blob: 82c34f537036d0e9c46858a3afd3f452f4dcb928 [file] [log] [blame]
//===- DWARFUnit.cpp ------------------------------------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
#include "llvm/DebugInfo/DWARF/DWARFUnit.h"
#include "llvm/ADT/SmallString.h"
#include "llvm/ADT/StringRef.h"
#include "llvm/DebugInfo/DWARF/DWARFAbbreviationDeclaration.h"
#include "llvm/DebugInfo/DWARF/DWARFCompileUnit.h"
#include "llvm/DebugInfo/DWARF/DWARFContext.h"
#include "llvm/DebugInfo/DWARF/DWARFDebugAbbrev.h"
#include "llvm/DebugInfo/DWARF/DWARFDebugInfoEntry.h"
#include "llvm/DebugInfo/DWARF/DWARFDebugRnglists.h"
#include "llvm/DebugInfo/DWARF/DWARFDie.h"
#include "llvm/DebugInfo/DWARF/DWARFFormValue.h"
#include "llvm/DebugInfo/DWARF/DWARFTypeUnit.h"
#include "llvm/Support/DataExtractor.h"
#include "llvm/Support/Errc.h"
#include "llvm/Support/Path.h"
#include <algorithm>
#include <cassert>
#include <cstddef>
#include <cstdint>
#include <cstdio>
#include <utility>
#include <vector>
using namespace llvm;
using namespace dwarf;
void DWARFUnitVector::addUnitsForSection(DWARFContext &C,
const DWARFSection &Section,
DWARFSectionKind SectionKind) {
const DWARFObject &D = C.getDWARFObj();
addUnitsImpl(C, D, Section, C.getDebugAbbrev(), &D.getRangesSection(),
&D.getLocSection(), D.getStrSection(),
D.getStrOffsetsSection(), &D.getAddrSection(),
D.getLineSection(), D.isLittleEndian(), false, false,
SectionKind);
}
void DWARFUnitVector::addUnitsForDWOSection(DWARFContext &C,
const DWARFSection &DWOSection,
DWARFSectionKind SectionKind,
bool Lazy) {
const DWARFObject &D = C.getDWARFObj();
addUnitsImpl(C, D, DWOSection, C.getDebugAbbrevDWO(), &D.getRangesDWOSection(),
&D.getLocDWOSection(), D.getStrDWOSection(),
D.getStrOffsetsDWOSection(), &D.getAddrSection(),
D.getLineDWOSection(), C.isLittleEndian(), true, Lazy,
SectionKind);
}
void DWARFUnitVector::addUnitsImpl(
DWARFContext &Context, const DWARFObject &Obj, const DWARFSection &Section,
const DWARFDebugAbbrev *DA, const DWARFSection *RS,
const DWARFSection *LocSection, StringRef SS, const DWARFSection &SOS,
const DWARFSection *AOS, const DWARFSection &LS, bool LE, bool IsDWO,
bool Lazy, DWARFSectionKind SectionKind) {
DWARFDataExtractor Data(Obj, Section, LE, 0);
// Lazy initialization of Parser, now that we have all section info.
if (!Parser) {
Parser = [=, &Context, &Obj, &Section, &SOS,
&LS](uint64_t Offset, DWARFSectionKind SectionKind,
const DWARFSection *CurSection,
const DWARFUnitIndex::Entry *IndexEntry)
-> std::unique_ptr<DWARFUnit> {
const DWARFSection &InfoSection = CurSection ? *CurSection : Section;
DWARFDataExtractor Data(Obj, InfoSection, LE, 0);
if (!Data.isValidOffset(Offset))
return nullptr;
DWARFUnitHeader Header;
if (!Header.extract(Context, Data, &Offset, SectionKind))
return nullptr;
if (!IndexEntry && IsDWO) {
const DWARFUnitIndex &Index = getDWARFUnitIndex(
Context, Header.isTypeUnit() ? DW_SECT_EXT_TYPES : DW_SECT_INFO);
IndexEntry = Index.getFromOffset(Header.getOffset());
}
if (IndexEntry && !Header.applyIndexEntry(IndexEntry))
return nullptr;
std::unique_ptr<DWARFUnit> U;
if (Header.isTypeUnit())
U = std::make_unique<DWARFTypeUnit>(Context, InfoSection, Header, DA,
RS, LocSection, SS, SOS, AOS, LS,
LE, IsDWO, *this);
else
U = std::make_unique<DWARFCompileUnit>(Context, InfoSection, Header,
DA, RS, LocSection, SS, SOS,
AOS, LS, LE, IsDWO, *this);
return U;
};
}
if (Lazy)
return;
// Find a reasonable insertion point within the vector. We skip over
// (a) units from a different section, (b) units from the same section
// but with lower offset-within-section. This keeps units in order
// within a section, although not necessarily within the object file,
// even if we do lazy parsing.
auto I = this->begin();
uint64_t Offset = 0;
while (Data.isValidOffset(Offset)) {
if (I != this->end() &&
(&(*I)->getInfoSection() != &Section || (*I)->getOffset() == Offset)) {
++I;
continue;
}
auto U = Parser(Offset, SectionKind, &Section, nullptr);
// If parsing failed, we're done with this section.
if (!U)
break;
Offset = U->getNextUnitOffset();
I = std::next(this->insert(I, std::move(U)));
}
}
DWARFUnit *DWARFUnitVector::addUnit(std::unique_ptr<DWARFUnit> Unit) {
auto I = std::upper_bound(begin(), end(), Unit,
[](const std::unique_ptr<DWARFUnit> &LHS,
const std::unique_ptr<DWARFUnit> &RHS) {
return LHS->getOffset() < RHS->getOffset();
});
return this->insert(I, std::move(Unit))->get();
}
DWARFUnit *DWARFUnitVector::getUnitForOffset(uint64_t Offset) const {
auto end = begin() + getNumInfoUnits();
auto *CU =
std::upper_bound(begin(), end, Offset,
[](uint64_t LHS, const std::unique_ptr<DWARFUnit> &RHS) {
return LHS < RHS->getNextUnitOffset();
});
if (CU != end && (*CU)->getOffset() <= Offset)
return CU->get();
return nullptr;
}
DWARFUnit *
DWARFUnitVector::getUnitForIndexEntry(const DWARFUnitIndex::Entry &E) {
const auto *CUOff = E.getContribution(DW_SECT_INFO);
if (!CUOff)
return nullptr;
auto Offset = CUOff->Offset;
auto end = begin() + getNumInfoUnits();
auto *CU =
std::upper_bound(begin(), end, CUOff->Offset,
[](uint64_t LHS, const std::unique_ptr<DWARFUnit> &RHS) {
return LHS < RHS->getNextUnitOffset();
});
if (CU != end && (*CU)->getOffset() <= Offset)
return CU->get();
if (!Parser)
return nullptr;
auto U = Parser(Offset, DW_SECT_INFO, nullptr, &E);
if (!U)
U = nullptr;
auto *NewCU = U.get();
this->insert(CU, std::move(U));
++NumInfoUnits;
return NewCU;
}
DWARFUnit::DWARFUnit(DWARFContext &DC, const DWARFSection &Section,
const DWARFUnitHeader &Header, const DWARFDebugAbbrev *DA,
const DWARFSection *RS, const DWARFSection *LocSection,
StringRef SS, const DWARFSection &SOS,
const DWARFSection *AOS, const DWARFSection &LS, bool LE,
bool IsDWO, const DWARFUnitVector &UnitVector)
: Context(DC), InfoSection(Section), Header(Header), Abbrev(DA),
RangeSection(RS), LineSection(LS), StringSection(SS),
StringOffsetSection(SOS), AddrOffsetSection(AOS), isLittleEndian(LE),
IsDWO(IsDWO), UnitVector(UnitVector) {
clear();
}
DWARFUnit::~DWARFUnit() = default;
DWARFDataExtractor DWARFUnit::getDebugInfoExtractor() const {
return DWARFDataExtractor(Context.getDWARFObj(), InfoSection, isLittleEndian,
getAddressByteSize());
}
Optional<object::SectionedAddress>
DWARFUnit::getAddrOffsetSectionItem(uint32_t Index) const {
if (!AddrOffsetSectionBase) {
auto R = Context.info_section_units();
// Surprising if a DWO file has more than one skeleton unit in it - this
// probably shouldn't be valid, but if a use case is found, here's where to
// support it (probably have to linearly search for the matching skeleton CU
// here)
if (IsDWO && hasSingleElement(R))
return (*R.begin())->getAddrOffsetSectionItem(Index);
return None;
}
uint64_t Offset = *AddrOffsetSectionBase + Index * getAddressByteSize();
if (AddrOffsetSection->Data.size() < Offset + getAddressByteSize())
return None;
DWARFDataExtractor DA(Context.getDWARFObj(), *AddrOffsetSection,
isLittleEndian, getAddressByteSize());
uint64_t Section;
uint64_t Address = DA.getRelocatedAddress(&Offset, &Section);
return {{Address, Section}};
}
Optional<uint64_t> DWARFUnit::getStringOffsetSectionItem(uint32_t Index) const {
if (!StringOffsetsTableContribution)
return None;
unsigned ItemSize = getDwarfStringOffsetsByteSize();
uint64_t Offset = getStringOffsetsBase() + Index * ItemSize;
if (StringOffsetSection.Data.size() < Offset + ItemSize)
return None;
DWARFDataExtractor DA(Context.getDWARFObj(), StringOffsetSection,
isLittleEndian, 0);
return DA.getRelocatedValue(ItemSize, &Offset);
}
bool DWARFUnitHeader::extract(DWARFContext &Context,
const DWARFDataExtractor &debug_info,
uint64_t *offset_ptr,
DWARFSectionKind SectionKind) {
Offset = *offset_ptr;
Error Err = Error::success();
IndexEntry = nullptr;
std::tie(Length, FormParams.Format) =
debug_info.getInitialLength(offset_ptr, &Err);
FormParams.Version = debug_info.getU16(offset_ptr, &Err);
if (FormParams.Version >= 5) {
UnitType = debug_info.getU8(offset_ptr, &Err);
FormParams.AddrSize = debug_info.getU8(offset_ptr, &Err);
AbbrOffset = debug_info.getRelocatedValue(
FormParams.getDwarfOffsetByteSize(), offset_ptr, nullptr, &Err);
} else {
AbbrOffset = debug_info.getRelocatedValue(
FormParams.getDwarfOffsetByteSize(), offset_ptr, nullptr, &Err);
FormParams.AddrSize = debug_info.getU8(offset_ptr, &Err);
// Fake a unit type based on the section type. This isn't perfect,
// but distinguishing compile and type units is generally enough.
if (SectionKind == DW_SECT_EXT_TYPES)
UnitType = DW_UT_type;
else
UnitType = DW_UT_compile;
}
if (isTypeUnit()) {
TypeHash = debug_info.getU64(offset_ptr, &Err);
TypeOffset = debug_info.getUnsigned(
offset_ptr, FormParams.getDwarfOffsetByteSize(), &Err);
} else if (UnitType == DW_UT_split_compile || UnitType == DW_UT_skeleton)
DWOId = debug_info.getU64(offset_ptr, &Err);
if (Err) {
Context.getWarningHandler()(joinErrors(
createStringError(
errc::invalid_argument,
"DWARF unit at 0x%8.8" PRIx64 " cannot be parsed:", Offset),
std::move(Err)));
return false;
}
// Header fields all parsed, capture the size of this unit header.
assert(*offset_ptr - Offset <= 255 && "unexpected header size");
Size = uint8_t(*offset_ptr - Offset);
uint64_t NextCUOffset = Offset + getUnitLengthFieldByteSize() + getLength();
if (!debug_info.isValidOffset(getNextUnitOffset() - 1)) {
Context.getWarningHandler()(
createStringError(errc::invalid_argument,
"DWARF unit from offset 0x%8.8" PRIx64 " incl. "
"to offset 0x%8.8" PRIx64 " excl. "
"extends past section size 0x%8.8zx",
Offset, NextCUOffset, debug_info.size()));
return false;
}
if (!DWARFContext::isSupportedVersion(getVersion())) {
Context.getWarningHandler()(createStringError(
errc::invalid_argument,
"DWARF unit at offset 0x%8.8" PRIx64 " "
"has unsupported version %" PRIu16 ", supported are 2-%u",
Offset, getVersion(), DWARFContext::getMaxSupportedVersion()));
return false;
}
// Type offset is unit-relative; should be after the header and before
// the end of the current unit.
if (isTypeUnit() && TypeOffset < Size) {
Context.getWarningHandler()(
createStringError(errc::invalid_argument,
"DWARF type unit at offset "
"0x%8.8" PRIx64 " "
"has its relocated type_offset 0x%8.8" PRIx64 " "
"pointing inside the header",
Offset, Offset + TypeOffset));
return false;
}
if (isTypeUnit() &&
TypeOffset >= getUnitLengthFieldByteSize() + getLength()) {
Context.getWarningHandler()(createStringError(
errc::invalid_argument,
"DWARF type unit from offset 0x%8.8" PRIx64 " incl. "
"to offset 0x%8.8" PRIx64 " excl. has its "
"relocated type_offset 0x%8.8" PRIx64 " pointing past the unit end",
Offset, NextCUOffset, Offset + TypeOffset));
return false;
}
if (Error SizeErr = DWARFContext::checkAddressSizeSupported(
getAddressByteSize(), errc::invalid_argument,
"DWARF unit at offset 0x%8.8" PRIx64, Offset)) {
Context.getWarningHandler()(std::move(SizeErr));
return false;
}
// Keep track of the highest DWARF version we encounter across all units.
Context.setMaxVersionIfGreater(getVersion());
return true;
}
bool DWARFUnitHeader::applyIndexEntry(const DWARFUnitIndex::Entry *Entry) {
assert(Entry);
assert(!IndexEntry);
IndexEntry = Entry;
if (AbbrOffset)
return false;
auto *UnitContrib = IndexEntry->getContribution();
if (!UnitContrib ||
UnitContrib->Length != (getLength() + getUnitLengthFieldByteSize()))
return false;
auto *AbbrEntry = IndexEntry->getContribution(DW_SECT_ABBREV);
if (!AbbrEntry)
return false;
AbbrOffset = AbbrEntry->Offset;
return true;
}
Error DWARFUnit::extractRangeList(uint64_t RangeListOffset,
DWARFDebugRangeList &RangeList) const {
// Require that compile unit is extracted.
assert(!DieArray.empty());
DWARFDataExtractor RangesData(Context.getDWARFObj(), *RangeSection,
isLittleEndian, getAddressByteSize());
uint64_t ActualRangeListOffset = RangeSectionBase + RangeListOffset;
return RangeList.extract(RangesData, &ActualRangeListOffset);
}
void DWARFUnit::clear() {
Abbrevs = nullptr;
BaseAddr.reset();
RangeSectionBase = 0;
LocSectionBase = 0;
AddrOffsetSectionBase = None;
SU = nullptr;
clearDIEs(false);
DWO.reset();
}
const char *DWARFUnit::getCompilationDir() {
return dwarf::toString(getUnitDIE().find(DW_AT_comp_dir), nullptr);
}
void DWARFUnit::extractDIEsToVector(
bool AppendCUDie, bool AppendNonCUDies,
std::vector<DWARFDebugInfoEntry> &Dies) const {
if (!AppendCUDie && !AppendNonCUDies)
return;
// Set the offset to that of the first DIE and calculate the start of the
// next compilation unit header.
uint64_t DIEOffset = getOffset() + getHeaderSize();
uint64_t NextCUOffset = getNextUnitOffset();
DWARFDebugInfoEntry DIE;
DWARFDataExtractor DebugInfoData = getDebugInfoExtractor();
// The end offset has been already checked by DWARFUnitHeader::extract.
assert(DebugInfoData.isValidOffset(NextCUOffset - 1));
std::vector<uint32_t> Parents;
std::vector<uint32_t> PrevSiblings;
bool IsCUDie = true;
assert(
((AppendCUDie && Dies.empty()) || (!AppendCUDie && Dies.size() == 1)) &&
"Dies array is not empty");
// Fill Parents and Siblings stacks with initial value.
Parents.push_back(UINT32_MAX);
if (!AppendCUDie)
Parents.push_back(0);
PrevSiblings.push_back(0);
// Start to extract dies.
do {
assert(Parents.size() > 0 && "Empty parents stack");
assert((Parents.back() == UINT32_MAX || Parents.back() <= Dies.size()) &&
"Wrong parent index");
// Extract die. Stop if any error occured.
if (!DIE.extractFast(*this, &DIEOffset, DebugInfoData, NextCUOffset,
Parents.back()))
break;
// If previous sibling is remembered then update it`s SiblingIdx field.
if (PrevSiblings.back() > 0) {
assert(PrevSiblings.back() < Dies.size() &&
"Previous sibling index is out of Dies boundaries");
Dies[PrevSiblings.back()].setSiblingIdx(Dies.size());
}
// Store die into the Dies vector.
if (IsCUDie) {
if (AppendCUDie)
Dies.push_back(DIE);
if (!AppendNonCUDies)
break;
// The average bytes per DIE entry has been seen to be
// around 14-20 so let's pre-reserve the needed memory for
// our DIE entries accordingly.
Dies.reserve(Dies.size() + getDebugInfoSize() / 14);
} else {
// Remember last previous sibling.
PrevSiblings.back() = Dies.size();
Dies.push_back(DIE);
}
// Check for new children scope.
if (const DWARFAbbreviationDeclaration *AbbrDecl =
DIE.getAbbreviationDeclarationPtr()) {
if (AbbrDecl->hasChildren()) {
if (AppendCUDie || !IsCUDie) {
assert(Dies.size() > 0 && "Dies does not contain any die");
Parents.push_back(Dies.size() - 1);
PrevSiblings.push_back(0);
}
} else if (IsCUDie)
// Stop if we have single compile unit die w/o children.
break;
} else {
// NULL DIE: finishes current children scope.
Parents.pop_back();
PrevSiblings.pop_back();
}
if (IsCUDie)
IsCUDie = false;
// Stop when compile unit die is removed from the parents stack.
} while (Parents.size() > 1);
}
void DWARFUnit::extractDIEsIfNeeded(bool CUDieOnly) {
if (Error e = tryExtractDIEsIfNeeded(CUDieOnly))
Context.getRecoverableErrorHandler()(std::move(e));
}
Error DWARFUnit::tryExtractDIEsIfNeeded(bool CUDieOnly) {
if ((CUDieOnly && !DieArray.empty()) ||
DieArray.size() > 1)
return Error::success(); // Already parsed.
bool HasCUDie = !DieArray.empty();
extractDIEsToVector(!HasCUDie, !CUDieOnly, DieArray);
if (DieArray.empty())
return Error::success();
// If CU DIE was just parsed, copy several attribute values from it.
if (HasCUDie)
return Error::success();
DWARFDie UnitDie(this, &DieArray[0]);
if (Optional<uint64_t> DWOId = toUnsigned(UnitDie.find(DW_AT_GNU_dwo_id)))
Header.setDWOId(*DWOId);
if (!IsDWO) {
assert(AddrOffsetSectionBase == None);
assert(RangeSectionBase == 0);
assert(LocSectionBase == 0);
AddrOffsetSectionBase = toSectionOffset(UnitDie.find(DW_AT_addr_base));
if (!AddrOffsetSectionBase)
AddrOffsetSectionBase =
toSectionOffset(UnitDie.find(DW_AT_GNU_addr_base));
RangeSectionBase = toSectionOffset(UnitDie.find(DW_AT_rnglists_base), 0);
LocSectionBase = toSectionOffset(UnitDie.find(DW_AT_loclists_base), 0);
}
// In general, in DWARF v5 and beyond we derive the start of the unit's
// contribution to the string offsets table from the unit DIE's
// DW_AT_str_offsets_base attribute. Split DWARF units do not use this
// attribute, so we assume that there is a contribution to the string
// offsets table starting at offset 0 of the debug_str_offsets.dwo section.
// In both cases we need to determine the format of the contribution,
// which may differ from the unit's format.
DWARFDataExtractor DA(Context.getDWARFObj(), StringOffsetSection,
isLittleEndian, 0);
if (IsDWO || getVersion() >= 5) {
auto StringOffsetOrError =
IsDWO ? determineStringOffsetsTableContributionDWO(DA)
: determineStringOffsetsTableContribution(DA);
if (!StringOffsetOrError)
return createStringError(errc::invalid_argument,
"invalid reference to or invalid content in "
".debug_str_offsets[.dwo]: " +
toString(StringOffsetOrError.takeError()));
StringOffsetsTableContribution = *StringOffsetOrError;
}
// DWARF v5 uses the .debug_rnglists and .debug_rnglists.dwo sections to
// describe address ranges.
if (getVersion() >= 5) {
// In case of DWP, the base offset from the index has to be added.
if (IsDWO) {
uint64_t ContributionBaseOffset = 0;
if (auto *IndexEntry = Header.getIndexEntry())
if (auto *Contrib = IndexEntry->getContribution(DW_SECT_RNGLISTS))
ContributionBaseOffset = Contrib->Offset;
setRangesSection(
&Context.getDWARFObj().getRnglistsDWOSection(),
ContributionBaseOffset +
DWARFListTableHeader::getHeaderSize(Header.getFormat()));
} else
setRangesSection(&Context.getDWARFObj().getRnglistsSection(),
toSectionOffset(UnitDie.find(DW_AT_rnglists_base),
DWARFListTableHeader::getHeaderSize(
Header.getFormat())));
}
if (IsDWO) {
// If we are reading a package file, we need to adjust the location list
// data based on the index entries.
StringRef Data = Header.getVersion() >= 5
? Context.getDWARFObj().getLoclistsDWOSection().Data
: Context.getDWARFObj().getLocDWOSection().Data;
if (auto *IndexEntry = Header.getIndexEntry())
if (const auto *C = IndexEntry->getContribution(
Header.getVersion() >= 5 ? DW_SECT_LOCLISTS : DW_SECT_EXT_LOC))
Data = Data.substr(C->Offset, C->Length);
DWARFDataExtractor DWARFData(Data, isLittleEndian, getAddressByteSize());
LocTable =
std::make_unique<DWARFDebugLoclists>(DWARFData, Header.getVersion());
LocSectionBase = DWARFListTableHeader::getHeaderSize(Header.getFormat());
} else if (getVersion() >= 5) {
LocTable = std::make_unique<DWARFDebugLoclists>(
DWARFDataExtractor(Context.getDWARFObj(),
Context.getDWARFObj().getLoclistsSection(),
isLittleEndian, getAddressByteSize()),
getVersion());
} else {
LocTable = std::make_unique<DWARFDebugLoc>(DWARFDataExtractor(
Context.getDWARFObj(), Context.getDWARFObj().getLocSection(),
isLittleEndian, getAddressByteSize()));
}
// Don't fall back to DW_AT_GNU_ranges_base: it should be ignored for
// skeleton CU DIE, so that DWARF users not aware of it are not broken.
return Error::success();
}
bool DWARFUnit::parseDWO() {
if (IsDWO)
return false;
if (DWO.get())
return false;
DWARFDie UnitDie = getUnitDIE();
if (!UnitDie)
return false;
auto DWOFileName = getVersion() >= 5
? dwarf::toString(UnitDie.find(DW_AT_dwo_name))
: dwarf::toString(UnitDie.find(DW_AT_GNU_dwo_name));
if (!DWOFileName)
return false;
auto CompilationDir = dwarf::toString(UnitDie.find(DW_AT_comp_dir));
SmallString<16> AbsolutePath;
if (sys::path::is_relative(*DWOFileName) && CompilationDir &&
*CompilationDir) {
sys::path::append(AbsolutePath, *CompilationDir);
}
sys::path::append(AbsolutePath, *DWOFileName);
auto DWOId = getDWOId();
if (!DWOId)
return false;
auto DWOContext = Context.getDWOContext(AbsolutePath);
if (!DWOContext)
return false;
DWARFCompileUnit *DWOCU = DWOContext->getDWOCompileUnitForHash(*DWOId);
if (!DWOCU)
return false;
DWO = std::shared_ptr<DWARFCompileUnit>(std::move(DWOContext), DWOCU);
DWO->setSkeletonUnit(this);
// Share .debug_addr and .debug_ranges section with compile unit in .dwo
if (AddrOffsetSectionBase)
DWO->setAddrOffsetSection(AddrOffsetSection, *AddrOffsetSectionBase);
if (getVersion() == 4) {
auto DWORangesBase = UnitDie.getRangesBaseAttribute();
DWO->setRangesSection(RangeSection, DWORangesBase ? *DWORangesBase : 0);
}
return true;
}
void DWARFUnit::clearDIEs(bool KeepCUDie) {
// Do not use resize() + shrink_to_fit() to free memory occupied by dies.
// shrink_to_fit() is a *non-binding* request to reduce capacity() to size().
// It depends on the implementation whether the request is fulfilled.
// Create a new vector with a small capacity and assign it to the DieArray to
// have previous contents freed.
DieArray = (KeepCUDie && !DieArray.empty())
? std::vector<DWARFDebugInfoEntry>({DieArray[0]})
: std::vector<DWARFDebugInfoEntry>();
}
Expected<DWARFAddressRangesVector>
DWARFUnit::findRnglistFromOffset(uint64_t Offset) {
if (getVersion() <= 4) {
DWARFDebugRangeList RangeList;
if (Error E = extractRangeList(Offset, RangeList))
return std::move(E);
return RangeList.getAbsoluteRanges(getBaseAddress());
}
DWARFDataExtractor RangesData(Context.getDWARFObj(), *RangeSection,
isLittleEndian, Header.getAddressByteSize());
DWARFDebugRnglistTable RnglistTable;
auto RangeListOrError = RnglistTable.findList(RangesData, Offset);
if (RangeListOrError)
return RangeListOrError.get().getAbsoluteRanges(getBaseAddress(), *this);
return RangeListOrError.takeError();
}
Expected<DWARFAddressRangesVector>
DWARFUnit::findRnglistFromIndex(uint32_t Index) {
if (auto Offset = getRnglistOffset(Index))
return findRnglistFromOffset(*Offset);
return createStringError(errc::invalid_argument,
"invalid range list table index %d (possibly "
"missing the entire range list table)",
Index);
}
Expected<DWARFAddressRangesVector> DWARFUnit::collectAddressRanges() {
DWARFDie UnitDie = getUnitDIE();
if (!UnitDie)
return createStringError(errc::invalid_argument, "No unit DIE");
// First, check if unit DIE describes address ranges for the whole unit.
auto CUDIERangesOrError = UnitDie.getAddressRanges();
if (!CUDIERangesOrError)
return createStringError(errc::invalid_argument,
"decoding address ranges: %s",
toString(CUDIERangesOrError.takeError()).c_str());
return *CUDIERangesOrError;
}
Expected<DWARFLocationExpressionsVector>
DWARFUnit::findLoclistFromOffset(uint64_t Offset) {
DWARFLocationExpressionsVector Result;
Error InterpretationError = Error::success();
Error ParseError = getLocationTable().visitAbsoluteLocationList(
Offset, getBaseAddress(),
[this](uint32_t Index) { return getAddrOffsetSectionItem(Index); },
[&](Expected<DWARFLocationExpression> L) {
if (L)
Result.push_back(std::move(*L));
else
InterpretationError =
joinErrors(L.takeError(), std::move(InterpretationError));
return !InterpretationError;
});
if (ParseError || InterpretationError)
return joinErrors(std::move(ParseError), std::move(InterpretationError));
return Result;
}
void DWARFUnit::updateAddressDieMap(DWARFDie Die) {
if (Die.isSubroutineDIE()) {
auto DIERangesOrError = Die.getAddressRanges();
if (DIERangesOrError) {
for (const auto &R : DIERangesOrError.get()) {
// Ignore 0-sized ranges.
if (R.LowPC == R.HighPC)
continue;
auto B = AddrDieMap.upper_bound(R.LowPC);
if (B != AddrDieMap.begin() && R.LowPC < (--B)->second.first) {
// The range is a sub-range of existing ranges, we need to split the
// existing range.
if (R.HighPC < B->second.first)
AddrDieMap[R.HighPC] = B->second;
if (R.LowPC > B->first)
AddrDieMap[B->first].first = R.LowPC;
}
AddrDieMap[R.LowPC] = std::make_pair(R.HighPC, Die);
}
} else
llvm::consumeError(DIERangesOrError.takeError());
}
// Parent DIEs are added to the AddrDieMap prior to the Children DIEs to
// simplify the logic to update AddrDieMap. The child's range will always
// be equal or smaller than the parent's range. With this assumption, when
// adding one range into the map, it will at most split a range into 3
// sub-ranges.
for (DWARFDie Child = Die.getFirstChild(); Child; Child = Child.getSibling())
updateAddressDieMap(Child);
}
DWARFDie DWARFUnit::getSubroutineForAddress(uint64_t Address) {
extractDIEsIfNeeded(false);
if (AddrDieMap.empty())
updateAddressDieMap(getUnitDIE());
auto R = AddrDieMap.upper_bound(Address);
if (R == AddrDieMap.begin())
return DWARFDie();
// upper_bound's previous item contains Address.
--R;
if (Address >= R->second.first)
return DWARFDie();
return R->second.second;
}
void
DWARFUnit::getInlinedChainForAddress(uint64_t Address,
SmallVectorImpl<DWARFDie> &InlinedChain) {
assert(InlinedChain.empty());
// Try to look for subprogram DIEs in the DWO file.
parseDWO();
// First, find the subroutine that contains the given address (the leaf
// of inlined chain).
DWARFDie SubroutineDIE =
(DWO ? *DWO : *this).getSubroutineForAddress(Address);
while (SubroutineDIE) {
if (SubroutineDIE.isSubprogramDIE()) {
InlinedChain.push_back(SubroutineDIE);
return;
}
if (SubroutineDIE.getTag() == DW_TAG_inlined_subroutine)
InlinedChain.push_back(SubroutineDIE);
SubroutineDIE = SubroutineDIE.getParent();
}
}
const DWARFUnitIndex &llvm::getDWARFUnitIndex(DWARFContext &Context,
DWARFSectionKind Kind) {
if (Kind == DW_SECT_INFO)
return Context.getCUIndex();
assert(Kind == DW_SECT_EXT_TYPES);
return Context.getTUIndex();
}
DWARFDie DWARFUnit::getParent(const DWARFDebugInfoEntry *Die) {
if (!Die)
return DWARFDie();
if (Optional<uint32_t> ParentIdx = Die->getParentIdx()) {
assert(*ParentIdx < DieArray.size() &&
"ParentIdx is out of DieArray boundaries");
return DWARFDie(this, &DieArray[*ParentIdx]);
}
return DWARFDie();
}
DWARFDie DWARFUnit::getSibling(const DWARFDebugInfoEntry *Die) {
if (!Die)
return DWARFDie();
if (Optional<uint32_t> SiblingIdx = Die->getSiblingIdx()) {
assert(*SiblingIdx < DieArray.size() &&
"SiblingIdx is out of DieArray boundaries");
return DWARFDie(this, &DieArray[*SiblingIdx]);
}
return DWARFDie();
}
DWARFDie DWARFUnit::getPreviousSibling(const DWARFDebugInfoEntry *Die) {
if (!Die)
return DWARFDie();
Optional<uint32_t> ParentIdx = Die->getParentIdx();
if (!ParentIdx)
// Die is a root die, there is no previous sibling.
return DWARFDie();
assert(*ParentIdx < DieArray.size() &&
"ParentIdx is out of DieArray boundaries");
assert(getDIEIndex(Die) > 0 && "Die is a root die");
uint32_t PrevDieIdx = getDIEIndex(Die) - 1;
if (PrevDieIdx == *ParentIdx)
// Immediately previous node is parent, there is no previous sibling.
return DWARFDie();
while (DieArray[PrevDieIdx].getParentIdx() != *ParentIdx) {
PrevDieIdx = *DieArray[PrevDieIdx].getParentIdx();
assert(PrevDieIdx < DieArray.size() &&
"PrevDieIdx is out of DieArray boundaries");
assert(PrevDieIdx >= *ParentIdx &&
"PrevDieIdx is not a child of parent of Die");
}
return DWARFDie(this, &DieArray[PrevDieIdx]);
}
DWARFDie DWARFUnit::getFirstChild(const DWARFDebugInfoEntry *Die) {
if (!Die->hasChildren())
return DWARFDie();
// TODO: Instead of checking here for invalid die we might reject
// invalid dies at parsing stage(DWARFUnit::extractDIEsToVector).
// We do not want access out of bounds when parsing corrupted debug data.
size_t I = getDIEIndex(Die) + 1;
if (I >= DieArray.size())
return DWARFDie();
return DWARFDie(this, &DieArray[I]);
}
DWARFDie DWARFUnit::getLastChild(const DWARFDebugInfoEntry *Die) {
if (!Die->hasChildren())
return DWARFDie();
if (Optional<uint32_t> SiblingIdx = Die->getSiblingIdx()) {
assert(*SiblingIdx < DieArray.size() &&
"SiblingIdx is out of DieArray boundaries");
assert(DieArray[*SiblingIdx - 1].getTag() == dwarf::DW_TAG_null &&
"Bad end of children marker");
return DWARFDie(this, &DieArray[*SiblingIdx - 1]);
}
// If SiblingIdx is set for non-root dies we could be sure that DWARF is
// correct and "end of children marker" must be found. For root die we do not
// have such a guarantee(parsing root die might be stopped if "end of children
// marker" is missing, SiblingIdx is always zero for root die). That is why we
// do not use assertion for checking for "end of children marker" for root
// die.
// TODO: Instead of checking here for invalid die we might reject
// invalid dies at parsing stage(DWARFUnit::extractDIEsToVector).
if (getDIEIndex(Die) == 0 && DieArray.size() > 1 &&
DieArray.back().getTag() == dwarf::DW_TAG_null) {
// For the unit die we might take last item from DieArray.
assert(getDIEIndex(Die) == getDIEIndex(getUnitDIE()) && "Bad unit die");
return DWARFDie(this, &DieArray.back());
}
return DWARFDie();
}
const DWARFAbbreviationDeclarationSet *DWARFUnit::getAbbreviations() const {
if (!Abbrevs)
Abbrevs = Abbrev->getAbbreviationDeclarationSet(getAbbreviationsOffset());
return Abbrevs;
}
llvm::Optional<object::SectionedAddress> DWARFUnit::getBaseAddress() {
if (BaseAddr)
return BaseAddr;
DWARFDie UnitDie = getUnitDIE();
Optional<DWARFFormValue> PC = UnitDie.find({DW_AT_low_pc, DW_AT_entry_pc});
BaseAddr = toSectionedAddress(PC);
return BaseAddr;
}
Expected<StrOffsetsContributionDescriptor>
StrOffsetsContributionDescriptor::validateContributionSize(
DWARFDataExtractor &DA) {
uint8_t EntrySize = getDwarfOffsetByteSize();
// In order to ensure that we don't read a partial record at the end of
// the section we validate for a multiple of the entry size.
uint64_t ValidationSize = alignTo(Size, EntrySize);
// Guard against overflow.
if (ValidationSize >= Size)
if (DA.isValidOffsetForDataOfSize((uint32_t)Base, ValidationSize))
return *this;
return createStringError(errc::invalid_argument, "length exceeds section size");
}
// Look for a DWARF64-formatted contribution to the string offsets table
// starting at a given offset and record it in a descriptor.
static Expected<StrOffsetsContributionDescriptor>
parseDWARF64StringOffsetsTableHeader(DWARFDataExtractor &DA, uint64_t Offset) {
if (!DA.isValidOffsetForDataOfSize(Offset, 16))
return createStringError(errc::invalid_argument, "section offset exceeds section size");
if (DA.getU32(&Offset) != dwarf::DW_LENGTH_DWARF64)
return createStringError(errc::invalid_argument, "32 bit contribution referenced from a 64 bit unit");
uint64_t Size = DA.getU64(&Offset);
uint8_t Version = DA.getU16(&Offset);
(void)DA.getU16(&Offset); // padding
// The encoded length includes the 2-byte version field and the 2-byte
// padding, so we need to subtract them out when we populate the descriptor.
return StrOffsetsContributionDescriptor(Offset, Size - 4, Version, DWARF64);
}
// Look for a DWARF32-formatted contribution to the string offsets table
// starting at a given offset and record it in a descriptor.
static Expected<StrOffsetsContributionDescriptor>
parseDWARF32StringOffsetsTableHeader(DWARFDataExtractor &DA, uint64_t Offset) {
if (!DA.isValidOffsetForDataOfSize(Offset, 8))
return createStringError(errc::invalid_argument, "section offset exceeds section size");
uint32_t ContributionSize = DA.getU32(&Offset);
if (ContributionSize >= dwarf::DW_LENGTH_lo_reserved)
return createStringError(errc::invalid_argument, "invalid length");
uint8_t Version = DA.getU16(&Offset);
(void)DA.getU16(&Offset); // padding
// The encoded length includes the 2-byte version field and the 2-byte
// padding, so we need to subtract them out when we populate the descriptor.
return StrOffsetsContributionDescriptor(Offset, ContributionSize - 4, Version,
DWARF32);
}
static Expected<StrOffsetsContributionDescriptor>
parseDWARFStringOffsetsTableHeader(DWARFDataExtractor &DA,
llvm::dwarf::DwarfFormat Format,
uint64_t Offset) {
StrOffsetsContributionDescriptor Desc;
switch (Format) {
case dwarf::DwarfFormat::DWARF64: {
if (Offset < 16)
return createStringError(errc::invalid_argument, "insufficient space for 64 bit header prefix");
auto DescOrError = parseDWARF64StringOffsetsTableHeader(DA, Offset - 16);
if (!DescOrError)
return DescOrError.takeError();
Desc = *DescOrError;
break;
}
case dwarf::DwarfFormat::DWARF32: {
if (Offset < 8)
return createStringError(errc::invalid_argument, "insufficient space for 32 bit header prefix");
auto DescOrError = parseDWARF32StringOffsetsTableHeader(DA, Offset - 8);
if (!DescOrError)
return DescOrError.takeError();
Desc = *DescOrError;
break;
}
}
return Desc.validateContributionSize(DA);
}
Expected<Optional<StrOffsetsContributionDescriptor>>
DWARFUnit::determineStringOffsetsTableContribution(DWARFDataExtractor &DA) {
assert(!IsDWO);
auto OptOffset = toSectionOffset(getUnitDIE().find(DW_AT_str_offsets_base));
if (!OptOffset)
return None;
auto DescOrError =
parseDWARFStringOffsetsTableHeader(DA, Header.getFormat(), *OptOffset);
if (!DescOrError)
return DescOrError.takeError();
return *DescOrError;
}
Expected<Optional<StrOffsetsContributionDescriptor>>
DWARFUnit::determineStringOffsetsTableContributionDWO(DWARFDataExtractor & DA) {
assert(IsDWO);
uint64_t Offset = 0;
auto IndexEntry = Header.getIndexEntry();
const auto *C =
IndexEntry ? IndexEntry->getContribution(DW_SECT_STR_OFFSETS) : nullptr;
if (C)
Offset = C->Offset;
if (getVersion() >= 5) {
if (DA.getData().data() == nullptr)
return None;
Offset += Header.getFormat() == dwarf::DwarfFormat::DWARF32 ? 8 : 16;
// Look for a valid contribution at the given offset.
auto DescOrError = parseDWARFStringOffsetsTableHeader(DA, Header.getFormat(), Offset);
if (!DescOrError)
return DescOrError.takeError();
return *DescOrError;
}
// Prior to DWARF v5, we derive the contribution size from the
// index table (in a package file). In a .dwo file it is simply
// the length of the string offsets section.
StrOffsetsContributionDescriptor Desc;
if (C)
Desc = StrOffsetsContributionDescriptor(C->Offset, C->Length, 4,
Header.getFormat());
else if (!IndexEntry && !StringOffsetSection.Data.empty())
Desc = StrOffsetsContributionDescriptor(0, StringOffsetSection.Data.size(),
4, Header.getFormat());
else
return None;
auto DescOrError = Desc.validateContributionSize(DA);
if (!DescOrError)
return DescOrError.takeError();
return *DescOrError;
}
Optional<uint64_t> DWARFUnit::getRnglistOffset(uint32_t Index) {
DataExtractor RangesData(RangeSection->Data, isLittleEndian,
getAddressByteSize());
DWARFDataExtractor RangesDA(Context.getDWARFObj(), *RangeSection,
isLittleEndian, 0);
if (Optional<uint64_t> Off = llvm::DWARFListTableHeader::getOffsetEntry(
RangesData, RangeSectionBase, getFormat(), Index))
return *Off + RangeSectionBase;
return None;
}
Optional<uint64_t> DWARFUnit::getLoclistOffset(uint32_t Index) {
if (Optional<uint64_t> Off = llvm::DWARFListTableHeader::getOffsetEntry(
LocTable->getData(), LocSectionBase, getFormat(), Index))
return *Off + LocSectionBase;
return None;
}