blob: f5b68b78a95d0ce2a03078463168645a7d325984 [file] [log] [blame]
//===-- IntrinsicCall.cpp -------------------------------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// Helper routines for constructing the FIR dialect of MLIR. As FIR is a
// dialect of MLIR, it makes extensive use of MLIR interfaces and MLIR's coding
// style (https://mlir.llvm.org/getting_started/DeveloperGuide/) is used in this
// module.
//
//===----------------------------------------------------------------------===//
#include "flang/Lower/IntrinsicCall.h"
#include "RTBuilder.h"
#include "flang/Common/static-multimap-view.h"
#include "flang/Lower/CharacterExpr.h"
#include "flang/Lower/ComplexExpr.h"
#include "flang/Lower/ConvertType.h"
#include "flang/Lower/FIRBuilder.h"
#include "flang/Lower/Mangler.h"
#include "flang/Lower/Runtime.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/ErrorHandling.h"
#include <algorithm>
#include <string_view>
#include <utility>
#define PGMATH_DECLARE
#include "flang/Evaluate/pgmath.h.inc"
/// This file implements lowering of Fortran intrinsic procedures.
/// Intrinsics are lowered to a mix of FIR and MLIR operations as
/// well as call to runtime functions or LLVM intrinsics.
/// Lowering of intrinsic procedure calls is based on a map that associates
/// Fortran intrinsic generic names to FIR generator functions.
/// All generator functions are member functions of the IntrinsicLibrary class
/// and have the same interface.
/// If no generator is given for an intrinsic name, a math runtime library
/// is searched for an implementation and, if a runtime function is found,
/// a call is generated for it. LLVM intrinsics are handled as a math
/// runtime library here.
/// Enums used to templatize and share lowering of MIN and MAX.
enum class Extremum { Min, Max };
// There are different ways to deal with NaNs in MIN and MAX.
// Known existing behaviors are listed below and can be selected for
// f18 MIN/MAX implementation.
enum class ExtremumBehavior {
// Note: the Signaling/quiet aspect of NaNs in the behaviors below are
// not described because there is no way to control/observe such aspect in
// MLIR/LLVM yet. The IEEE behaviors come with requirements regarding this
// aspect that are therefore currently not enforced. In the descriptions
// below, NaNs can be signaling or quite. Returned NaNs may be signaling
// if one of the input NaN was signaling but it cannot be guaranteed either.
// Existing compilers using an IEEE behavior (gfortran) also do not fulfill
// signaling/quiet requirements.
IeeeMinMaximumNumber,
// IEEE minimumNumber/maximumNumber behavior (754-2019, section 9.6):
// If one of the argument is and number and the other is NaN, return the
// number. If both arguements are NaN, return NaN.
// Compilers: gfortran.
IeeeMinMaximum,
// IEEE minimum/maximum behavior (754-2019, section 9.6):
// If one of the argument is NaN, return NaN.
MinMaxss,
// x86 minss/maxss behavior:
// If the second argument is a number and the other is NaN, return the number.
// In all other cases where at least one operand is NaN, return NaN.
// Compilers: xlf (only for MAX), ifort, pgfortran -nollvm, and nagfor.
PgfortranLlvm,
// "Opposite of" x86 minss/maxss behavior:
// If the first argument is a number and the other is NaN, return the
// number.
// In all other cases where at least one operand is NaN, return NaN.
// Compilers: xlf (only for MIN), and pgfortran (with llvm).
IeeeMinMaxNum
// IEEE minNum/maxNum behavior (754-2008, section 5.3.1):
// TODO: Not implemented.
// It is the only behavior where the signaling/quiet aspect of a NaN argument
// impacts if the result should be NaN or the argument that is a number.
// LLVM/MLIR do not provide ways to observe this aspect, so it is not
// possible to implement it without some target dependent runtime.
};
// TODO error handling -> return a code or directly emit messages ?
struct IntrinsicLibrary {
// Constructors.
explicit IntrinsicLibrary(Fortran::lower::FirOpBuilder &builder,
mlir::Location loc)
: builder{builder}, loc{loc} {}
IntrinsicLibrary() = delete;
IntrinsicLibrary(const IntrinsicLibrary &) = delete;
/// Generate FIR for call to Fortran intrinsic \p name with arguments \p arg
/// and expected result type \p resultType.
fir::ExtendedValue genIntrinsicCall(llvm::StringRef name,
mlir::Type resultType,
llvm::ArrayRef<fir::ExtendedValue> arg);
/// Search a runtime function that is associated to the generic intrinsic name
/// and whose signature matches the intrinsic arguments and result types.
/// If no such runtime function is found but a runtime function associated
/// with the Fortran generic exists and has the same number of arguments,
/// conversions will be inserted before and/or after the call. This is to
/// mainly to allow 16 bits float support even-though little or no math
/// runtime is currently available for it.
mlir::Value genRuntimeCall(llvm::StringRef name, mlir::Type,
llvm::ArrayRef<mlir::Value>);
using RuntimeCallGenerator =
std::function<mlir::Value(Fortran::lower::FirOpBuilder &, mlir::Location,
llvm::ArrayRef<mlir::Value>)>;
RuntimeCallGenerator
getRuntimeCallGenerator(llvm::StringRef name,
mlir::FunctionType soughtFuncType);
mlir::Value genAbs(mlir::Type, llvm::ArrayRef<mlir::Value>);
mlir::Value genAimag(mlir::Type, llvm::ArrayRef<mlir::Value>);
mlir::Value genAint(mlir::Type, llvm::ArrayRef<mlir::Value>);
mlir::Value genAnint(mlir::Type, llvm::ArrayRef<mlir::Value>);
mlir::Value genCeiling(mlir::Type, llvm::ArrayRef<mlir::Value>);
mlir::Value genConjg(mlir::Type, llvm::ArrayRef<mlir::Value>);
mlir::Value genDim(mlir::Type, llvm::ArrayRef<mlir::Value>);
mlir::Value genDprod(mlir::Type, llvm::ArrayRef<mlir::Value>);
template <Extremum, ExtremumBehavior>
mlir::Value genExtremum(mlir::Type, llvm::ArrayRef<mlir::Value>);
mlir::Value genFloor(mlir::Type, llvm::ArrayRef<mlir::Value>);
mlir::Value genIAnd(mlir::Type, llvm::ArrayRef<mlir::Value>);
mlir::Value genIchar(mlir::Type, llvm::ArrayRef<mlir::Value>);
mlir::Value genIEOr(mlir::Type, llvm::ArrayRef<mlir::Value>);
mlir::Value genIOr(mlir::Type, llvm::ArrayRef<mlir::Value>);
fir::ExtendedValue genLen(mlir::Type, llvm::ArrayRef<fir::ExtendedValue>);
fir::ExtendedValue genLenTrim(mlir::Type, llvm::ArrayRef<fir::ExtendedValue>);
mlir::Value genMerge(mlir::Type, llvm::ArrayRef<mlir::Value>);
mlir::Value genMod(mlir::Type, llvm::ArrayRef<mlir::Value>);
mlir::Value genNint(mlir::Type, llvm::ArrayRef<mlir::Value>);
mlir::Value genSign(mlir::Type, llvm::ArrayRef<mlir::Value>);
/// Implement all conversion functions like DBLE, the first argument is
/// the value to convert. There may be an additional KIND arguments that
/// is ignored because this is already reflected in the result type.
mlir::Value genConversion(mlir::Type, llvm::ArrayRef<mlir::Value>);
/// Define the different FIR generators that can be mapped to intrinsic to
/// generate the related code.
using ElementalGenerator = decltype(&IntrinsicLibrary::genAbs);
using ExtendedGenerator = decltype(&IntrinsicLibrary::genLenTrim);
using Generator = std::variant<ElementalGenerator, ExtendedGenerator>;
/// All generators can be outlined. This will build a function named
/// "fir."+ <generic name> + "." + <result type code> and generate the
/// intrinsic implementation inside instead of at the intrinsic call sites.
/// This can be used to keep the FIR more readable. Only one function will
/// be generated for all the similar calls in a program.
/// If the Generator is nullptr, the wrapper uses genRuntimeCall.
template <typename GeneratorType>
mlir::Value outlineInWrapper(GeneratorType, llvm::StringRef name,
mlir::Type resultType,
llvm::ArrayRef<mlir::Value> args);
fir::ExtendedValue outlineInWrapper(ExtendedGenerator, llvm::StringRef name,
mlir::Type resultType,
llvm::ArrayRef<fir::ExtendedValue> args);
template <typename GeneratorType>
mlir::FuncOp getWrapper(GeneratorType, llvm::StringRef name,
mlir::FunctionType, bool loadRefArguments = false);
/// Generate calls to ElementalGenerator, handling the elemental aspects
template <typename GeneratorType>
fir::ExtendedValue
genElementalCall(GeneratorType, llvm::StringRef name, mlir::Type resultType,
llvm::ArrayRef<fir::ExtendedValue> args, bool outline);
/// Helper to invoke code generator for the intrinsics given arguments.
mlir::Value invokeGenerator(ElementalGenerator generator,
mlir::Type resultType,
llvm::ArrayRef<mlir::Value> args);
mlir::Value invokeGenerator(RuntimeCallGenerator generator,
mlir::Type resultType,
llvm::ArrayRef<mlir::Value> args);
mlir::Value invokeGenerator(ExtendedGenerator generator,
mlir::Type resultType,
llvm::ArrayRef<mlir::Value> args);
/// Get pointer to unrestricted intrinsic. Generate the related unrestricted
/// intrinsic if it is not defined yet.
mlir::SymbolRefAttr
getUnrestrictedIntrinsicSymbolRefAttr(llvm::StringRef name,
mlir::FunctionType signature);
Fortran::lower::FirOpBuilder &builder;
mlir::Location loc;
};
/// Table that drives the fir generation depending on the intrinsic.
/// one to one mapping with Fortran arguments. If no mapping is
/// defined here for a generic intrinsic, genRuntimeCall will be called
/// to look for a match in the runtime a emit a call.
struct IntrinsicHandler {
const char *name;
IntrinsicLibrary::Generator generator;
bool isElemental = true;
/// Code heavy intrinsic can be outlined to make FIR
/// more readable.
bool outline = false;
};
using I = IntrinsicLibrary;
static constexpr IntrinsicHandler handlers[]{
{"abs", &I::genAbs},
{"achar", &I::genConversion},
{"aimag", &I::genAimag},
{"aint", &I::genAint},
{"anint", &I::genAnint},
{"ceiling", &I::genCeiling},
{"char", &I::genConversion},
{"conjg", &I::genConjg},
{"dim", &I::genDim},
{"dble", &I::genConversion},
{"dprod", &I::genDprod},
{"floor", &I::genFloor},
{"iand", &I::genIAnd},
{"ichar", &I::genIchar},
{"ieor", &I::genIEOr},
{"ior", &I::genIOr},
{"len", &I::genLen},
{"len_trim", &I::genLenTrim},
{"max", &I::genExtremum<Extremum::Max, ExtremumBehavior::MinMaxss>},
{"min", &I::genExtremum<Extremum::Min, ExtremumBehavior::MinMaxss>},
{"merge", &I::genMerge},
{"mod", &I::genMod},
{"nint", &I::genNint},
{"sign", &I::genSign},
};
/// To make fir output more readable for debug, one can outline all intrinsic
/// implementation in wrappers (overrides the IntrinsicHandler::outline flag).
static llvm::cl::opt<bool> outlineAllIntrinsics(
"outline-intrinsics",
llvm::cl::desc(
"Lower all intrinsic procedure implementation in their own functions"),
llvm::cl::init(false));
//===----------------------------------------------------------------------===//
// Math runtime description and matching utility
//===----------------------------------------------------------------------===//
/// Command line option to modify math runtime version used to implement
/// intrinsics.
enum MathRuntimeVersion {
fastVersion,
relaxedVersion,
preciseVersion,
llvmOnly
};
llvm::cl::opt<MathRuntimeVersion> mathRuntimeVersion(
"math-runtime", llvm::cl::desc("Select math runtime version:"),
llvm::cl::values(
clEnumValN(fastVersion, "fast", "use pgmath fast runtime"),
clEnumValN(relaxedVersion, "relaxed", "use pgmath relaxed runtime"),
clEnumValN(preciseVersion, "precise", "use pgmath precise runtime"),
clEnumValN(llvmOnly, "llvm",
"only use LLVM intrinsics (may be incomplete)")),
llvm::cl::init(fastVersion));
struct RuntimeFunction {
// llvm::StringRef comparison operator are not constexpr, so use string_view.
using Key = std::string_view;
// Needed for implicit compare with keys.
constexpr operator Key() const { return key; }
Key key; // intrinsic name
llvm::StringRef symbol;
Fortran::lower::FuncTypeBuilderFunc typeGenerator;
};
#define RUNTIME_STATIC_DESCRIPTION(name, func) \
{#name, #func, \
Fortran::lower::RuntimeTableKey<decltype(func)>::getTypeModel()},
static constexpr RuntimeFunction pgmathFast[] = {
#define PGMATH_FAST
#define PGMATH_USE_ALL_TYPES(name, func) RUNTIME_STATIC_DESCRIPTION(name, func)
#include "flang/Evaluate/pgmath.h.inc"
};
static constexpr RuntimeFunction pgmathRelaxed[] = {
#define PGMATH_RELAXED
#define PGMATH_USE_ALL_TYPES(name, func) RUNTIME_STATIC_DESCRIPTION(name, func)
#include "flang/Evaluate/pgmath.h.inc"
};
static constexpr RuntimeFunction pgmathPrecise[] = {
#define PGMATH_PRECISE
#define PGMATH_USE_ALL_TYPES(name, func) RUNTIME_STATIC_DESCRIPTION(name, func)
#include "flang/Evaluate/pgmath.h.inc"
};
static mlir::FunctionType genF32F32FuncType(mlir::MLIRContext *context) {
auto t = mlir::FloatType::getF32(context);
return mlir::FunctionType::get(context, {t}, {t});
}
static mlir::FunctionType genF64F64FuncType(mlir::MLIRContext *context) {
auto t = mlir::FloatType::getF64(context);
return mlir::FunctionType::get(context, {t}, {t});
}
template <int Bits>
static mlir::FunctionType genIntF64FuncType(mlir::MLIRContext *context) {
auto t = mlir::FloatType::getF64(context);
auto r = mlir::IntegerType::get(context, Bits);
return mlir::FunctionType::get(context, {t}, {r});
}
template <int Bits>
static mlir::FunctionType genIntF32FuncType(mlir::MLIRContext *context) {
auto t = mlir::FloatType::getF32(context);
auto r = mlir::IntegerType::get(context, Bits);
return mlir::FunctionType::get(context, {t}, {r});
}
// TODO : Fill-up this table with more intrinsic.
// Note: These are also defined as operations in LLVM dialect. See if this
// can be use and has advantages.
static constexpr RuntimeFunction llvmIntrinsics[] = {
{"abs", "llvm.fabs.f32", genF32F32FuncType},
{"abs", "llvm.fabs.f64", genF64F64FuncType},
{"aint", "llvm.trunc.f32", genF32F32FuncType},
{"aint", "llvm.trunc.f64", genF64F64FuncType},
{"anint", "llvm.round.f32", genF32F32FuncType},
{"anint", "llvm.round.f64", genF64F64FuncType},
// ceil is used for CEILING but is different, it returns a real.
{"ceil", "llvm.ceil.f32", genF32F32FuncType},
{"ceil", "llvm.ceil.f64", genF64F64FuncType},
{"cos", "llvm.cos.f32", genF32F32FuncType},
{"cos", "llvm.cos.f64", genF64F64FuncType},
// llvm.floor is used for FLOOR, but returns real.
{"floor", "llvm.floor.f32", genF32F32FuncType},
{"floor", "llvm.floor.f64", genF64F64FuncType},
{"log", "llvm.log.f32", genF32F32FuncType},
{"log", "llvm.log.f64", genF64F64FuncType},
{"log10", "llvm.log10.f32", genF32F32FuncType},
{"log10", "llvm.log10.f64", genF64F64FuncType},
{"nint", "llvm.lround.i64.f64", genIntF64FuncType<64>},
{"nint", "llvm.lround.i64.f32", genIntF32FuncType<64>},
{"nint", "llvm.lround.i32.f64", genIntF64FuncType<32>},
{"nint", "llvm.lround.i32.f32", genIntF32FuncType<32>},
{"sin", "llvm.sin.f32", genF32F32FuncType},
{"sin", "llvm.sin.f64", genF64F64FuncType},
{"sqrt", "llvm.sqrt.f32", genF32F32FuncType},
{"sqrt", "llvm.sqrt.f64", genF64F64FuncType},
};
// This helper class computes a "distance" between two function types.
// The distance measures how many narrowing conversions of actual arguments
// and result of "from" must be made in order to use "to" instead of "from".
// For instance, the distance between ACOS(REAL(10)) and ACOS(REAL(8)) is
// greater than the one between ACOS(REAL(10)) and ACOS(REAL(16)). This means
// if no implementation of ACOS(REAL(10)) is available, it is better to use
// ACOS(REAL(16)) with casts rather than ACOS(REAL(8)).
// Note that this is not a symmetric distance and the order of "from" and "to"
// arguments matters, d(foo, bar) may not be the same as d(bar, foo) because it
// may be safe to replace foo by bar, but not the opposite.
class FunctionDistance {
public:
FunctionDistance() : infinite{true} {}
FunctionDistance(mlir::FunctionType from, mlir::FunctionType to) {
auto nInputs = from.getNumInputs();
auto nResults = from.getNumResults();
if (nResults != to.getNumResults() || nInputs != to.getNumInputs()) {
infinite = true;
} else {
for (decltype(nInputs) i{0}; i < nInputs && !infinite; ++i)
addArgumentDistance(from.getInput(i), to.getInput(i));
for (decltype(nResults) i{0}; i < nResults && !infinite; ++i)
addResultDistance(to.getResult(i), from.getResult(i));
}
}
/// Beware both d1.isSmallerThan(d2) *and* d2.isSmallerThan(d1) may be
/// false if both d1 and d2 are infinite. This implies that
/// d1.isSmallerThan(d2) is not equivalent to !d2.isSmallerThan(d1)
bool isSmallerThan(const FunctionDistance &d) const {
return !infinite &&
(d.infinite || std::lexicographical_compare(
conversions.begin(), conversions.end(),
d.conversions.begin(), d.conversions.end()));
}
bool isLosingPrecision() const {
return conversions[narrowingArg] != 0 || conversions[extendingResult] != 0;
}
bool isInfinite() const { return infinite; }
private:
enum class Conversion { Forbidden, None, Narrow, Extend };
void addArgumentDistance(mlir::Type from, mlir::Type to) {
switch (conversionBetweenTypes(from, to)) {
case Conversion::Forbidden:
infinite = true;
break;
case Conversion::None:
break;
case Conversion::Narrow:
conversions[narrowingArg]++;
break;
case Conversion::Extend:
conversions[nonNarrowingArg]++;
break;
}
}
void addResultDistance(mlir::Type from, mlir::Type to) {
switch (conversionBetweenTypes(from, to)) {
case Conversion::Forbidden:
infinite = true;
break;
case Conversion::None:
break;
case Conversion::Narrow:
conversions[nonExtendingResult]++;
break;
case Conversion::Extend:
conversions[extendingResult]++;
break;
}
}
// Floating point can be mlir::FloatType or fir::real
static unsigned getFloatingPointWidth(mlir::Type t) {
if (auto f{t.dyn_cast<mlir::FloatType>()})
return f.getWidth();
// FIXME: Get width another way for fir.real/complex
// - use fir/KindMapping.h and llvm::Type
// - or use evaluate/type.h
if (auto r{t.dyn_cast<fir::RealType>()})
return r.getFKind() * 4;
if (auto cplx{t.dyn_cast<fir::ComplexType>()})
return cplx.getFKind() * 4;
llvm_unreachable("not a floating-point type");
}
static Conversion conversionBetweenTypes(mlir::Type from, mlir::Type to) {
if (from == to) {
return Conversion::None;
}
if (auto fromIntTy{from.dyn_cast<mlir::IntegerType>()}) {
if (auto toIntTy{to.dyn_cast<mlir::IntegerType>()}) {
return fromIntTy.getWidth() > toIntTy.getWidth() ? Conversion::Narrow
: Conversion::Extend;
}
}
if (fir::isa_real(from) && fir::isa_real(to)) {
return getFloatingPointWidth(from) > getFloatingPointWidth(to)
? Conversion::Narrow
: Conversion::Extend;
}
if (auto fromCplxTy{from.dyn_cast<fir::ComplexType>()}) {
if (auto toCplxTy{to.dyn_cast<fir::ComplexType>()}) {
return getFloatingPointWidth(fromCplxTy) >
getFloatingPointWidth(toCplxTy)
? Conversion::Narrow
: Conversion::Extend;
}
}
// Notes:
// - No conversion between character types, specialization of runtime
// functions should be made instead.
// - It is not clear there is a use case for automatic conversions
// around Logical and it may damage hidden information in the physical
// storage so do not do it.
return Conversion::Forbidden;
}
// Below are indexes to access data in conversions.
// The order in data does matter for lexicographical_compare
enum {
narrowingArg = 0, // usually bad
extendingResult, // usually bad
nonExtendingResult, // usually ok
nonNarrowingArg, // usually ok
dataSize
};
std::array<int, dataSize> conversions{/* zero init*/};
bool infinite{false}; // When forbidden conversion or wrong argument number
};
/// Build mlir::FuncOp from runtime symbol description and add
/// fir.runtime attribute.
static mlir::FuncOp getFuncOp(mlir::Location loc,
Fortran::lower::FirOpBuilder &builder,
const RuntimeFunction &runtime) {
auto function = builder.addNamedFunction(
loc, runtime.symbol, runtime.typeGenerator(builder.getContext()));
function->setAttr("fir.runtime", builder.getUnitAttr());
return function;
}
/// Select runtime function that has the smallest distance to the intrinsic
/// function type and that will not imply narrowing arguments or extending the
/// result.
/// If nothing is found, the mlir::FuncOp will contain a nullptr.
mlir::FuncOp searchFunctionInLibrary(
mlir::Location loc, Fortran::lower::FirOpBuilder &builder,
const Fortran::common::StaticMultimapView<RuntimeFunction> &lib,
llvm::StringRef name, mlir::FunctionType funcType,
const RuntimeFunction **bestNearMatch,
FunctionDistance &bestMatchDistance) {
auto range = lib.equal_range(name);
for (auto iter{range.first}; iter != range.second && iter; ++iter) {
const auto &impl = *iter;
auto implType = impl.typeGenerator(builder.getContext());
if (funcType == implType) {
return getFuncOp(loc, builder, impl); // exact match
} else {
FunctionDistance distance(funcType, implType);
if (distance.isSmallerThan(bestMatchDistance)) {
*bestNearMatch = &impl;
bestMatchDistance = std::move(distance);
}
}
}
return {};
}
/// Search runtime for the best runtime function given an intrinsic name
/// and interface. The interface may not be a perfect match in which case
/// the caller is responsible to insert argument and return value conversions.
/// If nothing is found, the mlir::FuncOp will contain a nullptr.
static mlir::FuncOp getRuntimeFunction(mlir::Location loc,
Fortran::lower::FirOpBuilder &builder,
llvm::StringRef name,
mlir::FunctionType funcType) {
const RuntimeFunction *bestNearMatch = nullptr;
FunctionDistance bestMatchDistance{};
mlir::FuncOp match;
using RtMap = Fortran::common::StaticMultimapView<RuntimeFunction>;
static constexpr RtMap pgmathF(pgmathFast);
static_assert(pgmathF.Verify() && "map must be sorted");
static constexpr RtMap pgmathR(pgmathRelaxed);
static_assert(pgmathR.Verify() && "map must be sorted");
static constexpr RtMap pgmathP(pgmathPrecise);
static_assert(pgmathP.Verify() && "map must be sorted");
if (mathRuntimeVersion == fastVersion) {
match = searchFunctionInLibrary(loc, builder, pgmathF, name, funcType,
&bestNearMatch, bestMatchDistance);
} else if (mathRuntimeVersion == relaxedVersion) {
match = searchFunctionInLibrary(loc, builder, pgmathR, name, funcType,
&bestNearMatch, bestMatchDistance);
} else if (mathRuntimeVersion == preciseVersion) {
match = searchFunctionInLibrary(loc, builder, pgmathP, name, funcType,
&bestNearMatch, bestMatchDistance);
} else {
assert(mathRuntimeVersion == llvmOnly && "unknown math runtime");
}
if (match)
return match;
// Go through llvm intrinsics if not exact match in libpgmath or if
// mathRuntimeVersion == llvmOnly
static constexpr RtMap llvmIntr(llvmIntrinsics);
static_assert(llvmIntr.Verify() && "map must be sorted");
if (auto exactMatch =
searchFunctionInLibrary(loc, builder, llvmIntr, name, funcType,
&bestNearMatch, bestMatchDistance))
return exactMatch;
if (bestNearMatch != nullptr) {
assert(!bestMatchDistance.isLosingPrecision() &&
"runtime selection loses precision");
return getFuncOp(loc, builder, *bestNearMatch);
}
return {};
}
/// Helpers to get function type from arguments and result type.
static mlir::FunctionType
getFunctionType(mlir::Type resultType, llvm::ArrayRef<mlir::Value> arguments,
Fortran::lower::FirOpBuilder &builder) {
llvm::SmallVector<mlir::Type, 2> argumentTypes;
for (auto &arg : arguments)
argumentTypes.push_back(arg.getType());
return mlir::FunctionType::get(builder.getModule().getContext(),
argumentTypes, resultType);
}
/// fir::ExtendedValue to mlir::Value translation layer
fir::ExtendedValue toExtendedValue(mlir::Value val,
Fortran::lower::FirOpBuilder &builder,
mlir::Location loc) {
assert(val && "optional unhandled here");
auto type = val.getType();
auto base = val;
auto indexType = builder.getIndexType();
llvm::SmallVector<mlir::Value, 2> extents;
Fortran::lower::CharacterExprHelper charHelper{builder, loc};
if (charHelper.isCharacter(type))
return charHelper.toExtendedValue(val);
if (auto refType = type.dyn_cast<fir::ReferenceType>())
type = refType.getEleTy();
if (auto arrayType = type.dyn_cast<fir::SequenceType>()) {
type = arrayType.getEleTy();
for (auto extent : arrayType.getShape()) {
if (extent == fir::SequenceType::getUnknownExtent())
break;
extents.emplace_back(
builder.createIntegerConstant(loc, indexType, extent));
}
// Last extent might be missing in case of assumed-size. If more extents
// could not be deduced from type, that's an error (a fir.box should
// have been used in the interface).
if (extents.size() + 1 < arrayType.getShape().size())
mlir::emitError(loc, "cannot retrieve array extents from type");
} else if (type.isa<fir::BoxType>() || type.isa<fir::RecordType>()) {
mlir::emitError(loc, "descriptor or derived type not yet handled");
}
if (!extents.empty())
return fir::ArrayBoxValue{base, extents};
return base;
}
mlir::Value toValue(const fir::ExtendedValue &val,
Fortran::lower::FirOpBuilder &builder, mlir::Location loc) {
if (auto charBox = val.getCharBox()) {
auto buffer = charBox->getBuffer();
if (buffer.getType().isa<fir::BoxCharType>())
return buffer;
return Fortran::lower::CharacterExprHelper{builder, loc}.createEmboxChar(
buffer, charBox->getLen());
}
// FIXME: need to access other ExtendedValue variants and handle them
// properly.
return fir::getBase(val);
}
//===----------------------------------------------------------------------===//
// IntrinsicLibrary
//===----------------------------------------------------------------------===//
template <typename GeneratorType>
fir::ExtendedValue IntrinsicLibrary::genElementalCall(
GeneratorType generator, llvm::StringRef name, mlir::Type resultType,
llvm::ArrayRef<fir::ExtendedValue> args, bool outline) {
llvm::SmallVector<mlir::Value, 2> scalarArgs;
for (const auto &arg : args) {
if (arg.getUnboxed() || arg.getCharBox()) {
scalarArgs.emplace_back(fir::getBase(arg));
} else {
// TODO: get the result shape and create the loop...
mlir::emitError(loc, "array or descriptor not yet handled in elemental "
"intrinsic lowering");
exit(1);
}
}
if (outline)
return outlineInWrapper(generator, name, resultType, scalarArgs);
return invokeGenerator(generator, resultType, scalarArgs);
}
/// Some ExtendedGenerator operating on characters are also elemental
/// (e.g LEN_TRIM).
template <>
fir::ExtendedValue
IntrinsicLibrary::genElementalCall<IntrinsicLibrary::ExtendedGenerator>(
ExtendedGenerator generator, llvm::StringRef name, mlir::Type resultType,
llvm::ArrayRef<fir::ExtendedValue> args, bool outline) {
for (const auto &arg : args)
if (!arg.getUnboxed() && !arg.getCharBox()) {
// TODO: get the result shape and create the loop...
mlir::emitError(loc, "array or descriptor not yet handled in elemental "
"intrinsic lowering");
exit(1);
}
if (outline)
return outlineInWrapper(generator, name, resultType, args);
return std::invoke(generator, *this, resultType, args);
}
fir::ExtendedValue
IntrinsicLibrary::genIntrinsicCall(llvm::StringRef name, mlir::Type resultType,
llvm::ArrayRef<fir::ExtendedValue> args) {
for (auto &handler : handlers)
if (name == handler.name) {
bool outline = handler.outline || outlineAllIntrinsics;
if (const auto *elementalGenerator =
std::get_if<ElementalGenerator>(&handler.generator))
return genElementalCall(*elementalGenerator, name, resultType, args,
outline);
const auto &generator = std::get<ExtendedGenerator>(handler.generator);
if (handler.isElemental)
return genElementalCall(generator, name, resultType, args, outline);
if (outline)
return outlineInWrapper(generator, name, resultType, args);
return std::invoke(generator, *this, resultType, args);
}
// Try the runtime if no special handler was defined for the
// intrinsic being called. Maths runtime only has numerical elemental.
// No optional arguments are expected at this point, the code will
// crash if it gets absent optional.
// FIXME: using toValue to get the type won't work with array arguments.
llvm::SmallVector<mlir::Value, 2> mlirArgs;
for (const auto &extendedVal : args) {
auto val = toValue(extendedVal, builder, loc);
if (!val) {
// If an absent optional gets there, most likely its handler has just
// not yet been defined.
mlir::emitError(loc,
"TODO: missing intrinsic lowering: " + llvm::Twine(name));
exit(1);
}
mlirArgs.emplace_back(val);
}
mlir::FunctionType soughtFuncType =
getFunctionType(resultType, mlirArgs, builder);
auto runtimeCallGenerator = getRuntimeCallGenerator(name, soughtFuncType);
return genElementalCall(runtimeCallGenerator, name, resultType, args,
/* outline */ true);
}
mlir::Value
IntrinsicLibrary::invokeGenerator(ElementalGenerator generator,
mlir::Type resultType,
llvm::ArrayRef<mlir::Value> args) {
return std::invoke(generator, *this, resultType, args);
}
mlir::Value
IntrinsicLibrary::invokeGenerator(RuntimeCallGenerator generator,
mlir::Type resultType,
llvm::ArrayRef<mlir::Value> args) {
return generator(builder, loc, args);
}
mlir::Value
IntrinsicLibrary::invokeGenerator(ExtendedGenerator generator,
mlir::Type resultType,
llvm::ArrayRef<mlir::Value> args) {
llvm::SmallVector<fir::ExtendedValue, 2> extendedArgs;
for (auto arg : args)
extendedArgs.emplace_back(toExtendedValue(arg, builder, loc));
auto extendedResult = std::invoke(generator, *this, resultType, extendedArgs);
return toValue(extendedResult, builder, loc);
}
template <typename GeneratorType>
mlir::FuncOp IntrinsicLibrary::getWrapper(GeneratorType generator,
llvm::StringRef name,
mlir::FunctionType funcType,
bool loadRefArguments) {
assert(funcType.getNumResults() == 1 &&
"expect one result for intrinsic functions");
auto resultType = funcType.getResult(0);
std::string wrapperName = fir::mangleIntrinsicProcedure(name, funcType);
auto function = builder.getNamedFunction(wrapperName);
if (!function) {
// First time this wrapper is needed, build it.
function = builder.createFunction(loc, wrapperName, funcType);
function->setAttr("fir.intrinsic", builder.getUnitAttr());
function.addEntryBlock();
// Create local context to emit code into the newly created function
// This new function is not linked to a source file location, only
// its calls will be.
auto localBuilder = std::make_unique<Fortran::lower::FirOpBuilder>(
function, builder.getKindMap());
localBuilder->setInsertionPointToStart(&function.front());
// Location of code inside wrapper of the wrapper is independent from
// the location of the intrinsic call.
auto localLoc = localBuilder->getUnknownLoc();
llvm::SmallVector<mlir::Value, 2> localArguments;
for (mlir::BlockArgument bArg : function.front().getArguments()) {
auto refType = bArg.getType().dyn_cast<fir::ReferenceType>();
if (loadRefArguments && refType) {
auto loaded = localBuilder->create<fir::LoadOp>(localLoc, bArg);
localArguments.push_back(loaded);
} else {
localArguments.push_back(bArg);
}
}
IntrinsicLibrary localLib{*localBuilder, localLoc};
auto result =
localLib.invokeGenerator(generator, resultType, localArguments);
localBuilder->create<mlir::ReturnOp>(localLoc, result);
} else {
// Wrapper was already built, ensure it has the sought type
assert(function.getType() == funcType &&
"conflict between intrinsic wrapper types");
}
return function;
}
/// Helpers to detect absent optional (not yet supported in outlining).
bool static hasAbsentOptional(llvm::ArrayRef<mlir::Value> args) {
for (const auto &arg : args)
if (!arg)
return true;
return false;
}
bool static hasAbsentOptional(llvm::ArrayRef<fir::ExtendedValue> args) {
for (const auto &arg : args)
if (!fir::getBase(arg))
return true;
return false;
}
template <typename GeneratorType>
mlir::Value
IntrinsicLibrary::outlineInWrapper(GeneratorType generator,
llvm::StringRef name, mlir::Type resultType,
llvm::ArrayRef<mlir::Value> args) {
if (hasAbsentOptional(args)) {
// TODO: absent optional in outlining is an issue: we cannot just ignore
// them. Needs a better interface here. The issue is that we cannot easily
// tell that a value is optional or not here if it is presents. And if it is
// absent, we cannot tell what it type should be.
mlir::emitError(loc, "todo: cannot outline call to intrinsic " +
llvm::Twine(name) +
" with absent optional argument");
exit(1);
}
auto funcType = getFunctionType(resultType, args, builder);
auto wrapper = getWrapper(generator, name, funcType);
return builder.create<mlir::CallOp>(loc, wrapper, args).getResult(0);
}
fir::ExtendedValue
IntrinsicLibrary::outlineInWrapper(ExtendedGenerator generator,
llvm::StringRef name, mlir::Type resultType,
llvm::ArrayRef<fir::ExtendedValue> args) {
if (hasAbsentOptional(args)) {
// TODO
mlir::emitError(loc, "todo: cannot outline call to intrinsic " +
llvm::Twine(name) +
" with absent optional argument");
exit(1);
}
llvm::SmallVector<mlir::Value, 2> mlirArgs;
for (const auto &extendedVal : args)
mlirArgs.emplace_back(toValue(extendedVal, builder, loc));
auto funcType = getFunctionType(resultType, mlirArgs, builder);
auto wrapper = getWrapper(generator, name, funcType);
auto mlirResult =
builder.create<mlir::CallOp>(loc, wrapper, mlirArgs).getResult(0);
return toExtendedValue(mlirResult, builder, loc);
}
IntrinsicLibrary::RuntimeCallGenerator
IntrinsicLibrary::getRuntimeCallGenerator(llvm::StringRef name,
mlir::FunctionType soughtFuncType) {
auto funcOp = getRuntimeFunction(loc, builder, name, soughtFuncType);
if (!funcOp) {
mlir::emitError(loc,
"TODO: missing intrinsic lowering: " + llvm::Twine(name));
llvm::errs() << "requested type was: " << soughtFuncType << "\n";
exit(1);
}
mlir::FunctionType actualFuncType = funcOp.getType();
assert(actualFuncType.getNumResults() == soughtFuncType.getNumResults() &&
actualFuncType.getNumInputs() == soughtFuncType.getNumInputs() &&
actualFuncType.getNumResults() == 1 && "Bad intrinsic match");
return [funcOp, actualFuncType, soughtFuncType](
Fortran::lower::FirOpBuilder &builder, mlir::Location loc,
llvm::ArrayRef<mlir::Value> args) {
llvm::SmallVector<mlir::Value, 2> convertedArguments;
for (const auto &pair : llvm::zip(actualFuncType.getInputs(), args))
convertedArguments.push_back(
builder.createConvert(loc, std::get<0>(pair), std::get<1>(pair)));
auto call = builder.create<mlir::CallOp>(loc, funcOp, convertedArguments);
mlir::Type soughtType = soughtFuncType.getResult(0);
return builder.createConvert(loc, soughtType, call.getResult(0));
};
}
mlir::SymbolRefAttr IntrinsicLibrary::getUnrestrictedIntrinsicSymbolRefAttr(
llvm::StringRef name, mlir::FunctionType signature) {
// Unrestricted intrinsics signature follows implicit rules: argument
// are passed by references. But the runtime versions expect values.
// So instead of duplicating the runtime, just have the wrappers loading
// this before calling the code generators.
bool loadRefArguments = true;
mlir::FuncOp funcOp;
for (auto &handler : handlers)
if (name == handler.name)
funcOp = std::visit(
[&](auto generator) {
return getWrapper(generator, name, signature, loadRefArguments);
},
handler.generator);
if (!funcOp) {
llvm::SmallVector<mlir::Type, 2> argTypes;
for (auto type : signature.getInputs()) {
if (auto refType = type.dyn_cast<fir::ReferenceType>())
argTypes.push_back(refType.getEleTy());
else
argTypes.push_back(type);
}
auto soughtFuncType =
builder.getFunctionType(signature.getResults(), argTypes);
auto rtCallGenerator = getRuntimeCallGenerator(name, soughtFuncType);
funcOp = getWrapper(rtCallGenerator, name, signature, loadRefArguments);
}
return SymbolRefAttr::get(funcOp);
}
//===----------------------------------------------------------------------===//
// Code generators for the intrinsic
//===----------------------------------------------------------------------===//
mlir::Value IntrinsicLibrary::genRuntimeCall(llvm::StringRef name,
mlir::Type resultType,
llvm::ArrayRef<mlir::Value> args) {
mlir::FunctionType soughtFuncType =
getFunctionType(resultType, args, builder);
return getRuntimeCallGenerator(name, soughtFuncType)(builder, loc, args);
}
mlir::Value IntrinsicLibrary::genConversion(mlir::Type resultType,
llvm::ArrayRef<mlir::Value> args) {
// There can be an optional kind in second argument.
assert(args.size() >= 1);
return builder.convertWithSemantics(loc, resultType, args[0]);
}
// ABS
mlir::Value IntrinsicLibrary::genAbs(mlir::Type resultType,
llvm::ArrayRef<mlir::Value> args) {
assert(args.size() == 1);
auto arg = args[0];
auto type = arg.getType();
if (fir::isa_real(type)) {
// Runtime call to fp abs. An alternative would be to use mlir math::AbsOp
// but it does not support all fir floating point types.
return genRuntimeCall("abs", resultType, args);
}
if (auto intType = type.dyn_cast<mlir::IntegerType>()) {
// At the time of this implementation there is no abs op in mlir.
// So, implement abs here without branching.
auto shift =
builder.createIntegerConstant(loc, intType, intType.getWidth() - 1);
auto mask = builder.create<mlir::arith::ShRSIOp>(loc, arg, shift);
auto xored = builder.create<mlir::arith::XOrIOp>(loc, arg, mask);
return builder.create<mlir::arith::SubIOp>(loc, xored, mask);
}
if (fir::isa_complex(type)) {
// Use HYPOT to fulfill the no underflow/overflow requirement.
auto parts =
Fortran::lower::ComplexExprHelper{builder, loc}.extractParts(arg);
llvm::SmallVector<mlir::Value, 2> args = {parts.first, parts.second};
return genRuntimeCall("hypot", resultType, args);
}
llvm_unreachable("unexpected type in ABS argument");
}
// AIMAG
mlir::Value IntrinsicLibrary::genAimag(mlir::Type resultType,
llvm::ArrayRef<mlir::Value> args) {
assert(args.size() == 1);
return Fortran::lower::ComplexExprHelper{builder, loc}.extractComplexPart(
args[0], true /* isImagPart */);
}
// ANINT
mlir::Value IntrinsicLibrary::genAnint(mlir::Type resultType,
llvm::ArrayRef<mlir::Value> args) {
assert(args.size() >= 1);
// Skip optional kind argument to search the runtime; it is already reflected
// in result type.
return genRuntimeCall("anint", resultType, {args[0]});
}
// AINT
mlir::Value IntrinsicLibrary::genAint(mlir::Type resultType,
llvm::ArrayRef<mlir::Value> args) {
assert(args.size() >= 1);
// Skip optional kind argument to search the runtime; it is already reflected
// in result type.
return genRuntimeCall("aint", resultType, {args[0]});
}
// CEILING
mlir::Value IntrinsicLibrary::genCeiling(mlir::Type resultType,
llvm::ArrayRef<mlir::Value> args) {
// Optional KIND argument.
assert(args.size() >= 1);
auto arg = args[0];
// Use ceil that is not an actual Fortran intrinsic but that is
// an llvm intrinsic that does the same, but return a floating
// point.
auto ceil = genRuntimeCall("ceil", arg.getType(), {arg});
return builder.createConvert(loc, resultType, ceil);
}
// CONJG
mlir::Value IntrinsicLibrary::genConjg(mlir::Type resultType,
llvm::ArrayRef<mlir::Value> args) {
assert(args.size() == 1);
if (resultType != args[0].getType())
llvm_unreachable("argument type mismatch");
mlir::Value cplx = args[0];
auto imag =
Fortran::lower::ComplexExprHelper{builder, loc}.extractComplexPart(
cplx, /*isImagPart=*/true);
auto negImag = builder.create<mlir::arith::NegFOp>(loc, imag);
return Fortran::lower::ComplexExprHelper{builder, loc}.insertComplexPart(
cplx, negImag, /*isImagPart=*/true);
}
// DIM
mlir::Value IntrinsicLibrary::genDim(mlir::Type resultType,
llvm::ArrayRef<mlir::Value> args) {
assert(args.size() == 2);
if (resultType.isa<mlir::IntegerType>()) {
auto zero = builder.createIntegerConstant(loc, resultType, 0);
auto diff = builder.create<mlir::arith::SubIOp>(loc, args[0], args[1]);
auto cmp = builder.create<mlir::arith::CmpIOp>(
loc, mlir::arith::CmpIPredicate::sgt, diff, zero);
return builder.create<mlir::SelectOp>(loc, cmp, diff, zero);
}
assert(fir::isa_real(resultType) && "Only expects real and integer in DIM");
auto zero = builder.createRealZeroConstant(loc, resultType);
auto diff = builder.create<mlir::arith::SubFOp>(loc, args[0], args[1]);
auto cmp = builder.create<mlir::arith::CmpFOp>(
loc, mlir::arith::CmpFPredicate::OGT, diff, zero);
return builder.create<mlir::SelectOp>(loc, cmp, diff, zero);
}
// DPROD
mlir::Value IntrinsicLibrary::genDprod(mlir::Type resultType,
llvm::ArrayRef<mlir::Value> args) {
assert(args.size() == 2);
assert(fir::isa_real(resultType) &&
"Result must be double precision in DPROD");
auto a = builder.createConvert(loc, resultType, args[0]);
auto b = builder.createConvert(loc, resultType, args[1]);
return builder.create<mlir::arith::MulFOp>(loc, a, b);
}
// FLOOR
mlir::Value IntrinsicLibrary::genFloor(mlir::Type resultType,
llvm::ArrayRef<mlir::Value> args) {
// Optional KIND argument.
assert(args.size() >= 1);
auto arg = args[0];
// Use LLVM floor that returns real.
auto floor = genRuntimeCall("floor", arg.getType(), {arg});
return builder.createConvert(loc, resultType, floor);
}
// IAND
mlir::Value IntrinsicLibrary::genIAnd(mlir::Type resultType,
llvm::ArrayRef<mlir::Value> args) {
assert(args.size() == 2);
return builder.create<mlir::arith::AndIOp>(loc, args[0], args[1]);
}
// ICHAR
mlir::Value IntrinsicLibrary::genIchar(mlir::Type resultType,
llvm::ArrayRef<mlir::Value> args) {
// There can be an optional kind in second argument.
assert(args.size() >= 1);
auto arg = args[0];
Fortran::lower::CharacterExprHelper helper{builder, loc};
auto dataAndLen = helper.createUnboxChar(arg);
auto charType = fir::CharacterType::get(
builder.getContext(), helper.getCharacterKind(arg.getType()), 1);
auto refType = builder.getRefType(charType);
auto charAddr = builder.createConvert(loc, refType, dataAndLen.first);
auto charVal = builder.create<fir::LoadOp>(loc, charType, charAddr);
return builder.createConvert(loc, resultType, charVal);
}
// IEOR
mlir::Value IntrinsicLibrary::genIEOr(mlir::Type resultType,
llvm::ArrayRef<mlir::Value> args) {
assert(args.size() == 2);
return builder.create<mlir::arith::XOrIOp>(loc, args[0], args[1]);
}
// IOR
mlir::Value IntrinsicLibrary::genIOr(mlir::Type resultType,
llvm::ArrayRef<mlir::Value> args) {
assert(args.size() == 2);
return builder.create<mlir::arith::OrIOp>(loc, args[0], args[1]);
}
// LEN
// Note that this is only used for unrestricted intrinsic.
// Usage of LEN are otherwise rewritten as descriptor inquiries by the
// front-end.
fir::ExtendedValue
IntrinsicLibrary::genLen(mlir::Type resultType,
llvm::ArrayRef<fir::ExtendedValue> args) {
// Optional KIND argument reflected in result type.
assert(args.size() >= 1);
mlir::Value len;
if (const auto *charBox = args[0].getCharBox()) {
len = charBox->getLen();
} else if (const auto *charBoxArray = args[0].getCharBox()) {
len = charBoxArray->getLen();
} else {
Fortran::lower::CharacterExprHelper helper{builder, loc};
len = helper.createUnboxChar(fir::getBase(args[0])).second;
}
return builder.createConvert(loc, resultType, len);
}
// LEN_TRIM
fir::ExtendedValue
IntrinsicLibrary::genLenTrim(mlir::Type resultType,
llvm::ArrayRef<fir::ExtendedValue> args) {
// Optional KIND argument reflected in result type.
assert(args.size() >= 1);
Fortran::lower::CharacterExprHelper helper{builder, loc};
auto len = helper.createLenTrim(fir::getBase(args[0]));
return builder.createConvert(loc, resultType, len);
}
// MERGE
mlir::Value IntrinsicLibrary::genMerge(mlir::Type,
llvm::ArrayRef<mlir::Value> args) {
assert(args.size() == 3);
auto i1Type = mlir::IntegerType::get(builder.getContext(), 1);
auto mask = builder.createConvert(loc, i1Type, args[2]);
return builder.create<mlir::SelectOp>(loc, mask, args[0], args[1]);
}
// MOD
mlir::Value IntrinsicLibrary::genMod(mlir::Type resultType,
llvm::ArrayRef<mlir::Value> args) {
assert(args.size() == 2);
if (resultType.isa<mlir::IntegerType>())
return builder.create<mlir::arith::RemSIOp>(loc, args[0], args[1]);
// Use runtime. Note that mlir::arith::RemFOp implements floating point
// remainder, but it does not work with fir::Real type.
// TODO: consider using mlir::arith::RemFOp when possible, that may help
// folding and optimizations.
return genRuntimeCall("mod", resultType, args);
}
// NINT
mlir::Value IntrinsicLibrary::genNint(mlir::Type resultType,
llvm::ArrayRef<mlir::Value> args) {
assert(args.size() >= 1);
// Skip optional kind argument to search the runtime; it is already reflected
// in result type.
return genRuntimeCall("nint", resultType, {args[0]});
}
// SIGN
mlir::Value IntrinsicLibrary::genSign(mlir::Type resultType,
llvm::ArrayRef<mlir::Value> args) {
assert(args.size() == 2);
auto abs = genAbs(resultType, {args[0]});
if (resultType.isa<mlir::IntegerType>()) {
auto zero = builder.createIntegerConstant(loc, resultType, 0);
auto neg = builder.create<mlir::arith::SubIOp>(loc, zero, abs);
auto cmp = builder.create<mlir::arith::CmpIOp>(
loc, mlir::arith::CmpIPredicate::slt, args[1], zero);
return builder.create<mlir::SelectOp>(loc, cmp, neg, abs);
}
// TODO: Requirements when second argument is +0./0.
auto zeroAttr = builder.getZeroAttr(resultType);
auto zero =
builder.create<mlir::arith::ConstantOp>(loc, resultType, zeroAttr);
auto neg = builder.create<mlir::arith::NegFOp>(loc, abs);
auto cmp = builder.create<mlir::arith::CmpFOp>(
loc, mlir::arith::CmpFPredicate::OLT, args[1], zero);
return builder.create<mlir::SelectOp>(loc, cmp, neg, abs);
}
// Compare two FIR values and return boolean result as i1.
template <Extremum extremum, ExtremumBehavior behavior>
static mlir::Value createExtremumCompare(mlir::Location loc,
Fortran::lower::FirOpBuilder &builder,
mlir::Value left, mlir::Value right) {
static constexpr auto integerPredicate =
extremum == Extremum::Max ? mlir::arith::CmpIPredicate::sgt
: mlir::arith::CmpIPredicate::slt;
static constexpr auto orderedCmp = extremum == Extremum::Max
? mlir::arith::CmpFPredicate::OGT
: mlir::arith::CmpFPredicate::OLT;
auto type = left.getType();
mlir::Value result;
if (fir::isa_real(type)) {
// Note: the signaling/quit aspect of the result required by IEEE
// cannot currently be obtained with LLVM without ad-hoc runtime.
if constexpr (behavior == ExtremumBehavior::IeeeMinMaximumNumber) {
// Return the number if one of the inputs is NaN and the other is
// a number.
auto leftIsResult =
builder.create<mlir::arith::CmpFOp>(loc, orderedCmp, left, right);
auto rightIsNan = builder.create<mlir::arith::CmpFOp>(
loc, mlir::arith::CmpFPredicate::UNE, right, right);
result =
builder.create<mlir::arith::OrIOp>(loc, leftIsResult, rightIsNan);
} else if constexpr (behavior == ExtremumBehavior::IeeeMinMaximum) {
// Always return NaNs if one the input is NaNs
auto leftIsResult =
builder.create<mlir::arith::CmpFOp>(loc, orderedCmp, left, right);
auto leftIsNan = builder.create<mlir::arith::CmpFOp>(
loc, mlir::arith::CmpFPredicate::UNE, left, left);
result = builder.create<mlir::arith::OrIOp>(loc, leftIsResult, leftIsNan);
} else if constexpr (behavior == ExtremumBehavior::MinMaxss) {
// If the left is a NaN, return the right whatever it is.
result =
builder.create<mlir::arith::CmpFOp>(loc, orderedCmp, left, right);
} else if constexpr (behavior == ExtremumBehavior::PgfortranLlvm) {
// If one of the operand is a NaN, return left whatever it is.
static constexpr auto unorderedCmp =
extremum == Extremum::Max ? mlir::arith::CmpFPredicate::UGT
: mlir::arith::CmpFPredicate::ULT;
result =
builder.create<mlir::arith::CmpFOp>(loc, unorderedCmp, left, right);
} else {
// TODO: ieeeMinNum/ieeeMaxNum
static_assert(behavior == ExtremumBehavior::IeeeMinMaxNum,
"ieeeMinNum/ieeeMaxNum behavior not implemented");
}
} else if (fir::isa_integer(type)) {
result =
builder.create<mlir::arith::CmpIOp>(loc, integerPredicate, left, right);
} else if (type.isa<fir::CharacterType>()) {
// TODO: ! character min and max is tricky because the result
// length is the length of the longest argument!
// So we may need a temp.
}
assert(result);
return result;
}
// MIN and MAX
template <Extremum extremum, ExtremumBehavior behavior>
mlir::Value IntrinsicLibrary::genExtremum(mlir::Type,
llvm::ArrayRef<mlir::Value> args) {
assert(args.size() >= 1);
mlir::Value result = args[0];
for (auto arg : args.drop_front()) {
auto mask =
createExtremumCompare<extremum, behavior>(loc, builder, result, arg);
result = builder.create<mlir::SelectOp>(loc, mask, result, arg);
}
return result;
}
//===----------------------------------------------------------------------===//
// Public intrinsic call helpers
//===----------------------------------------------------------------------===//
fir::ExtendedValue
Fortran::lower::genIntrinsicCall(Fortran::lower::FirOpBuilder &builder,
mlir::Location loc, llvm::StringRef name,
mlir::Type resultType,
llvm::ArrayRef<fir::ExtendedValue> args) {
return IntrinsicLibrary{builder, loc}.genIntrinsicCall(name, resultType,
args);
}
mlir::Value Fortran::lower::genMax(Fortran::lower::FirOpBuilder &builder,
mlir::Location loc,
llvm::ArrayRef<mlir::Value> args) {
assert(args.size() > 0 && "max requires at least one argument");
return IntrinsicLibrary{builder, loc}
.genExtremum<Extremum::Max, ExtremumBehavior::MinMaxss>(args[0].getType(),
args);
}
mlir::Value Fortran::lower::genMin(Fortran::lower::FirOpBuilder &builder,
mlir::Location loc,
llvm::ArrayRef<mlir::Value> args) {
assert(args.size() > 0 && "min requires at least one argument");
return IntrinsicLibrary{builder, loc}
.genExtremum<Extremum::Min, ExtremumBehavior::MinMaxss>(args[0].getType(),
args);
}
mlir::Value Fortran::lower::genPow(Fortran::lower::FirOpBuilder &builder,
mlir::Location loc, mlir::Type type,
mlir::Value x, mlir::Value y) {
return IntrinsicLibrary{builder, loc}.genRuntimeCall("pow", type, {x, y});
}
mlir::SymbolRefAttr Fortran::lower::getUnrestrictedIntrinsicSymbolRefAttr(
Fortran::lower::FirOpBuilder &builder, mlir::Location loc,
llvm::StringRef name, mlir::FunctionType signature) {
return IntrinsicLibrary{builder, loc}.getUnrestrictedIntrinsicSymbolRefAttr(
name, signature);
}