blob: 7583d5dfcabb40545bf51a35b94a9784b1b9c8ec [file] [log] [blame]
//===-- CodeGen.cpp -- bridge to lower to LLVM ----------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// Coding style: https://mlir.llvm.org/getting_started/DeveloperGuide/
//
//===----------------------------------------------------------------------===//
#include "flang/Optimizer/CodeGen/CodeGen.h"
#include "PassDetail.h"
#include "flang/ISO_Fortran_binding.h"
#include "flang/Optimizer/Dialect/FIRAttr.h"
#include "flang/Optimizer/Dialect/FIROps.h"
#include "flang/Optimizer/Support/TypeCode.h"
#include "mlir/Conversion/ArithmeticToLLVM/ArithmeticToLLVM.h"
#include "mlir/Conversion/LLVMCommon/Pattern.h"
#include "mlir/Conversion/StandardToLLVM/ConvertStandardToLLVM.h"
#include "mlir/IR/BuiltinTypes.h"
#include "mlir/IR/Matchers.h"
#include "mlir/Pass/Pass.h"
#include "llvm/ADT/ArrayRef.h"
#define DEBUG_TYPE "flang-codegen"
// fir::LLVMTypeConverter for converting to LLVM IR dialect types.
#include "TypeConverter.h"
// TODO: This should really be recovered from the specified target.
static constexpr unsigned defaultAlign = 8;
/// `fir.box` attribute values as defined for CFI_attribute_t in
/// flang/ISO_Fortran_binding.h.
static constexpr unsigned kAttrPointer = CFI_attribute_pointer;
static constexpr unsigned kAttrAllocatable = CFI_attribute_allocatable;
static mlir::LLVM::ConstantOp
genConstantIndex(mlir::Location loc, mlir::Type ity,
mlir::ConversionPatternRewriter &rewriter,
std::int64_t offset) {
auto cattr = rewriter.getI64IntegerAttr(offset);
return rewriter.create<mlir::LLVM::ConstantOp>(loc, ity, cattr);
}
static Block *createBlock(mlir::ConversionPatternRewriter &rewriter,
mlir::Block *insertBefore) {
assert(insertBefore && "expected valid insertion block");
return rewriter.createBlock(insertBefore->getParent(),
mlir::Region::iterator(insertBefore));
}
namespace {
/// FIR conversion pattern template
template <typename FromOp>
class FIROpConversion : public mlir::ConvertOpToLLVMPattern<FromOp> {
public:
explicit FIROpConversion(fir::LLVMTypeConverter &lowering)
: mlir::ConvertOpToLLVMPattern<FromOp>(lowering) {}
protected:
mlir::Type convertType(mlir::Type ty) const {
return lowerTy().convertType(ty);
}
mlir::LLVM::ConstantOp
genI32Constant(mlir::Location loc, mlir::ConversionPatternRewriter &rewriter,
int value) const {
mlir::Type i32Ty = rewriter.getI32Type();
mlir::IntegerAttr attr = rewriter.getI32IntegerAttr(value);
return rewriter.create<mlir::LLVM::ConstantOp>(loc, i32Ty, attr);
}
mlir::LLVM::ConstantOp
genConstantOffset(mlir::Location loc,
mlir::ConversionPatternRewriter &rewriter,
int offset) const {
mlir::Type ity = lowerTy().offsetType();
mlir::IntegerAttr cattr = rewriter.getI32IntegerAttr(offset);
return rewriter.create<mlir::LLVM::ConstantOp>(loc, ity, cattr);
}
/// Construct code sequence to extract the specifc value from a `fir.box`.
mlir::Value getValueFromBox(mlir::Location loc, mlir::Value box,
mlir::Type resultTy,
mlir::ConversionPatternRewriter &rewriter,
unsigned boxValue) const {
mlir::LLVM::ConstantOp c0 = genConstantOffset(loc, rewriter, 0);
mlir::LLVM::ConstantOp cValuePos =
genConstantOffset(loc, rewriter, boxValue);
auto pty = mlir::LLVM::LLVMPointerType::get(resultTy);
auto p = rewriter.create<mlir::LLVM::GEPOp>(
loc, pty, mlir::ValueRange{box, c0, cValuePos});
return rewriter.create<mlir::LLVM::LoadOp>(loc, resultTy, p);
}
/// Method to construct code sequence to get the triple for dimension `dim`
/// from a box.
SmallVector<mlir::Value, 3>
getDimsFromBox(mlir::Location loc, ArrayRef<mlir::Type> retTys,
mlir::Value box, mlir::Value dim,
mlir::ConversionPatternRewriter &rewriter) const {
mlir::LLVM::ConstantOp c0 = genConstantOffset(loc, rewriter, 0);
mlir::LLVM::ConstantOp cDims =
genConstantOffset(loc, rewriter, kDimsPosInBox);
mlir::LLVM::LoadOp l0 =
loadFromOffset(loc, box, c0, cDims, dim, 0, retTys[0], rewriter);
mlir::LLVM::LoadOp l1 =
loadFromOffset(loc, box, c0, cDims, dim, 1, retTys[1], rewriter);
mlir::LLVM::LoadOp l2 =
loadFromOffset(loc, box, c0, cDims, dim, 2, retTys[2], rewriter);
return {l0.getResult(), l1.getResult(), l2.getResult()};
}
mlir::LLVM::LoadOp
loadFromOffset(mlir::Location loc, mlir::Value a, mlir::LLVM::ConstantOp c0,
mlir::LLVM::ConstantOp cDims, mlir::Value dim, int off,
mlir::Type ty,
mlir::ConversionPatternRewriter &rewriter) const {
auto pty = mlir::LLVM::LLVMPointerType::get(ty);
mlir::LLVM::ConstantOp c = genConstantOffset(loc, rewriter, off);
mlir::LLVM::GEPOp p = genGEP(loc, pty, rewriter, a, c0, cDims, dim, c);
return rewriter.create<mlir::LLVM::LoadOp>(loc, ty, p);
}
/// Read base address from a fir.box. Returned address has type ty.
mlir::Value
loadBaseAddrFromBox(mlir::Location loc, mlir::Type ty, mlir::Value box,
mlir::ConversionPatternRewriter &rewriter) const {
mlir::LLVM::ConstantOp c0 = genConstantOffset(loc, rewriter, 0);
mlir::LLVM::ConstantOp cAddr =
genConstantOffset(loc, rewriter, kAddrPosInBox);
auto pty = mlir::LLVM::LLVMPointerType::get(ty);
mlir::LLVM::GEPOp p = genGEP(loc, pty, rewriter, box, c0, cAddr);
return rewriter.create<mlir::LLVM::LoadOp>(loc, ty, p);
}
mlir::Value
loadElementSizeFromBox(mlir::Location loc, mlir::Type ty, mlir::Value box,
mlir::ConversionPatternRewriter &rewriter) const {
mlir::LLVM::ConstantOp c0 = genConstantOffset(loc, rewriter, 0);
mlir::LLVM::ConstantOp cElemLen =
genConstantOffset(loc, rewriter, kElemLenPosInBox);
auto pty = mlir::LLVM::LLVMPointerType::get(ty);
mlir::LLVM::GEPOp p = genGEP(loc, pty, rewriter, box, c0, cElemLen);
return rewriter.create<mlir::LLVM::LoadOp>(loc, ty, p);
}
// Load the attribute from the \p box and perform a check against \p maskValue
// The final comparison is implemented as `(attribute & maskValue) != 0`.
mlir::Value genBoxAttributeCheck(mlir::Location loc, mlir::Value box,
mlir::ConversionPatternRewriter &rewriter,
unsigned maskValue) const {
mlir::Type attrTy = rewriter.getI32Type();
mlir::Value attribute =
getValueFromBox(loc, box, attrTy, rewriter, kAttributePosInBox);
mlir::LLVM::ConstantOp attrMask =
genConstantOffset(loc, rewriter, maskValue);
auto maskRes =
rewriter.create<mlir::LLVM::AndOp>(loc, attrTy, attribute, attrMask);
mlir::LLVM::ConstantOp c0 = genConstantOffset(loc, rewriter, 0);
return rewriter.create<mlir::LLVM::ICmpOp>(
loc, mlir::LLVM::ICmpPredicate::ne, maskRes, c0);
}
// Get the element type given an LLVM type that is of the form
// [llvm.ptr](array|struct|vector)+ and the provided indexes.
static mlir::Type getBoxEleTy(mlir::Type type,
llvm::ArrayRef<unsigned> indexes) {
if (auto t = type.dyn_cast<mlir::LLVM::LLVMPointerType>())
type = t.getElementType();
for (auto i : indexes) {
if (auto t = type.dyn_cast<mlir::LLVM::LLVMStructType>()) {
assert(!t.isOpaque() && i < t.getBody().size());
type = t.getBody()[i];
} else if (auto t = type.dyn_cast<mlir::LLVM::LLVMArrayType>()) {
type = t.getElementType();
} else if (auto t = type.dyn_cast<mlir::VectorType>()) {
type = t.getElementType();
} else {
fir::emitFatalError(mlir::UnknownLoc::get(type.getContext()),
"request for invalid box element type");
}
}
return type;
}
template <typename... ARGS>
mlir::LLVM::GEPOp genGEP(mlir::Location loc, mlir::Type ty,
mlir::ConversionPatternRewriter &rewriter,
mlir::Value base, ARGS... args) const {
SmallVector<mlir::Value> cv{args...};
return rewriter.create<mlir::LLVM::GEPOp>(loc, ty, base, cv);
}
/// Perform an extension or truncation as needed on an integer value. Lowering
/// to the specific target may involve some sign-extending or truncation of
/// values, particularly to fit them from abstract box types to the
/// appropriate reified structures.
mlir::Value integerCast(mlir::Location loc,
mlir::ConversionPatternRewriter &rewriter,
mlir::Type ty, mlir::Value val) const {
auto valTy = val.getType();
// If the value was not yet lowered, lower its type so that it can
// be used in getPrimitiveTypeSizeInBits.
if (!valTy.isa<mlir::IntegerType>())
valTy = convertType(valTy);
auto toSize = mlir::LLVM::getPrimitiveTypeSizeInBits(ty);
auto fromSize = mlir::LLVM::getPrimitiveTypeSizeInBits(valTy);
if (toSize < fromSize)
return rewriter.create<mlir::LLVM::TruncOp>(loc, ty, val);
if (toSize > fromSize)
return rewriter.create<mlir::LLVM::SExtOp>(loc, ty, val);
return val;
}
fir::LLVMTypeConverter &lowerTy() const {
return *static_cast<fir::LLVMTypeConverter *>(this->getTypeConverter());
}
};
/// FIR conversion pattern template
template <typename FromOp>
class FIROpAndTypeConversion : public FIROpConversion<FromOp> {
public:
using FIROpConversion<FromOp>::FIROpConversion;
using OpAdaptor = typename FromOp::Adaptor;
mlir::LogicalResult
matchAndRewrite(FromOp op, OpAdaptor adaptor,
mlir::ConversionPatternRewriter &rewriter) const final {
mlir::Type ty = this->convertType(op.getType());
return doRewrite(op, ty, adaptor, rewriter);
}
virtual mlir::LogicalResult
doRewrite(FromOp addr, mlir::Type ty, OpAdaptor adaptor,
mlir::ConversionPatternRewriter &rewriter) const = 0;
};
/// Create value signaling an absent optional argument in a call, e.g.
/// `fir.absent !fir.ref<i64>` --> `llvm.mlir.null : !llvm.ptr<i64>`
struct AbsentOpConversion : public FIROpConversion<fir::AbsentOp> {
using FIROpConversion::FIROpConversion;
mlir::LogicalResult
matchAndRewrite(fir::AbsentOp absent, OpAdaptor,
mlir::ConversionPatternRewriter &rewriter) const override {
mlir::Type ty = convertType(absent.getType());
mlir::Location loc = absent.getLoc();
if (absent.getType().isa<fir::BoxCharType>()) {
auto structTy = ty.cast<mlir::LLVM::LLVMStructType>();
assert(!structTy.isOpaque() && !structTy.getBody().empty());
auto undefStruct = rewriter.create<mlir::LLVM::UndefOp>(loc, ty);
auto nullField =
rewriter.create<mlir::LLVM::NullOp>(loc, structTy.getBody()[0]);
mlir::MLIRContext *ctx = absent.getContext();
auto c0 = mlir::ArrayAttr::get(ctx, rewriter.getI32IntegerAttr(0));
rewriter.replaceOpWithNewOp<mlir::LLVM::InsertValueOp>(
absent, ty, undefStruct, nullField, c0);
} else {
rewriter.replaceOpWithNewOp<mlir::LLVM::NullOp>(absent, ty);
}
return success();
}
};
// Lower `fir.address_of` operation to `llvm.address_of` operation.
struct AddrOfOpConversion : public FIROpConversion<fir::AddrOfOp> {
using FIROpConversion::FIROpConversion;
mlir::LogicalResult
matchAndRewrite(fir::AddrOfOp addr, OpAdaptor adaptor,
mlir::ConversionPatternRewriter &rewriter) const override {
auto ty = convertType(addr.getType());
rewriter.replaceOpWithNewOp<mlir::LLVM::AddressOfOp>(
addr, ty, addr.symbol().getRootReference().getValue());
return success();
}
};
} // namespace
/// Lookup the function to compute the memory size of this parametric derived
/// type. The size of the object may depend on the LEN type parameters of the
/// derived type.
static mlir::LLVM::LLVMFuncOp
getDependentTypeMemSizeFn(fir::RecordType recTy, fir::AllocaOp op,
mlir::ConversionPatternRewriter &rewriter) {
auto module = op->getParentOfType<mlir::ModuleOp>();
std::string name = recTy.getName().str() + "P.mem.size";
return module.lookupSymbol<mlir::LLVM::LLVMFuncOp>(name);
}
namespace {
/// convert to LLVM IR dialect `alloca`
struct AllocaOpConversion : public FIROpConversion<fir::AllocaOp> {
using FIROpConversion::FIROpConversion;
mlir::LogicalResult
matchAndRewrite(fir::AllocaOp alloc, OpAdaptor adaptor,
mlir::ConversionPatternRewriter &rewriter) const override {
mlir::ValueRange operands = adaptor.getOperands();
auto loc = alloc.getLoc();
mlir::Type ity = lowerTy().indexType();
unsigned i = 0;
mlir::Value size = genConstantIndex(loc, ity, rewriter, 1).getResult();
mlir::Type ty = convertType(alloc.getType());
mlir::Type resultTy = ty;
if (alloc.hasLenParams()) {
unsigned end = alloc.numLenParams();
llvm::SmallVector<mlir::Value> lenParams;
for (; i < end; ++i)
lenParams.push_back(operands[i]);
mlir::Type scalarType = fir::unwrapSequenceType(alloc.getInType());
if (auto chrTy = scalarType.dyn_cast<fir::CharacterType>()) {
fir::CharacterType rawCharTy = fir::CharacterType::getUnknownLen(
chrTy.getContext(), chrTy.getFKind());
ty = mlir::LLVM::LLVMPointerType::get(convertType(rawCharTy));
assert(end == 1);
size = integerCast(loc, rewriter, ity, lenParams[0]);
} else if (auto recTy = scalarType.dyn_cast<fir::RecordType>()) {
mlir::LLVM::LLVMFuncOp memSizeFn =
getDependentTypeMemSizeFn(recTy, alloc, rewriter);
if (!memSizeFn)
emitError(loc, "did not find allocation function");
mlir::NamedAttribute attr = rewriter.getNamedAttr(
"callee", mlir::SymbolRefAttr::get(memSizeFn));
auto call = rewriter.create<mlir::LLVM::CallOp>(
loc, ity, lenParams, llvm::ArrayRef<mlir::NamedAttribute>{attr});
size = call.getResult(0);
ty = mlir::LLVM::LLVMPointerType::get(
mlir::IntegerType::get(alloc.getContext(), 8));
} else {
return emitError(loc, "unexpected type ")
<< scalarType << " with type parameters";
}
}
if (alloc.hasShapeOperands()) {
mlir::Type allocEleTy = fir::unwrapRefType(alloc.getType());
// Scale the size by constant factors encoded in the array type.
if (auto seqTy = allocEleTy.dyn_cast<fir::SequenceType>()) {
fir::SequenceType::Extent constSize = 1;
for (auto extent : seqTy.getShape())
if (extent != fir::SequenceType::getUnknownExtent())
constSize *= extent;
mlir::Value constVal{
genConstantIndex(loc, ity, rewriter, constSize).getResult()};
size = rewriter.create<mlir::LLVM::MulOp>(loc, ity, size, constVal);
}
unsigned end = operands.size();
for (; i < end; ++i)
size = rewriter.create<mlir::LLVM::MulOp>(
loc, ity, size, integerCast(loc, rewriter, ity, operands[i]));
}
if (ty == resultTy) {
// Do not emit the bitcast if ty and resultTy are the same.
rewriter.replaceOpWithNewOp<mlir::LLVM::AllocaOp>(alloc, ty, size,
alloc->getAttrs());
} else {
auto al = rewriter.create<mlir::LLVM::AllocaOp>(loc, ty, size,
alloc->getAttrs());
rewriter.replaceOpWithNewOp<mlir::LLVM::BitcastOp>(alloc, resultTy, al);
}
return success();
}
};
/// Lower `fir.box_addr` to the sequence of operations to extract the first
/// element of the box.
struct BoxAddrOpConversion : public FIROpConversion<fir::BoxAddrOp> {
using FIROpConversion::FIROpConversion;
mlir::LogicalResult
matchAndRewrite(fir::BoxAddrOp boxaddr, OpAdaptor adaptor,
mlir::ConversionPatternRewriter &rewriter) const override {
mlir::Value a = adaptor.getOperands()[0];
auto loc = boxaddr.getLoc();
mlir::Type ty = convertType(boxaddr.getType());
if (auto argty = boxaddr.val().getType().dyn_cast<fir::BoxType>()) {
rewriter.replaceOp(boxaddr, loadBaseAddrFromBox(loc, ty, a, rewriter));
} else {
auto c0attr = rewriter.getI32IntegerAttr(0);
auto c0 = mlir::ArrayAttr::get(boxaddr.getContext(), c0attr);
rewriter.replaceOpWithNewOp<mlir::LLVM::ExtractValueOp>(boxaddr, ty, a,
c0);
}
return success();
}
};
/// Lower `fir.box_dims` to a sequence of operations to extract the requested
/// dimension infomartion from the boxed value.
/// Result in a triple set of GEPs and loads.
struct BoxDimsOpConversion : public FIROpConversion<fir::BoxDimsOp> {
using FIROpConversion::FIROpConversion;
mlir::LogicalResult
matchAndRewrite(fir::BoxDimsOp boxdims, OpAdaptor adaptor,
mlir::ConversionPatternRewriter &rewriter) const override {
SmallVector<mlir::Type, 3> resultTypes = {
convertType(boxdims.getResult(0).getType()),
convertType(boxdims.getResult(1).getType()),
convertType(boxdims.getResult(2).getType()),
};
auto results =
getDimsFromBox(boxdims.getLoc(), resultTypes, adaptor.getOperands()[0],
adaptor.getOperands()[1], rewriter);
rewriter.replaceOp(boxdims, results);
return success();
}
};
/// Lower `fir.box_elesize` to a sequence of operations ro extract the size of
/// an element in the boxed value.
struct BoxEleSizeOpConversion : public FIROpConversion<fir::BoxEleSizeOp> {
using FIROpConversion::FIROpConversion;
mlir::LogicalResult
matchAndRewrite(fir::BoxEleSizeOp boxelesz, OpAdaptor adaptor,
mlir::ConversionPatternRewriter &rewriter) const override {
mlir::Value a = adaptor.getOperands()[0];
auto loc = boxelesz.getLoc();
auto ty = convertType(boxelesz.getType());
auto elemSize = getValueFromBox(loc, a, ty, rewriter, kElemLenPosInBox);
rewriter.replaceOp(boxelesz, elemSize);
return success();
}
};
/// Lower `fir.box_isalloc` to a sequence of operations to determine if the
/// boxed value was from an ALLOCATABLE entity.
struct BoxIsAllocOpConversion : public FIROpConversion<fir::BoxIsAllocOp> {
using FIROpConversion::FIROpConversion;
mlir::LogicalResult
matchAndRewrite(fir::BoxIsAllocOp boxisalloc, OpAdaptor adaptor,
mlir::ConversionPatternRewriter &rewriter) const override {
mlir::Value box = adaptor.getOperands()[0];
auto loc = boxisalloc.getLoc();
mlir::Value check =
genBoxAttributeCheck(loc, box, rewriter, kAttrAllocatable);
rewriter.replaceOp(boxisalloc, check);
return success();
}
};
/// Lower `fir.box_isarray` to a sequence of operations to determine if the
/// boxed is an array.
struct BoxIsArrayOpConversion : public FIROpConversion<fir::BoxIsArrayOp> {
using FIROpConversion::FIROpConversion;
mlir::LogicalResult
matchAndRewrite(fir::BoxIsArrayOp boxisarray, OpAdaptor adaptor,
mlir::ConversionPatternRewriter &rewriter) const override {
mlir::Value a = adaptor.getOperands()[0];
auto loc = boxisarray.getLoc();
auto rank =
getValueFromBox(loc, a, rewriter.getI32Type(), rewriter, kRankPosInBox);
auto c0 = genConstantOffset(loc, rewriter, 0);
rewriter.replaceOpWithNewOp<mlir::LLVM::ICmpOp>(
boxisarray, mlir::LLVM::ICmpPredicate::ne, rank, c0);
return success();
}
};
/// Lower `fir.box_isptr` to a sequence of operations to determined if the
/// boxed value was from a POINTER entity.
struct BoxIsPtrOpConversion : public FIROpConversion<fir::BoxIsPtrOp> {
using FIROpConversion::FIROpConversion;
mlir::LogicalResult
matchAndRewrite(fir::BoxIsPtrOp boxisptr, OpAdaptor adaptor,
mlir::ConversionPatternRewriter &rewriter) const override {
mlir::Value box = adaptor.getOperands()[0];
auto loc = boxisptr.getLoc();
mlir::Value check = genBoxAttributeCheck(loc, box, rewriter, kAttrPointer);
rewriter.replaceOp(boxisptr, check);
return success();
}
};
/// Lower `fir.box_rank` to the sequence of operation to extract the rank from
/// the box.
struct BoxRankOpConversion : public FIROpConversion<fir::BoxRankOp> {
using FIROpConversion::FIROpConversion;
mlir::LogicalResult
matchAndRewrite(fir::BoxRankOp boxrank, OpAdaptor adaptor,
mlir::ConversionPatternRewriter &rewriter) const override {
mlir::Value a = adaptor.getOperands()[0];
auto loc = boxrank.getLoc();
mlir::Type ty = convertType(boxrank.getType());
auto result = getValueFromBox(loc, a, ty, rewriter, kRankPosInBox);
rewriter.replaceOp(boxrank, result);
return success();
}
};
/// Lower `fir.string_lit` to LLVM IR dialect operation.
struct StringLitOpConversion : public FIROpConversion<fir::StringLitOp> {
using FIROpConversion::FIROpConversion;
mlir::LogicalResult
matchAndRewrite(fir::StringLitOp constop, OpAdaptor adaptor,
mlir::ConversionPatternRewriter &rewriter) const override {
auto ty = convertType(constop.getType());
auto attr = constop.getValue();
if (attr.isa<mlir::StringAttr>()) {
rewriter.replaceOpWithNewOp<mlir::LLVM::ConstantOp>(constop, ty, attr);
return success();
}
auto arr = attr.cast<mlir::ArrayAttr>();
auto charTy = constop.getType().cast<fir::CharacterType>();
unsigned bits = lowerTy().characterBitsize(charTy);
mlir::Type intTy = rewriter.getIntegerType(bits);
auto attrs = llvm::map_range(
arr.getValue(), [intTy, bits](mlir::Attribute attr) -> Attribute {
return mlir::IntegerAttr::get(
intTy,
attr.cast<mlir::IntegerAttr>().getValue().sextOrTrunc(bits));
});
mlir::Type vecType = mlir::VectorType::get(arr.size(), intTy);
auto denseAttr = mlir::DenseElementsAttr::get(
vecType.cast<mlir::ShapedType>(), llvm::to_vector<8>(attrs));
rewriter.replaceOpWithNewOp<mlir::arith::ConstantOp>(constop, ty,
denseAttr);
return success();
}
};
/// Lower `fir.boxproc_host` operation. Extracts the host pointer from the
/// boxproc.
/// TODO: Part of supporting Fortran 2003 procedure pointers.
struct BoxProcHostOpConversion : public FIROpConversion<fir::BoxProcHostOp> {
using FIROpConversion::FIROpConversion;
mlir::LogicalResult
matchAndRewrite(fir::BoxProcHostOp boxprochost, OpAdaptor adaptor,
mlir::ConversionPatternRewriter &rewriter) const override {
return rewriter.notifyMatchFailure(
boxprochost, "fir.boxproc_host codegen is not implemented yet");
}
};
/// Lower `fir.box_tdesc` to the sequence of operations to extract the type
/// descriptor from the box.
struct BoxTypeDescOpConversion : public FIROpConversion<fir::BoxTypeDescOp> {
using FIROpConversion::FIROpConversion;
mlir::LogicalResult
matchAndRewrite(fir::BoxTypeDescOp boxtypedesc, OpAdaptor adaptor,
mlir::ConversionPatternRewriter &rewriter) const override {
mlir::Value box = adaptor.getOperands()[0];
auto loc = boxtypedesc.getLoc();
mlir::Type typeTy =
fir::getDescFieldTypeModel<kTypePosInBox>()(boxtypedesc.getContext());
auto result = getValueFromBox(loc, box, typeTy, rewriter, kTypePosInBox);
auto typePtrTy = mlir::LLVM::LLVMPointerType::get(typeTy);
rewriter.replaceOpWithNewOp<mlir::LLVM::IntToPtrOp>(boxtypedesc, typePtrTy,
result);
return success();
}
};
// `fir.call` -> `llvm.call`
struct CallOpConversion : public FIROpConversion<fir::CallOp> {
using FIROpConversion::FIROpConversion;
mlir::LogicalResult
matchAndRewrite(fir::CallOp call, OpAdaptor adaptor,
mlir::ConversionPatternRewriter &rewriter) const override {
SmallVector<mlir::Type> resultTys;
for (auto r : call.getResults())
resultTys.push_back(convertType(r.getType()));
rewriter.replaceOpWithNewOp<mlir::LLVM::CallOp>(
call, resultTys, adaptor.getOperands(), call->getAttrs());
return success();
}
};
static mlir::Type getComplexEleTy(mlir::Type complex) {
if (auto cc = complex.dyn_cast<mlir::ComplexType>())
return cc.getElementType();
return complex.cast<fir::ComplexType>().getElementType();
}
/// Compare complex values
///
/// Per 10.1, the only comparisons available are .EQ. (oeq) and .NE. (une).
///
/// For completeness, all other comparison are done on the real component only.
struct CmpcOpConversion : public FIROpConversion<fir::CmpcOp> {
using FIROpConversion::FIROpConversion;
mlir::LogicalResult
matchAndRewrite(fir::CmpcOp cmp, OpAdaptor adaptor,
mlir::ConversionPatternRewriter &rewriter) const override {
mlir::ValueRange operands = adaptor.getOperands();
mlir::MLIRContext *ctxt = cmp.getContext();
mlir::Type eleTy = convertType(getComplexEleTy(cmp.lhs().getType()));
mlir::Type resTy = convertType(cmp.getType());
mlir::Location loc = cmp.getLoc();
auto pos0 = mlir::ArrayAttr::get(ctxt, rewriter.getI32IntegerAttr(0));
SmallVector<mlir::Value, 2> rp{rewriter.create<mlir::LLVM::ExtractValueOp>(
loc, eleTy, operands[0], pos0),
rewriter.create<mlir::LLVM::ExtractValueOp>(
loc, eleTy, operands[1], pos0)};
auto rcp =
rewriter.create<mlir::LLVM::FCmpOp>(loc, resTy, rp, cmp->getAttrs());
auto pos1 = mlir::ArrayAttr::get(ctxt, rewriter.getI32IntegerAttr(1));
SmallVector<mlir::Value, 2> ip{rewriter.create<mlir::LLVM::ExtractValueOp>(
loc, eleTy, operands[0], pos1),
rewriter.create<mlir::LLVM::ExtractValueOp>(
loc, eleTy, operands[1], pos1)};
auto icp =
rewriter.create<mlir::LLVM::FCmpOp>(loc, resTy, ip, cmp->getAttrs());
SmallVector<mlir::Value, 2> cp{rcp, icp};
switch (cmp.getPredicate()) {
case mlir::arith::CmpFPredicate::OEQ: // .EQ.
rewriter.replaceOpWithNewOp<mlir::LLVM::AndOp>(cmp, resTy, cp);
break;
case mlir::arith::CmpFPredicate::UNE: // .NE.
rewriter.replaceOpWithNewOp<mlir::LLVM::OrOp>(cmp, resTy, cp);
break;
default:
rewriter.replaceOp(cmp, rcp.getResult());
break;
}
return success();
}
};
/// Lower complex constants
struct ConstcOpConversion : public FIROpConversion<fir::ConstcOp> {
using FIROpConversion::FIROpConversion;
mlir::LogicalResult
matchAndRewrite(fir::ConstcOp conc, OpAdaptor,
mlir::ConversionPatternRewriter &rewriter) const override {
mlir::Location loc = conc.getLoc();
mlir::MLIRContext *ctx = conc.getContext();
mlir::Type ty = convertType(conc.getType());
mlir::Type ety = convertType(getComplexEleTy(conc.getType()));
auto realFloatAttr = mlir::FloatAttr::get(ety, getValue(conc.getReal()));
auto realPart =
rewriter.create<mlir::LLVM::ConstantOp>(loc, ety, realFloatAttr);
auto imFloatAttr = mlir::FloatAttr::get(ety, getValue(conc.getImaginary()));
auto imPart =
rewriter.create<mlir::LLVM::ConstantOp>(loc, ety, imFloatAttr);
auto realIndex = mlir::ArrayAttr::get(ctx, rewriter.getI32IntegerAttr(0));
auto imIndex = mlir::ArrayAttr::get(ctx, rewriter.getI32IntegerAttr(1));
auto undef = rewriter.create<mlir::LLVM::UndefOp>(loc, ty);
auto setReal = rewriter.create<mlir::LLVM::InsertValueOp>(
loc, ty, undef, realPart, realIndex);
rewriter.replaceOpWithNewOp<mlir::LLVM::InsertValueOp>(conc, ty, setReal,
imPart, imIndex);
return success();
}
inline APFloat getValue(mlir::Attribute attr) const {
return attr.cast<fir::RealAttr>().getValue();
}
};
/// convert value of from-type to value of to-type
struct ConvertOpConversion : public FIROpConversion<fir::ConvertOp> {
using FIROpConversion::FIROpConversion;
static bool isFloatingPointTy(mlir::Type ty) {
return ty.isa<mlir::FloatType>();
}
mlir::LogicalResult
matchAndRewrite(fir::ConvertOp convert, OpAdaptor adaptor,
mlir::ConversionPatternRewriter &rewriter) const override {
auto fromTy = convertType(convert.value().getType());
auto toTy = convertType(convert.res().getType());
mlir::Value op0 = adaptor.getOperands()[0];
if (fromTy == toTy) {
rewriter.replaceOp(convert, op0);
return success();
}
auto loc = convert.getLoc();
auto convertFpToFp = [&](mlir::Value val, unsigned fromBits,
unsigned toBits, mlir::Type toTy) -> mlir::Value {
if (fromBits == toBits) {
// TODO: Converting between two floating-point representations with the
// same bitwidth is not allowed for now.
mlir::emitError(loc,
"cannot implicitly convert between two floating-point "
"representations of the same bitwidth");
return {};
}
if (fromBits > toBits)
return rewriter.create<mlir::LLVM::FPTruncOp>(loc, toTy, val);
return rewriter.create<mlir::LLVM::FPExtOp>(loc, toTy, val);
};
// Complex to complex conversion.
if (fir::isa_complex(convert.value().getType()) &&
fir::isa_complex(convert.res().getType())) {
// Special case: handle the conversion of a complex such that both the
// real and imaginary parts are converted together.
auto zero = mlir::ArrayAttr::get(convert.getContext(),
rewriter.getI32IntegerAttr(0));
auto one = mlir::ArrayAttr::get(convert.getContext(),
rewriter.getI32IntegerAttr(1));
auto ty = convertType(getComplexEleTy(convert.value().getType()));
auto rp = rewriter.create<mlir::LLVM::ExtractValueOp>(loc, ty, op0, zero);
auto ip = rewriter.create<mlir::LLVM::ExtractValueOp>(loc, ty, op0, one);
auto nt = convertType(getComplexEleTy(convert.res().getType()));
auto fromBits = mlir::LLVM::getPrimitiveTypeSizeInBits(ty);
auto toBits = mlir::LLVM::getPrimitiveTypeSizeInBits(nt);
auto rc = convertFpToFp(rp, fromBits, toBits, nt);
auto ic = convertFpToFp(ip, fromBits, toBits, nt);
auto un = rewriter.create<mlir::LLVM::UndefOp>(loc, toTy);
auto i1 =
rewriter.create<mlir::LLVM::InsertValueOp>(loc, toTy, un, rc, zero);
rewriter.replaceOpWithNewOp<mlir::LLVM::InsertValueOp>(convert, toTy, i1,
ic, one);
return mlir::success();
}
// Floating point to floating point conversion.
if (isFloatingPointTy(fromTy)) {
if (isFloatingPointTy(toTy)) {
auto fromBits = mlir::LLVM::getPrimitiveTypeSizeInBits(fromTy);
auto toBits = mlir::LLVM::getPrimitiveTypeSizeInBits(toTy);
auto v = convertFpToFp(op0, fromBits, toBits, toTy);
rewriter.replaceOp(convert, v);
return mlir::success();
}
if (toTy.isa<mlir::IntegerType>()) {
rewriter.replaceOpWithNewOp<mlir::LLVM::FPToSIOp>(convert, toTy, op0);
return mlir::success();
}
} else if (fromTy.isa<mlir::IntegerType>()) {
// Integer to integer conversion.
if (toTy.isa<mlir::IntegerType>()) {
auto fromBits = mlir::LLVM::getPrimitiveTypeSizeInBits(fromTy);
auto toBits = mlir::LLVM::getPrimitiveTypeSizeInBits(toTy);
assert(fromBits != toBits);
if (fromBits > toBits) {
rewriter.replaceOpWithNewOp<mlir::LLVM::TruncOp>(convert, toTy, op0);
return mlir::success();
}
rewriter.replaceOpWithNewOp<mlir::LLVM::SExtOp>(convert, toTy, op0);
return mlir::success();
}
// Integer to floating point conversion.
if (isFloatingPointTy(toTy)) {
rewriter.replaceOpWithNewOp<mlir::LLVM::SIToFPOp>(convert, toTy, op0);
return mlir::success();
}
// Integer to pointer conversion.
if (toTy.isa<mlir::LLVM::LLVMPointerType>()) {
rewriter.replaceOpWithNewOp<mlir::LLVM::IntToPtrOp>(convert, toTy, op0);
return mlir::success();
}
} else if (fromTy.isa<mlir::LLVM::LLVMPointerType>()) {
// Pointer to integer conversion.
if (toTy.isa<mlir::IntegerType>()) {
rewriter.replaceOpWithNewOp<mlir::LLVM::PtrToIntOp>(convert, toTy, op0);
return mlir::success();
}
// Pointer to pointer conversion.
if (toTy.isa<mlir::LLVM::LLVMPointerType>()) {
rewriter.replaceOpWithNewOp<mlir::LLVM::BitcastOp>(convert, toTy, op0);
return mlir::success();
}
}
return emitError(loc) << "cannot convert " << fromTy << " to " << toTy;
}
};
/// Lower `fir.dispatch` operation. A virtual call to a method in a dispatch
/// table.
struct DispatchOpConversion : public FIROpConversion<fir::DispatchOp> {
using FIROpConversion::FIROpConversion;
mlir::LogicalResult
matchAndRewrite(fir::DispatchOp dispatch, OpAdaptor adaptor,
mlir::ConversionPatternRewriter &rewriter) const override {
return rewriter.notifyMatchFailure(
dispatch, "fir.dispatch codegen is not implemented yet");
}
};
/// Lower `fir.dispatch_table` operation. The dispatch table for a Fortran
/// derived type.
struct DispatchTableOpConversion
: public FIROpConversion<fir::DispatchTableOp> {
using FIROpConversion::FIROpConversion;
mlir::LogicalResult
matchAndRewrite(fir::DispatchTableOp dispTab, OpAdaptor adaptor,
mlir::ConversionPatternRewriter &rewriter) const override {
return rewriter.notifyMatchFailure(
dispTab, "fir.dispatch_table codegen is not implemented yet");
}
};
/// Lower `fir.dt_entry` operation. An entry in a dispatch table; binds a
/// method-name to a function.
struct DTEntryOpConversion : public FIROpConversion<fir::DTEntryOp> {
using FIROpConversion::FIROpConversion;
mlir::LogicalResult
matchAndRewrite(fir::DTEntryOp dtEnt, OpAdaptor adaptor,
mlir::ConversionPatternRewriter &rewriter) const override {
return rewriter.notifyMatchFailure(
dtEnt, "fir.dt_entry codegen is not implemented yet");
}
};
/// Lower `fir.global_len` operation.
struct GlobalLenOpConversion : public FIROpConversion<fir::GlobalLenOp> {
using FIROpConversion::FIROpConversion;
mlir::LogicalResult
matchAndRewrite(fir::GlobalLenOp globalLen, OpAdaptor adaptor,
mlir::ConversionPatternRewriter &rewriter) const override {
return rewriter.notifyMatchFailure(
globalLen, "fir.global_len codegen is not implemented yet");
}
};
/// Lower fir.len_param_index
struct LenParamIndexOpConversion
: public FIROpConversion<fir::LenParamIndexOp> {
using FIROpConversion::FIROpConversion;
// FIXME: this should be specialized by the runtime target
mlir::LogicalResult
matchAndRewrite(fir::LenParamIndexOp lenp, OpAdaptor,
mlir::ConversionPatternRewriter &rewriter) const override {
return rewriter.notifyMatchFailure(
lenp, "fir.len_param_index codegen is not implemented yet");
}
};
/// Lower `fir.gentypedesc` to a global constant.
struct GenTypeDescOpConversion : public FIROpConversion<fir::GenTypeDescOp> {
using FIROpConversion::FIROpConversion;
mlir::LogicalResult
matchAndRewrite(fir::GenTypeDescOp gentypedesc, OpAdaptor adaptor,
mlir::ConversionPatternRewriter &rewriter) const override {
return rewriter.notifyMatchFailure(
gentypedesc, "fir.fir.gentypedesc codegen is not implemented yet");
}
};
/// Convert `fir.end`
struct FirEndOpConversion : public FIROpConversion<fir::FirEndOp> {
using FIROpConversion::FIROpConversion;
mlir::LogicalResult
matchAndRewrite(fir::FirEndOp firEnd, OpAdaptor,
mlir::ConversionPatternRewriter &rewriter) const override {
return rewriter.notifyMatchFailure(
firEnd, "fir.end codegen is not implemented yet");
}
};
/// Lower `fir.has_value` operation to `llvm.return` operation.
struct HasValueOpConversion : public FIROpConversion<fir::HasValueOp> {
using FIROpConversion::FIROpConversion;
mlir::LogicalResult
matchAndRewrite(fir::HasValueOp op, OpAdaptor adaptor,
mlir::ConversionPatternRewriter &rewriter) const override {
rewriter.replaceOpWithNewOp<LLVM::ReturnOp>(op, adaptor.getOperands());
return success();
}
};
/// Lower `fir.global` operation to `llvm.global` operation.
/// `fir.insert_on_range` operations are replaced with constant dense attribute
/// if they are applied on the full range.
struct GlobalOpConversion : public FIROpConversion<fir::GlobalOp> {
using FIROpConversion::FIROpConversion;
mlir::LogicalResult
matchAndRewrite(fir::GlobalOp global, OpAdaptor adaptor,
mlir::ConversionPatternRewriter &rewriter) const override {
auto tyAttr = convertType(global.getType());
if (global.getType().isa<fir::BoxType>())
tyAttr = tyAttr.cast<mlir::LLVM::LLVMPointerType>().getElementType();
auto loc = global.getLoc();
mlir::Attribute initAttr{};
if (global.initVal())
initAttr = global.initVal().getValue();
auto linkage = convertLinkage(global.linkName());
auto isConst = global.constant().hasValue();
auto g = rewriter.create<mlir::LLVM::GlobalOp>(
loc, tyAttr, isConst, linkage, global.sym_name(), initAttr);
auto &gr = g.getInitializerRegion();
rewriter.inlineRegionBefore(global.region(), gr, gr.end());
if (!gr.empty()) {
// Replace insert_on_range with a constant dense attribute if the
// initialization is on the full range.
auto insertOnRangeOps = gr.front().getOps<fir::InsertOnRangeOp>();
for (auto insertOp : insertOnRangeOps) {
if (isFullRange(insertOp.coor(), insertOp.getType())) {
auto seqTyAttr = convertType(insertOp.getType());
auto *op = insertOp.val().getDefiningOp();
auto constant = mlir::dyn_cast<mlir::arith::ConstantOp>(op);
if (!constant) {
auto convertOp = mlir::dyn_cast<fir::ConvertOp>(op);
if (!convertOp)
continue;
constant = cast<mlir::arith::ConstantOp>(
convertOp.value().getDefiningOp());
}
mlir::Type vecType = mlir::VectorType::get(
insertOp.getType().getShape(), constant.getType());
auto denseAttr = mlir::DenseElementsAttr::get(
vecType.cast<ShapedType>(), constant.value());
rewriter.setInsertionPointAfter(insertOp);
rewriter.replaceOpWithNewOp<mlir::arith::ConstantOp>(
insertOp, seqTyAttr, denseAttr);
}
}
}
rewriter.eraseOp(global);
return success();
}
bool isFullRange(mlir::DenseIntElementsAttr indexes,
fir::SequenceType seqTy) const {
auto extents = seqTy.getShape();
if (indexes.size() / 2 != static_cast<int64_t>(extents.size()))
return false;
auto cur_index = indexes.value_begin<int64_t>();
for (unsigned i = 0; i < indexes.size(); i += 2) {
if (*(cur_index++) != 0)
return false;
if (*(cur_index++) != extents[i / 2] - 1)
return false;
}
return true;
}
// TODO: String comparaison should be avoided. Replace linkName with an
// enumeration.
mlir::LLVM::Linkage convertLinkage(Optional<StringRef> optLinkage) const {
if (optLinkage.hasValue()) {
auto name = optLinkage.getValue();
if (name == "internal")
return mlir::LLVM::Linkage::Internal;
if (name == "linkonce")
return mlir::LLVM::Linkage::Linkonce;
if (name == "common")
return mlir::LLVM::Linkage::Common;
if (name == "weak")
return mlir::LLVM::Linkage::Weak;
}
return mlir::LLVM::Linkage::External;
}
};
void genCondBrOp(mlir::Location loc, mlir::Value cmp, mlir::Block *dest,
Optional<mlir::ValueRange> destOps,
mlir::ConversionPatternRewriter &rewriter,
mlir::Block *newBlock) {
if (destOps.hasValue())
rewriter.create<mlir::LLVM::CondBrOp>(loc, cmp, dest, destOps.getValue(),
newBlock, mlir::ValueRange());
else
rewriter.create<mlir::LLVM::CondBrOp>(loc, cmp, dest, newBlock);
}
template <typename A, typename B>
void genBrOp(A caseOp, mlir::Block *dest, Optional<B> destOps,
mlir::ConversionPatternRewriter &rewriter) {
if (destOps.hasValue())
rewriter.replaceOpWithNewOp<mlir::LLVM::BrOp>(caseOp, destOps.getValue(),
dest);
else
rewriter.replaceOpWithNewOp<mlir::LLVM::BrOp>(caseOp, llvm::None, dest);
}
void genCaseLadderStep(mlir::Location loc, mlir::Value cmp, mlir::Block *dest,
Optional<mlir::ValueRange> destOps,
mlir::ConversionPatternRewriter &rewriter) {
auto *thisBlock = rewriter.getInsertionBlock();
auto *newBlock = createBlock(rewriter, dest);
rewriter.setInsertionPointToEnd(thisBlock);
genCondBrOp(loc, cmp, dest, destOps, rewriter, newBlock);
rewriter.setInsertionPointToEnd(newBlock);
}
/// Conversion of `fir.select_case`
///
/// The `fir.select_case` operation is converted to a if-then-else ladder.
/// Depending on the case condition type, one or several comparison and
/// conditional branching can be generated.
///
/// A a point value case such as `case(4)`, a lower bound case such as
/// `case(5:)` or an upper bound case such as `case(:3)` are converted to a
/// simple comparison between the selector value and the constant value in the
/// case. The block associated with the case condition is then executed if
/// the comparison succeed otherwise it branch to the next block with the
/// comparison for the the next case conditon.
///
/// A closed interval case condition such as `case(7:10)` is converted with a
/// first comparison and conditional branching for the lower bound. If
/// successful, it branch to a second block with the comparison for the
/// upper bound in the same case condition.
///
/// TODO: lowering of CHARACTER type cases is not handled yet.
struct SelectCaseOpConversion : public FIROpConversion<fir::SelectCaseOp> {
using FIROpConversion::FIROpConversion;
mlir::LogicalResult
matchAndRewrite(fir::SelectCaseOp caseOp, OpAdaptor adaptor,
mlir::ConversionPatternRewriter &rewriter) const override {
unsigned conds = caseOp.getNumConditions();
llvm::ArrayRef<mlir::Attribute> cases = caseOp.getCases().getValue();
// Type can be CHARACTER, INTEGER, or LOGICAL (C1145)
LLVM_ATTRIBUTE_UNUSED auto ty = caseOp.getSelector().getType();
if (ty.isa<fir::CharacterType>())
return rewriter.notifyMatchFailure(caseOp,
"conversion of fir.select_case with "
"character type not implemented yet");
mlir::Value selector = caseOp.getSelector(adaptor.getOperands());
auto loc = caseOp.getLoc();
for (unsigned t = 0; t != conds; ++t) {
mlir::Block *dest = caseOp.getSuccessor(t);
llvm::Optional<mlir::ValueRange> destOps =
caseOp.getSuccessorOperands(adaptor.getOperands(), t);
llvm::Optional<mlir::ValueRange> cmpOps =
*caseOp.getCompareOperands(adaptor.getOperands(), t);
mlir::Value caseArg = *(cmpOps.getValue().begin());
mlir::Attribute attr = cases[t];
if (attr.isa<fir::PointIntervalAttr>()) {
auto cmp = rewriter.create<mlir::LLVM::ICmpOp>(
loc, mlir::LLVM::ICmpPredicate::eq, selector, caseArg);
genCaseLadderStep(loc, cmp, dest, destOps, rewriter);
continue;
}
if (attr.isa<fir::LowerBoundAttr>()) {
auto cmp = rewriter.create<mlir::LLVM::ICmpOp>(
loc, mlir::LLVM::ICmpPredicate::sle, caseArg, selector);
genCaseLadderStep(loc, cmp, dest, destOps, rewriter);
continue;
}
if (attr.isa<fir::UpperBoundAttr>()) {
auto cmp = rewriter.create<mlir::LLVM::ICmpOp>(
loc, mlir::LLVM::ICmpPredicate::sle, selector, caseArg);
genCaseLadderStep(loc, cmp, dest, destOps, rewriter);
continue;
}
if (attr.isa<fir::ClosedIntervalAttr>()) {
auto cmp = rewriter.create<mlir::LLVM::ICmpOp>(
loc, mlir::LLVM::ICmpPredicate::sle, caseArg, selector);
auto *thisBlock = rewriter.getInsertionBlock();
auto *newBlock1 = createBlock(rewriter, dest);
auto *newBlock2 = createBlock(rewriter, dest);
rewriter.setInsertionPointToEnd(thisBlock);
rewriter.create<mlir::LLVM::CondBrOp>(loc, cmp, newBlock1, newBlock2);
rewriter.setInsertionPointToEnd(newBlock1);
mlir::Value caseArg0 = *(cmpOps.getValue().begin() + 1);
auto cmp0 = rewriter.create<mlir::LLVM::ICmpOp>(
loc, mlir::LLVM::ICmpPredicate::sle, selector, caseArg0);
genCondBrOp(loc, cmp0, dest, destOps, rewriter, newBlock2);
rewriter.setInsertionPointToEnd(newBlock2);
continue;
}
assert(attr.isa<mlir::UnitAttr>());
assert((t + 1 == conds) && "unit must be last");
genBrOp(caseOp, dest, destOps, rewriter);
}
return success();
}
};
template <typename OP>
void selectMatchAndRewrite(fir::LLVMTypeConverter &lowering, OP select,
typename OP::Adaptor adaptor,
mlir::ConversionPatternRewriter &rewriter) {
unsigned conds = select.getNumConditions();
auto cases = select.getCases().getValue();
mlir::Value selector = adaptor.selector();
auto loc = select.getLoc();
assert(conds > 0 && "select must have cases");
llvm::SmallVector<mlir::Block *> destinations;
llvm::SmallVector<mlir::ValueRange> destinationsOperands;
mlir::Block *defaultDestination;
mlir::ValueRange defaultOperands;
llvm::SmallVector<int32_t> caseValues;
for (unsigned t = 0; t != conds; ++t) {
mlir::Block *dest = select.getSuccessor(t);
auto destOps = select.getSuccessorOperands(adaptor.getOperands(), t);
const mlir::Attribute &attr = cases[t];
if (auto intAttr = attr.template dyn_cast<mlir::IntegerAttr>()) {
destinations.push_back(dest);
destinationsOperands.push_back(destOps.hasValue() ? *destOps
: ValueRange());
caseValues.push_back(intAttr.getInt());
continue;
}
assert(attr.template dyn_cast_or_null<mlir::UnitAttr>());
assert((t + 1 == conds) && "unit must be last");
defaultDestination = dest;
defaultOperands = destOps.hasValue() ? *destOps : ValueRange();
}
// LLVM::SwitchOp takes a i32 type for the selector.
if (select.getSelector().getType() != rewriter.getI32Type())
selector =
rewriter.create<LLVM::TruncOp>(loc, rewriter.getI32Type(), selector);
rewriter.replaceOpWithNewOp<mlir::LLVM::SwitchOp>(
select, selector,
/*defaultDestination=*/defaultDestination,
/*defaultOperands=*/defaultOperands,
/*caseValues=*/caseValues,
/*caseDestinations=*/destinations,
/*caseOperands=*/destinationsOperands,
/*branchWeights=*/ArrayRef<int32_t>());
}
/// conversion of fir::SelectOp to an if-then-else ladder
struct SelectOpConversion : public FIROpConversion<fir::SelectOp> {
using FIROpConversion::FIROpConversion;
mlir::LogicalResult
matchAndRewrite(fir::SelectOp op, OpAdaptor adaptor,
mlir::ConversionPatternRewriter &rewriter) const override {
selectMatchAndRewrite<fir::SelectOp>(lowerTy(), op, adaptor, rewriter);
return success();
}
};
/// `fir.load` --> `llvm.load`
struct LoadOpConversion : public FIROpConversion<fir::LoadOp> {
using FIROpConversion::FIROpConversion;
mlir::LogicalResult
matchAndRewrite(fir::LoadOp load, OpAdaptor adaptor,
mlir::ConversionPatternRewriter &rewriter) const override {
// fir.box is a special case because it is considered as an ssa values in
// fir, but it is lowered as a pointer to a descriptor. So fir.ref<fir.box>
// and fir.box end up being the same llvm types and loading a
// fir.ref<fir.box> is actually a no op in LLVM.
if (load.getType().isa<fir::BoxType>()) {
rewriter.replaceOp(load, adaptor.getOperands()[0]);
} else {
mlir::Type ty = convertType(load.getType());
ArrayRef<NamedAttribute> at = load->getAttrs();
rewriter.replaceOpWithNewOp<mlir::LLVM::LoadOp>(
load, ty, adaptor.getOperands(), at);
}
return success();
}
};
/// Lower `fir.no_reassoc` to LLVM IR dialect.
/// TODO: how do we want to enforce this in LLVM-IR? Can we manipulate the fast
/// math flags?
struct NoReassocOpConversion : public FIROpConversion<fir::NoReassocOp> {
using FIROpConversion::FIROpConversion;
mlir::LogicalResult
matchAndRewrite(fir::NoReassocOp noreassoc, OpAdaptor adaptor,
mlir::ConversionPatternRewriter &rewriter) const override {
rewriter.replaceOp(noreassoc, adaptor.getOperands()[0]);
return success();
}
};
/// Lower `fir.select_type` to LLVM IR dialect.
struct SelectTypeOpConversion : public FIROpConversion<fir::SelectTypeOp> {
using FIROpConversion::FIROpConversion;
mlir::LogicalResult
matchAndRewrite(fir::SelectTypeOp select, OpAdaptor adaptor,
mlir::ConversionPatternRewriter &rewriter) const override {
return rewriter.notifyMatchFailure(
select, "fir.select_type codegen is not implemented yet");
}
};
/// conversion of fir::SelectRankOp to an if-then-else ladder
struct SelectRankOpConversion : public FIROpConversion<fir::SelectRankOp> {
using FIROpConversion::FIROpConversion;
mlir::LogicalResult
matchAndRewrite(fir::SelectRankOp op, OpAdaptor adaptor,
mlir::ConversionPatternRewriter &rewriter) const override {
selectMatchAndRewrite<fir::SelectRankOp>(lowerTy(), op, adaptor, rewriter);
return success();
}
};
/// `fir.store` --> `llvm.store`
struct StoreOpConversion : public FIROpConversion<fir::StoreOp> {
using FIROpConversion::FIROpConversion;
mlir::LogicalResult
matchAndRewrite(fir::StoreOp store, OpAdaptor adaptor,
mlir::ConversionPatternRewriter &rewriter) const override {
if (store.value().getType().isa<fir::BoxType>()) {
// fir.box value is actually in memory, load it first before storing it.
mlir::Location loc = store.getLoc();
mlir::Type boxPtrTy = adaptor.getOperands()[0].getType();
auto val = rewriter.create<mlir::LLVM::LoadOp>(
loc, boxPtrTy.cast<mlir::LLVM::LLVMPointerType>().getElementType(),
adaptor.getOperands()[0]);
rewriter.replaceOpWithNewOp<mlir::LLVM::StoreOp>(
store, val, adaptor.getOperands()[1]);
} else {
rewriter.replaceOpWithNewOp<mlir::LLVM::StoreOp>(
store, adaptor.getOperands()[0], adaptor.getOperands()[1]);
}
return success();
}
};
/// convert to LLVM IR dialect `undef`
struct UndefOpConversion : public FIROpConversion<fir::UndefOp> {
using FIROpConversion::FIROpConversion;
mlir::LogicalResult
matchAndRewrite(fir::UndefOp undef, OpAdaptor,
mlir::ConversionPatternRewriter &rewriter) const override {
rewriter.replaceOpWithNewOp<mlir::LLVM::UndefOp>(
undef, convertType(undef.getType()));
return success();
}
};
/// `fir.unreachable` --> `llvm.unreachable`
struct UnreachableOpConversion : public FIROpConversion<fir::UnreachableOp> {
using FIROpConversion::FIROpConversion;
mlir::LogicalResult
matchAndRewrite(fir::UnreachableOp unreach, OpAdaptor adaptor,
mlir::ConversionPatternRewriter &rewriter) const override {
rewriter.replaceOpWithNewOp<mlir::LLVM::UnreachableOp>(unreach);
return success();
}
};
struct ZeroOpConversion : public FIROpConversion<fir::ZeroOp> {
using FIROpConversion::FIROpConversion;
mlir::LogicalResult
matchAndRewrite(fir::ZeroOp zero, OpAdaptor,
mlir::ConversionPatternRewriter &rewriter) const override {
auto ty = convertType(zero.getType());
if (ty.isa<mlir::LLVM::LLVMPointerType>()) {
rewriter.replaceOpWithNewOp<mlir::LLVM::NullOp>(zero, ty);
} else if (ty.isa<mlir::IntegerType>()) {
rewriter.replaceOpWithNewOp<mlir::LLVM::ConstantOp>(
zero, ty, mlir::IntegerAttr::get(zero.getType(), 0));
} else if (mlir::LLVM::isCompatibleFloatingPointType(ty)) {
rewriter.replaceOpWithNewOp<mlir::LLVM::ConstantOp>(
zero, ty, mlir::FloatAttr::get(zero.getType(), 0.0));
} else {
// TODO: create ConstantAggregateZero for FIR aggregate/array types.
return rewriter.notifyMatchFailure(
zero,
"conversion of fir.zero with aggregate type not implemented yet");
}
return success();
}
};
/// Common base class for embox to descriptor conversion.
template <typename OP>
struct EmboxCommonConversion : public FIROpConversion<OP> {
using FIROpConversion<OP>::FIROpConversion;
// Find the LLVMFuncOp in whose entry block the alloca should be inserted.
// The order to find the LLVMFuncOp is as follows:
// 1. The parent operation of the current block if it is a LLVMFuncOp.
// 2. The first ancestor that is a LLVMFuncOp.
mlir::LLVM::LLVMFuncOp
getFuncForAllocaInsert(mlir::ConversionPatternRewriter &rewriter) const {
mlir::Operation *parentOp = rewriter.getInsertionBlock()->getParentOp();
return mlir::isa<mlir::LLVM::LLVMFuncOp>(parentOp)
? mlir::cast<mlir::LLVM::LLVMFuncOp>(parentOp)
: parentOp->getParentOfType<mlir::LLVM::LLVMFuncOp>();
}
// Generate an alloca of size 1 and type \p toTy.
mlir::LLVM::AllocaOp
genAllocaWithType(mlir::Location loc, mlir::Type toTy, unsigned alignment,
mlir::ConversionPatternRewriter &rewriter) const {
auto thisPt = rewriter.saveInsertionPoint();
mlir::LLVM::LLVMFuncOp func = getFuncForAllocaInsert(rewriter);
rewriter.setInsertionPointToStart(&func.front());
auto size = this->genI32Constant(loc, rewriter, 1);
auto al = rewriter.create<mlir::LLVM::AllocaOp>(loc, toTy, size, alignment);
rewriter.restoreInsertionPoint(thisPt);
return al;
}
static int getCFIAttr(fir::BoxType boxTy) {
auto eleTy = boxTy.getEleTy();
if (eleTy.isa<fir::PointerType>())
return CFI_attribute_pointer;
if (eleTy.isa<fir::HeapType>())
return CFI_attribute_allocatable;
return CFI_attribute_other;
}
static fir::RecordType unwrapIfDerived(fir::BoxType boxTy) {
return fir::unwrapSequenceType(fir::dyn_cast_ptrOrBoxEleTy(boxTy))
.template dyn_cast<fir::RecordType>();
}
static bool isDerivedTypeWithLenParams(fir::BoxType boxTy) {
auto recTy = unwrapIfDerived(boxTy);
return recTy && recTy.getNumLenParams() > 0;
}
static bool isDerivedType(fir::BoxType boxTy) {
return unwrapIfDerived(boxTy) != nullptr;
}
// Get the element size and CFI type code of the boxed value.
std::tuple<mlir::Value, mlir::Value> getSizeAndTypeCode(
mlir::Location loc, mlir::ConversionPatternRewriter &rewriter,
mlir::Type boxEleTy, mlir::ValueRange lenParams = {}) const {
auto doInteger =
[&](unsigned width) -> std::tuple<mlir::Value, mlir::Value> {
int typeCode = fir::integerBitsToTypeCode(width);
return {this->genConstantOffset(loc, rewriter, width / 8),
this->genConstantOffset(loc, rewriter, typeCode)};
};
auto doLogical =
[&](unsigned width) -> std::tuple<mlir::Value, mlir::Value> {
int typeCode = fir::logicalBitsToTypeCode(width);
return {this->genConstantOffset(loc, rewriter, width / 8),
this->genConstantOffset(loc, rewriter, typeCode)};
};
auto doFloat = [&](unsigned width) -> std::tuple<mlir::Value, mlir::Value> {
int typeCode = fir::realBitsToTypeCode(width);
return {this->genConstantOffset(loc, rewriter, width / 8),
this->genConstantOffset(loc, rewriter, typeCode)};
};
auto doComplex =
[&](unsigned width) -> std::tuple<mlir::Value, mlir::Value> {
auto typeCode = fir::complexBitsToTypeCode(width);
return {this->genConstantOffset(loc, rewriter, width / 8 * 2),
this->genConstantOffset(loc, rewriter, typeCode)};
};
auto doCharacter =
[&](unsigned width,
mlir::Value len) -> std::tuple<mlir::Value, mlir::Value> {
auto typeCode = fir::characterBitsToTypeCode(width);
auto typeCodeVal = this->genConstantOffset(loc, rewriter, typeCode);
if (width == 8)
return {len, typeCodeVal};
auto byteWidth = this->genConstantOffset(loc, rewriter, width / 8);
auto i64Ty = mlir::IntegerType::get(&this->lowerTy().getContext(), 64);
auto size =
rewriter.create<mlir::LLVM::MulOp>(loc, i64Ty, byteWidth, len);
return {size, typeCodeVal};
};
auto getKindMap = [&]() -> fir::KindMapping & {
return this->lowerTy().getKindMap();
};
// Pointer-like types.
if (auto eleTy = fir::dyn_cast_ptrEleTy(boxEleTy))
boxEleTy = eleTy;
// Integer types.
if (fir::isa_integer(boxEleTy)) {
if (auto ty = boxEleTy.dyn_cast<mlir::IntegerType>())
return doInteger(ty.getWidth());
auto ty = boxEleTy.cast<fir::IntegerType>();
return doInteger(getKindMap().getIntegerBitsize(ty.getFKind()));
}
// Floating point types.
if (fir::isa_real(boxEleTy)) {
if (auto ty = boxEleTy.dyn_cast<mlir::FloatType>())
return doFloat(ty.getWidth());
auto ty = boxEleTy.cast<fir::RealType>();
return doFloat(getKindMap().getRealBitsize(ty.getFKind()));
}
// Complex types.
if (fir::isa_complex(boxEleTy)) {
if (auto ty = boxEleTy.dyn_cast<mlir::ComplexType>())
return doComplex(
ty.getElementType().cast<mlir::FloatType>().getWidth());
auto ty = boxEleTy.cast<fir::ComplexType>();
return doComplex(getKindMap().getRealBitsize(ty.getFKind()));
}
// Character types.
if (auto ty = boxEleTy.dyn_cast<fir::CharacterType>()) {
auto charWidth = getKindMap().getCharacterBitsize(ty.getFKind());
if (ty.getLen() != fir::CharacterType::unknownLen()) {
auto len = this->genConstantOffset(loc, rewriter, ty.getLen());
return doCharacter(charWidth, len);
}
assert(!lenParams.empty());
return doCharacter(charWidth, lenParams.back());
}
// Logical type.
if (auto ty = boxEleTy.dyn_cast<fir::LogicalType>())
return doLogical(getKindMap().getLogicalBitsize(ty.getFKind()));
// Array types.
if (auto seqTy = boxEleTy.dyn_cast<fir::SequenceType>())
return getSizeAndTypeCode(loc, rewriter, seqTy.getEleTy(), lenParams);
// Derived-type types.
if (boxEleTy.isa<fir::RecordType>()) {
auto ptrTy = mlir::LLVM::LLVMPointerType::get(
this->lowerTy().convertType(boxEleTy));
auto nullPtr = rewriter.create<mlir::LLVM::NullOp>(loc, ptrTy);
auto one =
genConstantIndex(loc, this->lowerTy().offsetType(), rewriter, 1);
auto gep = rewriter.create<mlir::LLVM::GEPOp>(
loc, ptrTy, mlir::ValueRange{nullPtr, one});
auto eleSize = rewriter.create<mlir::LLVM::PtrToIntOp>(
loc, this->lowerTy().indexType(), gep);
return {eleSize,
this->genConstantOffset(loc, rewriter, fir::derivedToTypeCode())};
}
// Reference type.
if (fir::isa_ref_type(boxEleTy)) {
// FIXME: use the target pointer size rather than sizeof(void*)
return {this->genConstantOffset(loc, rewriter, sizeof(void *)),
this->genConstantOffset(loc, rewriter, CFI_type_cptr)};
}
fir::emitFatalError(loc, "unhandled type in fir.box code generation");
}
/// Basic pattern to write a field in the descriptor
mlir::Value insertField(mlir::ConversionPatternRewriter &rewriter,
mlir::Location loc, mlir::Value dest,
ArrayRef<unsigned> fldIndexes, mlir::Value value,
bool bitcast = false) const {
auto boxTy = dest.getType();
auto fldTy = this->getBoxEleTy(boxTy, fldIndexes);
if (bitcast)
value = rewriter.create<mlir::LLVM::BitcastOp>(loc, fldTy, value);
else
value = this->integerCast(loc, rewriter, fldTy, value);
SmallVector<mlir::Attribute, 2> attrs;
for (auto i : fldIndexes)
attrs.push_back(rewriter.getI32IntegerAttr(i));
auto indexesAttr = mlir::ArrayAttr::get(rewriter.getContext(), attrs);
return rewriter.create<mlir::LLVM::InsertValueOp>(loc, boxTy, dest, value,
indexesAttr);
}
inline mlir::Value
insertBaseAddress(mlir::ConversionPatternRewriter &rewriter,
mlir::Location loc, mlir::Value dest,
mlir::Value base) const {
return insertField(rewriter, loc, dest, {0}, base, /*bitCast=*/true);
}
/// Get the address of the type descriptor global variable that was created by
/// lowering for derived type \p recType.
template <typename BOX>
mlir::Value
getTypeDescriptor(BOX box, mlir::ConversionPatternRewriter &rewriter,
mlir::Location loc, fir::RecordType recType) const {
std::string name = recType.getLoweredName();
auto module = box->template getParentOfType<mlir::ModuleOp>();
if (auto global = module.template lookupSymbol<fir::GlobalOp>(name)) {
auto ty = mlir::LLVM::LLVMPointerType::get(
this->lowerTy().convertType(global.getType()));
return rewriter.create<mlir::LLVM::AddressOfOp>(loc, ty,
global.sym_name());
}
if (auto global =
module.template lookupSymbol<mlir::LLVM::GlobalOp>(name)) {
// The global may have already been translated to LLVM.
auto ty = mlir::LLVM::LLVMPointerType::get(global.getType());
return rewriter.create<mlir::LLVM::AddressOfOp>(loc, ty,
global.sym_name());
}
// The global does not exist in the current translation unit, but may be
// defined elsewhere (e.g., type defined in a module).
// For now, create a extern_weak symbol (will become nullptr if unresolved)
// to support generating code without the front-end generated symbols.
// These could be made available_externally to require the symbols to be
// defined elsewhere and to cause link-time failure otherwise.
auto i8Ty = rewriter.getIntegerType(8);
mlir::OpBuilder modBuilder(module.getBodyRegion());
// TODO: The symbol should be lowered to constant in lowering, they are read
// only.
modBuilder.create<mlir::LLVM::GlobalOp>(loc, i8Ty, /*isConstant=*/false,
mlir::LLVM::Linkage::ExternWeak,
name, mlir::Attribute{});
auto ty = mlir::LLVM::LLVMPointerType::get(i8Ty);
return rewriter.create<mlir::LLVM::AddressOfOp>(loc, ty, name);
}
template <typename BOX>
std::tuple<fir::BoxType, mlir::Value, mlir::Value>
consDescriptorPrefix(BOX box, mlir::ConversionPatternRewriter &rewriter,
unsigned rank, mlir::ValueRange lenParams) const {
auto loc = box.getLoc();
auto boxTy = box.getType().template dyn_cast<fir::BoxType>();
auto convTy = this->lowerTy().convertBoxType(boxTy, rank);
auto llvmBoxPtrTy = convTy.template cast<mlir::LLVM::LLVMPointerType>();
auto llvmBoxTy = llvmBoxPtrTy.getElementType();
mlir::Value descriptor =
rewriter.create<mlir::LLVM::UndefOp>(loc, llvmBoxTy);
llvm::SmallVector<mlir::Value> typeparams = lenParams;
if constexpr (!std::is_same_v<BOX, fir::EmboxOp>) {
if (!box.substr().empty() && fir::hasDynamicSize(boxTy.getEleTy()))
typeparams.push_back(box.substr()[1]);
}
// Write each of the fields with the appropriate values
auto [eleSize, cfiTy] =
getSizeAndTypeCode(loc, rewriter, boxTy.getEleTy(), typeparams);
descriptor =
insertField(rewriter, loc, descriptor, {kElemLenPosInBox}, eleSize);
descriptor = insertField(rewriter, loc, descriptor, {kVersionPosInBox},
this->genI32Constant(loc, rewriter, CFI_VERSION));
descriptor = insertField(rewriter, loc, descriptor, {kRankPosInBox},
this->genI32Constant(loc, rewriter, rank));
descriptor = insertField(rewriter, loc, descriptor, {kTypePosInBox}, cfiTy);
descriptor =
insertField(rewriter, loc, descriptor, {kAttributePosInBox},
this->genI32Constant(loc, rewriter, getCFIAttr(boxTy)));
const bool hasAddendum = isDerivedType(boxTy);
descriptor =
insertField(rewriter, loc, descriptor, {kF18AddendumPosInBox},
this->genI32Constant(loc, rewriter, hasAddendum ? 1 : 0));
if (hasAddendum) {
auto isArray =
fir::dyn_cast_ptrOrBoxEleTy(boxTy).template isa<fir::SequenceType>();
unsigned typeDescFieldId = isArray ? kOptTypePtrPosInBox : kDimsPosInBox;
auto typeDesc =
getTypeDescriptor(box, rewriter, loc, unwrapIfDerived(boxTy));
descriptor =
insertField(rewriter, loc, descriptor, {typeDescFieldId}, typeDesc,
/*bitCast=*/true);
}
return {boxTy, descriptor, eleSize};
}
/// If the embox is not in a globalOp body, allocate storage for the box;
/// store the value inside and return the generated alloca. Return the input
/// value otherwise.
mlir::Value
placeInMemoryIfNotGlobalInit(mlir::ConversionPatternRewriter &rewriter,
mlir::Location loc, mlir::Value boxValue) const {
auto *thisBlock = rewriter.getInsertionBlock();
if (thisBlock && mlir::isa<mlir::LLVM::GlobalOp>(thisBlock->getParentOp()))
return boxValue;
auto boxPtrTy = mlir::LLVM::LLVMPointerType::get(boxValue.getType());
auto alloca = genAllocaWithType(loc, boxPtrTy, defaultAlign, rewriter);
rewriter.create<mlir::LLVM::StoreOp>(loc, boxValue, alloca);
return alloca;
}
};
/// Create a generic box on a memory reference. This conversions lowers the
/// abstract box to the appropriate, initialized descriptor.
struct EmboxOpConversion : public EmboxCommonConversion<fir::EmboxOp> {
using EmboxCommonConversion::EmboxCommonConversion;
mlir::LogicalResult
matchAndRewrite(fir::EmboxOp embox, OpAdaptor adaptor,
mlir::ConversionPatternRewriter &rewriter) const override {
assert(!embox.getShape() && "There should be no dims on this embox op");
auto [boxTy, dest, eleSize] =
consDescriptorPrefix(embox, rewriter, /*rank=*/0,
/*lenParams=*/adaptor.getOperands().drop_front(1));
dest = insertBaseAddress(rewriter, embox.getLoc(), dest,
adaptor.getOperands()[0]);
if (isDerivedTypeWithLenParams(boxTy))
return rewriter.notifyMatchFailure(
embox, "fir.embox codegen of derived with length parameters not "
"implemented yet");
auto result = placeInMemoryIfNotGlobalInit(rewriter, embox.getLoc(), dest);
rewriter.replaceOp(embox, result);
return success();
}
};
/// Lower `fir.emboxproc` operation. Creates a procedure box.
/// TODO: Part of supporting Fortran 2003 procedure pointers.
struct EmboxProcOpConversion : public FIROpConversion<fir::EmboxProcOp> {
using FIROpConversion::FIROpConversion;
mlir::LogicalResult
matchAndRewrite(fir::EmboxProcOp emboxproc, OpAdaptor adaptor,
mlir::ConversionPatternRewriter &rewriter) const override {
return rewriter.notifyMatchFailure(
emboxproc, "fir.emboxproc codegen is not implemented yet");
}
};
// Code shared between insert_value and extract_value Ops.
struct ValueOpCommon {
// Translate the arguments pertaining to any multidimensional array to
// row-major order for LLVM-IR.
static void toRowMajor(SmallVectorImpl<mlir::Attribute> &attrs,
mlir::Type ty) {
assert(ty && "type is null");
const auto end = attrs.size();
for (std::remove_const_t<decltype(end)> i = 0; i < end; ++i) {
if (auto seq = ty.dyn_cast<mlir::LLVM::LLVMArrayType>()) {
const auto dim = getDimension(seq);
if (dim > 1) {
auto ub = std::min(i + dim, end);
std::reverse(attrs.begin() + i, attrs.begin() + ub);
i += dim - 1;
}
ty = getArrayElementType(seq);
} else if (auto st = ty.dyn_cast<mlir::LLVM::LLVMStructType>()) {
ty = st.getBody()[attrs[i].cast<mlir::IntegerAttr>().getInt()];
} else {
llvm_unreachable("index into invalid type");
}
}
}
static llvm::SmallVector<mlir::Attribute>
collectIndices(mlir::ConversionPatternRewriter &rewriter,
mlir::ArrayAttr arrAttr) {
llvm::SmallVector<mlir::Attribute> attrs;
for (auto i = arrAttr.begin(), e = arrAttr.end(); i != e; ++i) {
if (i->isa<mlir::IntegerAttr>()) {
attrs.push_back(*i);
} else {
auto fieldName = i->cast<mlir::StringAttr>().getValue();
++i;
auto ty = i->cast<mlir::TypeAttr>().getValue();
auto index = ty.cast<fir::RecordType>().getFieldIndex(fieldName);
attrs.push_back(mlir::IntegerAttr::get(rewriter.getI32Type(), index));
}
}
return attrs;
}
private:
static unsigned getDimension(mlir::LLVM::LLVMArrayType ty) {
unsigned result = 1;
for (auto eleTy = ty.getElementType().dyn_cast<mlir::LLVM::LLVMArrayType>();
eleTy;
eleTy = eleTy.getElementType().dyn_cast<mlir::LLVM::LLVMArrayType>())
++result;
return result;
}
static mlir::Type getArrayElementType(mlir::LLVM::LLVMArrayType ty) {
auto eleTy = ty.getElementType();
while (auto arrTy = eleTy.dyn_cast<mlir::LLVM::LLVMArrayType>())
eleTy = arrTy.getElementType();
return eleTy;
}
};
/// Extract a subobject value from an ssa-value of aggregate type
struct ExtractValueOpConversion
: public FIROpAndTypeConversion<fir::ExtractValueOp>,
public ValueOpCommon {
using FIROpAndTypeConversion::FIROpAndTypeConversion;
mlir::LogicalResult
doRewrite(fir::ExtractValueOp extractVal, mlir::Type ty, OpAdaptor adaptor,
mlir::ConversionPatternRewriter &rewriter) const override {
auto attrs = collectIndices(rewriter, extractVal.coor());
toRowMajor(attrs, adaptor.getOperands()[0].getType());
auto position = mlir::ArrayAttr::get(extractVal.getContext(), attrs);
rewriter.replaceOpWithNewOp<mlir::LLVM::ExtractValueOp>(
extractVal, ty, adaptor.getOperands()[0], position);
return success();
}
};
/// InsertValue is the generalized instruction for the composition of new
/// aggregate type values.
struct InsertValueOpConversion
: public FIROpAndTypeConversion<fir::InsertValueOp>,
public ValueOpCommon {
using FIROpAndTypeConversion::FIROpAndTypeConversion;
mlir::LogicalResult
doRewrite(fir::InsertValueOp insertVal, mlir::Type ty, OpAdaptor adaptor,
mlir::ConversionPatternRewriter &rewriter) const override {
auto attrs = collectIndices(rewriter, insertVal.coor());
toRowMajor(attrs, adaptor.getOperands()[0].getType());
auto position = mlir::ArrayAttr::get(insertVal.getContext(), attrs);
rewriter.replaceOpWithNewOp<mlir::LLVM::InsertValueOp>(
insertVal, ty, adaptor.getOperands()[0], adaptor.getOperands()[1],
position);
return success();
}
};
/// InsertOnRange inserts a value into a sequence over a range of offsets.
struct InsertOnRangeOpConversion
: public FIROpAndTypeConversion<fir::InsertOnRangeOp> {
using FIROpAndTypeConversion::FIROpAndTypeConversion;
// Increments an array of subscripts in a row major fasion.
void incrementSubscripts(const SmallVector<uint64_t> &dims,
SmallVector<uint64_t> &subscripts) const {
for (size_t i = dims.size(); i > 0; --i) {
if (++subscripts[i - 1] < dims[i - 1]) {
return;
}
subscripts[i - 1] = 0;
}
}
mlir::LogicalResult
doRewrite(fir::InsertOnRangeOp range, mlir::Type ty, OpAdaptor adaptor,
mlir::ConversionPatternRewriter &rewriter) const override {
llvm::SmallVector<uint64_t> dims;
auto type = adaptor.getOperands()[0].getType();
// Iteratively extract the array dimensions from the type.
while (auto t = type.dyn_cast<mlir::LLVM::LLVMArrayType>()) {
dims.push_back(t.getNumElements());
type = t.getElementType();
}
SmallVector<uint64_t> lBounds;
SmallVector<uint64_t> uBounds;
// Unzip the upper and lower bound and convert to a row major format.
mlir::DenseIntElementsAttr coor = range.coor();
auto reversedCoor = llvm::reverse(coor.getValues<int64_t>());
for (auto i = reversedCoor.begin(), e = reversedCoor.end(); i != e; ++i) {
uBounds.push_back(*i++);
lBounds.push_back(*i);
}
auto &subscripts = lBounds;
auto loc = range.getLoc();
mlir::Value lastOp = adaptor.getOperands()[0];
mlir::Value insertVal = adaptor.getOperands()[1];
auto i64Ty = rewriter.getI64Type();
while (subscripts != uBounds) {
// Convert uint64_t's to Attribute's.
SmallVector<mlir::Attribute> subscriptAttrs;
for (const auto &subscript : subscripts)
subscriptAttrs.push_back(IntegerAttr::get(i64Ty, subscript));
lastOp = rewriter.create<mlir::LLVM::InsertValueOp>(
loc, ty, lastOp, insertVal,
ArrayAttr::get(range.getContext(), subscriptAttrs));
incrementSubscripts(dims, subscripts);
}
// Convert uint64_t's to Attribute's.
SmallVector<mlir::Attribute> subscriptAttrs;
for (const auto &subscript : subscripts)
subscriptAttrs.push_back(
IntegerAttr::get(rewriter.getI64Type(), subscript));
mlir::ArrayRef<mlir::Attribute> arrayRef(subscriptAttrs);
rewriter.replaceOpWithNewOp<mlir::LLVM::InsertValueOp>(
range, ty, lastOp, insertVal,
ArrayAttr::get(range.getContext(), arrayRef));
return success();
}
};
//
// Primitive operations on Complex types
//
/// Generate inline code for complex addition/subtraction
template <typename LLVMOP, typename OPTY>
mlir::LLVM::InsertValueOp complexSum(OPTY sumop, mlir::ValueRange opnds,
mlir::ConversionPatternRewriter &rewriter,
fir::LLVMTypeConverter &lowering) {
mlir::Value a = opnds[0];
mlir::Value b = opnds[1];
auto loc = sumop.getLoc();
auto ctx = sumop.getContext();
auto c0 = mlir::ArrayAttr::get(ctx, rewriter.getI32IntegerAttr(0));
auto c1 = mlir::ArrayAttr::get(ctx, rewriter.getI32IntegerAttr(1));
mlir::Type eleTy = lowering.convertType(getComplexEleTy(sumop.getType()));
mlir::Type ty = lowering.convertType(sumop.getType());
auto x0 = rewriter.create<mlir::LLVM::ExtractValueOp>(loc, eleTy, a, c0);
auto y0 = rewriter.create<mlir::LLVM::ExtractValueOp>(loc, eleTy, a, c1);
auto x1 = rewriter.create<mlir::LLVM::ExtractValueOp>(loc, eleTy, b, c0);
auto y1 = rewriter.create<mlir::LLVM::ExtractValueOp>(loc, eleTy, b, c1);
auto rx = rewriter.create<LLVMOP>(loc, eleTy, x0, x1);
auto ry = rewriter.create<LLVMOP>(loc, eleTy, y0, y1);
auto r0 = rewriter.create<mlir::LLVM::UndefOp>(loc, ty);
auto r1 = rewriter.create<mlir::LLVM::InsertValueOp>(loc, ty, r0, rx, c0);
return rewriter.create<mlir::LLVM::InsertValueOp>(loc, ty, r1, ry, c1);
}
struct AddcOpConversion : public FIROpConversion<fir::AddcOp> {
using FIROpConversion::FIROpConversion;
mlir::LogicalResult
matchAndRewrite(fir::AddcOp addc, OpAdaptor adaptor,
mlir::ConversionPatternRewriter &rewriter) const override {
// given: (x + iy) + (x' + iy')
// result: (x + x') + i(y + y')
auto r = complexSum<mlir::LLVM::FAddOp>(addc, adaptor.getOperands(),
rewriter, lowerTy());
rewriter.replaceOp(addc, r.getResult());
return success();
}
};
struct SubcOpConversion : public FIROpConversion<fir::SubcOp> {
using FIROpConversion::FIROpConversion;
mlir::LogicalResult
matchAndRewrite(fir::SubcOp subc, OpAdaptor adaptor,
mlir::ConversionPatternRewriter &rewriter) const override {
// given: (x + iy) - (x' + iy')
// result: (x - x') + i(y - y')
auto r = complexSum<mlir::LLVM::FSubOp>(subc, adaptor.getOperands(),
rewriter, lowerTy());
rewriter.replaceOp(subc, r.getResult());
return success();
}
};
/// Inlined complex multiply
struct MulcOpConversion : public FIROpConversion<fir::MulcOp> {
using FIROpConversion::FIROpConversion;
mlir::LogicalResult
matchAndRewrite(fir::MulcOp mulc, OpAdaptor adaptor,
mlir::ConversionPatternRewriter &rewriter) const override {
// TODO: Can we use a call to __muldc3 ?
// given: (x + iy) * (x' + iy')
// result: (xx'-yy')+i(xy'+yx')
mlir::Value a = adaptor.getOperands()[0];
mlir::Value b = adaptor.getOperands()[1];
auto loc = mulc.getLoc();
auto *ctx = mulc.getContext();
auto c0 = mlir::ArrayAttr::get(ctx, rewriter.getI32IntegerAttr(0));
auto c1 = mlir::ArrayAttr::get(ctx, rewriter.getI32IntegerAttr(1));
mlir::Type eleTy = convertType(getComplexEleTy(mulc.getType()));
mlir::Type ty = convertType(mulc.getType());
auto x0 = rewriter.create<mlir::LLVM::ExtractValueOp>(loc, eleTy, a, c0);
auto y0 = rewriter.create<mlir::LLVM::ExtractValueOp>(loc, eleTy, a, c1);
auto x1 = rewriter.create<mlir::LLVM::ExtractValueOp>(loc, eleTy, b, c0);
auto y1 = rewriter.create<mlir::LLVM::ExtractValueOp>(loc, eleTy, b, c1);
auto xx = rewriter.create<mlir::LLVM::FMulOp>(loc, eleTy, x0, x1);
auto yx = rewriter.create<mlir::LLVM::FMulOp>(loc, eleTy, y0, x1);
auto xy = rewriter.create<mlir::LLVM::FMulOp>(loc, eleTy, x0, y1);
auto ri = rewriter.create<mlir::LLVM::FAddOp>(loc, eleTy, xy, yx);
auto yy = rewriter.create<mlir::LLVM::FMulOp>(loc, eleTy, y0, y1);
auto rr = rewriter.create<mlir::LLVM::FSubOp>(loc, eleTy, xx, yy);
auto ra = rewriter.create<mlir::LLVM::UndefOp>(loc, ty);
auto r1 = rewriter.create<mlir::LLVM::InsertValueOp>(loc, ty, ra, rr, c0);
auto r0 = rewriter.create<mlir::LLVM::InsertValueOp>(loc, ty, r1, ri, c1);
rewriter.replaceOp(mulc, r0.getResult());
return success();
}
};
/// Inlined complex division
struct DivcOpConversion : public FIROpConversion<fir::DivcOp> {
using FIROpConversion::FIROpConversion;
mlir::LogicalResult
matchAndRewrite(fir::DivcOp divc, OpAdaptor adaptor,
mlir::ConversionPatternRewriter &rewriter) const override {
// TODO: Can we use a call to __divdc3 instead?
// Just generate inline code for now.
// given: (x + iy) / (x' + iy')
// result: ((xx'+yy')/d) + i((yx'-xy')/d) where d = x'x' + y'y'
mlir::Value a = adaptor.getOperands()[0];
mlir::Value b = adaptor.getOperands()[1];
auto loc = divc.getLoc();
auto *ctx = divc.getContext();
auto c0 = mlir::ArrayAttr::get(ctx, rewriter.getI32IntegerAttr(0));
auto c1 = mlir::ArrayAttr::get(ctx, rewriter.getI32IntegerAttr(1));
mlir::Type eleTy = convertType(getComplexEleTy(divc.getType()));
mlir::Type ty = convertType(divc.getType());
auto x0 = rewriter.create<mlir::LLVM::ExtractValueOp>(loc, eleTy, a, c0);
auto y0 = rewriter.create<mlir::LLVM::ExtractValueOp>(loc, eleTy, a, c1);
auto x1 = rewriter.create<mlir::LLVM::ExtractValueOp>(loc, eleTy, b, c0);
auto y1 = rewriter.create<mlir::LLVM::ExtractValueOp>(loc, eleTy, b, c1);
auto xx = rewriter.create<mlir::LLVM::FMulOp>(loc, eleTy, x0, x1);
auto x1x1 = rewriter.create<mlir::LLVM::FMulOp>(loc, eleTy, x1, x1);
auto yx = rewriter.create<mlir::LLVM::FMulOp>(loc, eleTy, y0, x1);
auto xy = rewriter.create<mlir::LLVM::FMulOp>(loc, eleTy, x0, y1);
auto yy = rewriter.create<mlir::LLVM::FMulOp>(loc, eleTy, y0, y1);
auto y1y1 = rewriter.create<mlir::LLVM::FMulOp>(loc, eleTy, y1, y1);
auto d = rewriter.create<mlir::LLVM::FAddOp>(loc, eleTy, x1x1, y1y1);
auto rrn = rewriter.create<mlir::LLVM::FAddOp>(loc, eleTy, xx, yy);
auto rin = rewriter.create<mlir::LLVM::FSubOp>(loc, eleTy, yx, xy);
auto rr = rewriter.create<mlir::LLVM::FDivOp>(loc, eleTy, rrn, d);
auto ri = rewriter.create<mlir::LLVM::FDivOp>(loc, eleTy, rin, d);
auto ra = rewriter.create<mlir::LLVM::UndefOp>(loc, ty);
auto r1 = rewriter.create<mlir::LLVM::InsertValueOp>(loc, ty, ra, rr, c0);
auto r0 = rewriter.create<mlir::LLVM::InsertValueOp>(loc, ty, r1, ri, c1);
rewriter.replaceOp(divc, r0.getResult());
return success();
}
};
/// Inlined complex negation
struct NegcOpConversion : public FIROpConversion<fir::NegcOp> {
using FIROpConversion::FIROpConversion;
mlir::LogicalResult
matchAndRewrite(fir::NegcOp neg, OpAdaptor adaptor,
mlir::ConversionPatternRewriter &rewriter) const override {
// given: -(x + iy)
// result: -x - iy
auto *ctxt = neg.getContext();
auto eleTy = convertType(getComplexEleTy(neg.getType()));
auto ty = convertType(neg.getType());
auto loc = neg.getLoc();
mlir::Value o0 = adaptor.getOperands()[0];
auto c0 = mlir::ArrayAttr::get(ctxt, rewriter.getI32IntegerAttr(0));
auto c1 = mlir::ArrayAttr::get(ctxt, rewriter.getI32IntegerAttr(1));
auto rp = rewriter.create<mlir::LLVM::ExtractValueOp>(loc, eleTy, o0, c0);
auto ip = rewriter.create<mlir::LLVM::ExtractValueOp>(loc, eleTy, o0, c1);
auto nrp = rewriter.create<mlir::LLVM::FNegOp>(loc, eleTy, rp);
auto nip = rewriter.create<mlir::LLVM::FNegOp>(loc, eleTy, ip);
auto r = rewriter.create<mlir::LLVM::InsertValueOp>(loc, ty, o0, nrp, c0);
rewriter.replaceOpWithNewOp<mlir::LLVM::InsertValueOp>(neg, ty, r, nip, c1);
return success();
}
};
/// Conversion pattern for operation that must be dead. The information in these
/// operations is used by other operation. At this point they should not have
/// anymore uses.
/// These operations are normally dead after the pre-codegen pass.
template <typename FromOp>
struct MustBeDeadConversion : public FIROpConversion<FromOp> {
explicit MustBeDeadConversion(fir::LLVMTypeConverter &lowering)
: FIROpConversion<FromOp>(lowering) {}
using OpAdaptor = typename FromOp::Adaptor;
mlir::LogicalResult
matchAndRewrite(FromOp op, OpAdaptor adaptor,
mlir::ConversionPatternRewriter &rewriter) const final {
if (!op->getUses().empty())
return rewriter.notifyMatchFailure(op, "op must be dead");
rewriter.eraseOp(op);
return success();
}
};
struct ShapeOpConversion : public MustBeDeadConversion<fir::ShapeOp> {
using MustBeDeadConversion::MustBeDeadConversion;
};
struct ShapeShiftOpConversion : public MustBeDeadConversion<fir::ShapeShiftOp> {
using MustBeDeadConversion::MustBeDeadConversion;
};
struct ShiftOpConversion : public MustBeDeadConversion<fir::ShiftOp> {
using MustBeDeadConversion::MustBeDeadConversion;
};
struct SliceOpConversion : public MustBeDeadConversion<fir::SliceOp> {
using MustBeDeadConversion::MustBeDeadConversion;
};
/// `fir.is_present` -->
/// ```
/// %0 = llvm.mlir.constant(0 : i64)
/// %1 = llvm.ptrtoint %0
/// %2 = llvm.icmp "ne" %1, %0 : i64
/// ```
struct IsPresentOpConversion : public FIROpConversion<fir::IsPresentOp> {
using FIROpConversion::FIROpConversion;
mlir::LogicalResult
matchAndRewrite(fir::IsPresentOp isPresent, OpAdaptor adaptor,
mlir::ConversionPatternRewriter &rewriter) const override {
mlir::Type idxTy = lowerTy().indexType();
mlir::Location loc = isPresent.getLoc();
auto ptr = adaptor.getOperands()[0];
if (isPresent.val().getType().isa<fir::BoxCharType>()) {
auto structTy = ptr.getType().cast<mlir::LLVM::LLVMStructType>();
assert(!structTy.isOpaque() && !structTy.getBody().empty());
mlir::Type ty = structTy.getBody()[0];
mlir::MLIRContext *ctx = isPresent.getContext();
auto c0 = mlir::ArrayAttr::get(ctx, rewriter.getI32IntegerAttr(0));
ptr = rewriter.create<mlir::LLVM::ExtractValueOp>(loc, ty, ptr, c0);
}
mlir::LLVM::ConstantOp c0 =
genConstantIndex(isPresent.getLoc(), idxTy, rewriter, 0);
auto addr = rewriter.create<mlir::LLVM::PtrToIntOp>(loc, idxTy, ptr);
rewriter.replaceOpWithNewOp<mlir::LLVM::ICmpOp>(
isPresent, mlir::LLVM::ICmpPredicate::ne, addr, c0);
return success();
}
};
/// Convert `!fir.emboxchar<!fir.char<KIND, ?>, #n>` into a sequence of
/// instructions that generate `!llvm.struct<(ptr<ik>, i64)>`. The 1st element
/// in this struct is a pointer. Its type is determined from `KIND`. The 2nd
/// element is the length of the character buffer (`#n`).
struct EmboxCharOpConversion : public FIROpConversion<fir::EmboxCharOp> {
using FIROpConversion::FIROpConversion;
mlir::LogicalResult
matchAndRewrite(fir::EmboxCharOp emboxChar, OpAdaptor adaptor,
mlir::ConversionPatternRewriter &rewriter) const override {
mlir::ValueRange operands = adaptor.getOperands();
MLIRContext *ctx = emboxChar.getContext();
mlir::Value charBuffer = operands[0];
mlir::Value charBufferLen = operands[1];
mlir::Location loc = emboxChar.getLoc();
mlir::Type llvmStructTy = convertType(emboxChar.getType());
auto llvmStruct = rewriter.create<mlir::LLVM::UndefOp>(loc, llvmStructTy);
mlir::Type lenTy =
llvmStructTy.cast<mlir::LLVM::LLVMStructType>().getBody()[1];
mlir::Value lenAfterCast = integerCast(loc, rewriter, lenTy, charBufferLen);
auto c0 = mlir::ArrayAttr::get(ctx, rewriter.getI32IntegerAttr(0));
auto c1 = mlir::ArrayAttr::get(ctx, rewriter.getI32IntegerAttr(1));
auto insertBufferOp = rewriter.create<mlir::LLVM::InsertValueOp>(
loc, llvmStructTy, llvmStruct, charBuffer, c0);
rewriter.replaceOpWithNewOp<mlir::LLVM::InsertValueOp>(
emboxChar, llvmStructTy, insertBufferOp, lenAfterCast, c1);
return success();
}
};
/// Construct an `llvm.extractvalue` instruction. It will return value at
/// element \p x from \p tuple.
mlir::LLVM::ExtractValueOp
genExtractValueWithIndex(mlir::Location loc, mlir::Value tuple, mlir::Type ty,
mlir::ConversionPatternRewriter &rewriter,
mlir::MLIRContext *ctx, int x) {
auto cx = mlir::ArrayAttr::get(ctx, rewriter.getI32IntegerAttr(x));
auto xty = ty.cast<mlir::LLVM::LLVMStructType>().getBody()[x];
return rewriter.create<mlir::LLVM::ExtractValueOp>(loc, xty, tuple, cx);
}
/// Convert `!fir.boxchar_len` to `!llvm.extractvalue` for the 2nd part of the
/// boxchar.
struct BoxCharLenOpConversion : public FIROpConversion<fir::BoxCharLenOp> {
using FIROpConversion::FIROpConversion;
mlir::LogicalResult
matchAndRewrite(fir::BoxCharLenOp boxCharLen, OpAdaptor adaptor,
mlir::ConversionPatternRewriter &rewriter) const override {
mlir::Value boxChar = adaptor.getOperands()[0];
mlir::Location loc = boxChar.getLoc();
mlir::MLIRContext *ctx = boxChar.getContext();
mlir::Type returnValTy = boxCharLen.getResult().getType();
constexpr int boxcharLenIdx = 1;
mlir::LLVM::ExtractValueOp len = genExtractValueWithIndex(
loc, boxChar, boxChar.getType(), rewriter, ctx, boxcharLenIdx);
mlir::Value lenAfterCast = integerCast(loc, rewriter, returnValTy, len);
rewriter.replaceOp(boxCharLen, lenAfterCast);
return success();
}
};
/// Convert `fir.unboxchar` into two `llvm.extractvalue` instructions. One for
/// the character buffer and one for the buffer length.
struct UnboxCharOpConversion : public FIROpConversion<fir::UnboxCharOp> {
using FIROpConversion::FIROpConversion;
mlir::LogicalResult
matchAndRewrite(fir::UnboxCharOp unboxchar, OpAdaptor adaptor,
mlir::ConversionPatternRewriter &rewriter) const override {
MLIRContext *ctx = unboxchar.getContext();
mlir::Type lenTy = convertType(unboxchar.getType(1));
mlir::Value tuple = adaptor.getOperands()[0];
mlir::Type tupleTy = tuple.getType();
mlir::Location loc = unboxchar.getLoc();
mlir::Value ptrToBuffer =
genExtractValueWithIndex(loc, tuple, tupleTy, rewriter, ctx, 0);
mlir::LLVM::ExtractValueOp len =
genExtractValueWithIndex(loc, tuple, tupleTy, rewriter, ctx, 1);
mlir::Value lenAfterCast = integerCast(loc, rewriter, lenTy, len);
rewriter.replaceOp(unboxchar,
ArrayRef<mlir::Value>{ptrToBuffer, lenAfterCast});
return success();
}
};
/// Lower `fir.unboxproc` operation. Unbox a procedure box value, yielding its
/// components.
/// TODO: Part of supporting Fortran 2003 procedure pointers.
struct UnboxProcOpConversion : public FIROpConversion<fir::UnboxProcOp> {
using FIROpConversion::FIROpConversion;
mlir::LogicalResult
matchAndRewrite(fir::UnboxProcOp unboxproc, OpAdaptor adaptor,
mlir::ConversionPatternRewriter &rewriter) const override {
return rewriter.notifyMatchFailure(
unboxproc, "fir.unboxproc codegen is not implemented yet");
}
};
/// Convert `fir.field_index`. The conversion depends on whether the size of
/// the record is static or dynamic.
struct FieldIndexOpConversion : public FIROpConversion<fir::FieldIndexOp> {
using FIROpConversion::FIROpConversion;
// NB: most field references should be resolved by this point
mlir::LogicalResult
matchAndRewrite(fir::FieldIndexOp field, OpAdaptor adaptor,
mlir::ConversionPatternRewriter &rewriter) const override {
auto recTy = field.on_type().cast<fir::RecordType>();
unsigned index = recTy.getFieldIndex(field.field_id());
if (!fir::hasDynamicSize(recTy)) {
// Derived type has compile-time constant layout. Return index of the
// component type in the parent type (to be used in GEP).
rewriter.replaceOp(field, mlir::ValueRange{genConstantOffset(
field.getLoc(), rewriter, index)});
return success();
}
// Derived type has compile-time constant layout. Call the compiler
// generated function to determine the byte offset of the field at runtime.
// This returns a non-constant.
FlatSymbolRefAttr symAttr = mlir::SymbolRefAttr::get(
field.getContext(), getOffsetMethodName(recTy, field.field_id()));
NamedAttribute callAttr = rewriter.getNamedAttr("callee", symAttr);
NamedAttribute fieldAttr = rewriter.getNamedAttr(
"field", mlir::IntegerAttr::get(lowerTy().indexType(), index));
rewriter.replaceOpWithNewOp<mlir::LLVM::CallOp>(
field, lowerTy().offsetType(), adaptor.getOperands(),
llvm::ArrayRef<mlir::NamedAttribute>{callAttr, fieldAttr});
return success();
}
// Re-Construct the name of the compiler generated method that calculates the
// offset
inline static std::string getOffsetMethodName(fir::RecordType recTy,
llvm::StringRef field) {
return recTy.getName().str() + "P." + field.str() + ".offset";
}
};
} // namespace
namespace {
/// Convert FIR dialect to LLVM dialect
///
/// This pass lowers all FIR dialect operations to LLVM IR dialect. An
/// MLIR pass is used to lower residual Std dialect to LLVM IR dialect.
///
/// This pass is not complete yet. We are upstreaming it in small patches.
class FIRToLLVMLowering : public fir::FIRToLLVMLoweringBase<FIRToLLVMLowering> {
public:
mlir::ModuleOp getModule() { return getOperation(); }
void runOnOperation() override final {
auto mod = getModule();
if (!forcedTargetTriple.empty()) {
fir::setTargetTriple(mod, forcedTargetTriple);
}
auto *context = getModule().getContext();
fir::LLVMTypeConverter typeConverter{getModule()};
mlir::OwningRewritePatternList pattern(context);
pattern.insert<
AbsentOpConversion, AddcOpConversion, AddrOfOpConversion,
AllocaOpConversion, BoxAddrOpConversion, BoxCharLenOpConversion,
BoxDimsOpConversion, BoxEleSizeOpConversion, BoxIsAllocOpConversion,
BoxIsArrayOpConversion, BoxIsPtrOpConversion, BoxProcHostOpConversion,
BoxRankOpConversion, BoxTypeDescOpConversion, CallOpConversion,
CmpcOpConversion, ConstcOpConversion, ConvertOpConversion,
DispatchOpConversion, DispatchTableOpConversion, DTEntryOpConversion,
DivcOpConversion, EmboxOpConversion, EmboxCharOpConversion,
EmboxProcOpConversion, ExtractValueOpConversion, FieldIndexOpConversion,
FirEndOpConversion, HasValueOpConversion, GenTypeDescOpConversion,
GlobalLenOpConversion, GlobalOpConversion, InsertOnRangeOpConversion,
InsertValueOpConversion, IsPresentOpConversion,
LenParamIndexOpConversion, LoadOpConversion, NegcOpConversion,
NoReassocOpConversion, MulcOpConversion, SelectCaseOpConversion,
SelectOpConversion, SelectRankOpConversion, SelectTypeOpConversion,
ShapeOpConversion, ShapeShiftOpConversion, ShiftOpConversion,
SliceOpConversion, StoreOpConversion, StringLitOpConversion,
SubcOpConversion, UnboxCharOpConversion, UnboxProcOpConversion,
UndefOpConversion, UnreachableOpConversion, ZeroOpConversion>(
typeConverter);
mlir::populateStdToLLVMConversionPatterns(typeConverter, pattern);
mlir::arith::populateArithmeticToLLVMConversionPatterns(typeConverter,
pattern);
mlir::ConversionTarget target{*context};
target.addLegalDialect<mlir::LLVM::LLVMDialect>();
// required NOPs for applying a full conversion
target.addLegalOp<mlir::ModuleOp>();
// apply the patterns
if (mlir::failed(mlir::applyFullConversion(getModule(), target,
std::move(pattern)))) {
signalPassFailure();
}
}
};
} // namespace
std::unique_ptr<mlir::Pass> fir::createFIRToLLVMPass() {
return std::make_unique<FIRToLLVMLowering>();
}