blob: 4bccc5596d2b80d2d98e6f7dcc31abe4e2cdd6aa [file] [log] [blame]
//===-- PPCRegisterInfo.cpp - PowerPC Register Information ----------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file contains the PowerPC implementation of the TargetRegisterInfo
// class.
//
//===----------------------------------------------------------------------===//
#include "PPCRegisterInfo.h"
#include "PPCFrameLowering.h"
#include "PPCInstrBuilder.h"
#include "PPCMachineFunctionInfo.h"
#include "PPCSubtarget.h"
#include "PPCTargetMachine.h"
#include "llvm/ADT/BitVector.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/ADT/Statistic.h"
#include "llvm/CodeGen/MachineFrameInfo.h"
#include "llvm/CodeGen/MachineFunction.h"
#include "llvm/CodeGen/MachineInstrBuilder.h"
#include "llvm/CodeGen/MachineModuleInfo.h"
#include "llvm/CodeGen/MachineRegisterInfo.h"
#include "llvm/CodeGen/RegisterScavenging.h"
#include "llvm/CodeGen/TargetFrameLowering.h"
#include "llvm/CodeGen/TargetInstrInfo.h"
#include "llvm/IR/CallingConv.h"
#include "llvm/IR/Constants.h"
#include "llvm/IR/Function.h"
#include "llvm/IR/Type.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/ErrorHandling.h"
#include "llvm/Support/MathExtras.h"
#include "llvm/Support/raw_ostream.h"
#include "llvm/Target/TargetMachine.h"
#include "llvm/Target/TargetOptions.h"
#include <cstdlib>
using namespace llvm;
#define DEBUG_TYPE "reginfo"
#define GET_REGINFO_TARGET_DESC
#include "PPCGenRegisterInfo.inc"
STATISTIC(InflateGPRC, "Number of gprc inputs for getLargestLegalClass");
STATISTIC(InflateGP8RC, "Number of g8rc inputs for getLargestLegalClass");
static cl::opt<bool>
EnableBasePointer("ppc-use-base-pointer", cl::Hidden, cl::init(true),
cl::desc("Enable use of a base pointer for complex stack frames"));
static cl::opt<bool>
AlwaysBasePointer("ppc-always-use-base-pointer", cl::Hidden, cl::init(false),
cl::desc("Force the use of a base pointer in every function"));
static cl::opt<bool>
EnableGPRToVecSpills("ppc-enable-gpr-to-vsr-spills", cl::Hidden, cl::init(false),
cl::desc("Enable spills from gpr to vsr rather than stack"));
static cl::opt<bool>
StackPtrConst("ppc-stack-ptr-caller-preserved",
cl::desc("Consider R1 caller preserved so stack saves of "
"caller preserved registers can be LICM candidates"),
cl::init(true), cl::Hidden);
static cl::opt<unsigned>
MaxCRBitSpillDist("ppc-max-crbit-spill-dist",
cl::desc("Maximum search distance for definition of CR bit "
"spill on ppc"),
cl::Hidden, cl::init(100));
// Copies/moves of physical accumulators are expensive operations
// that should be avoided whenever possible. MMA instructions are
// meant to be used in performance-sensitive computational kernels.
// This option is provided, at least for the time being, to give the
// user a tool to detect this expensive operation and either rework
// their code or report a compiler bug if that turns out to be the
// cause.
#ifndef NDEBUG
static cl::opt<bool>
ReportAccMoves("ppc-report-acc-moves",
cl::desc("Emit information about accumulator register spills "
"and copies"),
cl::Hidden, cl::init(false));
#endif
static unsigned offsetMinAlignForOpcode(unsigned OpC);
PPCRegisterInfo::PPCRegisterInfo(const PPCTargetMachine &TM)
: PPCGenRegisterInfo(TM.isPPC64() ? PPC::LR8 : PPC::LR,
TM.isPPC64() ? 0 : 1,
TM.isPPC64() ? 0 : 1),
TM(TM) {
ImmToIdxMap[PPC::LD] = PPC::LDX; ImmToIdxMap[PPC::STD] = PPC::STDX;
ImmToIdxMap[PPC::LBZ] = PPC::LBZX; ImmToIdxMap[PPC::STB] = PPC::STBX;
ImmToIdxMap[PPC::LHZ] = PPC::LHZX; ImmToIdxMap[PPC::LHA] = PPC::LHAX;
ImmToIdxMap[PPC::LWZ] = PPC::LWZX; ImmToIdxMap[PPC::LWA] = PPC::LWAX;
ImmToIdxMap[PPC::LFS] = PPC::LFSX; ImmToIdxMap[PPC::LFD] = PPC::LFDX;
ImmToIdxMap[PPC::STH] = PPC::STHX; ImmToIdxMap[PPC::STW] = PPC::STWX;
ImmToIdxMap[PPC::STFS] = PPC::STFSX; ImmToIdxMap[PPC::STFD] = PPC::STFDX;
ImmToIdxMap[PPC::ADDI] = PPC::ADD4;
ImmToIdxMap[PPC::LWA_32] = PPC::LWAX_32;
// 64-bit
ImmToIdxMap[PPC::LHA8] = PPC::LHAX8; ImmToIdxMap[PPC::LBZ8] = PPC::LBZX8;
ImmToIdxMap[PPC::LHZ8] = PPC::LHZX8; ImmToIdxMap[PPC::LWZ8] = PPC::LWZX8;
ImmToIdxMap[PPC::STB8] = PPC::STBX8; ImmToIdxMap[PPC::STH8] = PPC::STHX8;
ImmToIdxMap[PPC::STW8] = PPC::STWX8; ImmToIdxMap[PPC::STDU] = PPC::STDUX;
ImmToIdxMap[PPC::ADDI8] = PPC::ADD8;
// VSX
ImmToIdxMap[PPC::DFLOADf32] = PPC::LXSSPX;
ImmToIdxMap[PPC::DFLOADf64] = PPC::LXSDX;
ImmToIdxMap[PPC::SPILLTOVSR_LD] = PPC::SPILLTOVSR_LDX;
ImmToIdxMap[PPC::SPILLTOVSR_ST] = PPC::SPILLTOVSR_STX;
ImmToIdxMap[PPC::DFSTOREf32] = PPC::STXSSPX;
ImmToIdxMap[PPC::DFSTOREf64] = PPC::STXSDX;
ImmToIdxMap[PPC::LXV] = PPC::LXVX;
ImmToIdxMap[PPC::LXSD] = PPC::LXSDX;
ImmToIdxMap[PPC::LXSSP] = PPC::LXSSPX;
ImmToIdxMap[PPC::STXV] = PPC::STXVX;
ImmToIdxMap[PPC::STXSD] = PPC::STXSDX;
ImmToIdxMap[PPC::STXSSP] = PPC::STXSSPX;
// SPE
ImmToIdxMap[PPC::EVLDD] = PPC::EVLDDX;
ImmToIdxMap[PPC::EVSTDD] = PPC::EVSTDDX;
ImmToIdxMap[PPC::SPESTW] = PPC::SPESTWX;
ImmToIdxMap[PPC::SPELWZ] = PPC::SPELWZX;
// Power10
ImmToIdxMap[PPC::PLBZ] = PPC::LBZX; ImmToIdxMap[PPC::PLBZ8] = PPC::LBZX8;
ImmToIdxMap[PPC::PLHZ] = PPC::LHZX; ImmToIdxMap[PPC::PLHZ8] = PPC::LHZX8;
ImmToIdxMap[PPC::PLHA] = PPC::LHAX; ImmToIdxMap[PPC::PLHA8] = PPC::LHAX8;
ImmToIdxMap[PPC::PLWZ] = PPC::LWZX; ImmToIdxMap[PPC::PLWZ8] = PPC::LWZX8;
ImmToIdxMap[PPC::PLWA] = PPC::LWAX; ImmToIdxMap[PPC::PLWA8] = PPC::LWAX;
ImmToIdxMap[PPC::PLD] = PPC::LDX; ImmToIdxMap[PPC::PSTD] = PPC::STDX;
ImmToIdxMap[PPC::PSTB] = PPC::STBX; ImmToIdxMap[PPC::PSTB8] = PPC::STBX8;
ImmToIdxMap[PPC::PSTH] = PPC::STHX; ImmToIdxMap[PPC::PSTH8] = PPC::STHX8;
ImmToIdxMap[PPC::PSTW] = PPC::STWX; ImmToIdxMap[PPC::PSTW8] = PPC::STWX8;
ImmToIdxMap[PPC::PLFS] = PPC::LFSX; ImmToIdxMap[PPC::PSTFS] = PPC::STFSX;
ImmToIdxMap[PPC::PLFD] = PPC::LFDX; ImmToIdxMap[PPC::PSTFD] = PPC::STFDX;
ImmToIdxMap[PPC::PLXSSP] = PPC::LXSSPX; ImmToIdxMap[PPC::PSTXSSP] = PPC::STXSSPX;
ImmToIdxMap[PPC::PLXSD] = PPC::LXSDX; ImmToIdxMap[PPC::PSTXSD] = PPC::STXSDX;
ImmToIdxMap[PPC::PLXV] = PPC::LXVX; ImmToIdxMap[PPC::PSTXV] = PPC::STXVX;
ImmToIdxMap[PPC::LXVP] = PPC::LXVPX;
ImmToIdxMap[PPC::STXVP] = PPC::STXVPX;
ImmToIdxMap[PPC::PLXVP] = PPC::LXVPX;
ImmToIdxMap[PPC::PSTXVP] = PPC::STXVPX;
}
/// getPointerRegClass - Return the register class to use to hold pointers.
/// This is used for addressing modes.
const TargetRegisterClass *
PPCRegisterInfo::getPointerRegClass(const MachineFunction &MF, unsigned Kind)
const {
// Note that PPCInstrInfo::FoldImmediate also directly uses this Kind value
// when it checks for ZERO folding.
if (Kind == 1) {
if (TM.isPPC64())
return &PPC::G8RC_NOX0RegClass;
return &PPC::GPRC_NOR0RegClass;
}
if (TM.isPPC64())
return &PPC::G8RCRegClass;
return &PPC::GPRCRegClass;
}
const MCPhysReg*
PPCRegisterInfo::getCalleeSavedRegs(const MachineFunction *MF) const {
const PPCSubtarget &Subtarget = MF->getSubtarget<PPCSubtarget>();
if (MF->getFunction().getCallingConv() == CallingConv::AnyReg) {
if (!TM.isPPC64() && Subtarget.isAIXABI())
report_fatal_error("AnyReg unimplemented on 32-bit AIX.");
if (Subtarget.hasVSX()) {
if (Subtarget.isAIXABI() && !TM.getAIXExtendedAltivecABI())
return CSR_64_AllRegs_AIX_Dflt_VSX_SaveList;
return CSR_64_AllRegs_VSX_SaveList;
}
if (Subtarget.hasAltivec()) {
if (Subtarget.isAIXABI() && !TM.getAIXExtendedAltivecABI())
return CSR_64_AllRegs_AIX_Dflt_Altivec_SaveList;
return CSR_64_AllRegs_Altivec_SaveList;
}
return CSR_64_AllRegs_SaveList;
}
// On PPC64, we might need to save r2 (but only if it is not reserved).
// We do not need to treat R2 as callee-saved when using PC-Relative calls
// because any direct uses of R2 will cause it to be reserved. If the function
// is a leaf or the only uses of R2 are implicit uses for calls, the calls
// will use the @notoc relocation which will cause this function to set the
// st_other bit to 1, thereby communicating to its caller that it arbitrarily
// clobbers the TOC.
bool SaveR2 = MF->getRegInfo().isAllocatable(PPC::X2) &&
!Subtarget.isUsingPCRelativeCalls();
// Cold calling convention CSRs.
if (MF->getFunction().getCallingConv() == CallingConv::Cold) {
if (Subtarget.isAIXABI())
report_fatal_error("Cold calling unimplemented on AIX.");
if (TM.isPPC64()) {
if (Subtarget.hasAltivec())
return SaveR2 ? CSR_SVR64_ColdCC_R2_Altivec_SaveList
: CSR_SVR64_ColdCC_Altivec_SaveList;
return SaveR2 ? CSR_SVR64_ColdCC_R2_SaveList
: CSR_SVR64_ColdCC_SaveList;
}
// 32-bit targets.
if (Subtarget.hasAltivec())
return CSR_SVR32_ColdCC_Altivec_SaveList;
else if (Subtarget.hasSPE())
return CSR_SVR32_ColdCC_SPE_SaveList;
return CSR_SVR32_ColdCC_SaveList;
}
// Standard calling convention CSRs.
if (TM.isPPC64()) {
if (Subtarget.hasAltivec() &&
(!Subtarget.isAIXABI() || TM.getAIXExtendedAltivecABI())) {
return SaveR2 ? CSR_PPC64_R2_Altivec_SaveList
: CSR_PPC64_Altivec_SaveList;
}
return SaveR2 ? CSR_PPC64_R2_SaveList : CSR_PPC64_SaveList;
}
// 32-bit targets.
if (Subtarget.isAIXABI()) {
if (Subtarget.hasAltivec())
return TM.getAIXExtendedAltivecABI() ? CSR_AIX32_Altivec_SaveList
: CSR_AIX32_SaveList;
return CSR_AIX32_SaveList;
}
if (Subtarget.hasAltivec())
return CSR_SVR432_Altivec_SaveList;
else if (Subtarget.hasSPE())
return CSR_SVR432_SPE_SaveList;
return CSR_SVR432_SaveList;
}
const uint32_t *
PPCRegisterInfo::getCallPreservedMask(const MachineFunction &MF,
CallingConv::ID CC) const {
const PPCSubtarget &Subtarget = MF.getSubtarget<PPCSubtarget>();
if (CC == CallingConv::AnyReg) {
if (Subtarget.hasVSX()) {
if (Subtarget.isAIXABI() && !TM.getAIXExtendedAltivecABI())
return CSR_64_AllRegs_AIX_Dflt_VSX_RegMask;
return CSR_64_AllRegs_VSX_RegMask;
}
if (Subtarget.hasAltivec()) {
if (Subtarget.isAIXABI() && !TM.getAIXExtendedAltivecABI())
return CSR_64_AllRegs_AIX_Dflt_Altivec_RegMask;
return CSR_64_AllRegs_Altivec_RegMask;
}
return CSR_64_AllRegs_RegMask;
}
if (Subtarget.isAIXABI()) {
return TM.isPPC64()
? ((Subtarget.hasAltivec() && TM.getAIXExtendedAltivecABI())
? CSR_PPC64_Altivec_RegMask
: CSR_PPC64_RegMask)
: ((Subtarget.hasAltivec() && TM.getAIXExtendedAltivecABI())
? CSR_AIX32_Altivec_RegMask
: CSR_AIX32_RegMask);
}
if (CC == CallingConv::Cold) {
return TM.isPPC64() ? (Subtarget.hasAltivec() ? CSR_SVR64_ColdCC_Altivec_RegMask
: CSR_SVR64_ColdCC_RegMask)
: (Subtarget.hasAltivec() ? CSR_SVR32_ColdCC_Altivec_RegMask
: (Subtarget.hasSPE()
? CSR_SVR32_ColdCC_SPE_RegMask
: CSR_SVR32_ColdCC_RegMask));
}
return TM.isPPC64() ? (Subtarget.hasAltivec() ? CSR_PPC64_Altivec_RegMask
: CSR_PPC64_RegMask)
: (Subtarget.hasAltivec()
? CSR_SVR432_Altivec_RegMask
: (Subtarget.hasSPE() ? CSR_SVR432_SPE_RegMask
: CSR_SVR432_RegMask));
}
const uint32_t*
PPCRegisterInfo::getNoPreservedMask() const {
return CSR_NoRegs_RegMask;
}
void PPCRegisterInfo::adjustStackMapLiveOutMask(uint32_t *Mask) const {
for (unsigned PseudoReg : {PPC::ZERO, PPC::ZERO8, PPC::RM})
Mask[PseudoReg / 32] &= ~(1u << (PseudoReg % 32));
}
BitVector PPCRegisterInfo::getReservedRegs(const MachineFunction &MF) const {
BitVector Reserved(getNumRegs());
const PPCSubtarget &Subtarget = MF.getSubtarget<PPCSubtarget>();
const PPCFrameLowering *TFI = getFrameLowering(MF);
// The ZERO register is not really a register, but the representation of r0
// when used in instructions that treat r0 as the constant 0.
markSuperRegs(Reserved, PPC::ZERO);
// The FP register is also not really a register, but is the representation
// of the frame pointer register used by ISD::FRAMEADDR.
markSuperRegs(Reserved, PPC::FP);
// The BP register is also not really a register, but is the representation
// of the base pointer register used by setjmp.
markSuperRegs(Reserved, PPC::BP);
// The counter registers must be reserved so that counter-based loops can
// be correctly formed (and the mtctr instructions are not DCE'd).
markSuperRegs(Reserved, PPC::CTR);
markSuperRegs(Reserved, PPC::CTR8);
markSuperRegs(Reserved, PPC::R1);
markSuperRegs(Reserved, PPC::LR);
markSuperRegs(Reserved, PPC::LR8);
markSuperRegs(Reserved, PPC::RM);
markSuperRegs(Reserved, PPC::VRSAVE);
// The SVR4 ABI reserves r2 and r13
if (Subtarget.isSVR4ABI()) {
// We only reserve r2 if we need to use the TOC pointer. If we have no
// explicit uses of the TOC pointer (meaning we're a leaf function with
// no constant-pool loads, etc.) and we have no potential uses inside an
// inline asm block, then we can treat r2 has an ordinary callee-saved
// register.
const PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>();
if (!TM.isPPC64() || FuncInfo->usesTOCBasePtr() || MF.hasInlineAsm())
markSuperRegs(Reserved, PPC::R2); // System-reserved register
markSuperRegs(Reserved, PPC::R13); // Small Data Area pointer register
}
// Always reserve r2 on AIX for now.
// TODO: Make r2 allocatable on AIX/XCOFF for some leaf functions.
if (Subtarget.isAIXABI())
markSuperRegs(Reserved, PPC::R2); // System-reserved register
// On PPC64, r13 is the thread pointer. Never allocate this register.
if (TM.isPPC64())
markSuperRegs(Reserved, PPC::R13);
if (TFI->needsFP(MF))
markSuperRegs(Reserved, PPC::R31);
bool IsPositionIndependent = TM.isPositionIndependent();
if (hasBasePointer(MF)) {
if (Subtarget.is32BitELFABI() && IsPositionIndependent)
markSuperRegs(Reserved, PPC::R29);
else
markSuperRegs(Reserved, PPC::R30);
}
if (Subtarget.is32BitELFABI() && IsPositionIndependent)
markSuperRegs(Reserved, PPC::R30);
// Reserve Altivec registers when Altivec is unavailable.
if (!Subtarget.hasAltivec())
for (TargetRegisterClass::iterator I = PPC::VRRCRegClass.begin(),
IE = PPC::VRRCRegClass.end(); I != IE; ++I)
markSuperRegs(Reserved, *I);
if (Subtarget.isAIXABI() && Subtarget.hasAltivec() &&
!TM.getAIXExtendedAltivecABI()) {
// In the AIX default Altivec ABI, vector registers VR20-VR31 are reserved
// and cannot be used.
for (auto Reg : CSR_Altivec_SaveList) {
if (Reg == 0)
break;
markSuperRegs(Reserved, Reg);
for (MCRegAliasIterator AS(Reg, this, true); AS.isValid(); ++AS) {
Reserved.set(*AS);
}
}
}
assert(checkAllSuperRegsMarked(Reserved));
return Reserved;
}
bool PPCRegisterInfo::requiresFrameIndexScavenging(const MachineFunction &MF) const {
const PPCSubtarget &Subtarget = MF.getSubtarget<PPCSubtarget>();
const PPCInstrInfo *InstrInfo = Subtarget.getInstrInfo();
const MachineFrameInfo &MFI = MF.getFrameInfo();
const std::vector<CalleeSavedInfo> &Info = MFI.getCalleeSavedInfo();
LLVM_DEBUG(dbgs() << "requiresFrameIndexScavenging for " << MF.getName()
<< ".\n");
// If the callee saved info is invalid we have to default to true for safety.
if (!MFI.isCalleeSavedInfoValid()) {
LLVM_DEBUG(dbgs() << "TRUE - Invalid callee saved info.\n");
return true;
}
// We will require the use of X-Forms because the frame is larger than what
// can be represented in signed 16 bits that fit in the immediate of a D-Form.
// If we need an X-Form then we need a register to store the address offset.
unsigned FrameSize = MFI.getStackSize();
// Signed 16 bits means that the FrameSize cannot be more than 15 bits.
if (FrameSize & ~0x7FFF) {
LLVM_DEBUG(dbgs() << "TRUE - Frame size is too large for D-Form.\n");
return true;
}
// The callee saved info is valid so it can be traversed.
// Checking for registers that need saving that do not have load or store
// forms where the address offset is an immediate.
for (unsigned i = 0; i < Info.size(); i++) {
// If the spill is to a register no scavenging is required.
if (Info[i].isSpilledToReg())
continue;
int FrIdx = Info[i].getFrameIdx();
unsigned Reg = Info[i].getReg();
const TargetRegisterClass *RC = getMinimalPhysRegClass(Reg);
unsigned Opcode = InstrInfo->getStoreOpcodeForSpill(RC);
if (!MFI.isFixedObjectIndex(FrIdx)) {
// This is not a fixed object. If it requires alignment then we may still
// need to use the XForm.
if (offsetMinAlignForOpcode(Opcode) > 1) {
LLVM_DEBUG(dbgs() << "Memory Operand: " << InstrInfo->getName(Opcode)
<< " for register " << printReg(Reg, this) << ".\n");
LLVM_DEBUG(dbgs() << "TRUE - Not fixed frame object that requires "
<< "alignment.\n");
return true;
}
}
// This is eiher:
// 1) A fixed frame index object which we know are aligned so
// as long as we have a valid DForm/DSForm/DQForm (non XForm) we don't
// need to consider the alignment here.
// 2) A not fixed object but in that case we now know that the min required
// alignment is no more than 1 based on the previous check.
if (InstrInfo->isXFormMemOp(Opcode)) {
LLVM_DEBUG(dbgs() << "Memory Operand: " << InstrInfo->getName(Opcode)
<< " for register " << printReg(Reg, this) << ".\n");
LLVM_DEBUG(dbgs() << "TRUE - Memory operand is X-Form.\n");
return true;
}
}
LLVM_DEBUG(dbgs() << "FALSE - Scavenging is not required.\n");
return false;
}
bool PPCRegisterInfo::requiresVirtualBaseRegisters(
const MachineFunction &MF) const {
const PPCSubtarget &Subtarget = MF.getSubtarget<PPCSubtarget>();
// Do not use virtual base registers when ROP protection is turned on.
// Virtual base registers break the layout of the local variable space and may
// push the ROP Hash location past the 512 byte range of the ROP store
// instruction.
return !Subtarget.hasROPProtect();
}
bool PPCRegisterInfo::isCallerPreservedPhysReg(MCRegister PhysReg,
const MachineFunction &MF) const {
assert(Register::isPhysicalRegister(PhysReg));
const PPCSubtarget &Subtarget = MF.getSubtarget<PPCSubtarget>();
const MachineFrameInfo &MFI = MF.getFrameInfo();
if (!Subtarget.is64BitELFABI() && !Subtarget.isAIXABI())
return false;
if (PhysReg == Subtarget.getTOCPointerRegister())
// X2/R2 is guaranteed to be preserved within a function if it is reserved.
// The reason it's reserved is that it's the TOC pointer (and the function
// uses the TOC). In functions where it isn't reserved (i.e. leaf functions
// with no TOC access), we can't claim that it is preserved.
return (getReservedRegs(MF).test(PhysReg));
if (StackPtrConst && PhysReg == Subtarget.getStackPointerRegister() &&
!MFI.hasVarSizedObjects() && !MFI.hasOpaqueSPAdjustment())
// The value of the stack pointer does not change within a function after
// the prologue and before the epilogue if there are no dynamic allocations
// and no inline asm which clobbers X1/R1.
return true;
return false;
}
bool PPCRegisterInfo::getRegAllocationHints(Register VirtReg,
ArrayRef<MCPhysReg> Order,
SmallVectorImpl<MCPhysReg> &Hints,
const MachineFunction &MF,
const VirtRegMap *VRM,
const LiveRegMatrix *Matrix) const {
const MachineRegisterInfo *MRI = &MF.getRegInfo();
// Call the base implementation first to set any hints based on the usual
// heuristics and decide what the return value should be. We want to return
// the same value returned by the base implementation. If the base
// implementation decides to return true and force the allocation then we
// will leave it as such. On the other hand if the base implementation
// decides to return false the following code will not force the allocation
// as we are just looking to provide a hint.
bool BaseImplRetVal = TargetRegisterInfo::getRegAllocationHints(
VirtReg, Order, Hints, MF, VRM, Matrix);
// We are interested in instructions that copy values to ACC/UACC.
// The copy into UACC will be simply a COPY to a subreg so we
// want to allocate the corresponding physical subreg for the source.
// The copy into ACC will be a BUILD_UACC so we want to allocate
// the same number UACC for the source.
for (MachineInstr &Use : MRI->reg_nodbg_instructions(VirtReg)) {
const MachineOperand *ResultOp = nullptr;
Register ResultReg;
switch (Use.getOpcode()) {
case TargetOpcode::COPY: {
ResultOp = &Use.getOperand(0);
ResultReg = ResultOp->getReg();
if (Register::isVirtualRegister(ResultReg) &&
MRI->getRegClass(ResultReg)->contains(PPC::UACC0) &&
VRM->hasPhys(ResultReg)) {
Register UACCPhys = VRM->getPhys(ResultReg);
Register HintReg = getSubReg(UACCPhys, ResultOp->getSubReg());
// Ensure that the hint is a VSRp register.
if (HintReg >= PPC::VSRp0 && HintReg <= PPC::VSRp31)
Hints.push_back(HintReg);
}
break;
}
case PPC::BUILD_UACC: {
ResultOp = &Use.getOperand(0);
ResultReg = ResultOp->getReg();
if (MRI->getRegClass(ResultReg)->contains(PPC::ACC0) &&
VRM->hasPhys(ResultReg)) {
Register ACCPhys = VRM->getPhys(ResultReg);
assert((ACCPhys >= PPC::ACC0 && ACCPhys <= PPC::ACC7) &&
"Expecting an ACC register for BUILD_UACC.");
Register HintReg = PPC::UACC0 + (ACCPhys - PPC::ACC0);
Hints.push_back(HintReg);
}
break;
}
}
}
return BaseImplRetVal;
}
unsigned PPCRegisterInfo::getRegPressureLimit(const TargetRegisterClass *RC,
MachineFunction &MF) const {
const PPCFrameLowering *TFI = getFrameLowering(MF);
const unsigned DefaultSafety = 1;
switch (RC->getID()) {
default:
return 0;
case PPC::G8RC_NOX0RegClassID:
case PPC::GPRC_NOR0RegClassID:
case PPC::SPERCRegClassID:
case PPC::G8RCRegClassID:
case PPC::GPRCRegClassID: {
unsigned FP = TFI->hasFP(MF) ? 1 : 0;
return 32 - FP - DefaultSafety;
}
case PPC::F4RCRegClassID:
case PPC::F8RCRegClassID:
case PPC::VSLRCRegClassID:
return 32 - DefaultSafety;
case PPC::VFRCRegClassID:
case PPC::VRRCRegClassID: {
const PPCSubtarget &Subtarget = MF.getSubtarget<PPCSubtarget>();
// Vector registers VR20-VR31 are reserved and cannot be used in the default
// Altivec ABI on AIX.
if (!TM.getAIXExtendedAltivecABI() && Subtarget.isAIXABI())
return 20 - DefaultSafety;
}
return 32 - DefaultSafety;
case PPC::VSFRCRegClassID:
case PPC::VSSRCRegClassID:
case PPC::VSRCRegClassID: {
const PPCSubtarget &Subtarget = MF.getSubtarget<PPCSubtarget>();
if (!TM.getAIXExtendedAltivecABI() && Subtarget.isAIXABI())
// Vector registers VR20-VR31 are reserved and cannot be used in the
// default Altivec ABI on AIX.
return 52 - DefaultSafety;
}
return 64 - DefaultSafety;
case PPC::CRRCRegClassID:
return 8 - DefaultSafety;
}
}
const TargetRegisterClass *
PPCRegisterInfo::getLargestLegalSuperClass(const TargetRegisterClass *RC,
const MachineFunction &MF) const {
const PPCSubtarget &Subtarget = MF.getSubtarget<PPCSubtarget>();
const auto *DefaultSuperclass =
TargetRegisterInfo::getLargestLegalSuperClass(RC, MF);
if (Subtarget.hasVSX()) {
// With VSX, we can inflate various sub-register classes to the full VSX
// register set.
// For Power9 we allow the user to enable GPR to vector spills.
// FIXME: Currently limited to spilling GP8RC. A follow on patch will add
// support to spill GPRC.
if (TM.isELFv2ABI() || Subtarget.isAIXABI()) {
if (Subtarget.hasP9Vector() && EnableGPRToVecSpills &&
RC == &PPC::G8RCRegClass) {
InflateGP8RC++;
return &PPC::SPILLTOVSRRCRegClass;
}
if (RC == &PPC::GPRCRegClass && EnableGPRToVecSpills)
InflateGPRC++;
}
for (const auto *I = RC->getSuperClasses(); *I; ++I) {
if (getRegSizeInBits(**I) != getRegSizeInBits(*RC))
continue;
switch ((*I)->getID()) {
case PPC::VSSRCRegClassID:
return Subtarget.hasP8Vector() ? *I : DefaultSuperclass;
case PPC::VSFRCRegClassID:
case PPC::VSRCRegClassID:
return *I;
case PPC::VSRpRCRegClassID:
return Subtarget.pairedVectorMemops() ? *I : DefaultSuperclass;
case PPC::ACCRCRegClassID:
case PPC::UACCRCRegClassID:
return Subtarget.hasMMA() ? *I : DefaultSuperclass;
}
}
}
return DefaultSuperclass;
}
//===----------------------------------------------------------------------===//
// Stack Frame Processing methods
//===----------------------------------------------------------------------===//
/// lowerDynamicAlloc - Generate the code for allocating an object in the
/// current frame. The sequence of code will be in the general form
///
/// addi R0, SP, \#frameSize ; get the address of the previous frame
/// stwxu R0, SP, Rnegsize ; add and update the SP with the negated size
/// addi Rnew, SP, \#maxCalFrameSize ; get the top of the allocation
///
void PPCRegisterInfo::lowerDynamicAlloc(MachineBasicBlock::iterator II) const {
// Get the instruction.
MachineInstr &MI = *II;
// Get the instruction's basic block.
MachineBasicBlock &MBB = *MI.getParent();
// Get the basic block's function.
MachineFunction &MF = *MBB.getParent();
// Get the frame info.
MachineFrameInfo &MFI = MF.getFrameInfo();
const PPCSubtarget &Subtarget = MF.getSubtarget<PPCSubtarget>();
// Get the instruction info.
const TargetInstrInfo &TII = *Subtarget.getInstrInfo();
// Determine whether 64-bit pointers are used.
bool LP64 = TM.isPPC64();
DebugLoc dl = MI.getDebugLoc();
// Get the maximum call stack size.
unsigned maxCallFrameSize = MFI.getMaxCallFrameSize();
Align MaxAlign = MFI.getMaxAlign();
assert(isAligned(MaxAlign, maxCallFrameSize) &&
"Maximum call-frame size not sufficiently aligned");
(void)MaxAlign;
const TargetRegisterClass *G8RC = &PPC::G8RCRegClass;
const TargetRegisterClass *GPRC = &PPC::GPRCRegClass;
Register Reg = MF.getRegInfo().createVirtualRegister(LP64 ? G8RC : GPRC);
bool KillNegSizeReg = MI.getOperand(1).isKill();
Register NegSizeReg = MI.getOperand(1).getReg();
prepareDynamicAlloca(II, NegSizeReg, KillNegSizeReg, Reg);
// Grow the stack and update the stack pointer link, then determine the
// address of new allocated space.
if (LP64) {
BuildMI(MBB, II, dl, TII.get(PPC::STDUX), PPC::X1)
.addReg(Reg, RegState::Kill)
.addReg(PPC::X1)
.addReg(NegSizeReg, getKillRegState(KillNegSizeReg));
BuildMI(MBB, II, dl, TII.get(PPC::ADDI8), MI.getOperand(0).getReg())
.addReg(PPC::X1)
.addImm(maxCallFrameSize);
} else {
BuildMI(MBB, II, dl, TII.get(PPC::STWUX), PPC::R1)
.addReg(Reg, RegState::Kill)
.addReg(PPC::R1)
.addReg(NegSizeReg, getKillRegState(KillNegSizeReg));
BuildMI(MBB, II, dl, TII.get(PPC::ADDI), MI.getOperand(0).getReg())
.addReg(PPC::R1)
.addImm(maxCallFrameSize);
}
// Discard the DYNALLOC instruction.
MBB.erase(II);
}
/// To accomplish dynamic stack allocation, we have to calculate exact size
/// subtracted from the stack pointer according alignment information and get
/// previous frame pointer.
void PPCRegisterInfo::prepareDynamicAlloca(MachineBasicBlock::iterator II,
Register &NegSizeReg,
bool &KillNegSizeReg,
Register &FramePointer) const {
// Get the instruction.
MachineInstr &MI = *II;
// Get the instruction's basic block.
MachineBasicBlock &MBB = *MI.getParent();
// Get the basic block's function.
MachineFunction &MF = *MBB.getParent();
// Get the frame info.
MachineFrameInfo &MFI = MF.getFrameInfo();
const PPCSubtarget &Subtarget = MF.getSubtarget<PPCSubtarget>();
// Get the instruction info.
const TargetInstrInfo &TII = *Subtarget.getInstrInfo();
// Determine whether 64-bit pointers are used.
bool LP64 = TM.isPPC64();
DebugLoc dl = MI.getDebugLoc();
// Get the total frame size.
unsigned FrameSize = MFI.getStackSize();
// Get stack alignments.
const PPCFrameLowering *TFI = getFrameLowering(MF);
Align TargetAlign = TFI->getStackAlign();
Align MaxAlign = MFI.getMaxAlign();
// Determine the previous frame's address. If FrameSize can't be
// represented as 16 bits or we need special alignment, then we load the
// previous frame's address from 0(SP). Why not do an addis of the hi?
// Because R0 is our only safe tmp register and addi/addis treat R0 as zero.
// Constructing the constant and adding would take 3 instructions.
// Fortunately, a frame greater than 32K is rare.
const TargetRegisterClass *G8RC = &PPC::G8RCRegClass;
const TargetRegisterClass *GPRC = &PPC::GPRCRegClass;
if (MaxAlign < TargetAlign && isInt<16>(FrameSize)) {
if (LP64)
BuildMI(MBB, II, dl, TII.get(PPC::ADDI8), FramePointer)
.addReg(PPC::X31)
.addImm(FrameSize);
else
BuildMI(MBB, II, dl, TII.get(PPC::ADDI), FramePointer)
.addReg(PPC::R31)
.addImm(FrameSize);
} else if (LP64) {
BuildMI(MBB, II, dl, TII.get(PPC::LD), FramePointer)
.addImm(0)
.addReg(PPC::X1);
} else {
BuildMI(MBB, II, dl, TII.get(PPC::LWZ), FramePointer)
.addImm(0)
.addReg(PPC::R1);
}
// Determine the actual NegSizeReg according to alignment info.
if (LP64) {
if (MaxAlign > TargetAlign) {
unsigned UnalNegSizeReg = NegSizeReg;
NegSizeReg = MF.getRegInfo().createVirtualRegister(G8RC);
// Unfortunately, there is no andi, only andi., and we can't insert that
// here because we might clobber cr0 while it is live.
BuildMI(MBB, II, dl, TII.get(PPC::LI8), NegSizeReg)
.addImm(~(MaxAlign.value() - 1));
unsigned NegSizeReg1 = NegSizeReg;
NegSizeReg = MF.getRegInfo().createVirtualRegister(G8RC);
BuildMI(MBB, II, dl, TII.get(PPC::AND8), NegSizeReg)
.addReg(UnalNegSizeReg, getKillRegState(KillNegSizeReg))
.addReg(NegSizeReg1, RegState::Kill);
KillNegSizeReg = true;
}
} else {
if (MaxAlign > TargetAlign) {
unsigned UnalNegSizeReg = NegSizeReg;
NegSizeReg = MF.getRegInfo().createVirtualRegister(GPRC);
// Unfortunately, there is no andi, only andi., and we can't insert that
// here because we might clobber cr0 while it is live.
BuildMI(MBB, II, dl, TII.get(PPC::LI), NegSizeReg)
.addImm(~(MaxAlign.value() - 1));
unsigned NegSizeReg1 = NegSizeReg;
NegSizeReg = MF.getRegInfo().createVirtualRegister(GPRC);
BuildMI(MBB, II, dl, TII.get(PPC::AND), NegSizeReg)
.addReg(UnalNegSizeReg, getKillRegState(KillNegSizeReg))
.addReg(NegSizeReg1, RegState::Kill);
KillNegSizeReg = true;
}
}
}
void PPCRegisterInfo::lowerPrepareProbedAlloca(
MachineBasicBlock::iterator II) const {
MachineInstr &MI = *II;
// Get the instruction's basic block.
MachineBasicBlock &MBB = *MI.getParent();
// Get the basic block's function.
MachineFunction &MF = *MBB.getParent();
const PPCSubtarget &Subtarget = MF.getSubtarget<PPCSubtarget>();
// Get the instruction info.
const TargetInstrInfo &TII = *Subtarget.getInstrInfo();
// Determine whether 64-bit pointers are used.
bool LP64 = TM.isPPC64();
DebugLoc dl = MI.getDebugLoc();
Register FramePointer = MI.getOperand(0).getReg();
const Register ActualNegSizeReg = MI.getOperand(1).getReg();
bool KillNegSizeReg = MI.getOperand(2).isKill();
Register NegSizeReg = MI.getOperand(2).getReg();
const MCInstrDesc &CopyInst = TII.get(LP64 ? PPC::OR8 : PPC::OR);
// RegAllocator might allocate FramePointer and NegSizeReg in the same phyreg.
if (FramePointer == NegSizeReg) {
assert(KillNegSizeReg && "FramePointer is a def and NegSizeReg is an use, "
"NegSizeReg should be killed");
// FramePointer is clobbered earlier than the use of NegSizeReg in
// prepareDynamicAlloca, save NegSizeReg in ActualNegSizeReg to avoid
// misuse.
BuildMI(MBB, II, dl, CopyInst, ActualNegSizeReg)
.addReg(NegSizeReg)
.addReg(NegSizeReg);
NegSizeReg = ActualNegSizeReg;
KillNegSizeReg = false;
}
prepareDynamicAlloca(II, NegSizeReg, KillNegSizeReg, FramePointer);
// NegSizeReg might be updated in prepareDynamicAlloca if MaxAlign >
// TargetAlign.
if (NegSizeReg != ActualNegSizeReg)
BuildMI(MBB, II, dl, CopyInst, ActualNegSizeReg)
.addReg(NegSizeReg)
.addReg(NegSizeReg);
MBB.erase(II);
}
void PPCRegisterInfo::lowerDynamicAreaOffset(
MachineBasicBlock::iterator II) const {
// Get the instruction.
MachineInstr &MI = *II;
// Get the instruction's basic block.
MachineBasicBlock &MBB = *MI.getParent();
// Get the basic block's function.
MachineFunction &MF = *MBB.getParent();
// Get the frame info.
MachineFrameInfo &MFI = MF.getFrameInfo();
const PPCSubtarget &Subtarget = MF.getSubtarget<PPCSubtarget>();
// Get the instruction info.
const TargetInstrInfo &TII = *Subtarget.getInstrInfo();
unsigned maxCallFrameSize = MFI.getMaxCallFrameSize();
bool is64Bit = TM.isPPC64();
DebugLoc dl = MI.getDebugLoc();
BuildMI(MBB, II, dl, TII.get(is64Bit ? PPC::LI8 : PPC::LI),
MI.getOperand(0).getReg())
.addImm(maxCallFrameSize);
MBB.erase(II);
}
/// lowerCRSpilling - Generate the code for spilling a CR register. Instead of
/// reserving a whole register (R0), we scrounge for one here. This generates
/// code like this:
///
/// mfcr rA ; Move the conditional register into GPR rA.
/// rlwinm rA, rA, SB, 0, 31 ; Shift the bits left so they are in CR0's slot.
/// stw rA, FI ; Store rA to the frame.
///
void PPCRegisterInfo::lowerCRSpilling(MachineBasicBlock::iterator II,
unsigned FrameIndex) const {
// Get the instruction.
MachineInstr &MI = *II; // ; SPILL_CR <SrcReg>, <offset>
// Get the instruction's basic block.
MachineBasicBlock &MBB = *MI.getParent();
MachineFunction &MF = *MBB.getParent();
const PPCSubtarget &Subtarget = MF.getSubtarget<PPCSubtarget>();
const TargetInstrInfo &TII = *Subtarget.getInstrInfo();
DebugLoc dl = MI.getDebugLoc();
bool LP64 = TM.isPPC64();
const TargetRegisterClass *G8RC = &PPC::G8RCRegClass;
const TargetRegisterClass *GPRC = &PPC::GPRCRegClass;
Register Reg = MF.getRegInfo().createVirtualRegister(LP64 ? G8RC : GPRC);
Register SrcReg = MI.getOperand(0).getReg();
// We need to store the CR in the low 4-bits of the saved value. First, issue
// an MFOCRF to save all of the CRBits and, if needed, kill the SrcReg.
BuildMI(MBB, II, dl, TII.get(LP64 ? PPC::MFOCRF8 : PPC::MFOCRF), Reg)
.addReg(SrcReg, getKillRegState(MI.getOperand(0).isKill()));
// If the saved register wasn't CR0, shift the bits left so that they are in
// CR0's slot.
if (SrcReg != PPC::CR0) {
Register Reg1 = Reg;
Reg = MF.getRegInfo().createVirtualRegister(LP64 ? G8RC : GPRC);
// rlwinm rA, rA, ShiftBits, 0, 31.
BuildMI(MBB, II, dl, TII.get(LP64 ? PPC::RLWINM8 : PPC::RLWINM), Reg)
.addReg(Reg1, RegState::Kill)
.addImm(getEncodingValue(SrcReg) * 4)
.addImm(0)
.addImm(31);
}
addFrameReference(BuildMI(MBB, II, dl, TII.get(LP64 ? PPC::STW8 : PPC::STW))
.addReg(Reg, RegState::Kill),
FrameIndex);
// Discard the pseudo instruction.
MBB.erase(II);
}
void PPCRegisterInfo::lowerCRRestore(MachineBasicBlock::iterator II,
unsigned FrameIndex) const {
// Get the instruction.
MachineInstr &MI = *II; // ; <DestReg> = RESTORE_CR <offset>
// Get the instruction's basic block.
MachineBasicBlock &MBB = *MI.getParent();
MachineFunction &MF = *MBB.getParent();
const PPCSubtarget &Subtarget = MF.getSubtarget<PPCSubtarget>();
const TargetInstrInfo &TII = *Subtarget.getInstrInfo();
DebugLoc dl = MI.getDebugLoc();
bool LP64 = TM.isPPC64();
const TargetRegisterClass *G8RC = &PPC::G8RCRegClass;
const TargetRegisterClass *GPRC = &PPC::GPRCRegClass;
Register Reg = MF.getRegInfo().createVirtualRegister(LP64 ? G8RC : GPRC);
Register DestReg = MI.getOperand(0).getReg();
assert(MI.definesRegister(DestReg) &&
"RESTORE_CR does not define its destination");
addFrameReference(BuildMI(MBB, II, dl, TII.get(LP64 ? PPC::LWZ8 : PPC::LWZ),
Reg), FrameIndex);
// If the reloaded register isn't CR0, shift the bits right so that they are
// in the right CR's slot.
if (DestReg != PPC::CR0) {
Register Reg1 = Reg;
Reg = MF.getRegInfo().createVirtualRegister(LP64 ? G8RC : GPRC);
unsigned ShiftBits = getEncodingValue(DestReg)*4;
// rlwinm r11, r11, 32-ShiftBits, 0, 31.
BuildMI(MBB, II, dl, TII.get(LP64 ? PPC::RLWINM8 : PPC::RLWINM), Reg)
.addReg(Reg1, RegState::Kill).addImm(32-ShiftBits).addImm(0)
.addImm(31);
}
BuildMI(MBB, II, dl, TII.get(LP64 ? PPC::MTOCRF8 : PPC::MTOCRF), DestReg)
.addReg(Reg, RegState::Kill);
// Discard the pseudo instruction.
MBB.erase(II);
}
void PPCRegisterInfo::lowerCRBitSpilling(MachineBasicBlock::iterator II,
unsigned FrameIndex) const {
// Get the instruction.
MachineInstr &MI = *II; // ; SPILL_CRBIT <SrcReg>, <offset>
// Get the instruction's basic block.
MachineBasicBlock &MBB = *MI.getParent();
MachineFunction &MF = *MBB.getParent();
const PPCSubtarget &Subtarget = MF.getSubtarget<PPCSubtarget>();
const TargetInstrInfo &TII = *Subtarget.getInstrInfo();
const TargetRegisterInfo* TRI = Subtarget.getRegisterInfo();
DebugLoc dl = MI.getDebugLoc();
bool LP64 = TM.isPPC64();
const TargetRegisterClass *G8RC = &PPC::G8RCRegClass;
const TargetRegisterClass *GPRC = &PPC::GPRCRegClass;
Register Reg = MF.getRegInfo().createVirtualRegister(LP64 ? G8RC : GPRC);
Register SrcReg = MI.getOperand(0).getReg();
// Search up the BB to find the definition of the CR bit.
MachineBasicBlock::reverse_iterator Ins = MI;
MachineBasicBlock::reverse_iterator Rend = MBB.rend();
++Ins;
unsigned CRBitSpillDistance = 0;
bool SeenUse = false;
for (; Ins != Rend; ++Ins) {
// Definition found.
if (Ins->modifiesRegister(SrcReg, TRI))
break;
// Use found.
if (Ins->readsRegister(SrcReg, TRI))
SeenUse = true;
// Unable to find CR bit definition within maximum search distance.
if (CRBitSpillDistance == MaxCRBitSpillDist) {
Ins = MI;
break;
}
// Skip debug instructions when counting CR bit spill distance.
if (!Ins->isDebugInstr())
CRBitSpillDistance++;
}
// Unable to find the definition of the CR bit in the MBB.
if (Ins == MBB.rend())
Ins = MI;
bool SpillsKnownBit = false;
// There is no need to extract the CR bit if its value is already known.
switch (Ins->getOpcode()) {
case PPC::CRUNSET:
BuildMI(MBB, II, dl, TII.get(LP64 ? PPC::LI8 : PPC::LI), Reg)
.addImm(0);
SpillsKnownBit = true;
break;
case PPC::CRSET:
BuildMI(MBB, II, dl, TII.get(LP64 ? PPC::LIS8 : PPC::LIS), Reg)
.addImm(-32768);
SpillsKnownBit = true;
break;
default:
// On Power10, we can use SETNBC to spill all CR bits. SETNBC will set all
// bits (specifically, it produces a -1 if the CR bit is set). Ultimately,
// the bit that is of importance to us is bit 32 (bit 0 of a 32-bit
// register), and SETNBC will set this.
if (Subtarget.isISA3_1()) {
BuildMI(MBB, II, dl, TII.get(LP64 ? PPC::SETNBC8 : PPC::SETNBC), Reg)
.addReg(SrcReg, RegState::Undef);
break;
}
// On Power9, we can use SETB to extract the LT bit. This only works for
// the LT bit since SETB produces -1/1/0 for LT/GT/<neither>. So the value
// of the bit we care about (32-bit sign bit) will be set to the value of
// the LT bit (regardless of the other bits in the CR field).
if (Subtarget.isISA3_0()) {
if (SrcReg == PPC::CR0LT || SrcReg == PPC::CR1LT ||
SrcReg == PPC::CR2LT || SrcReg == PPC::CR3LT ||
SrcReg == PPC::CR4LT || SrcReg == PPC::CR5LT ||
SrcReg == PPC::CR6LT || SrcReg == PPC::CR7LT) {
BuildMI(MBB, II, dl, TII.get(LP64 ? PPC::SETB8 : PPC::SETB), Reg)
.addReg(getCRFromCRBit(SrcReg), RegState::Undef);
break;
}
}
// We need to move the CR field that contains the CR bit we are spilling.
// The super register may not be explicitly defined (i.e. it can be defined
// by a CR-logical that only defines the subreg) so we state that the CR
// field is undef. Also, in order to preserve the kill flag on the CR bit,
// we add it as an implicit use.
BuildMI(MBB, II, dl, TII.get(LP64 ? PPC::MFOCRF8 : PPC::MFOCRF), Reg)
.addReg(getCRFromCRBit(SrcReg), RegState::Undef)
.addReg(SrcReg,
RegState::Implicit | getKillRegState(MI.getOperand(0).isKill()));
// If the saved register wasn't CR0LT, shift the bits left so that the bit
// to store is the first one. Mask all but that bit.
Register Reg1 = Reg;
Reg = MF.getRegInfo().createVirtualRegister(LP64 ? G8RC : GPRC);
// rlwinm rA, rA, ShiftBits, 0, 0.
BuildMI(MBB, II, dl, TII.get(LP64 ? PPC::RLWINM8 : PPC::RLWINM), Reg)
.addReg(Reg1, RegState::Kill)
.addImm(getEncodingValue(SrcReg))
.addImm(0).addImm(0);
}
addFrameReference(BuildMI(MBB, II, dl, TII.get(LP64 ? PPC::STW8 : PPC::STW))
.addReg(Reg, RegState::Kill),
FrameIndex);
bool KillsCRBit = MI.killsRegister(SrcReg, TRI);
// Discard the pseudo instruction.
MBB.erase(II);
if (SpillsKnownBit && KillsCRBit && !SeenUse) {
Ins->setDesc(TII.get(PPC::UNENCODED_NOP));
Ins->RemoveOperand(0);
}
}
void PPCRegisterInfo::lowerCRBitRestore(MachineBasicBlock::iterator II,
unsigned FrameIndex) const {
// Get the instruction.
MachineInstr &MI = *II; // ; <DestReg> = RESTORE_CRBIT <offset>
// Get the instruction's basic block.
MachineBasicBlock &MBB = *MI.getParent();
MachineFunction &MF = *MBB.getParent();
const PPCSubtarget &Subtarget = MF.getSubtarget<PPCSubtarget>();
const TargetInstrInfo &TII = *Subtarget.getInstrInfo();
DebugLoc dl = MI.getDebugLoc();
bool LP64 = TM.isPPC64();
const TargetRegisterClass *G8RC = &PPC::G8RCRegClass;
const TargetRegisterClass *GPRC = &PPC::GPRCRegClass;
Register Reg = MF.getRegInfo().createVirtualRegister(LP64 ? G8RC : GPRC);
Register DestReg = MI.getOperand(0).getReg();
assert(MI.definesRegister(DestReg) &&
"RESTORE_CRBIT does not define its destination");
addFrameReference(BuildMI(MBB, II, dl, TII.get(LP64 ? PPC::LWZ8 : PPC::LWZ),
Reg), FrameIndex);
BuildMI(MBB, II, dl, TII.get(TargetOpcode::IMPLICIT_DEF), DestReg);
Register RegO = MF.getRegInfo().createVirtualRegister(LP64 ? G8RC : GPRC);
BuildMI(MBB, II, dl, TII.get(LP64 ? PPC::MFOCRF8 : PPC::MFOCRF), RegO)
.addReg(getCRFromCRBit(DestReg));
unsigned ShiftBits = getEncodingValue(DestReg);
// rlwimi r11, r10, 32-ShiftBits, ..., ...
BuildMI(MBB, II, dl, TII.get(LP64 ? PPC::RLWIMI8 : PPC::RLWIMI), RegO)
.addReg(RegO, RegState::Kill)
.addReg(Reg, RegState::Kill)
.addImm(ShiftBits ? 32 - ShiftBits : 0)
.addImm(ShiftBits)
.addImm(ShiftBits);
BuildMI(MBB, II, dl, TII.get(LP64 ? PPC::MTOCRF8 : PPC::MTOCRF),
getCRFromCRBit(DestReg))
.addReg(RegO, RegState::Kill)
// Make sure we have a use dependency all the way through this
// sequence of instructions. We can't have the other bits in the CR
// modified in between the mfocrf and the mtocrf.
.addReg(getCRFromCRBit(DestReg), RegState::Implicit);
// Discard the pseudo instruction.
MBB.erase(II);
}
void PPCRegisterInfo::emitAccCopyInfo(MachineBasicBlock &MBB,
MCRegister DestReg, MCRegister SrcReg) {
#ifdef NDEBUG
return;
#else
if (ReportAccMoves) {
std::string Dest = PPC::ACCRCRegClass.contains(DestReg) ? "acc" : "uacc";
std::string Src = PPC::ACCRCRegClass.contains(SrcReg) ? "acc" : "uacc";
dbgs() << "Emitting copy from " << Src << " to " << Dest << ":\n";
MBB.dump();
}
#endif
}
static void emitAccSpillRestoreInfo(MachineBasicBlock &MBB, bool IsPrimed,
bool IsRestore) {
#ifdef NDEBUG
return;
#else
if (ReportAccMoves) {
dbgs() << "Emitting " << (IsPrimed ? "acc" : "uacc") << " register "
<< (IsRestore ? "restore" : "spill") << ":\n";
MBB.dump();
}
#endif
}
/// lowerACCSpilling - Generate the code for spilling the accumulator register.
/// Similarly to other spills/reloads that use pseudo-ops, we do not actually
/// eliminate the FrameIndex here nor compute the stack offset. We simply
/// create a real instruction with an FI and rely on eliminateFrameIndex to
/// handle the FI elimination.
void PPCRegisterInfo::lowerACCSpilling(MachineBasicBlock::iterator II,
unsigned FrameIndex) const {
MachineInstr &MI = *II; // SPILL_ACC <SrcReg>, <offset>
MachineBasicBlock &MBB = *MI.getParent();
MachineFunction &MF = *MBB.getParent();
const PPCSubtarget &Subtarget = MF.getSubtarget<PPCSubtarget>();
const TargetInstrInfo &TII = *Subtarget.getInstrInfo();
DebugLoc DL = MI.getDebugLoc();
Register SrcReg = MI.getOperand(0).getReg();
bool IsKilled = MI.getOperand(0).isKill();
bool IsPrimed = PPC::ACCRCRegClass.contains(SrcReg);
Register Reg =
PPC::VSRp0 + (SrcReg - (IsPrimed ? PPC::ACC0 : PPC::UACC0)) * 2;
bool IsLittleEndian = Subtarget.isLittleEndian();
emitAccSpillRestoreInfo(MBB, IsPrimed, false);
// De-prime the register being spilled, create two stores for the pair
// subregisters accounting for endianness and then re-prime the register if
// it isn't killed. This uses the Offset parameter to addFrameReference() to
// adjust the offset of the store that is within the 64-byte stack slot.
if (IsPrimed)
BuildMI(MBB, II, DL, TII.get(PPC::XXMFACC), SrcReg).addReg(SrcReg);
addFrameReference(BuildMI(MBB, II, DL, TII.get(PPC::STXVP))
.addReg(Reg, getKillRegState(IsKilled)),
FrameIndex, IsLittleEndian ? 32 : 0);
addFrameReference(BuildMI(MBB, II, DL, TII.get(PPC::STXVP))
.addReg(Reg + 1, getKillRegState(IsKilled)),
FrameIndex, IsLittleEndian ? 0 : 32);
if (IsPrimed && !IsKilled)
BuildMI(MBB, II, DL, TII.get(PPC::XXMTACC), SrcReg).addReg(SrcReg);
// Discard the pseudo instruction.
MBB.erase(II);
}
/// lowerACCRestore - Generate the code to restore the accumulator register.
void PPCRegisterInfo::lowerACCRestore(MachineBasicBlock::iterator II,
unsigned FrameIndex) const {
MachineInstr &MI = *II; // <DestReg> = RESTORE_ACC <offset>
MachineBasicBlock &MBB = *MI.getParent();
MachineFunction &MF = *MBB.getParent();
const PPCSubtarget &Subtarget = MF.getSubtarget<PPCSubtarget>();
const TargetInstrInfo &TII = *Subtarget.getInstrInfo();
DebugLoc DL = MI.getDebugLoc();
Register DestReg = MI.getOperand(0).getReg();
assert(MI.definesRegister(DestReg) &&
"RESTORE_ACC does not define its destination");
bool IsPrimed = PPC::ACCRCRegClass.contains(DestReg);
Register Reg =
PPC::VSRp0 + (DestReg - (IsPrimed ? PPC::ACC0 : PPC::UACC0)) * 2;
bool IsLittleEndian = Subtarget.isLittleEndian();
emitAccSpillRestoreInfo(MBB, IsPrimed, true);
// Create two loads for the pair subregisters accounting for endianness and
// then prime the accumulator register being restored.
addFrameReference(BuildMI(MBB, II, DL, TII.get(PPC::LXVP), Reg),
FrameIndex, IsLittleEndian ? 32 : 0);
addFrameReference(BuildMI(MBB, II, DL, TII.get(PPC::LXVP), Reg + 1),
FrameIndex, IsLittleEndian ? 0 : 32);
if (IsPrimed)
BuildMI(MBB, II, DL, TII.get(PPC::XXMTACC), DestReg).addReg(DestReg);
// Discard the pseudo instruction.
MBB.erase(II);
}
/// lowerQuadwordSpilling - Generate code to spill paired general register.
void PPCRegisterInfo::lowerQuadwordSpilling(MachineBasicBlock::iterator II,
unsigned FrameIndex) const {
MachineInstr &MI = *II;
MachineBasicBlock &MBB = *MI.getParent();
MachineFunction &MF = *MBB.getParent();
const PPCSubtarget &Subtarget = MF.getSubtarget<PPCSubtarget>();
const TargetInstrInfo &TII = *Subtarget.getInstrInfo();
DebugLoc DL = MI.getDebugLoc();
Register SrcReg = MI.getOperand(0).getReg();
bool IsKilled = MI.getOperand(0).isKill();
Register Reg = PPC::X0 + (SrcReg - PPC::G8p0) * 2;
bool IsLittleEndian = Subtarget.isLittleEndian();
addFrameReference(BuildMI(MBB, II, DL, TII.get(PPC::STD))
.addReg(Reg, getKillRegState(IsKilled)),
FrameIndex, IsLittleEndian ? 8 : 0);
addFrameReference(BuildMI(MBB, II, DL, TII.get(PPC::STD))
.addReg(Reg + 1, getKillRegState(IsKilled)),
FrameIndex, IsLittleEndian ? 0 : 8);
// Discard the pseudo instruction.
MBB.erase(II);
}
/// lowerQuadwordRestore - Generate code to restore paired general register.
void PPCRegisterInfo::lowerQuadwordRestore(MachineBasicBlock::iterator II,
unsigned FrameIndex) const {
MachineInstr &MI = *II;
MachineBasicBlock &MBB = *MI.getParent();
MachineFunction &MF = *MBB.getParent();
const PPCSubtarget &Subtarget = MF.getSubtarget<PPCSubtarget>();
const TargetInstrInfo &TII = *Subtarget.getInstrInfo();
DebugLoc DL = MI.getDebugLoc();
Register DestReg = MI.getOperand(0).getReg();
assert(MI.definesRegister(DestReg) &&
"RESTORE_QUADWORD does not define its destination");
Register Reg = PPC::X0 + (DestReg - PPC::G8p0) * 2;
bool IsLittleEndian = Subtarget.isLittleEndian();
addFrameReference(BuildMI(MBB, II, DL, TII.get(PPC::LD), Reg), FrameIndex,
IsLittleEndian ? 8 : 0);
addFrameReference(BuildMI(MBB, II, DL, TII.get(PPC::LD), Reg + 1), FrameIndex,
IsLittleEndian ? 0 : 8);
// Discard the pseudo instruction.
MBB.erase(II);
}
bool PPCRegisterInfo::hasReservedSpillSlot(const MachineFunction &MF,
Register Reg, int &FrameIdx) const {
// For the nonvolatile condition registers (CR2, CR3, CR4) return true to
// prevent allocating an additional frame slot.
// For 64-bit ELF and AIX, the CR save area is in the linkage area at SP+8,
// for 32-bit AIX the CR save area is in the linkage area at SP+4.
// We have created a FrameIndex to that spill slot to keep the CalleSaveInfos
// valid.
// For 32-bit ELF, we have previously created the stack slot if needed, so
// return its FrameIdx.
if (PPC::CR2 <= Reg && Reg <= PPC::CR4) {
FrameIdx = MF.getInfo<PPCFunctionInfo>()->getCRSpillFrameIndex();
return true;
}
return false;
}
// If the offset must be a multiple of some value, return what that value is.
static unsigned offsetMinAlignForOpcode(unsigned OpC) {
switch (OpC) {
default:
return 1;
case PPC::LWA:
case PPC::LWA_32:
case PPC::LD:
case PPC::LDU:
case PPC::STD:
case PPC::STDU:
case PPC::DFLOADf32:
case PPC::DFLOADf64:
case PPC::DFSTOREf32:
case PPC::DFSTOREf64:
case PPC::LXSD:
case PPC::LXSSP:
case PPC::STXSD:
case PPC::STXSSP:
case PPC::STQ:
return 4;
case PPC::EVLDD:
case PPC::EVSTDD:
return 8;
case PPC::LXV:
case PPC::STXV:
case PPC::LQ:
case PPC::LXVP:
case PPC::STXVP:
return 16;
}
}
// If the offset must be a multiple of some value, return what that value is.
static unsigned offsetMinAlign(const MachineInstr &MI) {
unsigned OpC = MI.getOpcode();
return offsetMinAlignForOpcode(OpC);
}
// Return the OffsetOperandNo given the FIOperandNum (and the instruction).
static unsigned getOffsetONFromFION(const MachineInstr &MI,
unsigned FIOperandNum) {
// Take into account whether it's an add or mem instruction
unsigned OffsetOperandNo = (FIOperandNum == 2) ? 1 : 2;
if (MI.isInlineAsm())
OffsetOperandNo = FIOperandNum - 1;
else if (MI.getOpcode() == TargetOpcode::STACKMAP ||
MI.getOpcode() == TargetOpcode::PATCHPOINT)
OffsetOperandNo = FIOperandNum + 1;
return OffsetOperandNo;
}
void
PPCRegisterInfo::eliminateFrameIndex(MachineBasicBlock::iterator II,
int SPAdj, unsigned FIOperandNum,
RegScavenger *RS) const {
assert(SPAdj == 0 && "Unexpected");
// Get the instruction.
MachineInstr &MI = *II;
// Get the instruction's basic block.
MachineBasicBlock &MBB = *MI.getParent();
// Get the basic block's function.
MachineFunction &MF = *MBB.getParent();
const PPCSubtarget &Subtarget = MF.getSubtarget<PPCSubtarget>();
// Get the instruction info.
const PPCInstrInfo &TII = *Subtarget.getInstrInfo();
// Get the frame info.
MachineFrameInfo &MFI = MF.getFrameInfo();
DebugLoc dl = MI.getDebugLoc();
unsigned OffsetOperandNo = getOffsetONFromFION(MI, FIOperandNum);
// Get the frame index.
int FrameIndex = MI.getOperand(FIOperandNum).getIndex();
// Get the frame pointer save index. Users of this index are primarily
// DYNALLOC instructions.
PPCFunctionInfo *FI = MF.getInfo<PPCFunctionInfo>();
int FPSI = FI->getFramePointerSaveIndex();
// Get the instruction opcode.
unsigned OpC = MI.getOpcode();
if ((OpC == PPC::DYNAREAOFFSET || OpC == PPC::DYNAREAOFFSET8)) {
lowerDynamicAreaOffset(II);
return;
}
// Special case for dynamic alloca.
if (FPSI && FrameIndex == FPSI &&
(OpC == PPC::DYNALLOC || OpC == PPC::DYNALLOC8)) {
lowerDynamicAlloc(II);
return;
}
if (FPSI && FrameIndex == FPSI &&
(OpC == PPC::PREPARE_PROBED_ALLOCA_64 ||
OpC == PPC::PREPARE_PROBED_ALLOCA_32 ||
OpC == PPC::PREPARE_PROBED_ALLOCA_NEGSIZE_SAME_REG_64 ||
OpC == PPC::PREPARE_PROBED_ALLOCA_NEGSIZE_SAME_REG_32)) {
lowerPrepareProbedAlloca(II);
return;
}
// Special case for pseudo-ops SPILL_CR and RESTORE_CR, etc.
if (OpC == PPC::SPILL_CR) {
lowerCRSpilling(II, FrameIndex);
return;
} else if (OpC == PPC::RESTORE_CR) {
lowerCRRestore(II, FrameIndex);
return;
} else if (OpC == PPC::SPILL_CRBIT) {
lowerCRBitSpilling(II, FrameIndex);
return;
} else if (OpC == PPC::RESTORE_CRBIT) {
lowerCRBitRestore(II, FrameIndex);
return;
} else if (OpC == PPC::SPILL_ACC || OpC == PPC::SPILL_UACC) {
lowerACCSpilling(II, FrameIndex);
return;
} else if (OpC == PPC::RESTORE_ACC || OpC == PPC::RESTORE_UACC) {
lowerACCRestore(II, FrameIndex);
return;
} else if (OpC == PPC::SPILL_QUADWORD) {
lowerQuadwordSpilling(II, FrameIndex);
return;
} else if (OpC == PPC::RESTORE_QUADWORD) {
lowerQuadwordRestore(II, FrameIndex);
return;
}
// Replace the FrameIndex with base register with GPR1 (SP) or GPR31 (FP).
MI.getOperand(FIOperandNum).ChangeToRegister(
FrameIndex < 0 ? getBaseRegister(MF) : getFrameRegister(MF), false);
// If the instruction is not present in ImmToIdxMap, then it has no immediate
// form (and must be r+r).
bool noImmForm = !MI.isInlineAsm() && OpC != TargetOpcode::STACKMAP &&
OpC != TargetOpcode::PATCHPOINT && !ImmToIdxMap.count(OpC);
// Now add the frame object offset to the offset from r1.
int Offset = MFI.getObjectOffset(FrameIndex);
Offset += MI.getOperand(OffsetOperandNo).getImm();
// If we're not using a Frame Pointer that has been set to the value of the
// SP before having the stack size subtracted from it, then add the stack size
// to Offset to get the correct offset.
// Naked functions have stack size 0, although getStackSize may not reflect
// that because we didn't call all the pieces that compute it for naked
// functions.
if (!MF.getFunction().hasFnAttribute(Attribute::Naked)) {
if (!(hasBasePointer(MF) && FrameIndex < 0))
Offset += MFI.getStackSize();
}
// If we encounter an LXVP/STXVP with an offset that doesn't fit, we can
// transform it to the prefixed version so we don't have to use the XForm.
if ((OpC == PPC::LXVP || OpC == PPC::STXVP) &&
(!isInt<16>(Offset) || (Offset % offsetMinAlign(MI)) != 0) &&
Subtarget.hasPrefixInstrs()) {
unsigned NewOpc = OpC == PPC::LXVP ? PPC::PLXVP : PPC::PSTXVP;
MI.setDesc(TII.get(NewOpc));
OpC = NewOpc;
}
// If we can, encode the offset directly into the instruction. If this is a
// normal PPC "ri" instruction, any 16-bit value can be safely encoded. If
// this is a PPC64 "ix" instruction, only a 16-bit value with the low two bits
// clear can be encoded. This is extremely uncommon, because normally you
// only "std" to a stack slot that is at least 4-byte aligned, but it can
// happen in invalid code.
assert(OpC != PPC::DBG_VALUE &&
"This should be handled in a target-independent way");
// FIXME: This should be factored out to a separate function as prefixed
// instructions add a number of opcodes for which we can use 34-bit imm.
bool OffsetFitsMnemonic = (OpC == PPC::EVSTDD || OpC == PPC::EVLDD) ?
isUInt<8>(Offset) :
isInt<16>(Offset);
if (TII.isPrefixed(MI.getOpcode()))
OffsetFitsMnemonic = isInt<34>(Offset);
if (!noImmForm && ((OffsetFitsMnemonic &&
((Offset % offsetMinAlign(MI)) == 0)) ||
OpC == TargetOpcode::STACKMAP ||
OpC == TargetOpcode::PATCHPOINT)) {
MI.getOperand(OffsetOperandNo).ChangeToImmediate(Offset);
return;
}
// The offset doesn't fit into a single register, scavenge one to build the
// offset in.
bool is64Bit = TM.isPPC64();
const TargetRegisterClass *G8RC = &PPC::G8RCRegClass;
const TargetRegisterClass *GPRC = &PPC::GPRCRegClass;
const TargetRegisterClass *RC = is64Bit ? G8RC : GPRC;
Register SRegHi = MF.getRegInfo().createVirtualRegister(RC),
SReg = MF.getRegInfo().createVirtualRegister(RC);
// Insert a set of rA with the full offset value before the ld, st, or add
if (isInt<16>(Offset))
BuildMI(MBB, II, dl, TII.get(is64Bit ? PPC::LI8 : PPC::LI), SReg)
.addImm(Offset);
else {
BuildMI(MBB, II, dl, TII.get(is64Bit ? PPC::LIS8 : PPC::LIS), SRegHi)
.addImm(Offset >> 16);
BuildMI(MBB, II, dl, TII.get(is64Bit ? PPC::ORI8 : PPC::ORI), SReg)
.addReg(SRegHi, RegState::Kill)
.addImm(Offset);
}
// Convert into indexed form of the instruction:
//
// sth 0:rA, 1:imm 2:(rB) ==> sthx 0:rA, 2:rB, 1:r0
// addi 0:rA 1:rB, 2, imm ==> add 0:rA, 1:rB, 2:r0
unsigned OperandBase;
if (noImmForm)
OperandBase = 1;
else if (OpC != TargetOpcode::INLINEASM &&
OpC != TargetOpcode::INLINEASM_BR) {
assert(ImmToIdxMap.count(OpC) &&
"No indexed form of load or store available!");
unsigned NewOpcode = ImmToIdxMap.find(OpC)->second;
MI.setDesc(TII.get(NewOpcode));
OperandBase = 1;
} else {
OperandBase = OffsetOperandNo;
}
Register StackReg = MI.getOperand(FIOperandNum).getReg();
MI.getOperand(OperandBase).ChangeToRegister(StackReg, false);
MI.getOperand(OperandBase + 1).ChangeToRegister(SReg, false, false, true);
}
Register PPCRegisterInfo::getFrameRegister(const MachineFunction &MF) const {
const PPCFrameLowering *TFI = getFrameLowering(MF);
if (!TM.isPPC64())
return TFI->hasFP(MF) ? PPC::R31 : PPC::R1;
else
return TFI->hasFP(MF) ? PPC::X31 : PPC::X1;
}
Register PPCRegisterInfo::getBaseRegister(const MachineFunction &MF) const {
const PPCSubtarget &Subtarget = MF.getSubtarget<PPCSubtarget>();
if (!hasBasePointer(MF))
return getFrameRegister(MF);
if (TM.isPPC64())
return PPC::X30;
if (Subtarget.isSVR4ABI() && TM.isPositionIndependent())
return PPC::R29;
return PPC::R30;
}
bool PPCRegisterInfo::hasBasePointer(const MachineFunction &MF) const {
if (!EnableBasePointer)
return false;
if (AlwaysBasePointer)
return true;
// If we need to realign the stack, then the stack pointer can no longer
// serve as an offset into the caller's stack space. As a result, we need a
// base pointer.
return hasStackRealignment(MF);
}
/// Returns true if the instruction's frame index
/// reference would be better served by a base register other than FP
/// or SP. Used by LocalStackFrameAllocation to determine which frame index
/// references it should create new base registers for.
bool PPCRegisterInfo::
needsFrameBaseReg(MachineInstr *MI, int64_t Offset) const {
assert(Offset < 0 && "Local offset must be negative");
// It's the load/store FI references that cause issues, as it can be difficult
// to materialize the offset if it won't fit in the literal field. Estimate
// based on the size of the local frame and some conservative assumptions
// about the rest of the stack frame (note, this is pre-regalloc, so
// we don't know everything for certain yet) whether this offset is likely
// to be out of range of the immediate. Return true if so.
// We only generate virtual base registers for loads and stores that have
// an r+i form. Return false for everything else.
unsigned OpC = MI->getOpcode();
if (!ImmToIdxMap.count(OpC))
return false;
// Don't generate a new virtual base register just to add zero to it.
if ((OpC == PPC::ADDI || OpC == PPC::ADDI8) &&
MI->getOperand(2).getImm() == 0)
return false;
MachineBasicBlock &MBB = *MI->getParent();
MachineFunction &MF = *MBB.getParent();
const PPCFrameLowering *TFI = getFrameLowering(MF);
unsigned StackEst = TFI->determineFrameLayout(MF, true);
// If we likely don't need a stack frame, then we probably don't need a
// virtual base register either.
if (!StackEst)
return false;
// Estimate an offset from the stack pointer.
// The incoming offset is relating to the SP at the start of the function,
// but when we access the local it'll be relative to the SP after local
// allocation, so adjust our SP-relative offset by that allocation size.
Offset += StackEst;
// The frame pointer will point to the end of the stack, so estimate the
// offset as the difference between the object offset and the FP location.
return !isFrameOffsetLegal(MI, getBaseRegister(MF), Offset);
}
/// Insert defining instruction(s) for BaseReg to
/// be a pointer to FrameIdx at the beginning of the basic block.
Register PPCRegisterInfo::materializeFrameBaseRegister(MachineBasicBlock *MBB,
int FrameIdx,
int64_t Offset) const {
unsigned ADDriOpc = TM.isPPC64() ? PPC::ADDI8 : PPC::ADDI;
MachineBasicBlock::iterator Ins = MBB->begin();
DebugLoc DL; // Defaults to "unknown"
if (Ins != MBB->end())
DL = Ins->getDebugLoc();
const MachineFunction &MF = *MBB->getParent();
const PPCSubtarget &Subtarget = MF.getSubtarget<PPCSubtarget>();
const TargetInstrInfo &TII = *Subtarget.getInstrInfo();
const MCInstrDesc &MCID = TII.get(ADDriOpc);
MachineRegisterInfo &MRI = MBB->getParent()->getRegInfo();
const TargetRegisterClass *RC = getPointerRegClass(MF);
Register BaseReg = MRI.createVirtualRegister(RC);
MRI.constrainRegClass(BaseReg, TII.getRegClass(MCID, 0, this, MF));
BuildMI(*MBB, Ins, DL, MCID, BaseReg)
.addFrameIndex(FrameIdx).addImm(Offset);
return BaseReg;
}
void PPCRegisterInfo::resolveFrameIndex(MachineInstr &MI, Register BaseReg,
int64_t Offset) const {
unsigned FIOperandNum = 0;
while (!MI.getOperand(FIOperandNum).isFI()) {
++FIOperandNum;
assert(FIOperandNum < MI.getNumOperands() &&
"Instr doesn't have FrameIndex operand!");
}
MI.getOperand(FIOperandNum).ChangeToRegister(BaseReg, false);
unsigned OffsetOperandNo = getOffsetONFromFION(MI, FIOperandNum);
Offset += MI.getOperand(OffsetOperandNo).getImm();
MI.getOperand(OffsetOperandNo).ChangeToImmediate(Offset);
MachineBasicBlock &MBB = *MI.getParent();
MachineFunction &MF = *MBB.getParent();
const PPCSubtarget &Subtarget = MF.getSubtarget<PPCSubtarget>();
const TargetInstrInfo &TII = *Subtarget.getInstrInfo();
const MCInstrDesc &MCID = MI.getDesc();
MachineRegisterInfo &MRI = MF.getRegInfo();
MRI.constrainRegClass(BaseReg,
TII.getRegClass(MCID, FIOperandNum, this, MF));
}
bool PPCRegisterInfo::isFrameOffsetLegal(const MachineInstr *MI,
Register BaseReg,
int64_t Offset) const {
unsigned FIOperandNum = 0;
while (!MI->getOperand(FIOperandNum).isFI()) {
++FIOperandNum;
assert(FIOperandNum < MI->getNumOperands() &&
"Instr doesn't have FrameIndex operand!");
}
unsigned OffsetOperandNo = getOffsetONFromFION(*MI, FIOperandNum);
Offset += MI->getOperand(OffsetOperandNo).getImm();
return MI->getOpcode() == PPC::DBG_VALUE || // DBG_VALUE is always Reg+Imm
MI->getOpcode() == TargetOpcode::STACKMAP ||
MI->getOpcode() == TargetOpcode::PATCHPOINT ||
(isInt<16>(Offset) && (Offset % offsetMinAlign(*MI)) == 0);
}