[AtomicExpand][RISCV] Call shouldExpandAtomicRMWInIR before widenPartwordAtomicRMW (#80947)

This gives the target a chance to keep an atomicrmw op that is smaller
than the minimum cmpxchg size. This is needed to support the Zabha
extension for RISC-V which provides i8/i16 atomicrmw operations, but
does not provide an i8/i16 cmpxchg or LR/SC instructions.

This moves the widening until after the target requests
LLSC/CmpXChg/MaskedIntrinsic expansion. Once we widen, we call
shouldExpandAtomicRMWInIR again to give the target another chance to
make a decision about the widened operation.

I considered making the targets return AtomicExpansionKind::Expand or a
new expansion kind for And/Or/Xor, but that required the targets to
special case And/Or/Xor which they weren't currently doing.
1 file changed
tree: c76355dbd827ba99164aca077122655cf2fce1b4
  1. .ci/
  2. .github/
  3. bolt/
  4. clang/
  5. clang-tools-extra/
  6. cmake/
  7. compiler-rt/
  8. cross-project-tests/
  9. flang/
  10. libc/
  11. libclc/
  12. libcxx/
  13. libcxxabi/
  14. libunwind/
  15. lld/
  16. lldb/
  17. llvm/
  18. llvm-libgcc/
  19. mlir/
  20. openmp/
  21. polly/
  22. pstl/
  23. runtimes/
  24. third-party/
  25. utils/
  26. .arcconfig
  27. .arclint
  28. .clang-format
  29. .clang-tidy
  30. .git-blame-ignore-revs
  31. .gitattributes
  32. .gitignore
  33. .mailmap
  34. CODE_OF_CONDUCT.md
  35. CONTRIBUTING.md
  36. LICENSE.TXT
  37. README.md
  38. SECURITY.md
README.md

The LLVM Compiler Infrastructure

OpenSSF Scorecard OpenSSF Best Practices libc++

Welcome to the LLVM project!

This repository contains the source code for LLVM, a toolkit for the construction of highly optimized compilers, optimizers, and run-time environments.

The LLVM project has multiple components. The core of the project is itself called “LLVM”. This contains all of the tools, libraries, and header files needed to process intermediate representations and convert them into object files. Tools include an assembler, disassembler, bitcode analyzer, and bitcode optimizer.

C-like languages use the Clang frontend. This component compiles C, C++, Objective-C, and Objective-C++ code into LLVM bitcode -- and from there into object files, using LLVM.

Other components include: the libc++ C++ standard library, the LLD linker, and more.

Getting the Source Code and Building LLVM

Consult the Getting Started with LLVM page for information on building and running LLVM.

For information on how to contribute to the LLVM project, please take a look at the Contributing to LLVM guide.

Getting in touch

Join the LLVM Discourse forums, Discord chat, LLVM Office Hours or Regular sync-ups.

The LLVM project has adopted a code of conduct for participants to all modes of communication within the project.