000) == 0x00000000 || |
| (instr & 0x0040e000) == 0x00004000 || |
| (instr & 0x0040e000) == 0x00008000; |
| } |
| |
| static bool isST1Single(uint32_t instr) { |
| return (instr & 0xbfff0000) == 0x0d000000 && isST1SingleOpcode(instr); |
| } |
| |
| // Writes to Rn (writeback). |
| static bool isST1SinglePost(uint32_t instr) { |
| return (instr & 0xbfe00000) == 0x0d800000 && isST1SingleOpcode(instr); |
| } |
| |
| static bool isST1(uint32_t instr) { |
| return isST1Multiple(instr) || isST1MultiplePost(instr) || |
| isST1Single(instr) || isST1SinglePost(instr); |
| } |
| |
| // Load/store exclusive |
| // | size (2) 00 | 1000 | o2 L o1 | Rs (5) | o0 | Rt2 (5) | Rn (5) | Rt (5) | |
| // L == 0 for Stores. |
| static bool isLoadStoreExclusive(uint32_t instr) { |
| return (instr & 0x3f000000) == 0x08000000; |
| } |
| |
| static bool isLoadExclusive(uint32_t instr) { |
| return (instr & 0x3f400000) == 0x08400000; |
| } |
| |
| // Load register literal |
| // | opc (2) 01 | 1 V 00 | imm19 | Rt (5) | |
| static bool isLoadLiteral(uint32_t instr) { |
| return (instr & 0x3b000000) == 0x18000000; |
| } |
| |
| // Load/store no-allocate pair |
| // (offset) |
| // | opc (2) 10 | 1 V 00 | 0 L | imm7 | Rt2 (5) | Rn (5) | Rt (5) | |
| // L == 0 for stores. |
| // Never writes to register |
| static bool isSTNP(uint32_t instr) { |
| return (instr & 0x3bc00000) == 0x28000000; |
| } |
| |
| // Load/store register pair |
| // (post-indexed) |
| // | opc (2) 10 | 1 V 00 | 1 L | imm7 | Rt2 (5) | Rn (5) | Rt (5) | |
| // L == 0 for stores, V == 0 for Scalar, V == 1 for Simd/FP |
| // Writes to Rn. |
| static bool isSTPPost(uint32_t instr) { |
| return (instr & 0x3bc00000) == 0x28800000; |
| } |
| |
| // (offset) |
| // | opc (2) 10 | 1 V 01 | 0 L | imm7 | Rt2 (5) | Rn (5) | Rt (5) | |
| static bool isSTPOffset(uint32_t instr) { |
| return (instr & 0x3bc00000) == 0x29000000; |
| } |
| |
| // (pre-index) |
| // | opc (2) 10 | 1 V 01 | 1 L | imm7 | Rt2 (5) | Rn (5) | Rt (5) | |
| // Writes to Rn. |
| static bool isSTPPre(uint32_t instr) { |
| return (instr & 0x3bc00000) == 0x29800000; |
| } |
| |
| static bool isSTP(uint32_t instr) { |
| return isSTPPost(instr) || isSTPOffset(instr) || isSTPPre(instr); |
| } |
| |
| // Load/store register (unscaled immediate) |
| // | size (2) 11 | 1 V 00 | opc (2) 0 | imm9 | 00 | Rn (5) | Rt (5) | |
| // V == 0 for Scalar, V == 1 for Simd/FP. |
| static bool isLoadStoreUnscaled(uint32_t instr) { |
| return (instr & 0x3b000c00) == 0x38000000; |
| } |
| |
| // Load/store register (immediate post-indexed) |
| // | size (2) 11 | 1 V 00 | opc (2) 0 | imm9 | 01 | Rn (5) | Rt (5) | |
| static bool isLoadStoreImmediatePost(uint32_t instr) { |
| return (instr & 0x3b200c00) == 0x38000400; |
| } |
| |
| // Load/store register (unprivileged) |
| // | size (2) 11 | 1 V 00 | opc (2) 0 | imm9 | 10 | Rn (5) | Rt (5) | |
| static bool isLoadStoreUnpriv(uint32_t instr) { |
| return (instr & 0x3b200c00) == 0x38000800; |
| } |
| |
| // Load/store register (immediate pre-indexed) |
| // | size (2) 11 | 1 V 00 | opc (2) 0 | imm9 | 11 | Rn (5) | Rt (5) | |
| static bool isLoadStoreImmediatePre(uint32_t instr) { |
| return (instr & 0x3b200c00) == 0x38000c00; |
| } |
| |
| // Load/store register (register offset) |
| // | size (2) 11 | 1 V 00 | opc (2) 1 | Rm (5) | option (3) S | 10 | Rn | Rt | |
| static bool isLoadStoreRegisterOff(uint32_t instr) { |
| return (instr & 0x3b200c00) == 0x38200800; |
| } |
| |
| // Load/store register (unsigned immediate) |
| // | size (2) 11 | 1 V 01 | opc (2) | imm12 | Rn (5) | Rt (5) | |
| static bool isLoadStoreRegisterUnsigned(uint32_t instr) { |
| return (instr & 0x3b000000) == 0x39000000; |
| } |
| |
| // Rt is always in bit position 0 - 4. |
| static uint32_t getRt(uint32_t instr) { return (instr & 0x1f); } |
| |
| // Rn is always in bit position 5 - 9. |
| static uint32_t getRn(uint32_t instr) { return (instr >> 5) & 0x1f; } |
| |
| // C4.1.2 Branches, Exception Generating and System instructions |
| // | op0 (3) 1 | 01 op1 (4) | x (22) | |
| // op0 == 010 101 op1 == 0xxx Conditional Branch. |
| // op0 == 110 101 op1 == 1xxx Unconditional Branch Register. |
| // op0 == x00 101 op1 == xxxx Unconditional Branch immediate. |
| // op0 == x01 101 op1 == 0xxx Compare and branch immediate. |
| // op0 == x01 101 op1 == 1xxx Test and branch immediate. |
| static bool isBranch(uint32_t instr) { |
| return ((instr & 0xfe000000) == 0xd6000000) || // Cond branch. |
| ((instr & 0xfe000000) == 0x54000000) || // Uncond branch reg. |
| ((instr & 0x7c000000) == 0x14000000) || // Uncond branch imm. |
| ((instr & 0x7c000000) == 0x34000000); // Compare and test branch. |
| } |
| |
| static bool isV8SingleRegisterNonStructureLoadStore(uint32_t instr) { |
| return isLoadStoreUnscaled(instr) || isLoadStoreImmediatePost(instr) || |
| isLoadStoreUnpriv(instr) || isLoadStoreImmediatePre(instr) || |
| isLoadStoreRegisterOff(instr) || isLoadStoreRegisterUnsigned(instr); |
| } |
| |
| // Note that this function refers to v8.0 only and does not include the |
| // additional load and store instructions added for in later revisions of |
| // the architecture such as the Atomic memory operations introduced |
| // in v8.1. |
| static bool isV8NonStructureLoad(uint32_t instr) { |
| if (isLoadExclusive(instr)) |
| return true; |
| if (isLoadLiteral(instr)) |
| return true; |
| else if (isV8SingleRegisterNonStructureLoadStore(instr)) { |
| // For Load and Store single register, Loads are derived from a |
| // combination of the Size, V and Opc fields. |
| uint32_t size = (instr >> 30) & 0xff; |
| uint32_t v = (instr >> 26) & 0x1; |
| uint32_t opc = (instr >> 22) & 0x3; |
| // For the load and store instructions that we are decoding. |
| // Opc == 0 are all stores. |
| // Opc == 1 with a couple of exceptions are loads. The exceptions are: |
| // Size == 00 (0), V == 1, Opc == 10 (2) which is a store and |
| // Size == 11 (3), V == 0, Opc == 10 (2) which is a prefetch. |
| return opc != 0 && !(size == 0 && v == 1 && opc == 2) && |
| !(size == 3 && v == 0 && opc == 2); |
| } |
| return false; |
| } |
| |
| // The following decode instructions are only complete up to the instructions |
| // needed for errata 843419. |
| |
| // Instruction with writeback updates the index register after the load/store. |
| static bool hasWriteback(uint32_t instr) { |
| return isLoadStoreImmediatePre(instr) || isLoadStoreImmediatePost(instr) || |
| isSTPPre(instr) || isSTPPost(instr) || isST1SinglePost(instr) || |
| isST1MultiplePost(instr); |
| } |
| |
| // For the load and store class of instructions, a load can write to the |
| // destination register, a load and a store can write to the base register when |
| // the instruction has writeback. |
| static bool doesLoadStoreWriteToReg(uint32_t instr, uint32_t reg) { |
| return (isV8NonStructureLoad(instr) && getRt(instr) == reg) || |
| (hasWriteback(instr) && getRn(instr) == reg); |
| } |
| |
| // Scanner for Cortex-A53 errata 843419 |
| // Full details are available in the Cortex A53 MPCore revision 0 Software |
| // Developers Errata Notice (ARM-EPM-048406). |
| // |
| // The instruction sequence that triggers the erratum is common in compiled |
| // AArch64 code, however it is sensitive to the offset of the sequence within |
| // a 4k page. This means that by scanning and fixing the patch after we have |
| // assigned addresses we only need to disassemble and fix instances of the |
| // sequence in the range of affected offsets. |
| // |
| // In summary the erratum conditions are a series of 4 instructions: |
| // 1.) An ADRP instruction that writes to register Rn with low 12 bits of |
| // address of instruction either 0xff8 or 0xffc. |
| // 2.) A load or store instruction that can be: |
| // - A single register load or store, of either integer or vector registers. |
| // - An STP or STNP, of either integer or vector registers. |
| // - An Advanced SIMD ST1 store instruction. |
| // - Must not write to Rn, but may optionally read from it. |
| // 3.) An optional instruction that is not a branch and does not write to Rn. |
| // 4.) A load or store from the Load/store register (unsigned immediate) class |
| // that uses Rn as the base address register. |
| // |
| // Note that we do not attempt to scan for Sequence 2 as described in the |
| // Software Developers Errata Notice as this has been assessed to be extremely |
| // unlikely to occur in compiled code. This matches gold and ld.bfd behavior. |
| |
| // Return true if the Instruction sequence Adrp, Instr2, and Instr4 match |
| // the erratum sequence. The Adrp, Instr2 and Instr4 correspond to 1.), 2.), |
| // and 4.) in the Scanner for Cortex-A53 errata comment above. |
| static bool is843419ErratumSequence(uint32_t instr1, uint32_t instr2, |
| uint32_t instr4) { |
| if (!isADRP(instr1)) |
| return false; |
| |
| uint32_t rn = getRt(instr1); |
| return isLoadStoreClass(instr2) && |
| (isLoadStoreExclusive(instr2) || isLoadLiteral(instr2) || |
| isV8SingleRegisterNonStructureLoadStore(instr2) || isSTP(instr2) || |
| isSTNP(instr2) || isST1(instr2)) && |
| !doesLoadStoreWriteToReg(instr2, rn) && |
| isLoadStoreRegisterUnsigned(instr4) && getRn(instr4) == rn; |
| } |
| |
| // Scan the instruction sequence starting at Offset Off from the base of |
| // InputSection isec. We update Off in this function rather than in the caller |
| // as we can skip ahead much further into the section when we know how many |
| // instructions we've scanned. |
| // Return the offset of the load or store instruction in isec that we want to |
| // patch or 0 if no patch required. |
| static uint64_t scanCortexA53Errata843419(InputSection *isec, uint64_t &off, |
| uint64_t limit) { |
| uint64_t isecAddr = isec->getVA(0); |
| |
| // Advance Off so that (isecAddr + Off) modulo 0x1000 is at least 0xff8. |
| uint64_t initialPageOff = (isecAddr + off) & 0xfff; |
| if (initialPageOff < 0xff8) |
| off += 0xff8 - initialPageOff; |
| |
| bool optionalAllowed = limit - off > 12; |
| if (off >= limit || limit - off < 12) { |
| // Need at least 3 4-byte sized instructions to trigger erratum. |
| off = limit; |
| return 0; |
| } |
| |
| uint64_t patchOff = 0; |
| const uint8_t *buf = isec->data().begin(); |
| const ulittle32_t *instBuf = reinterpret_cast<const ulittle32_t *>(buf + off); |
| uint32_t instr1 = *instBuf++; |
| uint32_t instr2 = *instBuf++; |
| uint32_t instr3 = *instBuf++; |
| if (is843419ErratumSequence(instr1, instr2, instr3)) { |
| patchOff = off + 8; |
| } else if (optionalAllowed && !isBranch(instr3)) { |
| uint32_t instr4 = *instBuf++; |
| if (is843419ErratumSequence(instr1, instr2, instr4)) |
| patchOff = off + 12; |
| } |
| if (((isecAddr + off) & 0xfff) == 0xff8) |
| off += 4; |
| else |
| off += 0xffc; |
| return patchOff; |
| } |
| |
| class elf::Patch843419Section : public SyntheticSection { |
| public: |
| Patch843419Section(InputSection *p, uint64_t off); |
| |
| void writeTo(uint8_t *buf) override; |
| |
| size_t getSize() const override { return 8; } |
| |
| uint64_t getLDSTAddr() const; |
| |
| static bool classof(const SectionBase *d) { |
| return d->kind() == InputSectionBase::Synthetic && d->name == ".text.patch"; |
| } |
| |
| // The Section we are patching. |
| const InputSection *patchee; |
| // The offset of the instruction in the patchee section we are patching. |
| uint64_t patcheeOffset; |
| // A label for the start of the Patch that we can use as a relocation target. |
| Symbol *patchSym; |
| }; |
| |
| Patch843419Section::Patch843419Section(InputSection *p, uint64_t off) |
| : SyntheticSection(SHF_ALLOC | SHF_EXECINSTR, SHT_PROGBITS, 4, |
| ".text.patch"), |
| patchee(p), patcheeOffset(off) { |
| this->parent = p->getParent(); |
| patchSym = addSyntheticLocal( |
| saver.save("__CortexA53843419_" + utohexstr(getLDSTAddr())), STT_FUNC, 0, |
| getSize(), *this); |
| addSyntheticLocal(saver.save("$x"), STT_NOTYPE, 0, 0, *this); |
| } |
| |
| uint64_t Patch843419Section::getLDSTAddr() const { |
| return patchee->getVA(patcheeOffset); |
| } |
| |
| void Patch843419Section::writeTo(uint8_t *buf) { |
| // Copy the instruction that we will be replacing with a branch in the |
| // patchee Section. |
| write32le(buf, read32le(patchee->data().begin() + patcheeOffset)); |
| |
| // Apply any relocation transferred from the original patchee section. |
| relocateAlloc(buf, buf + getSize()); |
| |
| // Return address is the next instruction after the one we have just copied. |
| uint64_t s = getLDSTAddr() + 4; |
| uint64_t p = patchSym->getVA() + 4; |
| target->relocateNoSym(buf + 4, R_AARCH64_JUMP26, s - p); |
| } |
| |
| void AArch64Err843419Patcher::init() { |
| // The AArch64 ABI permits data in executable sections. We must avoid scanning |
| // this data as if it were instructions to avoid false matches. We use the |
| // mapping symbols in the InputObjects to identify this data, caching the |
| // results in sectionMap so we don't have to recalculate it each pass. |
| |
| // The ABI Section 4.5.4 Mapping symbols; defines local symbols that describe |
| // half open intervals [Symbol Value, Next Symbol Value) of code and data |
| // within sections. If there is no next symbol then the half open interval is |
| // [Symbol Value, End of section). The type, code or data, is determined by |
| // the mapping symbol name, $x for code, $d for data. |
| auto isCodeMapSymbol = [](const Symbol *b) { |
| return b->getName() == "$x" || b->getName().startswith("$x."); |
| }; |
| auto isDataMapSymbol = [](const Symbol *b) { |
| return b->getName() == "$d" || b->getName().startswith("$d."); |
| }; |
| |
| // Collect mapping symbols for every executable InputSection. |
| for (InputFile *file : objectFiles) { |
| auto *f = cast<ObjFile<ELF64LE>>(file); |
| for (Symbol *b : f->getLocalSymbols()) { |
| auto *def = dyn_cast<Defined>(b); |
| if (!def) |
| continue; |
| if (!isCodeMapSymbol(def) && !isDataMapSymbol(def)) |
| continue; |
| if (auto *sec = dyn_cast_or_null<InputSection>(def->section)) |
| if (sec->flags & SHF_EXECINSTR) |
| sectionMap[sec].push_back(def); |
| } |
| } |
| // For each InputSection make sure the mapping symbols are in sorted in |
| // ascending order and free from consecutive runs of mapping symbols with |
| // the same type. For example we must remove the redundant $d.1 from $x.0 |
| // $d.0 $d.1 $x.1. |
| for (auto &kv : sectionMap) { |
| std::vector<const Defined *> &mapSyms = kv.second; |
| llvm::stable_sort(mapSyms, [](const Defined *a, const Defined *b) { |
| return a->value < b->value; |
| }); |
| mapSyms.erase( |
| std::unique(mapSyms.begin(), mapSyms.end(), |
| [=](const Defined *a, const Defined *b) { |
| return isCodeMapSymbol(a) == isCodeMapSymbol(b); |
| }), |
| mapSyms.end()); |
| // Always start with a Code Mapping Symbol. |
| if (!mapSyms.empty() && !isCodeMapSymbol(mapSyms.front())) |
| mapSyms.erase(mapSyms.begin()); |
| } |
| initialized = true; |
| } |
| |
| // Insert the PatchSections we have created back into the |
| // InputSectionDescription. As inserting patches alters the addresses of |
| // InputSections that follow them, we try and place the patches after all the |
| // executable sections, although we may need to insert them earlier if the |
| // InputSectionDescription is larger than the maximum branch range. |
| void AArch64Err843419Patcher::insertPatches( |
| InputSectionDescription &isd, std::vector<Patch843419Section *> &patches) { |
| uint64_t isecLimit; |
| uint64_t prevIsecLimit = isd.sections.front()->outSecOff; |
| uint64_t patchUpperBound = prevIsecLimit + target->getThunkSectionSpacing(); |
| uint64_t outSecAddr = isd.sections.front()->getParent()->addr; |
| |
| // Set the outSecOff of patches to the place where we want to insert them. |
| // We use a similar strategy to Thunk placement. Place patches roughly |
| // every multiple of maximum branch range. |
| auto patchIt = patches.begin(); |
| auto patchEnd = patches.end(); |
| for (const InputSection *isec : isd.sections) { |
| isecLimit = isec->outSecOff + isec->getSize(); |
| if (isecLimit > patchUpperBound) { |
| while (patchIt != patchEnd) { |
| if ((*patchIt)->getLDSTAddr() - outSecAddr >= prevIsecLimit) |
| break; |
| (*patchIt)->outSecOff = prevIsecLimit; |
| ++patchIt; |
| } |
| patchUpperBound = prevIsecLimit + target->getThunkSectionSpacing(); |
| } |
| prevIsecLimit = isecLimit; |
| } |
| for (; patchIt != patchEnd; ++patchIt) { |
| (*patchIt)->outSecOff = isecLimit; |
| } |
| |
| // Merge all patch sections. We use the outSecOff assigned above to |
| // determine the insertion point. This is ok as we only merge into an |
| // InputSectionDescription once per pass, and at the end of the pass |
| // assignAddresses() will recalculate all the outSecOff values. |
| std::vector<InputSection *> tmp; |
| tmp.reserve(isd.sections.size() + patches.size()); |
| auto mergeCmp = [](const InputSection *a, const InputSection *b) { |
| if (a->outSecOff != b->outSecOff) |
| return a->outSecOff < b->outSecOff; |
| return isa<Patch843419Section>(a) && !isa<Patch843419Section>(b); |
| }; |
| std::merge(isd.sections.begin(), isd.sections.end(), patches.begin(), |
| patches.end(), std::back_inserter(tmp), mergeCmp); |
| isd.sections = std::move(tmp); |
| } |
| |
| // Given an erratum sequence that starts at address adrpAddr, with an |
| // instruction that we need to patch at patcheeOffset from the start of |
| // InputSection isec, create a Patch843419 Section and add it to the |
| // Patches that we need to insert. |
| static void implementPatch(uint64_t adrpAddr, uint64_t patcheeOffset, |
| InputSection *isec, |
| std::vector<Patch843419Section *> &patches) { |
| // There may be a relocation at the same offset that we are patching. There |
| // are four cases that we need to consider. |
| // Case 1: R_AARCH64_JUMP26 branch relocation. We have already patched this |
| // instance of the erratum on a previous patch and altered the relocation. We |
| // have nothing more to do. |
| // Case 2: A TLS Relaxation R_RELAX_TLS_IE_TO_LE. In this case the ADRP that |
| // we read will be transformed into a MOVZ later so we actually don't match |
| // the sequence and have nothing more to do. |
| // Case 3: A load/store register (unsigned immediate) class relocation. There |
| // are two of these R_AARCH_LD64_ABS_LO12_NC and R_AARCH_LD64_GOT_LO12_NC and |
| // they are both absolute. We need to add the same relocation to the patch, |
| // and replace the relocation with a R_AARCH_JUMP26 branch relocation. |
| // Case 4: No relocation. We must create a new R_AARCH64_JUMP26 branch |
| // relocation at the offset. |
| auto relIt = llvm::find_if(isec->relocations, [=](const Relocation &r) { |
| return r.offset == patcheeOffset; |
| }); |
| if (relIt != isec->relocations.end() && |
| (relIt->type == R_AARCH64_JUMP26 || relIt->expr == R_RELAX_TLS_IE_TO_LE)) |
| return; |
| |
| log("detected cortex-a53-843419 erratum sequence starting at " + |
| utohexstr(adrpAddr) + " in unpatched output."); |
| |
| auto *ps = make<Patch843419Section>(isec, patcheeOffset); |
| patches.push_back(ps); |
| |
| auto makeRelToPatch = [](uint64_t offset, Symbol *patchSym) { |
| return Relocation{R_PC, R_AARCH64_JUMP26, offset, 0, patchSym}; |
| }; |
| |
| if (relIt != isec->relocations.end()) { |
| ps->relocations.push_back( |
| {relIt->expr, relIt->type, 0, relIt->addend, relIt->sym}); |
| *relIt = makeRelToPatch(patcheeOffset, ps->patchSym); |
| } else |
| isec->relocations.push_back(makeRelToPatch(patcheeOffset, ps->patchSym)); |
| } |
| |
| // Scan all the instructions in InputSectionDescription, for each instance of |
| // the erratum sequence create a Patch843419Section. We return the list of |
| // Patch843419Sections that need to be applied to the InputSectionDescription. |
| std::vector<Patch843419Section *> |
| AArch64Err843419Patcher::patchInputSectionDescription( |
| InputSectionDescription &isd) { |
| std::vector<Patch843419Section *> patches; |
| for (InputSection *isec : isd.sections) { |
| // LLD doesn't use the erratum sequence in SyntheticSections. |
| if (isa<SyntheticSection>(isec)) |
| continue; |
| // Use sectionMap to make sure we only scan code and not inline data. |
| // We have already sorted MapSyms in ascending order and removed consecutive |
| // mapping symbols of the same type. Our range of executable instructions to |
| // scan is therefore [codeSym->value, dataSym->value) or [codeSym->value, |
| // section size). |
| std::vector<const Defined *> &mapSyms = sectionMap[isec]; |
| |
| auto codeSym = mapSyms.begin(); |
| while (codeSym != mapSyms.end()) { |
| auto dataSym = std::next(codeSym); |
| uint64_t off = (*codeSym)->value; |
| uint64_t limit = |
| (dataSym == mapSyms.end()) ? isec->data().size() : (*dataSym)->value; |
| |
| while (off < limit) { |
| uint64_t startAddr = isec->getVA(off); |
| if (uint64_t patcheeOffset = |
| scanCortexA53Errata843419(isec, off, limit)) |
| implementPatch(startAddr, patcheeOffset, isec, patches); |
| } |
| if (dataSym == mapSyms.end()) |
| break; |
| codeSym = std::next(dataSym); |
| } |
| } |
| return patches; |
| } |
| |
| // For each InputSectionDescription make one pass over the executable sections |
| // looking for the erratum sequence; creating a synthetic Patch843419Section |
| // for each instance found. We insert these synthetic patch sections after the |
| // executable code in each InputSectionDescription. |
| // |
| // PreConditions: |
| // The Output and Input Sections have had their final addresses assigned. |
| // |
| // PostConditions: |
| // Returns true if at least one patch was added. The addresses of the |
| // Output and Input Sections may have been changed. |
| // Returns false if no patches were required and no changes were made. |
| bool AArch64Err843419Patcher::createFixes() { |
| if (!initialized) |
| init(); |
| |
| bool addressesChanged = false; |
| for (OutputSection *os : outputSections) { |
| if (!(os->flags & SHF_ALLOC) || !(os->flags & SHF_EXECINSTR)) |
| continue; |
| for (SectionCommand *cmd : os->commands) |
| if (auto *isd = dyn_cast<InputSectionDescription>(cmd)) { |
| std::vector<Patch843419Section *> patches = |
| patchInputSectionDescription(*isd); |
| if (!patches.empty()) { |
| insertPatches(*isd, patches); |
| addressesChanged = true; |
| } |
| } |
| } |
| return addressesChanged; |
| } |