blob: 7f2d5d7d998717eed912da93c62b12b3eed9dc2b [file] [log] [blame]
//===-- ConstraintElimination.cpp - Eliminate conds using constraints. ----===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// Eliminate conditions based on constraints collected from dominating
// conditions.
//
//===----------------------------------------------------------------------===//
#include "llvm/Transforms/Scalar/ConstraintElimination.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/ADT/ScopeExit.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/ADT/Statistic.h"
#include "llvm/Analysis/ConstraintSystem.h"
#include "llvm/Analysis/GlobalsModRef.h"
#include "llvm/Analysis/ValueTracking.h"
#include "llvm/IR/DataLayout.h"
#include "llvm/IR/Dominators.h"
#include "llvm/IR/Function.h"
#include "llvm/IR/Instructions.h"
#include "llvm/IR/PatternMatch.h"
#include "llvm/InitializePasses.h"
#include "llvm/Pass.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/DebugCounter.h"
#include "llvm/Transforms/Scalar.h"
#include <string>
using namespace llvm;
using namespace PatternMatch;
#define DEBUG_TYPE "constraint-elimination"
STATISTIC(NumCondsRemoved, "Number of instructions removed");
DEBUG_COUNTER(EliminatedCounter, "conds-eliminated",
"Controls which conditions are eliminated");
static int64_t MaxConstraintValue = std::numeric_limits<int64_t>::max();
// Decomposes \p V into a vector of pairs of the form { c, X } where c * X. The
// sum of the pairs equals \p V. The first pair is the constant-factor and X
// must be nullptr. If the expression cannot be decomposed, returns an empty
// vector.
static SmallVector<std::pair<int64_t, Value *>, 4> decompose(Value *V) {
if (auto *CI = dyn_cast<ConstantInt>(V)) {
if (CI->isNegative() || CI->uge(MaxConstraintValue))
return {};
return {{CI->getSExtValue(), nullptr}};
}
auto *GEP = dyn_cast<GetElementPtrInst>(V);
if (GEP && GEP->getNumOperands() == 2 && GEP->isInBounds()) {
Value *Op0, *Op1;
ConstantInt *CI;
// If the index is zero-extended, it is guaranteed to be positive.
if (match(GEP->getOperand(GEP->getNumOperands() - 1),
m_ZExt(m_Value(Op0)))) {
if (match(Op0, m_NUWShl(m_Value(Op1), m_ConstantInt(CI))))
return {{0, nullptr},
{1, GEP->getPointerOperand()},
{std::pow(int64_t(2), CI->getSExtValue()), Op1}};
if (match(Op0, m_NSWAdd(m_Value(Op1), m_ConstantInt(CI))))
return {{CI->getSExtValue(), nullptr},
{1, GEP->getPointerOperand()},
{1, Op1}};
return {{0, nullptr}, {1, GEP->getPointerOperand()}, {1, Op0}};
}
if (match(GEP->getOperand(GEP->getNumOperands() - 1), m_ConstantInt(CI)) &&
!CI->isNegative())
return {{CI->getSExtValue(), nullptr}, {1, GEP->getPointerOperand()}};
SmallVector<std::pair<int64_t, Value *>, 4> Result;
if (match(GEP->getOperand(GEP->getNumOperands() - 1),
m_NUWShl(m_Value(Op0), m_ConstantInt(CI))))
Result = {{0, nullptr},
{1, GEP->getPointerOperand()},
{std::pow(int64_t(2), CI->getSExtValue()), Op0}};
else if (match(GEP->getOperand(GEP->getNumOperands() - 1),
m_NSWAdd(m_Value(Op0), m_ConstantInt(CI))))
Result = {{CI->getSExtValue(), nullptr},
{1, GEP->getPointerOperand()},
{1, Op0}};
else {
Op0 = GEP->getOperand(GEP->getNumOperands() - 1);
Result = {{0, nullptr}, {1, GEP->getPointerOperand()}, {1, Op0}};
}
return Result;
}
Value *Op0;
if (match(V, m_ZExt(m_Value(Op0))))
V = Op0;
Value *Op1;
ConstantInt *CI;
if (match(V, m_NUWAdd(m_Value(Op0), m_ConstantInt(CI))))
return {{CI->getSExtValue(), nullptr}, {1, Op0}};
if (match(V, m_NUWAdd(m_Value(Op0), m_Value(Op1))))
return {{0, nullptr}, {1, Op0}, {1, Op1}};
if (match(V, m_NUWSub(m_Value(Op0), m_ConstantInt(CI))))
return {{-1 * CI->getSExtValue(), nullptr}, {1, Op0}};
if (match(V, m_NUWSub(m_Value(Op0), m_Value(Op1))))
return {{0, nullptr}, {1, Op0}, {1, Op1}};
return {{0, nullptr}, {1, V}};
}
struct ConstraintTy {
SmallVector<int64_t, 8> Coefficients;
ConstraintTy(SmallVector<int64_t, 8> Coefficients)
: Coefficients(Coefficients) {}
unsigned size() const { return Coefficients.size(); }
};
/// Turn a condition \p CmpI into a vector of constraints, using indices from \p
/// Value2Index. Additional indices for newly discovered values are added to \p
/// NewIndices.
static SmallVector<ConstraintTy, 4>
getConstraint(CmpInst::Predicate Pred, Value *Op0, Value *Op1,
const DenseMap<Value *, unsigned> &Value2Index,
DenseMap<Value *, unsigned> &NewIndices) {
int64_t Offset1 = 0;
int64_t Offset2 = 0;
// First try to look up \p V in Value2Index and NewIndices. Otherwise add a
// new entry to NewIndices.
auto GetOrAddIndex = [&Value2Index, &NewIndices](Value *V) -> unsigned {
auto V2I = Value2Index.find(V);
if (V2I != Value2Index.end())
return V2I->second;
auto NewI = NewIndices.find(V);
if (NewI != NewIndices.end())
return NewI->second;
auto Insert =
NewIndices.insert({V, Value2Index.size() + NewIndices.size() + 1});
return Insert.first->second;
};
if (Pred == CmpInst::ICMP_UGT || Pred == CmpInst::ICMP_UGE)
return getConstraint(CmpInst::getSwappedPredicate(Pred), Op1, Op0,
Value2Index, NewIndices);
if (Pred == CmpInst::ICMP_EQ) {
auto A =
getConstraint(CmpInst::ICMP_UGE, Op0, Op1, Value2Index, NewIndices);
auto B =
getConstraint(CmpInst::ICMP_ULE, Op0, Op1, Value2Index, NewIndices);
append_range(A, B);
return A;
}
if (Pred == CmpInst::ICMP_NE && match(Op1, m_Zero())) {
return getConstraint(CmpInst::ICMP_UGT, Op0, Op1, Value2Index, NewIndices);
}
// Only ULE and ULT predicates are supported at the moment.
if (Pred != CmpInst::ICMP_ULE && Pred != CmpInst::ICMP_ULT)
return {};
auto ADec = decompose(Op0->stripPointerCastsSameRepresentation());
auto BDec = decompose(Op1->stripPointerCastsSameRepresentation());
// Skip if decomposing either of the values failed.
if (ADec.empty() || BDec.empty())
return {};
// Skip trivial constraints without any variables.
if (ADec.size() == 1 && BDec.size() == 1)
return {};
Offset1 = ADec[0].first;
Offset2 = BDec[0].first;
Offset1 *= -1;
// Create iterator ranges that skip the constant-factor.
auto VariablesA = llvm::drop_begin(ADec);
auto VariablesB = llvm::drop_begin(BDec);
// Make sure all variables have entries in Value2Index or NewIndices.
for (const auto &KV :
concat<std::pair<int64_t, Value *>>(VariablesA, VariablesB))
GetOrAddIndex(KV.second);
// Build result constraint, by first adding all coefficients from A and then
// subtracting all coefficients from B.
SmallVector<int64_t, 8> R(Value2Index.size() + NewIndices.size() + 1, 0);
for (const auto &KV : VariablesA)
R[GetOrAddIndex(KV.second)] += KV.first;
for (const auto &KV : VariablesB)
R[GetOrAddIndex(KV.second)] -= KV.first;
R[0] = Offset1 + Offset2 + (Pred == CmpInst::ICMP_ULT ? -1 : 0);
return {R};
}
static SmallVector<ConstraintTy, 4>
getConstraint(CmpInst *Cmp, const DenseMap<Value *, unsigned> &Value2Index,
DenseMap<Value *, unsigned> &NewIndices) {
return getConstraint(Cmp->getPredicate(), Cmp->getOperand(0),
Cmp->getOperand(1), Value2Index, NewIndices);
}
namespace {
/// Represents either a condition that holds on entry to a block or a basic
/// block, with their respective Dominator DFS in and out numbers.
struct ConstraintOrBlock {
unsigned NumIn;
unsigned NumOut;
bool IsBlock;
bool Not;
union {
BasicBlock *BB;
CmpInst *Condition;
};
ConstraintOrBlock(DomTreeNode *DTN)
: NumIn(DTN->getDFSNumIn()), NumOut(DTN->getDFSNumOut()), IsBlock(true),
BB(DTN->getBlock()) {}
ConstraintOrBlock(DomTreeNode *DTN, CmpInst *Condition, bool Not)
: NumIn(DTN->getDFSNumIn()), NumOut(DTN->getDFSNumOut()), IsBlock(false),
Not(Not), Condition(Condition) {}
};
struct StackEntry {
unsigned NumIn;
unsigned NumOut;
CmpInst *Condition;
bool IsNot;
StackEntry(unsigned NumIn, unsigned NumOut, CmpInst *Condition, bool IsNot)
: NumIn(NumIn), NumOut(NumOut), Condition(Condition), IsNot(IsNot) {}
};
} // namespace
#ifndef NDEBUG
static void dumpWithNames(ConstraintTy &C,
DenseMap<Value *, unsigned> &Value2Index) {
SmallVector<std::string> Names(Value2Index.size(), "");
for (auto &KV : Value2Index) {
Names[KV.second - 1] = std::string("%") + KV.first->getName().str();
}
ConstraintSystem CS;
CS.addVariableRowFill(C.Coefficients);
CS.dump(Names);
}
#endif
static bool eliminateConstraints(Function &F, DominatorTree &DT) {
bool Changed = false;
DT.updateDFSNumbers();
ConstraintSystem CS;
SmallVector<ConstraintOrBlock, 64> WorkList;
// First, collect conditions implied by branches and blocks with their
// Dominator DFS in and out numbers.
for (BasicBlock &BB : F) {
if (!DT.getNode(&BB))
continue;
WorkList.emplace_back(DT.getNode(&BB));
// True as long as long as the current instruction is guaranteed to execute.
bool GuaranteedToExecute = true;
// Scan BB for assume calls.
// TODO: also use this scan to queue conditions to simplify, so we can
// interleave facts from assumes and conditions to simplify in a single
// basic block. And to skip another traversal of each basic block when
// simplifying.
for (Instruction &I : BB) {
Value *Cond;
// For now, just handle assumes with a single compare as condition.
if (match(&I, m_Intrinsic<Intrinsic::assume>(m_Value(Cond))) &&
isa<CmpInst>(Cond)) {
if (GuaranteedToExecute) {
// The assume is guaranteed to execute when BB is entered, hence Cond
// holds on entry to BB.
WorkList.emplace_back(DT.getNode(&BB), cast<CmpInst>(Cond), false);
} else {
// Otherwise the condition only holds in the successors.
for (BasicBlock *Succ : successors(&BB))
WorkList.emplace_back(DT.getNode(Succ), cast<CmpInst>(Cond), false);
}
}
GuaranteedToExecute &= isGuaranteedToTransferExecutionToSuccessor(&I);
}
auto *Br = dyn_cast<BranchInst>(BB.getTerminator());
if (!Br || !Br->isConditional())
continue;
// Returns true if we can add a known condition from BB to its successor
// block Succ. Each predecessor of Succ can either be BB or be dominated by
// Succ (e.g. the case when adding a condition from a pre-header to a loop
// header).
auto CanAdd = [&BB, &DT](BasicBlock *Succ) {
return all_of(predecessors(Succ), [&BB, &DT, Succ](BasicBlock *Pred) {
return Pred == &BB || DT.dominates(Succ, Pred);
});
};
// If the condition is an OR of 2 compares and the false successor only has
// the current block as predecessor, queue both negated conditions for the
// false successor.
Value *Op0, *Op1;
if (match(Br->getCondition(), m_LogicalOr(m_Value(Op0), m_Value(Op1))) &&
match(Op0, m_Cmp()) && match(Op1, m_Cmp())) {
BasicBlock *FalseSuccessor = Br->getSuccessor(1);
if (CanAdd(FalseSuccessor)) {
WorkList.emplace_back(DT.getNode(FalseSuccessor), cast<CmpInst>(Op0),
true);
WorkList.emplace_back(DT.getNode(FalseSuccessor), cast<CmpInst>(Op1),
true);
}
continue;
}
// If the condition is an AND of 2 compares and the true successor only has
// the current block as predecessor, queue both conditions for the true
// successor.
if (match(Br->getCondition(), m_LogicalAnd(m_Value(Op0), m_Value(Op1))) &&
match(Op0, m_Cmp()) && match(Op1, m_Cmp())) {
BasicBlock *TrueSuccessor = Br->getSuccessor(0);
if (CanAdd(TrueSuccessor)) {
WorkList.emplace_back(DT.getNode(TrueSuccessor), cast<CmpInst>(Op0),
false);
WorkList.emplace_back(DT.getNode(TrueSuccessor), cast<CmpInst>(Op1),
false);
}
continue;
}
auto *CmpI = dyn_cast<CmpInst>(Br->getCondition());
if (!CmpI)
continue;
if (CanAdd(Br->getSuccessor(0)))
WorkList.emplace_back(DT.getNode(Br->getSuccessor(0)), CmpI, false);
if (CanAdd(Br->getSuccessor(1)))
WorkList.emplace_back(DT.getNode(Br->getSuccessor(1)), CmpI, true);
}
// Next, sort worklist by dominance, so that dominating blocks and conditions
// come before blocks and conditions dominated by them. If a block and a
// condition have the same numbers, the condition comes before the block, as
// it holds on entry to the block.
sort(WorkList, [](const ConstraintOrBlock &A, const ConstraintOrBlock &B) {
return std::tie(A.NumIn, A.IsBlock) < std::tie(B.NumIn, B.IsBlock);
});
// Finally, process ordered worklist and eliminate implied conditions.
SmallVector<StackEntry, 16> DFSInStack;
DenseMap<Value *, unsigned> Value2Index;
for (ConstraintOrBlock &CB : WorkList) {
// First, pop entries from the stack that are out-of-scope for CB. Remove
// the corresponding entry from the constraint system.
while (!DFSInStack.empty()) {
auto &E = DFSInStack.back();
LLVM_DEBUG(dbgs() << "Top of stack : " << E.NumIn << " " << E.NumOut
<< "\n");
LLVM_DEBUG(dbgs() << "CB: " << CB.NumIn << " " << CB.NumOut << "\n");
assert(E.NumIn <= CB.NumIn);
if (CB.NumOut <= E.NumOut)
break;
LLVM_DEBUG(dbgs() << "Removing " << *E.Condition << " " << E.IsNot
<< "\n");
DFSInStack.pop_back();
CS.popLastConstraint();
}
LLVM_DEBUG({
dbgs() << "Processing ";
if (CB.IsBlock)
dbgs() << *CB.BB;
else
dbgs() << *CB.Condition;
dbgs() << "\n";
});
// For a block, check if any CmpInsts become known based on the current set
// of constraints.
if (CB.IsBlock) {
for (Instruction &I : *CB.BB) {
auto *Cmp = dyn_cast<CmpInst>(&I);
if (!Cmp)
continue;
DenseMap<Value *, unsigned> NewIndices;
auto R = getConstraint(Cmp, Value2Index, NewIndices);
if (R.size() != 1)
continue;
// Check if all coefficients of new indices are 0 after building the
// constraint. Skip if any of the new indices has a non-null
// coefficient.
bool HasNewIndex = false;
for (unsigned I = 0; I < NewIndices.size(); ++I) {
int64_t Last = R[0].Coefficients.pop_back_val();
if (Last != 0) {
HasNewIndex = true;
break;
}
}
if (HasNewIndex || R[0].size() == 1)
continue;
if (CS.isConditionImplied(R[0].Coefficients)) {
if (!DebugCounter::shouldExecute(EliminatedCounter))
continue;
LLVM_DEBUG(dbgs() << "Condition " << *Cmp
<< " implied by dominating constraints\n");
LLVM_DEBUG({
for (auto &E : reverse(DFSInStack))
dbgs() << " C " << *E.Condition << " " << E.IsNot << "\n";
});
Cmp->replaceUsesWithIf(
ConstantInt::getTrue(F.getParent()->getContext()), [](Use &U) {
// Conditions in an assume trivially simplify to true. Skip uses
// in assume calls to not destroy the available information.
auto *II = dyn_cast<IntrinsicInst>(U.getUser());
return !II || II->getIntrinsicID() != Intrinsic::assume;
});
NumCondsRemoved++;
Changed = true;
}
if (CS.isConditionImplied(
ConstraintSystem::negate(R[0].Coefficients))) {
if (!DebugCounter::shouldExecute(EliminatedCounter))
continue;
LLVM_DEBUG(dbgs() << "Condition !" << *Cmp
<< " implied by dominating constraints\n");
LLVM_DEBUG({
for (auto &E : reverse(DFSInStack))
dbgs() << " C " << *E.Condition << " " << E.IsNot << "\n";
});
Cmp->replaceAllUsesWith(
ConstantInt::getFalse(F.getParent()->getContext()));
NumCondsRemoved++;
Changed = true;
}
}
continue;
}
// Set up a function to restore the predicate at the end of the scope if it
// has been negated. Negate the predicate in-place, if required.
auto *CI = dyn_cast<CmpInst>(CB.Condition);
auto PredicateRestorer = make_scope_exit([CI, &CB]() {
if (CB.Not && CI)
CI->setPredicate(CI->getInversePredicate());
});
if (CB.Not) {
if (CI) {
CI->setPredicate(CI->getInversePredicate());
} else {
LLVM_DEBUG(dbgs() << "Can only negate compares so far.\n");
continue;
}
}
// Otherwise, add the condition to the system and stack, if we can transform
// it into a constraint.
DenseMap<Value *, unsigned> NewIndices;
auto R = getConstraint(CB.Condition, Value2Index, NewIndices);
if (R.empty())
continue;
for (auto &KV : NewIndices)
Value2Index.insert(KV);
LLVM_DEBUG(dbgs() << "Adding " << *CB.Condition << " " << CB.Not << "\n");
bool Added = false;
for (auto &C : R) {
auto Coeffs = C.Coefficients;
LLVM_DEBUG({
dbgs() << " constraint: ";
dumpWithNames(C, Value2Index);
});
Added |= CS.addVariableRowFill(Coeffs);
// If R has been added to the system, queue it for removal once it goes
// out-of-scope.
if (Added)
DFSInStack.emplace_back(CB.NumIn, CB.NumOut, CB.Condition, CB.Not);
}
}
assert(CS.size() == DFSInStack.size() &&
"updates to CS and DFSInStack are out of sync");
return Changed;
}
PreservedAnalyses ConstraintEliminationPass::run(Function &F,
FunctionAnalysisManager &AM) {
auto &DT = AM.getResult<DominatorTreeAnalysis>(F);
if (!eliminateConstraints(F, DT))
return PreservedAnalyses::all();
PreservedAnalyses PA;
PA.preserve<DominatorTreeAnalysis>();
PA.preserveSet<CFGAnalyses>();
return PA;
}
namespace {
class ConstraintElimination : public FunctionPass {
public:
static char ID;
ConstraintElimination() : FunctionPass(ID) {
initializeConstraintEliminationPass(*PassRegistry::getPassRegistry());
}
bool runOnFunction(Function &F) override {
auto &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree();
return eliminateConstraints(F, DT);
}
void getAnalysisUsage(AnalysisUsage &AU) const override {
AU.setPreservesCFG();
AU.addRequired<DominatorTreeWrapperPass>();
AU.addPreserved<GlobalsAAWrapperPass>();
AU.addPreserved<DominatorTreeWrapperPass>();
}
};
} // end anonymous namespace
char ConstraintElimination::ID = 0;
INITIALIZE_PASS_BEGIN(ConstraintElimination, "constraint-elimination",
"Constraint Elimination", false, false)
INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
INITIALIZE_PASS_DEPENDENCY(LazyValueInfoWrapperPass)
INITIALIZE_PASS_END(ConstraintElimination, "constraint-elimination",
"Constraint Elimination", false, false)
FunctionPass *llvm::createConstraintEliminationPass() {
return new ConstraintElimination();
}