blob: 6bf6c45d8cf6ff111a71e92f16233bf33982d3f4 [file] [log] [blame]
//===--------------------- SIOptimizeVGPRLiveRange.cpp -------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
/// \file
/// This pass tries to remove unnecessary VGPR live ranges in divergent if-else
/// structures and waterfall loops.
///
/// When we do structurization, we usually transform an if-else into two
/// successive if-then (with a flow block to do predicate inversion). Consider a
/// simple case after structurization: A divergent value %a was defined before
/// if-else and used in both THEN (use in THEN is optional) and ELSE part:
/// bb.if:
/// %a = ...
/// ...
/// bb.then:
/// ... = op %a
/// ... // %a can be dead here
/// bb.flow:
/// ...
/// bb.else:
/// ... = %a
/// ...
/// bb.endif
///
/// As register allocator has no idea of the thread-control-flow, it will just
/// assume %a would be alive in the whole range of bb.then because of a later
/// use in bb.else. On AMDGPU architecture, the VGPR is accessed with respect
/// to exec mask. For this if-else case, the lanes active in bb.then will be
/// inactive in bb.else, and vice-versa. So we are safe to say that %a was dead
/// after the last use in bb.then until the end of the block. The reason is
/// the instructions in bb.then will only overwrite lanes that will never be
/// accessed in bb.else.
///
/// This pass aims to to tell register allocator that %a is in-fact dead,
/// through inserting a phi-node in bb.flow saying that %a is undef when coming
/// from bb.then, and then replace the uses in the bb.else with the result of
/// newly inserted phi.
///
/// Two key conditions must be met to ensure correctness:
/// 1.) The def-point should be in the same loop-level as if-else-endif to make
/// sure the second loop iteration still get correct data.
/// 2.) There should be no further uses after the IF-ELSE region.
///
///
/// Waterfall loops get inserted around instructions that use divergent values
/// but can only be executed with a uniform value. For example an indirect call
/// to a divergent address:
/// bb.start:
/// %a = ...
/// %fun = ...
/// ...
/// bb.loop:
/// call %fun (%a)
/// ... // %a can be dead here
/// loop %bb.loop
///
/// The loop block is executed multiple times, but it is run exactly once for
/// each active lane. Similar to the if-else case, the register allocator
/// assumes that %a is live throughout the loop as it is used again in the next
/// iteration. If %a is a VGPR that is unused after the loop, it does not need
/// to be live after its last use in the loop block. By inserting a phi-node at
/// the start of bb.loop that is undef when coming from bb.loop, the register
/// allocation knows that the value of %a does not need to be preserved through
/// iterations of the loop.
///
//
//===----------------------------------------------------------------------===//
#include "AMDGPU.h"
#include "GCNSubtarget.h"
#include "MCTargetDesc/AMDGPUMCTargetDesc.h"
#include "SIMachineFunctionInfo.h"
#include "llvm/CodeGen/LiveVariables.h"
#include "llvm/CodeGen/MachineDominators.h"
#include "llvm/CodeGen/MachineLoopInfo.h"
#include "llvm/CodeGen/TargetRegisterInfo.h"
#include "llvm/InitializePasses.h"
using namespace llvm;
#define DEBUG_TYPE "si-opt-vgpr-liverange"
namespace {
class SIOptimizeVGPRLiveRange : public MachineFunctionPass {
private:
const SIRegisterInfo *TRI = nullptr;
const SIInstrInfo *TII = nullptr;
LiveVariables *LV = nullptr;
MachineDominatorTree *MDT = nullptr;
const MachineLoopInfo *Loops = nullptr;
MachineRegisterInfo *MRI = nullptr;
public:
static char ID;
MachineBasicBlock *getElseTarget(MachineBasicBlock *MBB) const;
void collectElseRegionBlocks(MachineBasicBlock *Flow,
MachineBasicBlock *Endif,
SmallSetVector<MachineBasicBlock *, 16> &) const;
void
collectCandidateRegisters(MachineBasicBlock *If, MachineBasicBlock *Flow,
MachineBasicBlock *Endif,
SmallSetVector<MachineBasicBlock *, 16> &ElseBlocks,
SmallVectorImpl<Register> &CandidateRegs) const;
void collectWaterfallCandidateRegisters(
MachineBasicBlock *Loop,
SmallSetVector<Register, 16> &CandidateRegs) const;
void findNonPHIUsesInBlock(Register Reg, MachineBasicBlock *MBB,
SmallVectorImpl<MachineInstr *> &Uses) const;
void updateLiveRangeInThenRegion(Register Reg, MachineBasicBlock *If,
MachineBasicBlock *Flow) const;
void updateLiveRangeInElseRegion(
Register Reg, Register NewReg, MachineBasicBlock *Flow,
MachineBasicBlock *Endif,
SmallSetVector<MachineBasicBlock *, 16> &ElseBlocks) const;
void
optimizeLiveRange(Register Reg, MachineBasicBlock *If,
MachineBasicBlock *Flow, MachineBasicBlock *Endif,
SmallSetVector<MachineBasicBlock *, 16> &ElseBlocks) const;
void optimizeWaterfallLiveRange(Register Reg, MachineBasicBlock *If) const;
SIOptimizeVGPRLiveRange() : MachineFunctionPass(ID) {}
bool runOnMachineFunction(MachineFunction &MF) override;
StringRef getPassName() const override {
return "SI Optimize VGPR LiveRange";
}
void getAnalysisUsage(AnalysisUsage &AU) const override {
AU.addRequired<LiveVariables>();
AU.addRequired<MachineDominatorTree>();
AU.addRequired<MachineLoopInfo>();
AU.addPreserved<LiveVariables>();
AU.addPreserved<MachineDominatorTree>();
AU.addPreserved<MachineLoopInfo>();
MachineFunctionPass::getAnalysisUsage(AU);
}
MachineFunctionProperties getRequiredProperties() const override {
return MachineFunctionProperties().set(
MachineFunctionProperties::Property::IsSSA);
}
};
} // end anonymous namespace
// Check whether the MBB is a else flow block and get the branching target which
// is the Endif block
MachineBasicBlock *
SIOptimizeVGPRLiveRange::getElseTarget(MachineBasicBlock *MBB) const {
for (auto &BR : MBB->terminators()) {
if (BR.getOpcode() == AMDGPU::SI_ELSE)
return BR.getOperand(2).getMBB();
}
return nullptr;
}
void SIOptimizeVGPRLiveRange::collectElseRegionBlocks(
MachineBasicBlock *Flow, MachineBasicBlock *Endif,
SmallSetVector<MachineBasicBlock *, 16> &Blocks) const {
assert(Flow != Endif);
MachineBasicBlock *MBB = Endif;
unsigned Cur = 0;
while (MBB) {
for (auto *Pred : MBB->predecessors()) {
if (Pred != Flow && !Blocks.contains(Pred))
Blocks.insert(Pred);
}
if (Cur < Blocks.size())
MBB = Blocks[Cur++];
else
MBB = nullptr;
}
LLVM_DEBUG({
dbgs() << "Found Else blocks: ";
for (auto *MBB : Blocks)
dbgs() << printMBBReference(*MBB) << ' ';
dbgs() << '\n';
});
}
/// Find the instructions(excluding phi) in \p MBB that uses the \p Reg.
void SIOptimizeVGPRLiveRange::findNonPHIUsesInBlock(
Register Reg, MachineBasicBlock *MBB,
SmallVectorImpl<MachineInstr *> &Uses) const {
for (auto &UseMI : MRI->use_nodbg_instructions(Reg)) {
if (UseMI.getParent() == MBB && !UseMI.isPHI())
Uses.push_back(&UseMI);
}
}
/// Collect the killed registers in the ELSE region which are not alive through
/// the whole THEN region.
void SIOptimizeVGPRLiveRange::collectCandidateRegisters(
MachineBasicBlock *If, MachineBasicBlock *Flow, MachineBasicBlock *Endif,
SmallSetVector<MachineBasicBlock *, 16> &ElseBlocks,
SmallVectorImpl<Register> &CandidateRegs) const {
SmallSet<Register, 8> KillsInElse;
for (auto *Else : ElseBlocks) {
for (auto &MI : Else->instrs()) {
if (MI.isDebugInstr())
continue;
for (auto &MO : MI.operands()) {
if (!MO.isReg() || !MO.getReg() || MO.isDef())
continue;
Register MOReg = MO.getReg();
// We can only optimize AGPR/VGPR virtual register
if (MOReg.isPhysical() || !TRI->isVectorRegister(*MRI, MOReg))
continue;
if (MO.readsReg()) {
LiveVariables::VarInfo &VI = LV->getVarInfo(MOReg);
const MachineBasicBlock *DefMBB = MRI->getVRegDef(MOReg)->getParent();
// Make sure two conditions are met:
// a.) the value is defined before/in the IF block
// b.) should be defined in the same loop-level.
if ((VI.AliveBlocks.test(If->getNumber()) || DefMBB == If) &&
Loops->getLoopFor(DefMBB) == Loops->getLoopFor(If)) {
// Check if the register is live into the endif block. If not,
// consider it killed in the else region.
LiveVariables::VarInfo &VI = LV->getVarInfo(MOReg);
if (!VI.isLiveIn(*Endif, MOReg, *MRI)) {
KillsInElse.insert(MOReg);
} else {
LLVM_DEBUG(dbgs() << "Excluding " << printReg(MOReg, TRI)
<< " as Live in Endif\n");
}
}
}
}
}
}
// Check the phis in the Endif, looking for value coming from the ELSE
// region. Make sure the phi-use is the last use.
for (auto &MI : Endif->phis()) {
for (unsigned Idx = 1; Idx < MI.getNumOperands(); Idx += 2) {
auto &MO = MI.getOperand(Idx);
auto *Pred = MI.getOperand(Idx + 1).getMBB();
if (Pred == Flow)
continue;
assert(ElseBlocks.contains(Pred) && "Should be from Else region\n");
if (!MO.isReg() || !MO.getReg() || MO.isUndef())
continue;
Register Reg = MO.getReg();
if (Reg.isPhysical() || !TRI->isVectorRegister(*MRI, Reg))
continue;
LiveVariables::VarInfo &VI = LV->getVarInfo(Reg);
if (VI.isLiveIn(*Endif, Reg, *MRI)) {
LLVM_DEBUG(dbgs() << "Excluding " << printReg(Reg, TRI)
<< " as Live in Endif\n");
continue;
}
// Make sure two conditions are met:
// a.) the value is defined before/in the IF block
// b.) should be defined in the same loop-level.
const MachineBasicBlock *DefMBB = MRI->getVRegDef(Reg)->getParent();
if ((VI.AliveBlocks.test(If->getNumber()) || DefMBB == If) &&
Loops->getLoopFor(DefMBB) == Loops->getLoopFor(If))
KillsInElse.insert(Reg);
}
}
auto IsLiveThroughThen = [&](Register Reg) {
for (auto I = MRI->use_nodbg_begin(Reg), E = MRI->use_nodbg_end(); I != E;
++I) {
if (!I->readsReg())
continue;
auto *UseMI = I->getParent();
auto *UseMBB = UseMI->getParent();
if (UseMBB == Flow || UseMBB == Endif) {
if (!UseMI->isPHI())
return true;
auto *IncomingMBB = UseMI->getOperand(I.getOperandNo() + 1).getMBB();
// The register is live through the path If->Flow or Flow->Endif.
// we should not optimize for such cases.
if ((UseMBB == Flow && IncomingMBB != If) ||
(UseMBB == Endif && IncomingMBB == Flow))
return true;
}
}
return false;
};
for (auto Reg : KillsInElse) {
if (!IsLiveThroughThen(Reg))
CandidateRegs.push_back(Reg);
}
}
/// Collect the registers used in the waterfall loop block that are defined
/// before.
void SIOptimizeVGPRLiveRange::collectWaterfallCandidateRegisters(
MachineBasicBlock *Loop,
SmallSetVector<Register, 16> &CandidateRegs) const {
for (auto &MI : Loop->instrs()) {
if (MI.isDebugInstr())
continue;
for (auto &MO : MI.operands()) {
if (!MO.isReg() || !MO.getReg() || MO.isDef())
continue;
Register MOReg = MO.getReg();
// We can only optimize AGPR/VGPR virtual register
if (MOReg.isPhysical() || !TRI->isVectorRegister(*MRI, MOReg))
continue;
if (MO.readsReg()) {
const MachineBasicBlock *DefMBB = MRI->getVRegDef(MOReg)->getParent();
// Make sure the value is defined before the LOOP block
if (DefMBB != Loop && !CandidateRegs.contains(MOReg)) {
// If the variable is used after the loop, the register coalescer will
// merge the newly created register and remove the phi node again.
// Just do nothing in that case.
LiveVariables::VarInfo &OldVarInfo = LV->getVarInfo(MOReg);
bool IsUsed = false;
for (auto *Succ : Loop->successors()) {
if (Succ != Loop && OldVarInfo.isLiveIn(*Succ, MOReg, *MRI)) {
IsUsed = true;
break;
}
}
if (!IsUsed) {
LLVM_DEBUG(dbgs() << "Found candidate reg: "
<< printReg(MOReg, TRI, 0, MRI) << '\n');
CandidateRegs.insert(MOReg);
} else {
LLVM_DEBUG(dbgs() << "Reg is used after loop, ignoring: "
<< printReg(MOReg, TRI, 0, MRI) << '\n');
}
}
}
}
}
}
// Re-calculate the liveness of \p Reg in the THEN-region
void SIOptimizeVGPRLiveRange::updateLiveRangeInThenRegion(
Register Reg, MachineBasicBlock *If, MachineBasicBlock *Flow) const {
SmallPtrSet<MachineBasicBlock *, 16> PHIIncoming;
MachineBasicBlock *ThenEntry = nullptr;
for (auto *Succ : If->successors()) {
if (Succ != Flow) {
ThenEntry = Succ;
break;
}
}
assert(ThenEntry && "No successor in Then region?");
LiveVariables::VarInfo &OldVarInfo = LV->getVarInfo(Reg);
df_iterator_default_set<MachineBasicBlock *, 16> Visited;
for (MachineBasicBlock *MBB : depth_first_ext(ThenEntry, Visited)) {
if (MBB == Flow)
break;
// Clear Live bit, as we will recalculate afterwards
LLVM_DEBUG(dbgs() << "Clear AliveBlock " << printMBBReference(*MBB)
<< '\n');
OldVarInfo.AliveBlocks.reset(MBB->getNumber());
}
// Get the blocks the Reg should be alive through
for (auto I = MRI->use_nodbg_begin(Reg), E = MRI->use_nodbg_end(); I != E;
++I) {
auto *UseMI = I->getParent();
if (UseMI->isPHI() && I->readsReg()) {
if (Visited.contains(UseMI->getParent()))
PHIIncoming.insert(UseMI->getOperand(I.getOperandNo() + 1).getMBB());
}
}
Visited.clear();
for (MachineBasicBlock *MBB : depth_first_ext(ThenEntry, Visited)) {
if (MBB == Flow)
break;
SmallVector<MachineInstr *> Uses;
// PHI instructions has been processed before.
findNonPHIUsesInBlock(Reg, MBB, Uses);
if (Uses.size() == 1) {
LLVM_DEBUG(dbgs() << "Found one Non-PHI use in "
<< printMBBReference(*MBB) << '\n');
LV->HandleVirtRegUse(Reg, MBB, *(*Uses.begin()));
} else if (Uses.size() > 1) {
// Process the instructions in-order
LLVM_DEBUG(dbgs() << "Found " << Uses.size() << " Non-PHI uses in "
<< printMBBReference(*MBB) << '\n');
for (MachineInstr &MI : *MBB) {
if (llvm::is_contained(Uses, &MI))
LV->HandleVirtRegUse(Reg, MBB, MI);
}
}
// Mark Reg alive through the block if this is a PHI incoming block
if (PHIIncoming.contains(MBB))
LV->MarkVirtRegAliveInBlock(OldVarInfo, MRI->getVRegDef(Reg)->getParent(),
MBB);
}
// Set the isKilled flag if we get new Kills in the THEN region.
for (auto *MI : OldVarInfo.Kills) {
if (Visited.contains(MI->getParent()))
MI->addRegisterKilled(Reg, TRI);
}
}
void SIOptimizeVGPRLiveRange::updateLiveRangeInElseRegion(
Register Reg, Register NewReg, MachineBasicBlock *Flow,
MachineBasicBlock *Endif,
SmallSetVector<MachineBasicBlock *, 16> &ElseBlocks) const {
LiveVariables::VarInfo &NewVarInfo = LV->getVarInfo(NewReg);
LiveVariables::VarInfo &OldVarInfo = LV->getVarInfo(Reg);
// Transfer aliveBlocks from Reg to NewReg
for (auto *MBB : ElseBlocks) {
unsigned BBNum = MBB->getNumber();
if (OldVarInfo.AliveBlocks.test(BBNum)) {
NewVarInfo.AliveBlocks.set(BBNum);
LLVM_DEBUG(dbgs() << "Removing AliveBlock " << printMBBReference(*MBB)
<< '\n');
OldVarInfo.AliveBlocks.reset(BBNum);
}
}
// Transfer the possible Kills in ElseBlocks from Reg to NewReg
auto I = OldVarInfo.Kills.begin();
while (I != OldVarInfo.Kills.end()) {
if (ElseBlocks.contains((*I)->getParent())) {
NewVarInfo.Kills.push_back(*I);
I = OldVarInfo.Kills.erase(I);
} else {
++I;
}
}
}
void SIOptimizeVGPRLiveRange::optimizeLiveRange(
Register Reg, MachineBasicBlock *If, MachineBasicBlock *Flow,
MachineBasicBlock *Endif,
SmallSetVector<MachineBasicBlock *, 16> &ElseBlocks) const {
// Insert a new PHI, marking the value from the THEN region being
// undef.
LLVM_DEBUG(dbgs() << "Optimizing " << printReg(Reg, TRI) << '\n');
const auto *RC = MRI->getRegClass(Reg);
Register NewReg = MRI->createVirtualRegister(RC);
Register UndefReg = MRI->createVirtualRegister(RC);
MachineInstrBuilder PHI = BuildMI(*Flow, Flow->getFirstNonPHI(), DebugLoc(),
TII->get(TargetOpcode::PHI), NewReg);
for (auto *Pred : Flow->predecessors()) {
if (Pred == If)
PHI.addReg(Reg).addMBB(Pred);
else
PHI.addReg(UndefReg, RegState::Undef).addMBB(Pred);
}
// Replace all uses in the ELSE region or the PHIs in ENDIF block
// Use early increment range because setReg() will update the linked list.
for (auto &O : make_early_inc_range(MRI->use_operands(Reg))) {
auto *UseMI = O.getParent();
auto *UseBlock = UseMI->getParent();
// Replace uses in Endif block
if (UseBlock == Endif) {
assert(UseMI->isPHI() && "Uses should be PHI in Endif block");
O.setReg(NewReg);
continue;
}
// Replace uses in Else region
if (ElseBlocks.contains(UseBlock))
O.setReg(NewReg);
}
// The optimized Reg is not alive through Flow blocks anymore.
LiveVariables::VarInfo &OldVarInfo = LV->getVarInfo(Reg);
OldVarInfo.AliveBlocks.reset(Flow->getNumber());
updateLiveRangeInElseRegion(Reg, NewReg, Flow, Endif, ElseBlocks);
updateLiveRangeInThenRegion(Reg, If, Flow);
}
void SIOptimizeVGPRLiveRange::optimizeWaterfallLiveRange(
Register Reg, MachineBasicBlock *Loop) const {
// Insert a new PHI, marking the value from the last loop iteration undef.
LLVM_DEBUG(dbgs() << "Optimizing " << printReg(Reg, TRI) << '\n');
const auto *RC = MRI->getRegClass(Reg);
Register NewReg = MRI->createVirtualRegister(RC);
Register UndefReg = MRI->createVirtualRegister(RC);
// Replace all uses in the LOOP region
// Use early increment range because setReg() will update the linked list.
for (auto &O : make_early_inc_range(MRI->use_operands(Reg))) {
auto *UseMI = O.getParent();
auto *UseBlock = UseMI->getParent();
// Replace uses in Loop block
if (UseBlock == Loop)
O.setReg(NewReg);
}
MachineInstrBuilder PHI = BuildMI(*Loop, Loop->getFirstNonPHI(), DebugLoc(),
TII->get(TargetOpcode::PHI), NewReg);
for (auto *Pred : Loop->predecessors()) {
if (Pred == Loop)
PHI.addReg(UndefReg, RegState::Undef).addMBB(Pred);
else
PHI.addReg(Reg).addMBB(Pred);
}
LiveVariables::VarInfo &NewVarInfo = LV->getVarInfo(NewReg);
LiveVariables::VarInfo &OldVarInfo = LV->getVarInfo(Reg);
// collectWaterfallCandidateRegisters only collects registers that are dead
// after the loop. So we know that the old reg is not live throughout the
// whole block anymore.
OldVarInfo.AliveBlocks.reset(Loop->getNumber());
// Mark the last use as kill
for (auto &MI : reverse(Loop->instrs())) {
if (MI.readsRegister(NewReg, TRI)) {
MI.addRegisterKilled(NewReg, TRI);
NewVarInfo.Kills.push_back(&MI);
break;
}
}
assert(!NewVarInfo.Kills.empty() &&
"Failed to find last usage of register in loop");
}
char SIOptimizeVGPRLiveRange::ID = 0;
INITIALIZE_PASS_BEGIN(SIOptimizeVGPRLiveRange, DEBUG_TYPE,
"SI Optimize VGPR LiveRange", false, false)
INITIALIZE_PASS_DEPENDENCY(MachineDominatorTree)
INITIALIZE_PASS_DEPENDENCY(MachineLoopInfo)
INITIALIZE_PASS_DEPENDENCY(LiveVariables)
INITIALIZE_PASS_END(SIOptimizeVGPRLiveRange, DEBUG_TYPE,
"SI Optimize VGPR LiveRange", false, false)
char &llvm::SIOptimizeVGPRLiveRangeID = SIOptimizeVGPRLiveRange::ID;
FunctionPass *llvm::createSIOptimizeVGPRLiveRangePass() {
return new SIOptimizeVGPRLiveRange();
}
bool SIOptimizeVGPRLiveRange::runOnMachineFunction(MachineFunction &MF) {
const GCNSubtarget &ST = MF.getSubtarget<GCNSubtarget>();
TII = ST.getInstrInfo();
TRI = &TII->getRegisterInfo();
MDT = &getAnalysis<MachineDominatorTree>();
Loops = &getAnalysis<MachineLoopInfo>();
LV = &getAnalysis<LiveVariables>();
MRI = &MF.getRegInfo();
if (skipFunction(MF.getFunction()))
return false;
bool MadeChange = false;
// TODO: we need to think about the order of visiting the blocks to get
// optimal result for nesting if-else cases.
for (MachineBasicBlock &MBB : MF) {
for (auto &MI : MBB.terminators()) {
// Detect the if-else blocks
if (MI.getOpcode() == AMDGPU::SI_IF) {
MachineBasicBlock *IfTarget = MI.getOperand(2).getMBB();
auto *Endif = getElseTarget(IfTarget);
if (!Endif)
continue;
SmallSetVector<MachineBasicBlock *, 16> ElseBlocks;
SmallVector<Register> CandidateRegs;
LLVM_DEBUG(dbgs() << "Checking IF-ELSE-ENDIF: "
<< printMBBReference(MBB) << ' '
<< printMBBReference(*IfTarget) << ' '
<< printMBBReference(*Endif) << '\n');
// Collect all the blocks in the ELSE region
collectElseRegionBlocks(IfTarget, Endif, ElseBlocks);
// Collect the registers can be optimized
collectCandidateRegisters(&MBB, IfTarget, Endif, ElseBlocks,
CandidateRegs);
MadeChange |= !CandidateRegs.empty();
// Now we are safe to optimize.
for (auto Reg : CandidateRegs)
optimizeLiveRange(Reg, &MBB, IfTarget, Endif, ElseBlocks);
} else if (MI.getOpcode() == AMDGPU::SI_WATERFALL_LOOP) {
LLVM_DEBUG(dbgs() << "Checking Waterfall loop: "
<< printMBBReference(MBB) << '\n');
SmallSetVector<Register, 16> CandidateRegs;
collectWaterfallCandidateRegisters(&MBB, CandidateRegs);
MadeChange |= !CandidateRegs.empty();
// Now we are safe to optimize.
for (auto Reg : CandidateRegs)
optimizeWaterfallLiveRange(Reg, &MBB);
}
}
}
return MadeChange;
}