blob: 03dda806cb1ebc894f6be202a0deef14574868fd [file] [log] [blame]
//===- LoadStoreOpt.cpp ----------- Generic memory optimizations -*- C++ -*-==//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
/// \file
/// This file implements the LoadStoreOpt optimization pass.
//===----------------------------------------------------------------------===//
#include "llvm/CodeGen/GlobalISel/LoadStoreOpt.h"
#include "llvm/ADT/Statistic.h"
#include "llvm/Analysis/AliasAnalysis.h"
#include "llvm/Analysis/MemoryLocation.h"
#include "llvm/Analysis/OptimizationRemarkEmitter.h"
#include "llvm/CodeGen/GlobalISel/GenericMachineInstrs.h"
#include "llvm/CodeGen/GlobalISel/LegalizerInfo.h"
#include "llvm/CodeGen/GlobalISel/MIPatternMatch.h"
#include "llvm/CodeGen/GlobalISel/Utils.h"
#include "llvm/CodeGen/LowLevelType.h"
#include "llvm/CodeGen/MachineBasicBlock.h"
#include "llvm/CodeGen/MachineFrameInfo.h"
#include "llvm/CodeGen/MachineFunction.h"
#include "llvm/CodeGen/MachineInstr.h"
#include "llvm/CodeGen/MachineOptimizationRemarkEmitter.h"
#include "llvm/CodeGen/MachineRegisterInfo.h"
#include "llvm/CodeGen/Register.h"
#include "llvm/CodeGen/TargetLowering.h"
#include "llvm/CodeGen/TargetOpcodes.h"
#include "llvm/IR/DebugInfoMetadata.h"
#include "llvm/InitializePasses.h"
#include "llvm/Support/AtomicOrdering.h"
#include "llvm/Support/Casting.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/ErrorHandling.h"
#include "llvm/Support/MathExtras.h"
#include <algorithm>
#define DEBUG_TYPE "loadstore-opt"
using namespace llvm;
using namespace ore;
using namespace MIPatternMatch;
STATISTIC(NumStoresMerged, "Number of stores merged");
const unsigned MaxStoreSizeToForm = 128;
char LoadStoreOpt::ID = 0;
INITIALIZE_PASS_BEGIN(LoadStoreOpt, DEBUG_TYPE, "Generic memory optimizations",
false, false)
INITIALIZE_PASS_END(LoadStoreOpt, DEBUG_TYPE, "Generic memory optimizations",
false, false)
LoadStoreOpt::LoadStoreOpt(std::function<bool(const MachineFunction &)> F)
: MachineFunctionPass(ID), DoNotRunPass(F) {}
LoadStoreOpt::LoadStoreOpt()
: LoadStoreOpt([](const MachineFunction &) { return false; }) {}
void LoadStoreOpt::init(MachineFunction &MF) {
this->MF = &MF;
MRI = &MF.getRegInfo();
AA = &getAnalysis<AAResultsWrapperPass>().getAAResults();
TLI = MF.getSubtarget().getTargetLowering();
LI = MF.getSubtarget().getLegalizerInfo();
Builder.setMF(MF);
IsPreLegalizer = !MF.getProperties().hasProperty(
MachineFunctionProperties::Property::Legalized);
InstsToErase.clear();
}
void LoadStoreOpt::getAnalysisUsage(AnalysisUsage &AU) const {
AU.addRequired<AAResultsWrapperPass>();
getSelectionDAGFallbackAnalysisUsage(AU);
MachineFunctionPass::getAnalysisUsage(AU);
}
BaseIndexOffset GISelAddressing::getPointerInfo(Register Ptr,
MachineRegisterInfo &MRI) {
BaseIndexOffset Info;
Register PtrAddRHS;
if (!mi_match(Ptr, MRI, m_GPtrAdd(m_Reg(Info.BaseReg), m_Reg(PtrAddRHS)))) {
Info.BaseReg = Ptr;
Info.IndexReg = Register();
Info.IsIndexSignExt = false;
return Info;
}
auto RHSCst = getIConstantVRegValWithLookThrough(PtrAddRHS, MRI);
if (RHSCst)
Info.Offset = RHSCst->Value.getSExtValue();
// Just recognize a simple case for now. In future we'll need to match
// indexing patterns for base + index + constant.
Info.IndexReg = PtrAddRHS;
Info.IsIndexSignExt = false;
return Info;
}
bool GISelAddressing::aliasIsKnownForLoadStore(const MachineInstr &MI1,
const MachineInstr &MI2,
bool &IsAlias,
MachineRegisterInfo &MRI) {
auto *LdSt1 = dyn_cast<GLoadStore>(&MI1);
auto *LdSt2 = dyn_cast<GLoadStore>(&MI2);
if (!LdSt1 || !LdSt2)
return false;
BaseIndexOffset BasePtr0 = getPointerInfo(LdSt1->getPointerReg(), MRI);
BaseIndexOffset BasePtr1 = getPointerInfo(LdSt2->getPointerReg(), MRI);
if (!BasePtr0.BaseReg.isValid() || !BasePtr1.BaseReg.isValid())
return false;
int64_t Size1 = LdSt1->getMemSize();
int64_t Size2 = LdSt2->getMemSize();
int64_t PtrDiff;
if (BasePtr0.BaseReg == BasePtr1.BaseReg) {
PtrDiff = BasePtr1.Offset - BasePtr0.Offset;
// If the size of memory access is unknown, do not use it to do analysis.
// One example of unknown size memory access is to load/store scalable
// vector objects on the stack.
// BasePtr1 is PtrDiff away from BasePtr0. They alias if none of the
// following situations arise:
if (PtrDiff >= 0 &&
Size1 != static_cast<int64_t>(MemoryLocation::UnknownSize)) {
// [----BasePtr0----]
// [---BasePtr1--]
// ========PtrDiff========>
IsAlias = !(Size1 <= PtrDiff);
return true;
}
if (PtrDiff < 0 &&
Size2 != static_cast<int64_t>(MemoryLocation::UnknownSize)) {
// [----BasePtr0----]
// [---BasePtr1--]
// =====(-PtrDiff)====>
IsAlias = !((PtrDiff + Size2) <= 0);
return true;
}
return false;
}
// If both BasePtr0 and BasePtr1 are FrameIndexes, we will not be
// able to calculate their relative offset if at least one arises
// from an alloca. However, these allocas cannot overlap and we
// can infer there is no alias.
auto *Base0Def = getDefIgnoringCopies(BasePtr0.BaseReg, MRI);
auto *Base1Def = getDefIgnoringCopies(BasePtr1.BaseReg, MRI);
if (!Base0Def || !Base1Def)
return false; // Couldn't tell anything.
if (Base0Def->getOpcode() != Base1Def->getOpcode())
return false;
if (Base0Def->getOpcode() == TargetOpcode::G_FRAME_INDEX) {
MachineFrameInfo &MFI = Base0Def->getMF()->getFrameInfo();
// If the bases have the same frame index but we couldn't find a
// constant offset, (indices are different) be conservative.
if (Base0Def != Base1Def &&
(!MFI.isFixedObjectIndex(Base0Def->getOperand(1).getIndex()) ||
!MFI.isFixedObjectIndex(Base1Def->getOperand(1).getIndex()))) {
IsAlias = false;
return true;
}
}
// This implementation is a lot more primitive than the SDAG one for now.
// FIXME: what about constant pools?
if (Base0Def->getOpcode() == TargetOpcode::G_GLOBAL_VALUE) {
auto GV0 = Base0Def->getOperand(1).getGlobal();
auto GV1 = Base1Def->getOperand(1).getGlobal();
if (GV0 != GV1) {
IsAlias = false;
return true;
}
}
// Can't tell anything about aliasing.
return false;
}
bool GISelAddressing::instMayAlias(const MachineInstr &MI,
const MachineInstr &Other,
MachineRegisterInfo &MRI,
AliasAnalysis *AA) {
struct MemUseCharacteristics {
bool IsVolatile;
bool IsAtomic;
Register BasePtr;
int64_t Offset;
uint64_t NumBytes;
MachineMemOperand *MMO;
};
auto getCharacteristics =
[&](const MachineInstr *MI) -> MemUseCharacteristics {
if (const auto *LS = dyn_cast<GLoadStore>(MI)) {
Register BaseReg;
int64_t Offset = 0;
// No pre/post-inc addressing modes are considered here, unlike in SDAG.
if (!mi_match(LS->getPointerReg(), MRI,
m_GPtrAdd(m_Reg(BaseReg), m_ICst(Offset)))) {
BaseReg = LS->getPointerReg();
Offset = 0;
}
uint64_t Size = MemoryLocation::getSizeOrUnknown(
LS->getMMO().getMemoryType().getSizeInBytes());
return {LS->isVolatile(), LS->isAtomic(), BaseReg,
Offset /*base offset*/, Size, &LS->getMMO()};
}
// FIXME: support recognizing lifetime instructions.
// Default.
return {false /*isvolatile*/,
/*isAtomic*/ false, Register(),
(int64_t)0 /*offset*/, 0 /*size*/,
(MachineMemOperand *)nullptr};
};
MemUseCharacteristics MUC0 = getCharacteristics(&MI),
MUC1 = getCharacteristics(&Other);
// If they are to the same address, then they must be aliases.
if (MUC0.BasePtr.isValid() && MUC0.BasePtr == MUC1.BasePtr &&
MUC0.Offset == MUC1.Offset)
return true;
// If they are both volatile then they cannot be reordered.
if (MUC0.IsVolatile && MUC1.IsVolatile)
return true;
// Be conservative about atomics for the moment
// TODO: This is way overconservative for unordered atomics (see D66309)
if (MUC0.IsAtomic && MUC1.IsAtomic)
return true;
// If one operation reads from invariant memory, and the other may store, they
// cannot alias.
if (MUC0.MMO && MUC1.MMO) {
if ((MUC0.MMO->isInvariant() && MUC1.MMO->isStore()) ||
(MUC1.MMO->isInvariant() && MUC0.MMO->isStore()))
return false;
}
// Try to prove that there is aliasing, or that there is no aliasing. Either
// way, we can return now. If nothing can be proved, proceed with more tests.
bool IsAlias;
if (GISelAddressing::aliasIsKnownForLoadStore(MI, Other, IsAlias, MRI))
return IsAlias;
// The following all rely on MMO0 and MMO1 being valid.
if (!MUC0.MMO || !MUC1.MMO)
return true;
// FIXME: port the alignment based alias analysis from SDAG's isAlias().
int64_t SrcValOffset0 = MUC0.MMO->getOffset();
int64_t SrcValOffset1 = MUC1.MMO->getOffset();
uint64_t Size0 = MUC0.NumBytes;
uint64_t Size1 = MUC1.NumBytes;
if (AA && MUC0.MMO->getValue() && MUC1.MMO->getValue() &&
Size0 != MemoryLocation::UnknownSize &&
Size1 != MemoryLocation::UnknownSize) {
// Use alias analysis information.
int64_t MinOffset = std::min(SrcValOffset0, SrcValOffset1);
int64_t Overlap0 = Size0 + SrcValOffset0 - MinOffset;
int64_t Overlap1 = Size1 + SrcValOffset1 - MinOffset;
if (AA->isNoAlias(MemoryLocation(MUC0.MMO->getValue(), Overlap0,
MUC0.MMO->getAAInfo()),
MemoryLocation(MUC1.MMO->getValue(), Overlap1,
MUC1.MMO->getAAInfo())))
return false;
}
// Otherwise we have to assume they alias.
return true;
}
/// Returns true if the instruction creates an unavoidable hazard that
/// forces a boundary between store merge candidates.
static bool isInstHardMergeHazard(MachineInstr &MI) {
return MI.hasUnmodeledSideEffects() || MI.hasOrderedMemoryRef();
}
bool LoadStoreOpt::mergeStores(SmallVectorImpl<GStore *> &StoresToMerge) {
// Try to merge all the stores in the vector, splitting into separate segments
// as necessary.
assert(StoresToMerge.size() > 1 && "Expected multiple stores to merge");
LLT OrigTy = MRI->getType(StoresToMerge[0]->getValueReg());
LLT PtrTy = MRI->getType(StoresToMerge[0]->getPointerReg());
unsigned AS = PtrTy.getAddressSpace();
// Ensure the legal store info is computed for this address space.
initializeStoreMergeTargetInfo(AS);
const auto &LegalSizes = LegalStoreSizes[AS];
#ifndef NDEBUG
for (auto StoreMI : StoresToMerge)
assert(MRI->getType(StoreMI->getValueReg()) == OrigTy);
#endif
const auto &DL = MF->getFunction().getParent()->getDataLayout();
bool AnyMerged = false;
do {
unsigned NumPow2 = PowerOf2Floor(StoresToMerge.size());
unsigned MaxSizeBits = NumPow2 * OrigTy.getSizeInBits().getFixedSize();
// Compute the biggest store we can generate to handle the number of stores.
unsigned MergeSizeBits;
for (MergeSizeBits = MaxSizeBits; MergeSizeBits > 1; MergeSizeBits /= 2) {
LLT StoreTy = LLT::scalar(MergeSizeBits);
EVT StoreEVT =
getApproximateEVTForLLT(StoreTy, DL, MF->getFunction().getContext());
if (LegalSizes.size() > MergeSizeBits && LegalSizes[MergeSizeBits] &&
TLI->canMergeStoresTo(AS, StoreEVT, *MF) &&
(TLI->isTypeLegal(StoreEVT)))
break; // We can generate a MergeSize bits store.
}
if (MergeSizeBits <= OrigTy.getSizeInBits())
return AnyMerged; // No greater merge.
unsigned NumStoresToMerge = MergeSizeBits / OrigTy.getSizeInBits();
// Perform the actual merging.
SmallVector<GStore *, 8> SingleMergeStores(
StoresToMerge.begin(), StoresToMerge.begin() + NumStoresToMerge);
AnyMerged |= doSingleStoreMerge(SingleMergeStores);
StoresToMerge.erase(StoresToMerge.begin(),
StoresToMerge.begin() + NumStoresToMerge);
} while (StoresToMerge.size() > 1);
return AnyMerged;
}
bool LoadStoreOpt::isLegalOrBeforeLegalizer(const LegalityQuery &Query,
MachineFunction &MF) const {
auto Action = LI->getAction(Query).Action;
// If the instruction is unsupported, it can't be legalized at all.
if (Action == LegalizeActions::Unsupported)
return false;
return IsPreLegalizer || Action == LegalizeAction::Legal;
}
bool LoadStoreOpt::doSingleStoreMerge(SmallVectorImpl<GStore *> &Stores) {
assert(Stores.size() > 1);
// We know that all the stores are consecutive and there are no aliasing
// operations in the range. However, the values that are being stored may be
// generated anywhere before each store. To ensure we have the values
// available, we materialize the wide value and new store at the place of the
// final store in the merge sequence.
GStore *FirstStore = Stores[0];
const unsigned NumStores = Stores.size();
LLT SmallTy = MRI->getType(FirstStore->getValueReg());
LLT WideValueTy =
LLT::scalar(NumStores * SmallTy.getSizeInBits().getFixedSize());
// For each store, compute pairwise merged debug locs.
DebugLoc MergedLoc;
for (unsigned AIdx = 0, BIdx = 1; BIdx < NumStores; ++AIdx, ++BIdx)
MergedLoc = DILocation::getMergedLocation(Stores[AIdx]->getDebugLoc(),
Stores[BIdx]->getDebugLoc());
Builder.setInstr(*Stores.back());
Builder.setDebugLoc(MergedLoc);
// If all of the store values are constants, then create a wide constant
// directly. Otherwise, we need to generate some instructions to merge the
// existing values together into a wider type.
SmallVector<APInt, 8> ConstantVals;
for (auto Store : Stores) {
auto MaybeCst =
getIConstantVRegValWithLookThrough(Store->getValueReg(), *MRI);
if (!MaybeCst) {
ConstantVals.clear();
break;
}
ConstantVals.emplace_back(MaybeCst->Value);
}
Register WideReg;
auto *WideMMO =
MF->getMachineMemOperand(&FirstStore->getMMO(), 0, WideValueTy);
if (ConstantVals.empty()) {
// Mimic the SDAG behaviour here and don't try to do anything for unknown
// values. In future, we should also support the cases of loads and
// extracted vector elements.
return false;
}
assert(ConstantVals.size() == NumStores);
// Check if our wide constant is legal.
if (!isLegalOrBeforeLegalizer({TargetOpcode::G_CONSTANT, {WideValueTy}}, *MF))
return false;
APInt WideConst(WideValueTy.getSizeInBits(), 0);
for (unsigned Idx = 0; Idx < ConstantVals.size(); ++Idx) {
// Insert the smaller constant into the corresponding position in the
// wider one.
WideConst.insertBits(ConstantVals[Idx], Idx * SmallTy.getSizeInBits());
}
WideReg = Builder.buildConstant(WideValueTy, WideConst).getReg(0);
auto NewStore =
Builder.buildStore(WideReg, FirstStore->getPointerReg(), *WideMMO);
(void) NewStore;
LLVM_DEBUG(dbgs() << "Created merged store: " << *NewStore);
NumStoresMerged += Stores.size();
MachineOptimizationRemarkEmitter MORE(*MF, nullptr);
MORE.emit([&]() {
MachineOptimizationRemark R(DEBUG_TYPE, "MergedStore",
FirstStore->getDebugLoc(),
FirstStore->getParent());
R << "Merged " << NV("NumMerged", Stores.size()) << " stores of "
<< NV("OrigWidth", SmallTy.getSizeInBytes())
<< " bytes into a single store of "
<< NV("NewWidth", WideValueTy.getSizeInBytes()) << " bytes";
return R;
});
for (auto MI : Stores)
InstsToErase.insert(MI);
return true;
}
bool LoadStoreOpt::processMergeCandidate(StoreMergeCandidate &C) {
if (C.Stores.size() < 2) {
C.reset();
return false;
}
LLVM_DEBUG(dbgs() << "Checking store merge candidate with " << C.Stores.size()
<< " stores, starting with " << *C.Stores[0]);
// We know that the stores in the candidate are adjacent.
// Now we need to check if any potential aliasing instructions recorded
// during the search alias with load/stores added to the candidate after.
// For example, if we have the candidate:
// C.Stores = [ST1, ST2, ST3, ST4]
// and after seeing ST2 we saw a load LD1, which did not alias with ST1 or
// ST2, then we would have recorded it into the PotentialAliases structure
// with the associated index value of "1". Then we see ST3 and ST4 and add
// them to the candidate group. We know that LD1 does not alias with ST1 or
// ST2, since we already did that check. However we don't yet know if it
// may alias ST3 and ST4, so we perform those checks now.
SmallVector<GStore *> StoresToMerge;
auto DoesStoreAliasWithPotential = [&](unsigned Idx, GStore &CheckStore) {
for (auto AliasInfo : reverse(C.PotentialAliases)) {
MachineInstr *PotentialAliasOp = AliasInfo.first;
unsigned PreCheckedIdx = AliasInfo.second;
if (static_cast<unsigned>(Idx) > PreCheckedIdx) {
// Need to check this alias.
if (GISelAddressing::instMayAlias(CheckStore, *PotentialAliasOp, *MRI,
AA)) {
LLVM_DEBUG(dbgs() << "Potential alias " << *PotentialAliasOp
<< " detected\n");
return true;
}
} else {
// Once our store index is lower than the index associated with the
// potential alias, we know that we've already checked for this alias
// and all of the earlier potential aliases too.
return false;
}
}
return false;
};
// Start from the last store in the group, and check if it aliases with any
// of the potential aliasing operations in the list.
for (int StoreIdx = C.Stores.size() - 1; StoreIdx >= 0; --StoreIdx) {
auto *CheckStore = C.Stores[StoreIdx];
if (DoesStoreAliasWithPotential(StoreIdx, *CheckStore))
continue;
StoresToMerge.emplace_back(CheckStore);
}
LLVM_DEBUG(dbgs() << StoresToMerge.size()
<< " stores remaining after alias checks. Merging...\n");
// Now we've checked for aliasing hazards, merge any stores left.
C.reset();
if (StoresToMerge.size() < 2)
return false;
return mergeStores(StoresToMerge);
}
bool LoadStoreOpt::operationAliasesWithCandidate(MachineInstr &MI,
StoreMergeCandidate &C) {
if (C.Stores.empty())
return false;
return llvm::any_of(C.Stores, [&](MachineInstr *OtherMI) {
return instMayAlias(MI, *OtherMI, *MRI, AA);
});
}
void LoadStoreOpt::StoreMergeCandidate::addPotentialAlias(MachineInstr &MI) {
PotentialAliases.emplace_back(std::make_pair(&MI, Stores.size() - 1));
}
bool LoadStoreOpt::addStoreToCandidate(GStore &StoreMI,
StoreMergeCandidate &C) {
// Check if the given store writes to an adjacent address, and other
// requirements.
LLT ValueTy = MRI->getType(StoreMI.getValueReg());
LLT PtrTy = MRI->getType(StoreMI.getPointerReg());
// Only handle scalars.
if (!ValueTy.isScalar())
return false;
// Don't allow truncating stores for now.
if (StoreMI.getMemSizeInBits() != ValueTy.getSizeInBits())
return false;
Register StoreAddr = StoreMI.getPointerReg();
auto BIO = getPointerInfo(StoreAddr, *MRI);
Register StoreBase = BIO.BaseReg;
uint64_t StoreOffCst = BIO.Offset;
if (C.Stores.empty()) {
// This is the first store of the candidate.
// If the offset can't possibly allow for a lower addressed store with the
// same base, don't bother adding it.
if (StoreOffCst < ValueTy.getSizeInBytes())
return false;
C.BasePtr = StoreBase;
C.CurrentLowestOffset = StoreOffCst;
C.Stores.emplace_back(&StoreMI);
LLVM_DEBUG(dbgs() << "Starting a new merge candidate group with: "
<< StoreMI);
return true;
}
// Check the store is the same size as the existing ones in the candidate.
if (MRI->getType(C.Stores[0]->getValueReg()).getSizeInBits() !=
ValueTy.getSizeInBits())
return false;
if (MRI->getType(C.Stores[0]->getPointerReg()).getAddressSpace() !=
PtrTy.getAddressSpace())
return false;
// There are other stores in the candidate. Check that the store address
// writes to the next lowest adjacent address.
if (C.BasePtr != StoreBase)
return false;
if ((C.CurrentLowestOffset - ValueTy.getSizeInBytes()) !=
static_cast<uint64_t>(StoreOffCst))
return false;
// This writes to an adjacent address. Allow it.
C.Stores.emplace_back(&StoreMI);
C.CurrentLowestOffset = C.CurrentLowestOffset - ValueTy.getSizeInBytes();
LLVM_DEBUG(dbgs() << "Candidate added store: " << StoreMI);
return true;
}
bool LoadStoreOpt::mergeBlockStores(MachineBasicBlock &MBB) {
bool Changed = false;
// Walk through the block bottom-up, looking for merging candidates.
StoreMergeCandidate Candidate;
for (auto II = MBB.rbegin(), IE = MBB.rend(); II != IE; ++II) {
MachineInstr &MI = *II;
if (InstsToErase.contains(&MI))
continue;
if (auto StoreMI = dyn_cast<GStore>(&*II)) {
// We have a G_STORE. Add it to the candidate if it writes to an adjacent
// address.
if (!addStoreToCandidate(*StoreMI, Candidate)) {
// Store wasn't eligible to be added. May need to record it as a
// potential alias.
if (operationAliasesWithCandidate(*StoreMI, Candidate)) {
Changed |= processMergeCandidate(Candidate);
continue;
}
Candidate.addPotentialAlias(*StoreMI);
}
continue;
}
// If we don't have any stores yet, this instruction can't pose a problem.
if (Candidate.Stores.empty())
continue;
// We're dealing with some other kind of instruction.
if (isInstHardMergeHazard(MI)) {
Changed |= processMergeCandidate(Candidate);
Candidate.Stores.clear();
continue;
}
if (!MI.mayLoadOrStore())
continue;
if (operationAliasesWithCandidate(MI, Candidate)) {
// We have a potential alias, so process the current candidate if we can
// and then continue looking for a new candidate.
Changed |= processMergeCandidate(Candidate);
continue;
}
// Record this instruction as a potential alias for future stores that are
// added to the candidate.
Candidate.addPotentialAlias(MI);
}
// Process any candidate left after finishing searching the entire block.
Changed |= processMergeCandidate(Candidate);
// Erase instructions now that we're no longer iterating over the block.
for (auto *MI : InstsToErase)
MI->eraseFromParent();
InstsToErase.clear();
return Changed;
}
bool LoadStoreOpt::mergeFunctionStores(MachineFunction &MF) {
bool Changed = false;
for (auto &BB : MF) {
Changed |= mergeBlockStores(BB);
}
return Changed;
}
void LoadStoreOpt::initializeStoreMergeTargetInfo(unsigned AddrSpace) {
// Query the legalizer info to record what store types are legal.
// We record this because we don't want to bother trying to merge stores into
// illegal ones, which would just result in being split again.
if (LegalStoreSizes.count(AddrSpace)) {
assert(LegalStoreSizes[AddrSpace].any());
return; // Already cached sizes for this address space.
}
// Need to reserve at least MaxStoreSizeToForm + 1 bits.
BitVector LegalSizes(MaxStoreSizeToForm * 2);
const auto &LI = *MF->getSubtarget().getLegalizerInfo();
const auto &DL = MF->getFunction().getParent()->getDataLayout();
Type *IntPtrIRTy =
DL.getIntPtrType(MF->getFunction().getContext(), AddrSpace);
LLT PtrTy = getLLTForType(*IntPtrIRTy->getPointerTo(AddrSpace), DL);
// We assume that we're not going to be generating any stores wider than
// MaxStoreSizeToForm bits for now.
for (unsigned Size = 2; Size <= MaxStoreSizeToForm; Size *= 2) {
LLT Ty = LLT::scalar(Size);
SmallVector<LegalityQuery::MemDesc, 2> MemDescrs(
{{Ty, Ty.getSizeInBits(), AtomicOrdering::NotAtomic}});
SmallVector<LLT> StoreTys({Ty, PtrTy});
LegalityQuery Q(TargetOpcode::G_STORE, StoreTys, MemDescrs);
LegalizeActionStep ActionStep = LI.getAction(Q);
if (ActionStep.Action == LegalizeActions::Legal)
LegalSizes.set(Size);
}
assert(LegalSizes.any() && "Expected some store sizes to be legal!");
LegalStoreSizes[AddrSpace] = LegalSizes;
}
bool LoadStoreOpt::runOnMachineFunction(MachineFunction &MF) {
// If the ISel pipeline failed, do not bother running that pass.
if (MF.getProperties().hasProperty(
MachineFunctionProperties::Property::FailedISel))
return false;
LLVM_DEBUG(dbgs() << "Begin memory optimizations for: " << MF.getName()
<< '\n');
init(MF);
bool Changed = false;
Changed |= mergeFunctionStores(MF);
LegalStoreSizes.clear();
return Changed;
}