| //===- SemaChecking.cpp - Extra Semantic Checking -------------------------===// |
| // |
| // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
| // See https://llvm.org/LICENSE.txt for license information. |
| // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
| // |
| //===----------------------------------------------------------------------===// |
| // |
| // This file implements extra semantic analysis beyond what is enforced |
| // by the C type system. |
| // |
| //===----------------------------------------------------------------------===// |
| |
| #include "clang/AST/APValue.h" |
| #include "clang/AST/ASTContext.h" |
| #include "clang/AST/Attr.h" |
| #include "clang/AST/AttrIterator.h" |
| #include "clang/AST/CharUnits.h" |
| #include "clang/AST/Decl.h" |
| #include "clang/AST/DeclBase.h" |
| #include "clang/AST/DeclCXX.h" |
| #include "clang/AST/DeclObjC.h" |
| #include "clang/AST/DeclarationName.h" |
| #include "clang/AST/EvaluatedExprVisitor.h" |
| #include "clang/AST/Expr.h" |
| #include "clang/AST/ExprCXX.h" |
| #include "clang/AST/ExprObjC.h" |
| #include "clang/AST/ExprOpenMP.h" |
| #include "clang/AST/FormatString.h" |
| #include "clang/AST/NSAPI.h" |
| #include "clang/AST/NonTrivialTypeVisitor.h" |
| #include "clang/AST/OperationKinds.h" |
| #include "clang/AST/RecordLayout.h" |
| #include "clang/AST/Stmt.h" |
| #include "clang/AST/TemplateBase.h" |
| #include "clang/AST/Type.h" |
| #include "clang/AST/TypeLoc.h" |
| #include "clang/AST/UnresolvedSet.h" |
| #include "clang/Basic/AddressSpaces.h" |
| #include "clang/Basic/CharInfo.h" |
| #include "clang/Basic/Diagnostic.h" |
| #include "clang/Basic/IdentifierTable.h" |
| #include "clang/Basic/LLVM.h" |
| #include "clang/Basic/LangOptions.h" |
| #include "clang/Basic/OpenCLOptions.h" |
| #include "clang/Basic/OperatorKinds.h" |
| #include "clang/Basic/PartialDiagnostic.h" |
| #include "clang/Basic/SourceLocation.h" |
| #include "clang/Basic/SourceManager.h" |
| #include "clang/Basic/Specifiers.h" |
| #include "clang/Basic/SyncScope.h" |
| #include "clang/Basic/TargetBuiltins.h" |
| #include "clang/Basic/TargetCXXABI.h" |
| #include "clang/Basic/TargetInfo.h" |
| #include "clang/Basic/TypeTraits.h" |
| #include "clang/Lex/Lexer.h" // TODO: Extract static functions to fix layering. |
| #include "clang/Sema/Initialization.h" |
| #include "clang/Sema/Lookup.h" |
| #include "clang/Sema/Ownership.h" |
| #include "clang/Sema/Scope.h" |
| #include "clang/Sema/ScopeInfo.h" |
| #include "clang/Sema/Sema.h" |
| #include "clang/Sema/SemaInternal.h" |
| #include "llvm/ADT/APFloat.h" |
| #include "llvm/ADT/APInt.h" |
| #include "llvm/ADT/APSInt.h" |
| #include "llvm/ADT/ArrayRef.h" |
| #include "llvm/ADT/DenseMap.h" |
| #include "llvm/ADT/FoldingSet.h" |
| #include "llvm/ADT/None.h" |
| #include "llvm/ADT/Optional.h" |
| #include "llvm/ADT/STLExtras.h" |
| #include "llvm/ADT/SmallBitVector.h" |
| #include "llvm/ADT/SmallPtrSet.h" |
| #include "llvm/ADT/SmallString.h" |
| #include "llvm/ADT/SmallVector.h" |
| #include "llvm/ADT/StringRef.h" |
| #include "llvm/ADT/StringSet.h" |
| #include "llvm/ADT/StringSwitch.h" |
| #include "llvm/ADT/Triple.h" |
| #include "llvm/Support/AtomicOrdering.h" |
| #include "llvm/Support/Casting.h" |
| #include "llvm/Support/Compiler.h" |
| #include "llvm/Support/ConvertUTF.h" |
| #include "llvm/Support/ErrorHandling.h" |
| #include "llvm/Support/Format.h" |
| #include "llvm/Support/Locale.h" |
| #include "llvm/Support/MathExtras.h" |
| #include "llvm/Support/SaveAndRestore.h" |
| #include "llvm/Support/raw_ostream.h" |
| #include <algorithm> |
| #include <bitset> |
| #include <cassert> |
| #include <cctype> |
| #include <cstddef> |
| #include <cstdint> |
| #include <functional> |
| #include <limits> |
| #include <string> |
| #include <tuple> |
| #include <utility> |
| |
| using namespace clang; |
| using namespace sema; |
| |
| SourceLocation Sema::getLocationOfStringLiteralByte(const StringLiteral *SL, |
| unsigned ByteNo) const { |
| return SL->getLocationOfByte(ByteNo, getSourceManager(), LangOpts, |
| Context.getTargetInfo()); |
| } |
| |
| /// Checks that a call expression's argument count is the desired number. |
| /// This is useful when doing custom type-checking. Returns true on error. |
| static bool checkArgCount(Sema &S, CallExpr *call, unsigned desiredArgCount) { |
| unsigned argCount = call->getNumArgs(); |
| if (argCount == desiredArgCount) return false; |
| |
| if (argCount < desiredArgCount) |
| return S.Diag(call->getEndLoc(), diag::err_typecheck_call_too_few_args) |
| << 0 /*function call*/ << desiredArgCount << argCount |
| << call->getSourceRange(); |
| |
| // Highlight all the excess arguments. |
| SourceRange range(call->getArg(desiredArgCount)->getBeginLoc(), |
| call->getArg(argCount - 1)->getEndLoc()); |
| |
| return S.Diag(range.getBegin(), diag::err_typecheck_call_too_many_args) |
| << 0 /*function call*/ << desiredArgCount << argCount |
| << call->getArg(1)->getSourceRange(); |
| } |
| |
| /// Check that the first argument to __builtin_annotation is an integer |
| /// and the second argument is a non-wide string literal. |
| static bool SemaBuiltinAnnotation(Sema &S, CallExpr *TheCall) { |
| if (checkArgCount(S, TheCall, 2)) |
| return true; |
| |
| // First argument should be an integer. |
| Expr *ValArg = TheCall->getArg(0); |
| QualType Ty = ValArg->getType(); |
| if (!Ty->isIntegerType()) { |
| S.Diag(ValArg->getBeginLoc(), diag::err_builtin_annotation_first_arg) |
| << ValArg->getSourceRange(); |
| return true; |
| } |
| |
| // Second argument should be a constant string. |
| Expr *StrArg = TheCall->getArg(1)->IgnoreParenCasts(); |
| StringLiteral *Literal = dyn_cast<StringLiteral>(StrArg); |
| if (!Literal || !Literal->isAscii()) { |
| S.Diag(StrArg->getBeginLoc(), diag::err_builtin_annotation_second_arg) |
| << StrArg->getSourceRange(); |
| return true; |
| } |
| |
| TheCall->setType(Ty); |
| return false; |
| } |
| |
| static bool SemaBuiltinMSVCAnnotation(Sema &S, CallExpr *TheCall) { |
| // We need at least one argument. |
| if (TheCall->getNumArgs() < 1) { |
| S.Diag(TheCall->getEndLoc(), diag::err_typecheck_call_too_few_args_at_least) |
| << 0 << 1 << TheCall->getNumArgs() |
| << TheCall->getCallee()->getSourceRange(); |
| return true; |
| } |
| |
| // All arguments should be wide string literals. |
| for (Expr *Arg : TheCall->arguments()) { |
| auto *Literal = dyn_cast<StringLiteral>(Arg->IgnoreParenCasts()); |
| if (!Literal || !Literal->isWide()) { |
| S.Diag(Arg->getBeginLoc(), diag::err_msvc_annotation_wide_str) |
| << Arg->getSourceRange(); |
| return true; |
| } |
| } |
| |
| return false; |
| } |
| |
| /// Check that the argument to __builtin_addressof is a glvalue, and set the |
| /// result type to the corresponding pointer type. |
| static bool SemaBuiltinAddressof(Sema &S, CallExpr *TheCall) { |
| if (checkArgCount(S, TheCall, 1)) |
| return true; |
| |
| ExprResult Arg(TheCall->getArg(0)); |
| QualType ResultType = S.CheckAddressOfOperand(Arg, TheCall->getBeginLoc()); |
| if (ResultType.isNull()) |
| return true; |
| |
| TheCall->setArg(0, Arg.get()); |
| TheCall->setType(ResultType); |
| return false; |
| } |
| |
| /// Check the number of arguments and set the result type to |
| /// the argument type. |
| static bool SemaBuiltinPreserveAI(Sema &S, CallExpr *TheCall) { |
| if (checkArgCount(S, TheCall, 1)) |
| return true; |
| |
| TheCall->setType(TheCall->getArg(0)->getType()); |
| return false; |
| } |
| |
| /// Check that the value argument for __builtin_is_aligned(value, alignment) and |
| /// __builtin_aligned_{up,down}(value, alignment) is an integer or a pointer |
| /// type (but not a function pointer) and that the alignment is a power-of-two. |
| static bool SemaBuiltinAlignment(Sema &S, CallExpr *TheCall, unsigned ID) { |
| if (checkArgCount(S, TheCall, 2)) |
| return true; |
| |
| clang::Expr *Source = TheCall->getArg(0); |
| bool IsBooleanAlignBuiltin = ID == Builtin::BI__builtin_is_aligned; |
| |
| auto IsValidIntegerType = [](QualType Ty) { |
| return Ty->isIntegerType() && !Ty->isEnumeralType() && !Ty->isBooleanType(); |
| }; |
| QualType SrcTy = Source->getType(); |
| // We should also be able to use it with arrays (but not functions!). |
| if (SrcTy->canDecayToPointerType() && SrcTy->isArrayType()) { |
| SrcTy = S.Context.getDecayedType(SrcTy); |
| } |
| if ((!SrcTy->isPointerType() && !IsValidIntegerType(SrcTy)) || |
| SrcTy->isFunctionPointerType()) { |
| // FIXME: this is not quite the right error message since we don't allow |
| // floating point types, or member pointers. |
| S.Diag(Source->getExprLoc(), diag::err_typecheck_expect_scalar_operand) |
| << SrcTy; |
| return true; |
| } |
| |
| clang::Expr *AlignOp = TheCall->getArg(1); |
| if (!IsValidIntegerType(AlignOp->getType())) { |
| S.Diag(AlignOp->getExprLoc(), diag::err_typecheck_expect_int) |
| << AlignOp->getType(); |
| return true; |
| } |
| Expr::EvalResult AlignResult; |
| unsigned MaxAlignmentBits = S.Context.getIntWidth(SrcTy) - 1; |
| // We can't check validity of alignment if it is value dependent. |
| if (!AlignOp->isValueDependent() && |
| AlignOp->EvaluateAsInt(AlignResult, S.Context, |
| Expr::SE_AllowSideEffects)) { |
| llvm::APSInt AlignValue = AlignResult.Val.getInt(); |
| llvm::APSInt MaxValue( |
| llvm::APInt::getOneBitSet(MaxAlignmentBits + 1, MaxAlignmentBits)); |
| if (AlignValue < 1) { |
| S.Diag(AlignOp->getExprLoc(), diag::err_alignment_too_small) << 1; |
| return true; |
| } |
| if (llvm::APSInt::compareValues(AlignValue, MaxValue) > 0) { |
| S.Diag(AlignOp->getExprLoc(), diag::err_alignment_too_big) |
| << toString(MaxValue, 10); |
| return true; |
| } |
| if (!AlignValue.isPowerOf2()) { |
| S.Diag(AlignOp->getExprLoc(), diag::err_alignment_not_power_of_two); |
| return true; |
| } |
| if (AlignValue == 1) { |
| S.Diag(AlignOp->getExprLoc(), diag::warn_alignment_builtin_useless) |
| << IsBooleanAlignBuiltin; |
| } |
| } |
| |
| ExprResult SrcArg = S.PerformCopyInitialization( |
| InitializedEntity::InitializeParameter(S.Context, SrcTy, false), |
| SourceLocation(), Source); |
| if (SrcArg.isInvalid()) |
| return true; |
| TheCall->setArg(0, SrcArg.get()); |
| ExprResult AlignArg = |
| S.PerformCopyInitialization(InitializedEntity::InitializeParameter( |
| S.Context, AlignOp->getType(), false), |
| SourceLocation(), AlignOp); |
| if (AlignArg.isInvalid()) |
| return true; |
| TheCall->setArg(1, AlignArg.get()); |
| // For align_up/align_down, the return type is the same as the (potentially |
| // decayed) argument type including qualifiers. For is_aligned(), the result |
| // is always bool. |
| TheCall->setType(IsBooleanAlignBuiltin ? S.Context.BoolTy : SrcTy); |
| return false; |
| } |
| |
| static bool SemaBuiltinOverflow(Sema &S, CallExpr *TheCall, |
| unsigned BuiltinID) { |
| if (checkArgCount(S, TheCall, 3)) |
| return true; |
| |
| // First two arguments should be integers. |
| for (unsigned I = 0; I < 2; ++I) { |
| ExprResult Arg = S.DefaultFunctionArrayLvalueConversion(TheCall->getArg(I)); |
| if (Arg.isInvalid()) return true; |
| TheCall->setArg(I, Arg.get()); |
| |
| QualType Ty = Arg.get()->getType(); |
| if (!Ty->isIntegerType()) { |
| S.Diag(Arg.get()->getBeginLoc(), diag::err_overflow_builtin_must_be_int) |
| << Ty << Arg.get()->getSourceRange(); |
| return true; |
| } |
| } |
| |
| // Third argument should be a pointer to a non-const integer. |
| // IRGen correctly handles volatile, restrict, and address spaces, and |
| // the other qualifiers aren't possible. |
| { |
| ExprResult Arg = S.DefaultFunctionArrayLvalueConversion(TheCall->getArg(2)); |
| if (Arg.isInvalid()) return true; |
| TheCall->setArg(2, Arg.get()); |
| |
| QualType Ty = Arg.get()->getType(); |
| const auto *PtrTy = Ty->getAs<PointerType>(); |
| if (!PtrTy || |
| !PtrTy->getPointeeType()->isIntegerType() || |
| PtrTy->getPointeeType().isConstQualified()) { |
| S.Diag(Arg.get()->getBeginLoc(), |
| diag::err_overflow_builtin_must_be_ptr_int) |
| << Ty << Arg.get()->getSourceRange(); |
| return true; |
| } |
| } |
| |
| // Disallow signed ExtIntType args larger than 128 bits to mul function until |
| // we improve backend support. |
| if (BuiltinID == Builtin::BI__builtin_mul_overflow) { |
| for (unsigned I = 0; I < 3; ++I) { |
| const auto Arg = TheCall->getArg(I); |
| // Third argument will be a pointer. |
| auto Ty = I < 2 ? Arg->getType() : Arg->getType()->getPointeeType(); |
| if (Ty->isExtIntType() && Ty->isSignedIntegerType() && |
| S.getASTContext().getIntWidth(Ty) > 128) |
| return S.Diag(Arg->getBeginLoc(), |
| diag::err_overflow_builtin_ext_int_max_size) |
| << 128; |
| } |
| } |
| |
| return false; |
| } |
| |
| static bool SemaBuiltinCallWithStaticChain(Sema &S, CallExpr *BuiltinCall) { |
| if (checkArgCount(S, BuiltinCall, 2)) |
| return true; |
| |
| SourceLocation BuiltinLoc = BuiltinCall->getBeginLoc(); |
| Expr *Builtin = BuiltinCall->getCallee()->IgnoreImpCasts(); |
| Expr *Call = BuiltinCall->getArg(0); |
| Expr *Chain = BuiltinCall->getArg(1); |
| |
| if (Call->getStmtClass() != Stmt::CallExprClass) { |
| S.Diag(BuiltinLoc, diag::err_first_argument_to_cwsc_not_call) |
| << Call->getSourceRange(); |
| return true; |
| } |
| |
| auto CE = cast<CallExpr>(Call); |
| if (CE->getCallee()->getType()->isBlockPointerType()) { |
| S.Diag(BuiltinLoc, diag::err_first_argument_to_cwsc_block_call) |
| << Call->getSourceRange(); |
| return true; |
| } |
| |
| const Decl *TargetDecl = CE->getCalleeDecl(); |
| if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(TargetDecl)) |
| if (FD->getBuiltinID()) { |
| S.Diag(BuiltinLoc, diag::err_first_argument_to_cwsc_builtin_call) |
| << Call->getSourceRange(); |
| return true; |
| } |
| |
| if (isa<CXXPseudoDestructorExpr>(CE->getCallee()->IgnoreParens())) { |
| S.Diag(BuiltinLoc, diag::err_first_argument_to_cwsc_pdtor_call) |
| << Call->getSourceRange(); |
| return true; |
| } |
| |
| ExprResult ChainResult = S.UsualUnaryConversions(Chain); |
| if (ChainResult.isInvalid()) |
| return true; |
| if (!ChainResult.get()->getType()->isPointerType()) { |
| S.Diag(BuiltinLoc, diag::err_second_argument_to_cwsc_not_pointer) |
| << Chain->getSourceRange(); |
| return true; |
| } |
| |
| QualType ReturnTy = CE->getCallReturnType(S.Context); |
| QualType ArgTys[2] = { ReturnTy, ChainResult.get()->getType() }; |
| QualType BuiltinTy = S.Context.getFunctionType( |
| ReturnTy, ArgTys, FunctionProtoType::ExtProtoInfo()); |
| QualType BuiltinPtrTy = S.Context.getPointerType(BuiltinTy); |
| |
| Builtin = |
| S.ImpCastExprToType(Builtin, BuiltinPtrTy, CK_BuiltinFnToFnPtr).get(); |
| |
| BuiltinCall->setType(CE->getType()); |
| BuiltinCall->setValueKind(CE->getValueKind()); |
| BuiltinCall->setObjectKind(CE->getObjectKind()); |
| BuiltinCall->setCallee(Builtin); |
| BuiltinCall->setArg(1, ChainResult.get()); |
| |
| return false; |
| } |
| |
| namespace { |
| |
| class ScanfDiagnosticFormatHandler |
| : public analyze_format_string::FormatStringHandler { |
| // Accepts the argument index (relative to the first destination index) of the |
| // argument whose size we want. |
| using ComputeSizeFunction = |
| llvm::function_ref<Optional<llvm::APSInt>(unsigned)>; |
| |
| // Accepts the argument index (relative to the first destination index), the |
| // destination size, and the source size). |
| using DiagnoseFunction = |
| llvm::function_ref<void(unsigned, unsigned, unsigned)>; |
| |
| ComputeSizeFunction ComputeSizeArgument; |
| DiagnoseFunction Diagnose; |
| |
| public: |
| ScanfDiagnosticFormatHandler(ComputeSizeFunction ComputeSizeArgument, |
| DiagnoseFunction Diagnose) |
| : ComputeSizeArgument(ComputeSizeArgument), Diagnose(Diagnose) {} |
| |
| bool HandleScanfSpecifier(const analyze_scanf::ScanfSpecifier &FS, |
| const char *StartSpecifier, |
| unsigned specifierLen) override { |
| if (!FS.consumesDataArgument()) |
| return true; |
| |
| unsigned NulByte = 0; |
| switch ((FS.getConversionSpecifier().getKind())) { |
| default: |
| return true; |
| case analyze_format_string::ConversionSpecifier::sArg: |
| case analyze_format_string::ConversionSpecifier::ScanListArg: |
| NulByte = 1; |
| break; |
| case analyze_format_string::ConversionSpecifier::cArg: |
| break; |
| } |
| |
| auto OptionalFW = FS.getFieldWidth(); |
| if (OptionalFW.getHowSpecified() != |
| analyze_format_string::OptionalAmount::HowSpecified::Constant) |
| return true; |
| |
| unsigned SourceSize = OptionalFW.getConstantAmount() + NulByte; |
| |
| auto DestSizeAPS = ComputeSizeArgument(FS.getArgIndex()); |
| if (!DestSizeAPS) |
| return true; |
| |
| unsigned DestSize = DestSizeAPS->getZExtValue(); |
| |
| if (DestSize < SourceSize) |
| Diagnose(FS.getArgIndex(), DestSize, SourceSize); |
| |
| return true; |
| } |
| }; |
| |
| class EstimateSizeFormatHandler |
| : public analyze_format_string::FormatStringHandler { |
| size_t Size; |
| |
| public: |
| EstimateSizeFormatHandler(StringRef Format) |
| : Size(std::min(Format.find(0), Format.size()) + |
| 1 /* null byte always written by sprintf */) {} |
| |
| bool HandlePrintfSpecifier(const analyze_printf::PrintfSpecifier &FS, |
| const char *, unsigned SpecifierLen) override { |
| |
| const size_t FieldWidth = computeFieldWidth(FS); |
| const size_t Precision = computePrecision(FS); |
| |
| // The actual format. |
| switch (FS.getConversionSpecifier().getKind()) { |
| // Just a char. |
| case analyze_format_string::ConversionSpecifier::cArg: |
| case analyze_format_string::ConversionSpecifier::CArg: |
| Size += std::max(FieldWidth, (size_t)1); |
| break; |
| // Just an integer. |
| case analyze_format_string::ConversionSpecifier::dArg: |
| case analyze_format_string::ConversionSpecifier::DArg: |
| case analyze_format_string::ConversionSpecifier::iArg: |
| case analyze_format_string::ConversionSpecifier::oArg: |
| case analyze_format_string::ConversionSpecifier::OArg: |
| case analyze_format_string::ConversionSpecifier::uArg: |
| case analyze_format_string::ConversionSpecifier::UArg: |
| case analyze_format_string::ConversionSpecifier::xArg: |
| case analyze_format_string::ConversionSpecifier::XArg: |
| Size += std::max(FieldWidth, Precision); |
| break; |
| |
| // %g style conversion switches between %f or %e style dynamically. |
| // %f always takes less space, so default to it. |
| case analyze_format_string::ConversionSpecifier::gArg: |
| case analyze_format_string::ConversionSpecifier::GArg: |
| |
| // Floating point number in the form '[+]ddd.ddd'. |
| case analyze_format_string::ConversionSpecifier::fArg: |
| case analyze_format_string::ConversionSpecifier::FArg: |
| Size += std::max(FieldWidth, 1 /* integer part */ + |
| (Precision ? 1 + Precision |
| : 0) /* period + decimal */); |
| break; |
| |
| // Floating point number in the form '[-]d.ddde[+-]dd'. |
| case analyze_format_string::ConversionSpecifier::eArg: |
| case analyze_format_string::ConversionSpecifier::EArg: |
| Size += |
| std::max(FieldWidth, |
| 1 /* integer part */ + |
| (Precision ? 1 + Precision : 0) /* period + decimal */ + |
| 1 /* e or E letter */ + 2 /* exponent */); |
| break; |
| |
| // Floating point number in the form '[-]0xh.hhhhp±dd'. |
| case analyze_format_string::ConversionSpecifier::aArg: |
| case analyze_format_string::ConversionSpecifier::AArg: |
| Size += |
| std::max(FieldWidth, |
| 2 /* 0x */ + 1 /* integer part */ + |
| (Precision ? 1 + Precision : 0) /* period + decimal */ + |
| 1 /* p or P letter */ + 1 /* + or - */ + 1 /* value */); |
| break; |
| |
| // Just a string. |
| case analyze_format_string::ConversionSpecifier::sArg: |
| case analyze_format_string::ConversionSpecifier::SArg: |
| Size += FieldWidth; |
| break; |
| |
| // Just a pointer in the form '0xddd'. |
| case analyze_format_string::ConversionSpecifier::pArg: |
| Size += std::max(FieldWidth, 2 /* leading 0x */ + Precision); |
| break; |
| |
| // A plain percent. |
| case analyze_format_string::ConversionSpecifier::PercentArg: |
| Size += 1; |
| break; |
| |
| default: |
| break; |
| } |
| |
| Size += FS.hasPlusPrefix() || FS.hasSpacePrefix(); |
| |
| if (FS.hasAlternativeForm()) { |
| switch (FS.getConversionSpecifier().getKind()) { |
| default: |
| break; |
| // Force a leading '0'. |
| case analyze_format_string::ConversionSpecifier::oArg: |
| Size += 1; |
| break; |
| // Force a leading '0x'. |
| case analyze_format_string::ConversionSpecifier::xArg: |
| case analyze_format_string::ConversionSpecifier::XArg: |
| Size += 2; |
| break; |
| // Force a period '.' before decimal, even if precision is 0. |
| case analyze_format_string::ConversionSpecifier::aArg: |
| case analyze_format_string::ConversionSpecifier::AArg: |
| case analyze_format_string::ConversionSpecifier::eArg: |
| case analyze_format_string::ConversionSpecifier::EArg: |
| case analyze_format_string::ConversionSpecifier::fArg: |
| case analyze_format_string::ConversionSpecifier::FArg: |
| case analyze_format_string::ConversionSpecifier::gArg: |
| case analyze_format_string::ConversionSpecifier::GArg: |
| Size += (Precision ? 0 : 1); |
| break; |
| } |
| } |
| assert(SpecifierLen <= Size && "no underflow"); |
| Size -= SpecifierLen; |
| return true; |
| } |
| |
| size_t getSizeLowerBound() const { return Size; } |
| |
| private: |
| static size_t computeFieldWidth(const analyze_printf::PrintfSpecifier &FS) { |
| const analyze_format_string::OptionalAmount &FW = FS.getFieldWidth(); |
| size_t FieldWidth = 0; |
| if (FW.getHowSpecified() == analyze_format_string::OptionalAmount::Constant) |
| FieldWidth = FW.getConstantAmount(); |
| return FieldWidth; |
| } |
| |
| static size_t computePrecision(const analyze_printf::PrintfSpecifier &FS) { |
| const analyze_format_string::OptionalAmount &FW = FS.getPrecision(); |
| size_t Precision = 0; |
| |
| // See man 3 printf for default precision value based on the specifier. |
| switch (FW.getHowSpecified()) { |
| case analyze_format_string::OptionalAmount::NotSpecified: |
| switch (FS.getConversionSpecifier().getKind()) { |
| default: |
| break; |
| case analyze_format_string::ConversionSpecifier::dArg: // %d |
| case analyze_format_string::ConversionSpecifier::DArg: // %D |
| case analyze_format_string::ConversionSpecifier::iArg: // %i |
| Precision = 1; |
| break; |
| case analyze_format_string::ConversionSpecifier::oArg: // %d |
| case analyze_format_string::ConversionSpecifier::OArg: // %D |
| case analyze_format_string::ConversionSpecifier::uArg: // %d |
| case analyze_format_string::ConversionSpecifier::UArg: // %D |
| case analyze_format_string::ConversionSpecifier::xArg: // %d |
| case analyze_format_string::ConversionSpecifier::XArg: // %D |
| Precision = 1; |
| break; |
| case analyze_format_string::ConversionSpecifier::fArg: // %f |
| case analyze_format_string::ConversionSpecifier::FArg: // %F |
| case analyze_format_string::ConversionSpecifier::eArg: // %e |
| case analyze_format_string::ConversionSpecifier::EArg: // %E |
| case analyze_format_string::ConversionSpecifier::gArg: // %g |
| case analyze_format_string::ConversionSpecifier::GArg: // %G |
| Precision = 6; |
| break; |
| case analyze_format_string::ConversionSpecifier::pArg: // %d |
| Precision = 1; |
| break; |
| } |
| break; |
| case analyze_format_string::OptionalAmount::Constant: |
| Precision = FW.getConstantAmount(); |
| break; |
| default: |
| break; |
| } |
| return Precision; |
| } |
| }; |
| |
| } // namespace |
| |
| void Sema::checkFortifiedBuiltinMemoryFunction(FunctionDecl *FD, |
| CallExpr *TheCall) { |
| if (TheCall->isValueDependent() || TheCall->isTypeDependent() || |
| isConstantEvaluated()) |
| return; |
| |
| unsigned BuiltinID = FD->getBuiltinID(/*ConsiderWrappers=*/true); |
| if (!BuiltinID) |
| return; |
| |
| const TargetInfo &TI = getASTContext().getTargetInfo(); |
| unsigned SizeTypeWidth = TI.getTypeWidth(TI.getSizeType()); |
| |
| auto ComputeExplicitObjectSizeArgument = |
| [&](unsigned Index) -> Optional<llvm::APSInt> { |
| Expr::EvalResult Result; |
| Expr *SizeArg = TheCall->getArg(Index); |
| if (!SizeArg->EvaluateAsInt(Result, getASTContext())) |
| return llvm::None; |
| return Result.Val.getInt(); |
| }; |
| |
| auto ComputeSizeArgument = [&](unsigned Index) -> Optional<llvm::APSInt> { |
| // If the parameter has a pass_object_size attribute, then we should use its |
| // (potentially) more strict checking mode. Otherwise, conservatively assume |
| // type 0. |
| int BOSType = 0; |
| // This check can fail for variadic functions. |
| if (Index < FD->getNumParams()) { |
| if (const auto *POS = |
| FD->getParamDecl(Index)->getAttr<PassObjectSizeAttr>()) |
| BOSType = POS->getType(); |
| } |
| |
| const Expr *ObjArg = TheCall->getArg(Index); |
| uint64_t Result; |
| if (!ObjArg->tryEvaluateObjectSize(Result, getASTContext(), BOSType)) |
| return llvm::None; |
| |
| // Get the object size in the target's size_t width. |
| return llvm::APSInt::getUnsigned(Result).extOrTrunc(SizeTypeWidth); |
| }; |
| |
| auto ComputeStrLenArgument = [&](unsigned Index) -> Optional<llvm::APSInt> { |
| Expr *ObjArg = TheCall->getArg(Index); |
| uint64_t Result; |
| if (!ObjArg->tryEvaluateStrLen(Result, getASTContext())) |
| return llvm::None; |
| // Add 1 for null byte. |
| return llvm::APSInt::getUnsigned(Result + 1).extOrTrunc(SizeTypeWidth); |
| }; |
| |
| Optional<llvm::APSInt> SourceSize; |
| Optional<llvm::APSInt> DestinationSize; |
| unsigned DiagID = 0; |
| bool IsChkVariant = false; |
| |
| auto GetFunctionName = [&]() { |
| StringRef FunctionName = getASTContext().BuiltinInfo.getName(BuiltinID); |
| // Skim off the details of whichever builtin was called to produce a better |
| // diagnostic, as it's unlikely that the user wrote the __builtin |
| // explicitly. |
| if (IsChkVariant) { |
| FunctionName = FunctionName.drop_front(std::strlen("__builtin___")); |
| FunctionName = FunctionName.drop_back(std::strlen("_chk")); |
| } else if (FunctionName.startswith("__builtin_")) { |
| FunctionName = FunctionName.drop_front(std::strlen("__builtin_")); |
| } |
| return FunctionName; |
| }; |
| |
| switch (BuiltinID) { |
| default: |
| return; |
| case Builtin::BI__builtin_strcpy: |
| case Builtin::BIstrcpy: { |
| DiagID = diag::warn_fortify_strlen_overflow; |
| SourceSize = ComputeStrLenArgument(1); |
| DestinationSize = ComputeSizeArgument(0); |
| break; |
| } |
| |
| case Builtin::BI__builtin___strcpy_chk: { |
| DiagID = diag::warn_fortify_strlen_overflow; |
| SourceSize = ComputeStrLenArgument(1); |
| DestinationSize = ComputeExplicitObjectSizeArgument(2); |
| IsChkVariant = true; |
| break; |
| } |
| |
| case Builtin::BIscanf: |
| case Builtin::BIfscanf: |
| case Builtin::BIsscanf: { |
| unsigned FormatIndex = 1; |
| unsigned DataIndex = 2; |
| if (BuiltinID == Builtin::BIscanf) { |
| FormatIndex = 0; |
| DataIndex = 1; |
| } |
| |
| const auto *FormatExpr = |
| TheCall->getArg(FormatIndex)->IgnoreParenImpCasts(); |
| |
| const auto *Format = dyn_cast<StringLiteral>(FormatExpr); |
| if (!Format) |
| return; |
| |
| if (!Format->isAscii() && !Format->isUTF8()) |
| return; |
| |
| auto Diagnose = [&](unsigned ArgIndex, unsigned DestSize, |
| unsigned SourceSize) { |
| DiagID = diag::warn_fortify_scanf_overflow; |
| unsigned Index = ArgIndex + DataIndex; |
| StringRef FunctionName = GetFunctionName(); |
| DiagRuntimeBehavior(TheCall->getArg(Index)->getBeginLoc(), TheCall, |
| PDiag(DiagID) << FunctionName << (Index + 1) |
| << DestSize << SourceSize); |
| }; |
| |
| StringRef FormatStrRef = Format->getString(); |
| auto ShiftedComputeSizeArgument = [&](unsigned Index) { |
| return ComputeSizeArgument(Index + DataIndex); |
| }; |
| ScanfDiagnosticFormatHandler H(ShiftedComputeSizeArgument, Diagnose); |
| const char *FormatBytes = FormatStrRef.data(); |
| const ConstantArrayType *T = |
| Context.getAsConstantArrayType(Format->getType()); |
| assert(T && "String literal not of constant array type!"); |
| size_t TypeSize = T->getSize().getZExtValue(); |
| |
| // In case there's a null byte somewhere. |
| size_t StrLen = |
| std::min(std::max(TypeSize, size_t(1)) - 1, FormatStrRef.find(0)); |
| |
| analyze_format_string::ParseScanfString(H, FormatBytes, |
| FormatBytes + StrLen, getLangOpts(), |
| Context.getTargetInfo()); |
| |
| // Unlike the other cases, in this one we have already issued the diagnostic |
| // here, so no need to continue (because unlike the other cases, here the |
| // diagnostic refers to the argument number). |
| return; |
| } |
| |
| case Builtin::BIsprintf: |
| case Builtin::BI__builtin___sprintf_chk: { |
| size_t FormatIndex = BuiltinID == Builtin::BIsprintf ? 1 : 3; |
| auto *FormatExpr = TheCall->getArg(FormatIndex)->IgnoreParenImpCasts(); |
| |
| if (auto *Format = dyn_cast<StringLiteral>(FormatExpr)) { |
| |
| if (!Format->isAscii() && !Format->isUTF8()) |
| return; |
| |
| StringRef FormatStrRef = Format->getString(); |
| EstimateSizeFormatHandler H(FormatStrRef); |
| const char *FormatBytes = FormatStrRef.data(); |
| const ConstantArrayType *T = |
| Context.getAsConstantArrayType(Format->getType()); |
| assert(T && "String literal not of constant array type!"); |
| size_t TypeSize = T->getSize().getZExtValue(); |
| |
| // In case there's a null byte somewhere. |
| size_t StrLen = |
| std::min(std::max(TypeSize, size_t(1)) - 1, FormatStrRef.find(0)); |
| if (!analyze_format_string::ParsePrintfString( |
| H, FormatBytes, FormatBytes + StrLen, getLangOpts(), |
| Context.getTargetInfo(), false)) { |
| DiagID = diag::warn_fortify_source_format_overflow; |
| SourceSize = llvm::APSInt::getUnsigned(H.getSizeLowerBound()) |
| .extOrTrunc(SizeTypeWidth); |
| if (BuiltinID == Builtin::BI__builtin___sprintf_chk) { |
| DestinationSize = ComputeExplicitObjectSizeArgument(2); |
| IsChkVariant = true; |
| } else { |
| DestinationSize = ComputeSizeArgument(0); |
| } |
| break; |
| } |
| } |
| return; |
| } |
| case Builtin::BI__builtin___memcpy_chk: |
| case Builtin::BI__builtin___memmove_chk: |
| case Builtin::BI__builtin___memset_chk: |
| case Builtin::BI__builtin___strlcat_chk: |
| case Builtin::BI__builtin___strlcpy_chk: |
| case Builtin::BI__builtin___strncat_chk: |
| case Builtin::BI__builtin___strncpy_chk: |
| case Builtin::BI__builtin___stpncpy_chk: |
| case Builtin::BI__builtin___memccpy_chk: |
| case Builtin::BI__builtin___mempcpy_chk: { |
| DiagID = diag::warn_builtin_chk_overflow; |
| SourceSize = ComputeExplicitObjectSizeArgument(TheCall->getNumArgs() - 2); |
| DestinationSize = |
| ComputeExplicitObjectSizeArgument(TheCall->getNumArgs() - 1); |
| IsChkVariant = true; |
| break; |
| } |
| |
| case Builtin::BI__builtin___snprintf_chk: |
| case Builtin::BI__builtin___vsnprintf_chk: { |
| DiagID = diag::warn_builtin_chk_overflow; |
| SourceSize = ComputeExplicitObjectSizeArgument(1); |
| DestinationSize = ComputeExplicitObjectSizeArgument(3); |
| IsChkVariant = true; |
| break; |
| } |
| |
| case Builtin::BIstrncat: |
| case Builtin::BI__builtin_strncat: |
| case Builtin::BIstrncpy: |
| case Builtin::BI__builtin_strncpy: |
| case Builtin::BIstpncpy: |
| case Builtin::BI__builtin_stpncpy: { |
| // Whether these functions overflow depends on the runtime strlen of the |
| // string, not just the buffer size, so emitting the "always overflow" |
| // diagnostic isn't quite right. We should still diagnose passing a buffer |
| // size larger than the destination buffer though; this is a runtime abort |
| // in _FORTIFY_SOURCE mode, and is quite suspicious otherwise. |
| DiagID = diag::warn_fortify_source_size_mismatch; |
| SourceSize = ComputeExplicitObjectSizeArgument(TheCall->getNumArgs() - 1); |
| DestinationSize = ComputeSizeArgument(0); |
| break; |
| } |
| |
| case Builtin::BImemcpy: |
| case Builtin::BI__builtin_memcpy: |
| case Builtin::BImemmove: |
| case Builtin::BI__builtin_memmove: |
| case Builtin::BImemset: |
| case Builtin::BI__builtin_memset: |
| case Builtin::BImempcpy: |
| case Builtin::BI__builtin_mempcpy: { |
| DiagID = diag::warn_fortify_source_overflow; |
| SourceSize = ComputeExplicitObjectSizeArgument(TheCall->getNumArgs() - 1); |
| DestinationSize = ComputeSizeArgument(0); |
| break; |
| } |
| case Builtin::BIsnprintf: |
| case Builtin::BI__builtin_snprintf: |
| case Builtin::BIvsnprintf: |
| case Builtin::BI__builtin_vsnprintf: { |
| DiagID = diag::warn_fortify_source_size_mismatch; |
| SourceSize = ComputeExplicitObjectSizeArgument(1); |
| DestinationSize = ComputeSizeArgument(0); |
| break; |
| } |
| } |
| |
| if (!SourceSize || !DestinationSize || |
| SourceSize.getValue().ule(DestinationSize.getValue())) |
| return; |
| |
| StringRef FunctionName = GetFunctionName(); |
| |
| SmallString<16> DestinationStr; |
| SmallString<16> SourceStr; |
| DestinationSize->toString(DestinationStr, /*Radix=*/10); |
| SourceSize->toString(SourceStr, /*Radix=*/10); |
| DiagRuntimeBehavior(TheCall->getBeginLoc(), TheCall, |
| PDiag(DiagID) |
| << FunctionName << DestinationStr << SourceStr); |
| } |
| |
| static bool SemaBuiltinSEHScopeCheck(Sema &SemaRef, CallExpr *TheCall, |
| Scope::ScopeFlags NeededScopeFlags, |
| unsigned DiagID) { |
| // Scopes aren't available during instantiation. Fortunately, builtin |
| // functions cannot be template args so they cannot be formed through template |
| // instantiation. Therefore checking once during the parse is sufficient. |
| if (SemaRef.inTemplateInstantiation()) |
| return false; |
| |
| Scope *S = SemaRef.getCurScope(); |
| while (S && !S->isSEHExceptScope()) |
| S = S->getParent(); |
| if (!S || !(S->getFlags() & NeededScopeFlags)) { |
| auto *DRE = cast<DeclRefExpr>(TheCall->getCallee()->IgnoreParenCasts()); |
| SemaRef.Diag(TheCall->getExprLoc(), DiagID) |
| << DRE->getDecl()->getIdentifier(); |
| return true; |
| } |
| |
| return false; |
| } |
| |
| static inline bool isBlockPointer(Expr *Arg) { |
| return Arg->getType()->isBlockPointerType(); |
| } |
| |
| /// OpenCL C v2.0, s6.13.17.2 - Checks that the block parameters are all local |
| /// void*, which is a requirement of device side enqueue. |
| static bool checkOpenCLBlockArgs(Sema &S, Expr *BlockArg) { |
| const BlockPointerType *BPT = |
| cast<BlockPointerType>(BlockArg->getType().getCanonicalType()); |
| ArrayRef<QualType> Params = |
| BPT->getPointeeType()->castAs<FunctionProtoType>()->getParamTypes(); |
| unsigned ArgCounter = 0; |
| bool IllegalParams = false; |
| // Iterate through the block parameters until either one is found that is not |
| // a local void*, or the block is valid. |
| for (ArrayRef<QualType>::iterator I = Params.begin(), E = Params.end(); |
| I != E; ++I, ++ArgCounter) { |
| if (!(*I)->isPointerType() || !(*I)->getPointeeType()->isVoidType() || |
| (*I)->getPointeeType().getQualifiers().getAddressSpace() != |
| LangAS::opencl_local) { |
| // Get the location of the error. If a block literal has been passed |
| // (BlockExpr) then we can point straight to the offending argument, |
| // else we just point to the variable reference. |
| SourceLocation ErrorLoc; |
| if (isa<BlockExpr>(BlockArg)) { |
| BlockDecl *BD = cast<BlockExpr>(BlockArg)->getBlockDecl(); |
| ErrorLoc = BD->getParamDecl(ArgCounter)->getBeginLoc(); |
| } else if (isa<DeclRefExpr>(BlockArg)) { |
| ErrorLoc = cast<DeclRefExpr>(BlockArg)->getBeginLoc(); |
| } |
| S.Diag(ErrorLoc, |
| diag::err_opencl_enqueue_kernel_blocks_non_local_void_args); |
| IllegalParams = true; |
| } |
| } |
| |
| return IllegalParams; |
| } |
| |
| static bool checkOpenCLSubgroupExt(Sema &S, CallExpr *Call) { |
| if (!S.getOpenCLOptions().isSupported("cl_khr_subgroups", S.getLangOpts())) { |
| S.Diag(Call->getBeginLoc(), diag::err_opencl_requires_extension) |
| << 1 << Call->getDirectCallee() << "cl_khr_subgroups"; |
| return true; |
| } |
| return false; |
| } |
| |
| static bool SemaOpenCLBuiltinNDRangeAndBlock(Sema &S, CallExpr *TheCall) { |
| if (checkArgCount(S, TheCall, 2)) |
| return true; |
| |
| if (checkOpenCLSubgroupExt(S, TheCall)) |
| return true; |
| |
| // First argument is an ndrange_t type. |
| Expr *NDRangeArg = TheCall->getArg(0); |
| if (NDRangeArg->getType().getUnqualifiedType().getAsString() != "ndrange_t") { |
| S.Diag(NDRangeArg->getBeginLoc(), diag::err_opencl_builtin_expected_type) |
| << TheCall->getDirectCallee() << "'ndrange_t'"; |
| return true; |
| } |
| |
| Expr *BlockArg = TheCall->getArg(1); |
| if (!isBlockPointer(BlockArg)) { |
| S.Diag(BlockArg->getBeginLoc(), diag::err_opencl_builtin_expected_type) |
| << TheCall->getDirectCallee() << "block"; |
| return true; |
| } |
| return checkOpenCLBlockArgs(S, BlockArg); |
| } |
| |
| /// OpenCL C v2.0, s6.13.17.6 - Check the argument to the |
| /// get_kernel_work_group_size |
| /// and get_kernel_preferred_work_group_size_multiple builtin functions. |
| static bool SemaOpenCLBuiltinKernelWorkGroupSize(Sema &S, CallExpr *TheCall) { |
| if (checkArgCount(S, TheCall, 1)) |
| return true; |
| |
| Expr *BlockArg = TheCall->getArg(0); |
| if (!isBlockPointer(BlockArg)) { |
| S.Diag(BlockArg->getBeginLoc(), diag::err_opencl_builtin_expected_type) |
| << TheCall->getDirectCallee() << "block"; |
| return true; |
| } |
| return checkOpenCLBlockArgs(S, BlockArg); |
| } |
| |
| /// Diagnose integer type and any valid implicit conversion to it. |
| static bool checkOpenCLEnqueueIntType(Sema &S, Expr *E, |
| const QualType &IntType); |
| |
| static bool checkOpenCLEnqueueLocalSizeArgs(Sema &S, CallExpr *TheCall, |
| unsigned Start, unsigned End) { |
| bool IllegalParams = false; |
| for (unsigned I = Start; I <= End; ++I) |
| IllegalParams |= checkOpenCLEnqueueIntType(S, TheCall->getArg(I), |
| S.Context.getSizeType()); |
| return IllegalParams; |
| } |
| |
| /// OpenCL v2.0, s6.13.17.1 - Check that sizes are provided for all |
| /// 'local void*' parameter of passed block. |
| static bool checkOpenCLEnqueueVariadicArgs(Sema &S, CallExpr *TheCall, |
| Expr *BlockArg, |
| unsigned NumNonVarArgs) { |
| const BlockPointerType *BPT = |
| cast<BlockPointerType>(BlockArg->getType().getCanonicalType()); |
| unsigned NumBlockParams = |
| BPT->getPointeeType()->castAs<FunctionProtoType>()->getNumParams(); |
| unsigned TotalNumArgs = TheCall->getNumArgs(); |
| |
| // For each argument passed to the block, a corresponding uint needs to |
| // be passed to describe the size of the local memory. |
| if (TotalNumArgs != NumBlockParams + NumNonVarArgs) { |
| S.Diag(TheCall->getBeginLoc(), |
| diag::err_opencl_enqueue_kernel_local_size_args); |
| return true; |
| } |
| |
| // Check that the sizes of the local memory are specified by integers. |
| return checkOpenCLEnqueueLocalSizeArgs(S, TheCall, NumNonVarArgs, |
| TotalNumArgs - 1); |
| } |
| |
| /// OpenCL C v2.0, s6.13.17 - Enqueue kernel function contains four different |
| /// overload formats specified in Table 6.13.17.1. |
| /// int enqueue_kernel(queue_t queue, |
| /// kernel_enqueue_flags_t flags, |
| /// const ndrange_t ndrange, |
| /// void (^block)(void)) |
| /// int enqueue_kernel(queue_t queue, |
| /// kernel_enqueue_flags_t flags, |
| /// const ndrange_t ndrange, |
| /// uint num_events_in_wait_list, |
| /// clk_event_t *event_wait_list, |
| /// clk_event_t *event_ret, |
| /// void (^block)(void)) |
| /// int enqueue_kernel(queue_t queue, |
| /// kernel_enqueue_flags_t flags, |
| /// const ndrange_t ndrange, |
| /// void (^block)(local void*, ...), |
| /// uint size0, ...) |
| /// int enqueue_kernel(queue_t queue, |
| /// kernel_enqueue_flags_t flags, |
| /// const ndrange_t ndrange, |
| /// uint num_events_in_wait_list, |
| /// clk_event_t *event_wait_list, |
| /// clk_event_t *event_ret, |
| /// void (^block)(local void*, ...), |
| /// uint size0, ...) |
| static bool SemaOpenCLBuiltinEnqueueKernel(Sema &S, CallExpr *TheCall) { |
| unsigned NumArgs = TheCall->getNumArgs(); |
| |
| if (NumArgs < 4) { |
| S.Diag(TheCall->getBeginLoc(), |
| diag::err_typecheck_call_too_few_args_at_least) |
| << 0 << 4 << NumArgs; |
| return true; |
| } |
| |
| Expr *Arg0 = TheCall->getArg(0); |
| Expr *Arg1 = TheCall->getArg(1); |
| Expr *Arg2 = TheCall->getArg(2); |
| Expr *Arg3 = TheCall->getArg(3); |
| |
| // First argument always needs to be a queue_t type. |
| if (!Arg0->getType()->isQueueT()) { |
| S.Diag(TheCall->getArg(0)->getBeginLoc(), |
| diag::err_opencl_builtin_expected_type) |
| << TheCall->getDirectCallee() << S.Context.OCLQueueTy; |
| return true; |
| } |
| |
| // Second argument always needs to be a kernel_enqueue_flags_t enum value. |
| if (!Arg1->getType()->isIntegerType()) { |
| S.Diag(TheCall->getArg(1)->getBeginLoc(), |
| diag::err_opencl_builtin_expected_type) |
| << TheCall->getDirectCallee() << "'kernel_enqueue_flags_t' (i.e. uint)"; |
| return true; |
| } |
| |
| // Third argument is always an ndrange_t type. |
| if (Arg2->getType().getUnqualifiedType().getAsString() != "ndrange_t") { |
| S.Diag(TheCall->getArg(2)->getBeginLoc(), |
| diag::err_opencl_builtin_expected_type) |
| << TheCall->getDirectCallee() << "'ndrange_t'"; |
| return true; |
| } |
| |
| // With four arguments, there is only one form that the function could be |
| // called in: no events and no variable arguments. |
| if (NumArgs == 4) { |
| // check that the last argument is the right block type. |
| if (!isBlockPointer(Arg3)) { |
| S.Diag(Arg3->getBeginLoc(), diag::err_opencl_builtin_expected_type) |
| << TheCall->getDirectCallee() << "block"; |
| return true; |
| } |
| // we have a block type, check the prototype |
| const BlockPointerType *BPT = |
| cast<BlockPointerType>(Arg3->getType().getCanonicalType()); |
| if (BPT->getPointeeType()->castAs<FunctionProtoType>()->getNumParams() > 0) { |
| S.Diag(Arg3->getBeginLoc(), |
| diag::err_opencl_enqueue_kernel_blocks_no_args); |
| return true; |
| } |
| return false; |
| } |
| // we can have block + varargs. |
| if (isBlockPointer(Arg3)) |
| return (checkOpenCLBlockArgs(S, Arg3) || |
| checkOpenCLEnqueueVariadicArgs(S, TheCall, Arg3, 4)); |
| // last two cases with either exactly 7 args or 7 args and varargs. |
| if (NumArgs >= 7) { |
| // check common block argument. |
| Expr *Arg6 = TheCall->getArg(6); |
| if (!isBlockPointer(Arg6)) { |
| S.Diag(Arg6->getBeginLoc(), diag::err_opencl_builtin_expected_type) |
| << TheCall->getDirectCallee() << "block"; |
| return true; |
| } |
| if (checkOpenCLBlockArgs(S, Arg6)) |
| return true; |
| |
| // Forth argument has to be any integer type. |
| if (!Arg3->getType()->isIntegerType()) { |
| S.Diag(TheCall->getArg(3)->getBeginLoc(), |
| diag::err_opencl_builtin_expected_type) |
| << TheCall->getDirectCallee() << "integer"; |
| return true; |
| } |
| // check remaining common arguments. |
| Expr *Arg4 = TheCall->getArg(4); |
| Expr *Arg5 = TheCall->getArg(5); |
| |
| // Fifth argument is always passed as a pointer to clk_event_t. |
| if (!Arg4->isNullPointerConstant(S.Context, |
| Expr::NPC_ValueDependentIsNotNull) && |
| !Arg4->getType()->getPointeeOrArrayElementType()->isClkEventT()) { |
| S.Diag(TheCall->getArg(4)->getBeginLoc(), |
| diag::err_opencl_builtin_expected_type) |
| << TheCall->getDirectCallee() |
| << S.Context.getPointerType(S.Context.OCLClkEventTy); |
| return true; |
| } |
| |
| // Sixth argument is always passed as a pointer to clk_event_t. |
| if (!Arg5->isNullPointerConstant(S.Context, |
| Expr::NPC_ValueDependentIsNotNull) && |
| !(Arg5->getType()->isPointerType() && |
| Arg5->getType()->getPointeeType()->isClkEventT())) { |
| S.Diag(TheCall->getArg(5)->getBeginLoc(), |
| diag::err_opencl_builtin_expected_type) |
| << TheCall->getDirectCallee() |
| << S.Context.getPointerType(S.Context.OCLClkEventTy); |
| return true; |
| } |
| |
| if (NumArgs == 7) |
| return false; |
| |
| return checkOpenCLEnqueueVariadicArgs(S, TheCall, Arg6, 7); |
| } |
| |
| // None of the specific case has been detected, give generic error |
| S.Diag(TheCall->getBeginLoc(), |
| diag::err_opencl_enqueue_kernel_incorrect_args); |
| return true; |
| } |
| |
| /// Returns OpenCL access qual. |
| static OpenCLAccessAttr *getOpenCLArgAccess(const Decl *D) { |
| return D->getAttr<OpenCLAccessAttr>(); |
| } |
| |
| /// Returns true if pipe element type is different from the pointer. |
| static bool checkOpenCLPipeArg(Sema &S, CallExpr *Call) { |
| const Expr *Arg0 = Call->getArg(0); |
| // First argument type should always be pipe. |
| if (!Arg0->getType()->isPipeType()) { |
| S.Diag(Call->getBeginLoc(), diag::err_opencl_builtin_pipe_first_arg) |
| << Call->getDirectCallee() << Arg0->getSourceRange(); |
| return true; |
| } |
| OpenCLAccessAttr *AccessQual = |
| getOpenCLArgAccess(cast<DeclRefExpr>(Arg0)->getDecl()); |
| // Validates the access qualifier is compatible with the call. |
| // OpenCL v2.0 s6.13.16 - The access qualifiers for pipe should only be |
| // read_only and write_only, and assumed to be read_only if no qualifier is |
| // specified. |
| switch (Call->getDirectCallee()->getBuiltinID()) { |
| case Builtin::BIread_pipe: |
| case Builtin::BIreserve_read_pipe: |
| case Builtin::BIcommit_read_pipe: |
| case Builtin::BIwork_group_reserve_read_pipe: |
| case Builtin::BIsub_group_reserve_read_pipe: |
| case Builtin::BIwork_group_commit_read_pipe: |
| case Builtin::BIsub_group_commit_read_pipe: |
| if (!(!AccessQual || AccessQual->isReadOnly())) { |
| S.Diag(Arg0->getBeginLoc(), |
| diag::err_opencl_builtin_pipe_invalid_access_modifier) |
| << "read_only" << Arg0->getSourceRange(); |
| return true; |
| } |
| break; |
| case Builtin::BIwrite_pipe: |
| case Builtin::BIreserve_write_pipe: |
| case Builtin::BIcommit_write_pipe: |
| case Builtin::BIwork_group_reserve_write_pipe: |
| case Builtin::BIsub_group_reserve_write_pipe: |
| case Builtin::BIwork_group_commit_write_pipe: |
| case Builtin::BIsub_group_commit_write_pipe: |
| if (!(AccessQual && AccessQual->isWriteOnly())) { |
| S.Diag(Arg0->getBeginLoc(), |
| diag::err_opencl_builtin_pipe_invalid_access_modifier) |
| << "write_only" << Arg0->getSourceRange(); |
| return true; |
| } |
| break; |
| default: |
| break; |
| } |
| return false; |
| } |
| |
| /// Returns true if pipe element type is different from the pointer. |
| static bool checkOpenCLPipePacketType(Sema &S, CallExpr *Call, unsigned Idx) { |
| const Expr *Arg0 = Call->getArg(0); |
| const Expr *ArgIdx = Call->getArg(Idx); |
| const PipeType *PipeTy = cast<PipeType>(Arg0->getType()); |
| const QualType EltTy = PipeTy->getElementType(); |
| const PointerType *ArgTy = ArgIdx->getType()->getAs<PointerType>(); |
| // The Idx argument should be a pointer and the type of the pointer and |
| // the type of pipe element should also be the same. |
| if (!ArgTy || |
| !S.Context.hasSameType( |
| EltTy, ArgTy->getPointeeType()->getCanonicalTypeInternal())) { |
| S.Diag(Call->getBeginLoc(), diag::err_opencl_builtin_pipe_invalid_arg) |
| << Call->getDirectCallee() << S.Context.getPointerType(EltTy) |
| << ArgIdx->getType() << ArgIdx->getSourceRange(); |
| return true; |
| } |
| return false; |
| } |
| |
| // Performs semantic analysis for the read/write_pipe call. |
| // \param S Reference to the semantic analyzer. |
| // \param Call A pointer to the builtin call. |
| // \return True if a semantic error has been found, false otherwise. |
| static bool SemaBuiltinRWPipe(Sema &S, CallExpr *Call) { |
| // OpenCL v2.0 s6.13.16.2 - The built-in read/write |
| // functions have two forms. |
| switch (Call->getNumArgs()) { |
| case 2: |
| if (checkOpenCLPipeArg(S, Call)) |
| return true; |
| // The call with 2 arguments should be |
| // read/write_pipe(pipe T, T*). |
| // Check packet type T. |
| if (checkOpenCLPipePacketType(S, Call, 1)) |
| return true; |
| break; |
| |
| case 4: { |
| if (checkOpenCLPipeArg(S, Call)) |
| return true; |
| // The call with 4 arguments should be |
| // read/write_pipe(pipe T, reserve_id_t, uint, T*). |
| // Check reserve_id_t. |
| if (!Call->getArg(1)->getType()->isReserveIDT()) { |
| S.Diag(Call->getBeginLoc(), diag::err_opencl_builtin_pipe_invalid_arg) |
| << Call->getDirectCallee() << S.Context.OCLReserveIDTy |
| << Call->getArg(1)->getType() << Call->getArg(1)->getSourceRange(); |
| return true; |
| } |
| |
| // Check the index. |
| const Expr *Arg2 = Call->getArg(2); |
| if (!Arg2->getType()->isIntegerType() && |
| !Arg2->getType()->isUnsignedIntegerType()) { |
| S.Diag(Call->getBeginLoc(), diag::err_opencl_builtin_pipe_invalid_arg) |
| << Call->getDirectCallee() << S.Context.UnsignedIntTy |
| << Arg2->getType() << Arg2->getSourceRange(); |
| return true; |
| } |
| |
| // Check packet type T. |
| if (checkOpenCLPipePacketType(S, Call, 3)) |
| return true; |
| } break; |
| default: |
| S.Diag(Call->getBeginLoc(), diag::err_opencl_builtin_pipe_arg_num) |
| << Call->getDirectCallee() << Call->getSourceRange(); |
| return true; |
| } |
| |
| return false; |
| } |
| |
| // Performs a semantic analysis on the {work_group_/sub_group_ |
| // /_}reserve_{read/write}_pipe |
| // \param S Reference to the semantic analyzer. |
| // \param Call The call to the builtin function to be analyzed. |
| // \return True if a semantic error was found, false otherwise. |
| static bool SemaBuiltinReserveRWPipe(Sema &S, CallExpr *Call) { |
| if (checkArgCount(S, Call, 2)) |
| return true; |
| |
| if (checkOpenCLPipeArg(S, Call)) |
| return true; |
| |
| // Check the reserve size. |
| if (!Call->getArg(1)->getType()->isIntegerType() && |
| !Call->getArg(1)->getType()->isUnsignedIntegerType()) { |
| S.Diag(Call->getBeginLoc(), diag::err_opencl_builtin_pipe_invalid_arg) |
| << Call->getDirectCallee() << S.Context.UnsignedIntTy |
| << Call->getArg(1)->getType() << Call->getArg(1)->getSourceRange(); |
| return true; |
| } |
| |
| // Since return type of reserve_read/write_pipe built-in function is |
| // reserve_id_t, which is not defined in the builtin def file , we used int |
| // as return type and need to override the return type of these functions. |
| Call->setType(S.Context.OCLReserveIDTy); |
| |
| return false; |
| } |
| |
| // Performs a semantic analysis on {work_group_/sub_group_ |
| // /_}commit_{read/write}_pipe |
| // \param S Reference to the semantic analyzer. |
| // \param Call The call to the builtin function to be analyzed. |
| // \return True if a semantic error was found, false otherwise. |
| static bool SemaBuiltinCommitRWPipe(Sema &S, CallExpr *Call) { |
| if (checkArgCount(S, Call, 2)) |
| return true; |
| |
| if (checkOpenCLPipeArg(S, Call)) |
| return true; |
| |
| // Check reserve_id_t. |
| if (!Call->getArg(1)->getType()->isReserveIDT()) { |
| S.Diag(Call->getBeginLoc(), diag::err_opencl_builtin_pipe_invalid_arg) |
| << Call->getDirectCallee() << S.Context.OCLReserveIDTy |
| << Call->getArg(1)->getType() << Call->getArg(1)->getSourceRange(); |
| return true; |
| } |
| |
| return false; |
| } |
| |
| // Performs a semantic analysis on the call to built-in Pipe |
| // Query Functions. |
| // \param S Reference to the semantic analyzer. |
| // \param Call The call to the builtin function to be analyzed. |
| // \return True if a semantic error was found, false otherwise. |
| static bool SemaBuiltinPipePackets(Sema &S, CallExpr *Call) { |
| if (checkArgCount(S, Call, 1)) |
| return true; |
| |
| if (!Call->getArg(0)->getType()->isPipeType()) { |
| S.Diag(Call->getBeginLoc(), diag::err_opencl_builtin_pipe_first_arg) |
| << Call->getDirectCallee() << Call->getArg(0)->getSourceRange(); |
| return true; |
| } |
| |
| return false; |
| } |
| |
| // OpenCL v2.0 s6.13.9 - Address space qualifier functions. |
| // Performs semantic analysis for the to_global/local/private call. |
| // \param S Reference to the semantic analyzer. |
| // \param BuiltinID ID of the builtin function. |
| // \param Call A pointer to the builtin call. |
| // \return True if a semantic error has been found, false otherwise. |
| static bool SemaOpenCLBuiltinToAddr(Sema &S, unsigned BuiltinID, |
| CallExpr *Call) { |
| if (checkArgCount(S, Call, 1)) |
| return true; |
| |
| auto RT = Call->getArg(0)->getType(); |
| if (!RT->isPointerType() || RT->getPointeeType() |
| .getAddressSpace() == LangAS::opencl_constant) { |
| S.Diag(Call->getBeginLoc(), diag::err_opencl_builtin_to_addr_invalid_arg) |
| << Call->getArg(0) << Call->getDirectCallee() << Call->getSourceRange(); |
| return true; |
| } |
| |
| if (RT->getPointeeType().getAddressSpace() != LangAS::opencl_generic) { |
| S.Diag(Call->getArg(0)->getBeginLoc(), |
| diag::warn_opencl_generic_address_space_arg) |
| << Call->getDirectCallee()->getNameInfo().getAsString() |
| << Call->getArg(0)->getSourceRange(); |
| } |
| |
| RT = RT->getPointeeType(); |
| auto Qual = RT.getQualifiers(); |
| switch (BuiltinID) { |
| case Builtin::BIto_global: |
| Qual.setAddressSpace(LangAS::opencl_global); |
| break; |
| case Builtin::BIto_local: |
| Qual.setAddressSpace(LangAS::opencl_local); |
| break; |
| case Builtin::BIto_private: |
| Qual.setAddressSpace(LangAS::opencl_private); |
| break; |
| default: |
| llvm_unreachable("Invalid builtin function"); |
| } |
| Call->setType(S.Context.getPointerType(S.Context.getQualifiedType( |
| RT.getUnqualifiedType(), Qual))); |
| |
| return false; |
| } |
| |
| static ExprResult SemaBuiltinLaunder(Sema &S, CallExpr *TheCall) { |
| if (checkArgCount(S, TheCall, 1)) |
| return ExprError(); |
| |
| // Compute __builtin_launder's parameter type from the argument. |
| // The parameter type is: |
| // * The type of the argument if it's not an array or function type, |
| // Otherwise, |
| // * The decayed argument type. |
| QualType ParamTy = [&]() { |
| QualType ArgTy = TheCall->getArg(0)->getType(); |
| if (const ArrayType *Ty = ArgTy->getAsArrayTypeUnsafe()) |
| return S.Context.getPointerType(Ty->getElementType()); |
| if (ArgTy->isFunctionType()) { |
| return S.Context.getPointerType(ArgTy); |
| } |
| return ArgTy; |
| }(); |
| |
| TheCall->setType(ParamTy); |
| |
| auto DiagSelect = [&]() -> llvm::Optional<unsigned> { |
| if (!ParamTy->isPointerType()) |
| return 0; |
| if (ParamTy->isFunctionPointerType()) |
| return 1; |
| if (ParamTy->isVoidPointerType()) |
| return 2; |
| return llvm::Optional<unsigned>{}; |
| }(); |
| if (DiagSelect.hasValue()) { |
| S.Diag(TheCall->getBeginLoc(), diag::err_builtin_launder_invalid_arg) |
| << DiagSelect.getValue() << TheCall->getSourceRange(); |
| return ExprError(); |
| } |
| |
| // We either have an incomplete class type, or we have a class template |
| // whose instantiation has not been forced. Example: |
| // |
| // template <class T> struct Foo { T value; }; |
| // Foo<int> *p = nullptr; |
| // auto *d = __builtin_launder(p); |
| if (S.RequireCompleteType(TheCall->getBeginLoc(), ParamTy->getPointeeType(), |
| diag::err_incomplete_type)) |
| return ExprError(); |
| |
| assert(ParamTy->getPointeeType()->isObjectType() && |
| "Unhandled non-object pointer case"); |
| |
| InitializedEntity Entity = |
| InitializedEntity::InitializeParameter(S.Context, ParamTy, false); |
| ExprResult Arg = |
| S.PerformCopyInitialization(Entity, SourceLocation(), TheCall->getArg(0)); |
| if (Arg.isInvalid()) |
| return ExprError(); |
| TheCall->setArg(0, Arg.get()); |
| |
| return TheCall; |
| } |
| |
| // Emit an error and return true if the current architecture is not in the list |
| // of supported architectures. |
| static bool |
| CheckBuiltinTargetSupport(Sema &S, unsigned BuiltinID, CallExpr *TheCall, |
| ArrayRef<llvm::Triple::ArchType> SupportedArchs) { |
| llvm::Triple::ArchType CurArch = |
| S.getASTContext().getTargetInfo().getTriple().getArch(); |
| if (llvm::is_contained(SupportedArchs, CurArch)) |
| return false; |
| S.Diag(TheCall->getBeginLoc(), diag::err_builtin_target_unsupported) |
| << TheCall->getSourceRange(); |
| return true; |
| } |
| |
| static void CheckNonNullArgument(Sema &S, const Expr *ArgExpr, |
| SourceLocation CallSiteLoc); |
| |
| bool Sema::CheckTSBuiltinFunctionCall(const TargetInfo &TI, unsigned BuiltinID, |
| CallExpr *TheCall) { |
| switch (TI.getTriple().getArch()) { |
| default: |
| // Some builtins don't require additional checking, so just consider these |
| // acceptable. |
| return false; |
| case llvm::Triple::arm: |
| case llvm::Triple::armeb: |
| case llvm::Triple::thumb: |
| case llvm::Triple::thumbeb: |
| return CheckARMBuiltinFunctionCall(TI, BuiltinID, TheCall); |
| case llvm::Triple::aarch64: |
| case llvm::Triple::aarch64_32: |
| case llvm::Triple::aarch64_be: |
| return CheckAArch64BuiltinFunctionCall(TI, BuiltinID, TheCall); |
| case llvm::Triple::bpfeb: |
| case llvm::Triple::bpfel: |
| return CheckBPFBuiltinFunctionCall(BuiltinID, TheCall); |
| case llvm::Triple::hexagon: |
| return CheckHexagonBuiltinFunctionCall(BuiltinID, TheCall); |
| case llvm::Triple::mips: |
| case llvm::Triple::mipsel: |
| case llvm::Triple::mips64: |
| case llvm::Triple::mips64el: |
| return CheckMipsBuiltinFunctionCall(TI, BuiltinID, TheCall); |
| case llvm::Triple::systemz: |
| return CheckSystemZBuiltinFunctionCall(BuiltinID, TheCall); |
| case llvm::Triple::x86: |
| case llvm::Triple::x86_64: |
| return CheckX86BuiltinFunctionCall(TI, BuiltinID, TheCall); |
| case llvm::Triple::ppc: |
| case llvm::Triple::ppcle: |
| case llvm::Triple::ppc64: |
| case llvm::Triple::ppc64le: |
| return CheckPPCBuiltinFunctionCall(TI, BuiltinID, TheCall); |
| case llvm::Triple::amdgcn: |
| return CheckAMDGCNBuiltinFunctionCall(BuiltinID, TheCall); |
| case llvm::Triple::riscv32: |
| case llvm::Triple::riscv64: |
| return CheckRISCVBuiltinFunctionCall(TI, BuiltinID, TheCall); |
| } |
| } |
| |
| ExprResult |
| Sema::CheckBuiltinFunctionCall(FunctionDecl *FDecl, unsigned BuiltinID, |
| CallExpr *TheCall) { |
| ExprResult TheCallResult(TheCall); |
| |
| // Find out if any arguments are required to be integer constant expressions. |
| unsigned ICEArguments = 0; |
| ASTContext::GetBuiltinTypeError Error; |
| Context.GetBuiltinType(BuiltinID, Error, &ICEArguments); |
| if (Error != ASTContext::GE_None) |
| ICEArguments = 0; // Don't diagnose previously diagnosed errors. |
| |
| // If any arguments are required to be ICE's, check and diagnose. |
| for (unsigned ArgNo = 0; ICEArguments != 0; ++ArgNo) { |
| // Skip arguments not required to be ICE's. |
| if ((ICEArguments & (1 << ArgNo)) == 0) continue; |
| |
| llvm::APSInt Result; |
| if (SemaBuiltinConstantArg(TheCall, ArgNo, Result)) |
| return true; |
| ICEArguments &= ~(1 << ArgNo); |
| } |
| |
| switch (BuiltinID) { |
| case Builtin::BI__builtin___CFStringMakeConstantString: |
| assert(TheCall->getNumArgs() == 1 && |
| "Wrong # arguments to builtin CFStringMakeConstantString"); |
| if (CheckObjCString(TheCall->getArg(0))) |
| return ExprError(); |
| break; |
| case Builtin::BI__builtin_ms_va_start: |
| case Builtin::BI__builtin_stdarg_start: |
| case Builtin::BI__builtin_va_start: |
| if (SemaBuiltinVAStart(BuiltinID, TheCall)) |
| return ExprError(); |
| break; |
| case Builtin::BI__va_start: { |
| switch (Context.getTargetInfo().getTriple().getArch()) { |
| case llvm::Triple::aarch64: |
| case llvm::Triple::arm: |
| case llvm::Triple::thumb: |
| if (SemaBuiltinVAStartARMMicrosoft(TheCall)) |
| return ExprError(); |
| break; |
| default: |
| if (SemaBuiltinVAStart(BuiltinID, TheCall)) |
| return ExprError(); |
| break; |
| } |
| break; |
| } |
| |
| // The acquire, release, and no fence variants are ARM and AArch64 only. |
| case Builtin::BI_interlockedbittestandset_acq: |
| case Builtin::BI_interlockedbittestandset_rel: |
| case Builtin::BI_interlockedbittestandset_nf: |
| case Builtin::BI_interlockedbittestandreset_acq: |
| case Builtin::BI_interlockedbittestandreset_rel: |
| case Builtin::BI_interlockedbittestandreset_nf: |
| if (CheckBuiltinTargetSupport( |
| *this, BuiltinID, TheCall, |
| {llvm::Triple::arm, llvm::Triple::thumb, llvm::Triple::aarch64})) |
| return ExprError(); |
| break; |
| |
| // The 64-bit bittest variants are x64, ARM, and AArch64 only. |
| case Builtin::BI_bittest64: |
| case Builtin::BI_bittestandcomplement64: |
| case Builtin::BI_bittestandreset64: |
| case Builtin::BI_bittestandset64: |
| case Builtin::BI_interlockedbittestandreset64: |
| case Builtin::BI_interlockedbittestandset64: |
| if (CheckBuiltinTargetSupport(*this, BuiltinID, TheCall, |
| {llvm::Triple::x86_64, llvm::Triple::arm, |
| llvm::Triple::thumb, llvm::Triple::aarch64})) |
| return ExprError(); |
| break; |
| |
| case Builtin::BI__builtin_isgreater: |
| case Builtin::BI__builtin_isgreaterequal: |
| case Builtin::BI__builtin_isless: |
| case Builtin::BI__builtin_islessequal: |
| case Builtin::BI__builtin_islessgreater: |
| case Builtin::BI__builtin_isunordered: |
| if (SemaBuiltinUnorderedCompare(TheCall)) |
| return ExprError(); |
| break; |
| case Builtin::BI__builtin_fpclassify: |
| if (SemaBuiltinFPClassification(TheCall, 6)) |
| return ExprError(); |
| break; |
| case Builtin::BI__builtin_isfinite: |
| case Builtin::BI__builtin_isinf: |
| case Builtin::BI__builtin_isinf_sign: |
| case Builtin::BI__builtin_isnan: |
| case Builtin::BI__builtin_isnormal: |
| case Builtin::BI__builtin_signbit: |
| case Builtin::BI__builtin_signbitf: |
| case Builtin::BI__builtin_signbitl: |
| if (SemaBuiltinFPClassification(TheCall, 1)) |
| return ExprError(); |
| break; |
| case Builtin::BI__builtin_shufflevector: |
| return SemaBuiltinShuffleVector(TheCall); |
| // TheCall will be freed by the smart pointer here, but that's fine, since |
| // SemaBuiltinShuffleVector guts it, but then doesn't release it. |
| case Builtin::BI__builtin_prefetch: |
| if (SemaBuiltinPrefetch(TheCall)) |
| return ExprError(); |
| break; |
| case Builtin::BI__builtin_alloca_with_align: |
| if (SemaBuiltinAllocaWithAlign(TheCall)) |
| return ExprError(); |
| LLVM_FALLTHROUGH; |
| case Builtin::BI__builtin_alloca: |
| Diag(TheCall->getBeginLoc(), diag::warn_alloca) |
| << TheCall->getDirectCallee(); |
| break; |
| case Builtin::BI__arithmetic_fence: |
| if (SemaBuiltinArithmeticFence(TheCall)) |
| return ExprError(); |
| break; |
| case Builtin::BI__assume: |
| case Builtin::BI__builtin_assume: |
| if (SemaBuiltinAssume(TheCall)) |
| return ExprError(); |
| break; |
| case Builtin::BI__builtin_assume_aligned: |
| if (SemaBuiltinAssumeAligned(TheCall)) |
| return ExprError(); |
| break; |
| case Builtin::BI__builtin_dynamic_object_size: |
| case Builtin::BI__builtin_object_size: |
| if (SemaBuiltinConstantArgRange(TheCall, 1, 0, 3)) |
| return ExprError(); |
| break; |
| case Builtin::BI__builtin_longjmp: |
| if (SemaBuiltinLongjmp(TheCall)) |
| return ExprError(); |
| break; |
| case Builtin::BI__builtin_setjmp: |
| if (SemaBuiltinSetjmp(TheCall)) |
| return ExprError(); |
| break; |
| case Builtin::BI__builtin_classify_type: |
| if (checkArgCount(*this, TheCall, 1)) return true; |
| TheCall->setType(Context.IntTy); |
| break; |
| case Builtin::BI__builtin_complex: |
| if (SemaBuiltinComplex(TheCall)) |
| return ExprError(); |
| break; |
| case Builtin::BI__builtin_constant_p: { |
| if (checkArgCount(*this, TheCall, 1)) return true; |
| ExprResult Arg = DefaultFunctionArrayLvalueConversion(TheCall->getArg(0)); |
| if (Arg.isInvalid()) return true; |
| TheCall->setArg(0, Arg.get()); |
| TheCall->setType(Context.IntTy); |
| break; |
| } |
| case Builtin::BI__builtin_launder: |
| return SemaBuiltinLaunder(*this, TheCall); |
| case Builtin::BI__sync_fetch_and_add: |
| case Builtin::BI__sync_fetch_and_add_1: |
| case Builtin::BI__sync_fetch_and_add_2: |
| case Builtin::BI__sync_fetch_and_add_4: |
| case Builtin::BI__sync_fetch_and_add_8: |
| case Builtin::BI__sync_fetch_and_add_16: |
| case Builtin::BI__sync_fetch_and_sub: |
| case Builtin::BI__sync_fetch_and_sub_1: |
| case Builtin::BI__sync_fetch_and_sub_2: |
| case Builtin::BI__sync_fetch_and_sub_4: |
| case Builtin::BI__sync_fetch_and_sub_8: |
| case Builtin::BI__sync_fetch_and_sub_16: |
| case Builtin::BI__sync_fetch_and_or: |
| case Builtin::BI__sync_fetch_and_or_1: |
| case Builtin::BI__sync_fetch_and_or_2: |
| case Builtin::BI__sync_fetch_and_or_4: |
| case Builtin::BI__sync_fetch_and_or_8: |
| case Builtin::BI__sync_fetch_and_or_16: |
| case Builtin::BI__sync_fetch_and_and: |
| case Builtin::BI__sync_fetch_and_and_1: |
| case Builtin::BI__sync_fetch_and_and_2: |
| case Builtin::BI__sync_fetch_and_and_4: |
| case Builtin::BI__sync_fetch_and_and_8: |
| case Builtin::BI__sync_fetch_and_and_16: |
| case Builtin::BI__sync_fetch_and_xor: |
| case Builtin::BI__sync_fetch_and_xor_1: |
| case Builtin::BI__sync_fetch_and_xor_2: |
| case Builtin::BI__sync_fetch_and_xor_4: |
| case Builtin::BI__sync_fetch_and_xor_8: |
| case Builtin::BI__sync_fetch_and_xor_16: |
| case Builtin::BI__sync_fetch_and_nand: |
| case Builtin::BI__sync_fetch_and_nand_1: |
| case Builtin::BI__sync_fetch_and_nand_2: |
| case Builtin::BI__sync_fetch_and_nand_4: |
| case Builtin::BI__sync_fetch_and_nand_8: |
| case Builtin::BI__sync_fetch_and_nand_16: |
| case Builtin::BI__sync_add_and_fetch: |
| case Builtin::BI__sync_add_and_fetch_1: |
| case Builtin::BI__sync_add_and_fetch_2: |
| case Builtin::BI__sync_add_and_fetch_4: |
| case Builtin::BI__sync_add_and_fetch_8: |
| case Builtin::BI__sync_add_and_fetch_16: |
| case Builtin::BI__sync_sub_and_fetch: |
| case Builtin::BI__sync_sub_and_fetch_1: |
| case Builtin::BI__sync_sub_and_fetch_2: |
| case Builtin::BI__sync_sub_and_fetch_4: |
| case Builtin::BI__sync_sub_and_fetch_8: |
| case Builtin::BI__sync_sub_and_fetch_16: |
| case Builtin::BI__sync_and_and_fetch: |
| case Builtin::BI__sync_and_and_fetch_1: |
| case Builtin::BI__sync_and_and_fetch_2: |
| case Builtin::BI__sync_and_and_fetch_4: |
| case Builtin::BI__sync_and_and_fetch_8: |
| case Builtin::BI__sync_and_and_fetch_16: |
| case Builtin::BI__sync_or_and_fetch: |
| case Builtin::BI__sync_or_and_fetch_1: |
| case Builtin::BI__sync_or_and_fetch_2: |
| case Builtin::BI__sync_or_and_fetch_4: |
| case Builtin::BI__sync_or_and_fetch_8: |
| case Builtin::BI__sync_or_and_fetch_16: |
| case Builtin::BI__sync_xor_and_fetch: |
| case Builtin::BI__sync_xor_and_fetch_1: |
| case Builtin::BI__sync_xor_and_fetch_2: |
| case Builtin::BI__sync_xor_and_fetch_4: |
| case Builtin::BI__sync_xor_and_fetch_8: |
| case Builtin::BI__sync_xor_and_fetch_16: |
| case Builtin::BI__sync_nand_and_fetch: |
| case Builtin::BI__sync_nand_and_fetch_1: |
| case Builtin::BI__sync_nand_and_fetch_2: |
| case Builtin::BI__sync_nand_and_fetch_4: |
| case Builtin::BI__sync_nand_and_fetch_8: |
| case Builtin::BI__sync_nand_and_fetch_16: |
| case Builtin::BI__sync_val_compare_and_swap: |
| case Builtin::BI__sync_val_compare_and_swap_1: |
| case Builtin::BI__sync_val_compare_and_swap_2: |
| case Builtin::BI__sync_val_compare_and_swap_4: |
| case Builtin::BI__sync_val_compare_and_swap_8: |
| case Builtin::BI__sync_val_compare_and_swap_16: |
| case Builtin::BI__sync_bool_compare_and_swap: |
| case Builtin::BI__sync_bool_compare_and_swap_1: |
| case Builtin::BI__sync_bool_compare_and_swap_2: |
| case Builtin::BI__sync_bool_compare_and_swap_4: |
| case Builtin::BI__sync_bool_compare_and_swap_8: |
| case Builtin::BI__sync_bool_compare_and_swap_16: |
| case Builtin::BI__sync_lock_test_and_set: |
| case Builtin::BI__sync_lock_test_and_set_1: |
| case Builtin::BI__sync_lock_test_and_set_2: |
| case Builtin::BI__sync_lock_test_and_set_4: |
| case Builtin::BI__sync_lock_test_and_set_8: |
| case Builtin::BI__sync_lock_test_and_set_16: |
| case Builtin::BI__sync_lock_release: |
| case Builtin::BI__sync_lock_release_1: |
| case Builtin::BI__sync_lock_release_2: |
| case Builtin::BI__sync_lock_release_4: |
| case Builtin::BI__sync_lock_release_8: |
| case Builtin::BI__sync_lock_release_16: |
| case Builtin::BI__sync_swap: |
| case Builtin::BI__sync_swap_1: |
| case Builtin::BI__sync_swap_2: |
| case Builtin::BI__sync_swap_4: |
| case Builtin::BI__sync_swap_8: |
| case Builtin::BI__sync_swap_16: |
| return SemaBuiltinAtomicOverloaded(TheCallResult); |
| case Builtin::BI__sync_synchronize: |
| Diag(TheCall->getBeginLoc(), diag::warn_atomic_implicit_seq_cst) |
| << TheCall->getCallee()->getSourceRange(); |
| break; |
| case Builtin::BI__builtin_nontemporal_load: |
| case Builtin::BI__builtin_nontemporal_store: |
| return SemaBuiltinNontemporalOverloaded(TheCallResult); |
| case Builtin::BI__builtin_memcpy_inline: { |
| clang::Expr *SizeOp = TheCall->getArg(2); |
| // We warn about copying to or from `nullptr` pointers when `size` is |
| // greater than 0. When `size` is value dependent we cannot evaluate its |
| // value so we bail out. |
| if (SizeOp->isValueDependent()) |
| break; |
| if (!SizeOp->EvaluateKnownConstInt(Context).isZero()) { |
| CheckNonNullArgument(*this, TheCall->getArg(0), TheCall->getExprLoc()); |
| CheckNonNullArgument(*this, TheCall->getArg(1), TheCall->getExprLoc()); |
| } |
| break; |
| } |
| #define BUILTIN(ID, TYPE, ATTRS) |
| #define ATOMIC_BUILTIN(ID, TYPE, ATTRS) \ |
| case Builtin::BI##ID: \ |
| return SemaAtomicOpsOverloaded(TheCallResult, AtomicExpr::AO##ID); |
| #include "clang/Basic/Builtins.def" |
| case Builtin::BI__annotation: |
| if (SemaBuiltinMSVCAnnotation(*this, TheCall)) |
| return ExprError(); |
| break; |
| case Builtin::BI__builtin_annotation: |
| if (SemaBuiltinAnnotation(*this, TheCall)) |
| return ExprError(); |
| break; |
| case Builtin::BI__builtin_addressof: |
| if (SemaBuiltinAddressof(*this, TheCall)) |
| return ExprError(); |
| break; |
| case Builtin::BI__builtin_is_aligned: |
| case Builtin::BI__builtin_align_up: |
| case Builtin::BI__builtin_align_down: |
| if (SemaBuiltinAlignment(*this, TheCall, BuiltinID)) |
| return ExprError(); |
| break; |
| case Builtin::BI__builtin_add_overflow: |
| case Builtin::BI__builtin_sub_overflow: |
| case Builtin::BI__builtin_mul_overflow: |
| if (SemaBuiltinOverflow(*this, TheCall, BuiltinID)) |
| return ExprError(); |
| break; |
| case Builtin::BI__builtin_operator_new: |
| case Builtin::BI__builtin_operator_delete: { |
| bool IsDelete = BuiltinID == Builtin::BI__builtin_operator_delete; |
| ExprResult Res = |
| SemaBuiltinOperatorNewDeleteOverloaded(TheCallResult, IsDelete); |
| if (Res.isInvalid()) |
| CorrectDelayedTyposInExpr(TheCallResult.get()); |
| return Res; |
| } |
| case Builtin::BI__builtin_dump_struct: { |
| // We first want to ensure we are called with 2 arguments |
| if (checkArgCount(*this, TheCall, 2)) |
| return ExprError(); |
| // Ensure that the first argument is of type 'struct XX *' |
| const Expr *PtrArg = TheCall->getArg(0)->IgnoreParenImpCasts(); |
| const QualType PtrArgType = PtrArg->getType(); |
| if (!PtrArgType->isPointerType() || |
| !PtrArgType->getPointeeType()->isRecordType()) { |
| Diag(PtrArg->getBeginLoc(), diag::err_typecheck_convert_incompatible) |
| << PtrArgType << "structure pointer" << 1 << 0 << 3 << 1 << PtrArgType |
| << "structure pointer"; |
| return ExprError(); |
| } |
| |
| // Ensure that the second argument is of type 'FunctionType' |
| const Expr *FnPtrArg = TheCall->getArg(1)->IgnoreImpCasts(); |
| const QualType FnPtrArgType = FnPtrArg->getType(); |
| if (!FnPtrArgType->isPointerType()) { |
| Diag(FnPtrArg->getBeginLoc(), diag::err_typecheck_convert_incompatible) |
| << FnPtrArgType << "'int (*)(const char *, ...)'" << 1 << 0 << 3 << 2 |
| << FnPtrArgType << "'int (*)(const char *, ...)'"; |
| return ExprError(); |
| } |
| |
| const auto *FuncType = |
| FnPtrArgType->getPointeeType()->getAs<FunctionType>(); |
| |
| if (!FuncType) { |
| Diag(FnPtrArg->getBeginLoc(), diag::err_typecheck_convert_incompatible) |
| << FnPtrArgType << "'int (*)(const char *, ...)'" << 1 << 0 << 3 << 2 |
| << FnPtrArgType << "'int (*)(const char *, ...)'"; |
| return ExprError(); |
| } |
| |
| if (const auto *FT = dyn_cast<FunctionProtoType>(FuncType)) { |
| if (!FT->getNumParams()) { |
| Diag(FnPtrArg->getBeginLoc(), diag::err_typecheck_convert_incompatible) |
| << FnPtrArgType << "'int (*)(const char *, ...)'" << 1 << 0 << 3 |
| << 2 << FnPtrArgType << "'int (*)(const char *, ...)'"; |
| return ExprError(); |
| } |
| QualType PT = FT->getParamType(0); |
| if (!FT->isVariadic() || FT->getReturnType() != Context.IntTy || |
| !PT->isPointerType() || !PT->getPointeeType()->isCharType() || |
| !PT->getPointeeType().isConstQualified()) { |
| Diag(FnPtrArg->getBeginLoc(), diag::err_typecheck_convert_incompatible) |
| << FnPtrArgType << "'int (*)(const char *, ...)'" << 1 << 0 << 3 |
| << 2 << FnPtrArgType << "'int (*)(const char *, ...)'"; |
| return ExprError(); |
| } |
| } |
| |
| TheCall->setType(Context.IntTy); |
| break; |
| } |
| case Builtin::BI__builtin_expect_with_probability: { |
| // We first want to ensure we are called with 3 arguments |
| if (checkArgCount(*this, TheCall, 3)) |
| return ExprError(); |
| // then check probability is constant float in range [0.0, 1.0] |
| const Expr *ProbArg = TheCall->getArg(2); |
| SmallVector<PartialDiagnosticAt, 8> Notes; |
| Expr::EvalResult Eval; |
| Eval.Diag = &Notes; |
| if ((!ProbArg->EvaluateAsConstantExpr(Eval, Context)) || |
| !Eval.Val.isFloat()) { |
| Diag(ProbArg->getBeginLoc(), diag::err_probability_not_constant_float) |
| << ProbArg->getSourceRange(); |
| for (const PartialDiagnosticAt &PDiag : Notes) |
| Diag(PDiag.first, PDiag.second); |
| return ExprError(); |
| } |
| llvm::APFloat Probability = Eval.Val.getFloat(); |
| bool LoseInfo = false; |
| Probability.convert(llvm::APFloat::IEEEdouble(), |
| llvm::RoundingMode::Dynamic, &LoseInfo); |
| if (!(Probability >= llvm::APFloat(0.0) && |
| Probability <= llvm::APFloat(1.0))) { |
| Diag(ProbArg->getBeginLoc(), diag::err_probability_out_of_range) |
| << ProbArg->getSourceRange(); |
| return ExprError(); |
| } |
| break; |
| } |
| case Builtin::BI__builtin_preserve_access_index: |
| if (SemaBuiltinPreserveAI(*this, TheCall)) |
| return ExprError(); |
| break; |
| case Builtin::BI__builtin_call_with_static_chain: |
| if (SemaBuiltinCallWithStaticChain(*this, TheCall)) |
| return ExprError(); |
| break; |
| case Builtin::BI__exception_code: |
| case Builtin::BI_exception_code: |
| if (SemaBuiltinSEHScopeCheck(*this, TheCall, Scope::SEHExceptScope, |
| diag::err_seh___except_block)) |
| return ExprError(); |
| break; |
| case Builtin::BI__exception_info: |
| case Builtin::BI_exception_info: |
| if (SemaBuiltinSEHScopeCheck(*this, TheCall, Scope::SEHFilterScope, |
| diag::err_seh___except_filter)) |
| return ExprError(); |
| break; |
| case Builtin::BI__GetExceptionInfo: |
| if (checkArgCount(*this, TheCall, 1)) |
| return ExprError(); |
| |
| if (CheckCXXThrowOperand( |
| TheCall->getBeginLoc(), |
| Context.getExceptionObjectType(FDecl->getParamDecl(0)->getType()), |
| TheCall)) |
| return ExprError(); |
| |
| TheCall->setType(Context.VoidPtrTy); |
| break; |
| // OpenCL v2.0, s6.13.16 - Pipe functions |
| case Builtin::BIread_pipe: |
| case Builtin::BIwrite_pipe: |
| // Since those two functions are declared with var args, we need a semantic |
| // check for the argument. |
| if (SemaBuiltinRWPipe(*this, TheCall)) |
| return ExprError(); |
| break; |
| case Builtin::BIreserve_read_pipe: |
| case Builtin::BIreserve_write_pipe: |
| case Builtin::BIwork_group_reserve_read_pipe: |
| case Builtin::BIwork_group_reserve_write_pipe: |
| if (SemaBuiltinReserveRWPipe(*this, TheCall)) |
| return ExprError(); |
| break; |
| case Builtin::BIsub_group_reserve_read_pipe: |
| case Builtin::BIsub_group_reserve_write_pipe: |
| if (checkOpenCLSubgroupExt(*this, TheCall) || |
| SemaBuiltinReserveRWPipe(*this, TheCall)) |
| return ExprError(); |
| break; |
| case Builtin::BIcommit_read_pipe: |
| case Builtin::BIcommit_write_pipe: |
| case Builtin::BIwork_group_commit_read_pipe: |
| case Builtin::BIwork_group_commit_write_pipe: |
| if (SemaBuiltinCommitRWPipe(*this, TheCall)) |
| return ExprError(); |
| break; |
| case Builtin::BIsub_group_commit_read_pipe: |
| case Builtin::BIsub_group_commit_write_pipe: |
| if (checkOpenCLSubgroupExt(*this, TheCall) || |
| SemaBuiltinCommitRWPipe(*this, TheCall)) |
| return ExprError(); |
| break; |
| case Builtin::BIget_pipe_num_packets: |
| case Builtin::BIget_pipe_max_packets: |
| if (SemaBuiltinPipePackets(*this, TheCall)) |
| return ExprError(); |
| break; |
| case Builtin::BIto_global: |
| case Builtin::BIto_local: |
| case Builtin::BIto_private: |
| if (SemaOpenCLBuiltinToAddr(*this, BuiltinID, TheCall)) |
| return ExprError(); |
| break; |
| // OpenCL v2.0, s6.13.17 - Enqueue kernel functions. |
| case Builtin::BIenqueue_kernel: |
| if (SemaOpenCLBuiltinEnqueueKernel(*this, TheCall)) |
| return ExprError(); |
| break; |
| case Builtin::BIget_kernel_work_group_size: |
| case Builtin::BIget_kernel_preferred_work_group_size_multiple: |
| if (SemaOpenCLBuiltinKernelWorkGroupSize(*this, TheCall)) |
| return ExprError(); |
| break; |
| case Builtin::BIget_kernel_max_sub_group_size_for_ndrange: |
| case Builtin::BIget_kernel_sub_group_count_for_ndrange: |
| if (SemaOpenCLBuiltinNDRangeAndBlock(*this, TheCall)) |
| return ExprError(); |
| break; |
| case Builtin::BI__builtin_os_log_format: |
| Cleanup.setExprNeedsCleanups(true); |
| LLVM_FALLTHROUGH; |
| case Builtin::BI__builtin_os_log_format_buffer_size: |
| if (SemaBuiltinOSLogFormat(TheCall)) |
| return ExprError(); |
| break; |
| case Builtin::BI__builtin_frame_address: |
| case Builtin::BI__builtin_return_address: { |
| if (SemaBuiltinConstantArgRange(TheCall, 0, 0, 0xFFFF)) |
| return ExprError(); |
| |
| // -Wframe-address warning if non-zero passed to builtin |
| // return/frame address. |
| Expr::EvalResult Result; |
| if (!TheCall->getArg(0)->isValueDependent() && |
| TheCall->getArg(0)->EvaluateAsInt(Result, getASTContext()) && |
| Result.Val.getInt() != 0) |
| Diag(TheCall->getBeginLoc(), diag::warn_frame_address) |
| << ((BuiltinID == Builtin::BI__builtin_return_address) |
| ? "__builtin_return_address" |
| : "__builtin_frame_address") |
| << TheCall->getSourceRange(); |
| break; |
| } |
| |
| case Builtin::BI__builtin_elementwise_abs: |
| if (SemaBuiltinElementwiseMathOneArg(TheCall)) |
| return ExprError(); |
| break; |
| case Builtin::BI__builtin_elementwise_min: |
| case Builtin::BI__builtin_elementwise_max: |
| if (SemaBuiltinElementwiseMath(TheCall)) |
| return ExprError(); |
| break; |
| case Builtin::BI__builtin_reduce_max: |
| case Builtin::BI__builtin_reduce_min: |
| if (SemaBuiltinReduceMath(TheCall)) |
| return ExprError(); |
| break; |
| case Builtin::BI__builtin_matrix_transpose: |
| return SemaBuiltinMatrixTranspose(TheCall, TheCallResult); |
| |
| case Builtin::BI__builtin_matrix_column_major_load: |
| return SemaBuiltinMatrixColumnMajorLoad(TheCall, TheCallResult); |
| |
| case Builtin::BI__builtin_matrix_column_major_store: |
| return SemaBuiltinMatrixColumnMajorStore(TheCall, TheCallResult); |
| |
| case Builtin::BI__builtin_get_device_side_mangled_name: { |
| auto Check = [](CallExpr *TheCall) { |
| if (TheCall->getNumArgs() != 1) |
| return false; |
| auto *DRE = dyn_cast<DeclRefExpr>(TheCall->getArg(0)->IgnoreImpCasts()); |
| if (!DRE) |
| return false; |
| auto *D = DRE->getDecl(); |
| if (!isa<FunctionDecl>(D) && !isa<VarDecl>(D)) |
| return false; |
| return D->hasAttr<CUDAGlobalAttr>() || D->hasAttr<CUDADeviceAttr>() || |
| D->hasAttr<CUDAConstantAttr>() || D->hasAttr<HIPManagedAttr>(); |
| }; |
| if (!Check(TheCall)) { |
| Diag(TheCall->getBeginLoc(), |
| diag::err_hip_invalid_args_builtin_mangled_name); |
| return ExprError(); |
| } |
| } |
| } |
| |
| // Since the target specific builtins for each arch overlap, only check those |
| // of the arch we are compiling for. |
| if (Context.BuiltinInfo.isTSBuiltin(BuiltinID)) { |
| if (Context.BuiltinInfo.isAuxBuiltinID(BuiltinID)) { |
| assert(Context.getAuxTargetInfo() && |
| "Aux Target Builtin, but not an aux target?"); |
| |
| if (CheckTSBuiltinFunctionCall( |
| *Context.getAuxTargetInfo(), |
| Context.BuiltinInfo.getAuxBuiltinID(BuiltinID), TheCall)) |
| return ExprError(); |
| } else { |
| if (CheckTSBuiltinFunctionCall(Context.getTargetInfo(), BuiltinID, |
| TheCall)) |
| return ExprError(); |
| } |
| } |
| |
| return TheCallResult; |
| } |
| |
| // Get the valid immediate range for the specified NEON type code. |
| static unsigned RFT(unsigned t, bool shift = false, bool ForceQuad = false) { |
| NeonTypeFlags Type(t); |
| int IsQuad = ForceQuad ? true : Type.isQuad(); |
| switch (Type.getEltType()) { |
| case NeonTypeFlags::Int8: |
| case NeonTypeFlags::Poly8: |
| return shift ? 7 : (8 << IsQuad) - 1; |
| case NeonTypeFlags::Int16: |
| case NeonTypeFlags::Poly16: |
| return shift ? 15 : (4 << IsQuad) - 1; |
| case NeonTypeFlags::Int32: |
| return shift ? 31 : (2 << IsQuad) - 1; |
| case NeonTypeFlags::Int64: |
| case NeonTypeFlags::Poly64: |
| return shift ? 63 : (1 << IsQuad) - 1; |
| case NeonTypeFlags::Poly128: |
| return shift ? 127 : (1 << IsQuad) - 1; |
| case NeonTypeFlags::Float16: |
| assert(!shift && "cannot shift float types!"); |
| return (4 << IsQuad) - 1; |
| case NeonTypeFlags::Float32: |
| assert(!shift && "cannot shift float types!"); |
| return (2 << IsQuad) - 1; |
| case NeonTypeFlags::Float64: |
| assert(!shift && "cannot shift float types!"); |
| return (1 << IsQuad) - 1; |
| case NeonTypeFlags::BFloat16: |
| assert(!shift && "cannot shift float types!"); |
| return (4 << IsQuad) - 1; |
| } |
| llvm_unreachable("Invalid NeonTypeFlag!"); |
| } |
| |
| /// getNeonEltType - Return the QualType corresponding to the elements of |
| /// the vector type specified by the NeonTypeFlags. This is used to check |
| /// the pointer arguments for Neon load/store intrinsics. |
| static QualType getNeonEltType(NeonTypeFlags Flags, ASTContext &Context, |
| bool IsPolyUnsigned, bool IsInt64Long) { |
| switch (Flags.getEltType()) { |
| case NeonTypeFlags::Int8: |
| return Flags.isUnsigned() ? Context.UnsignedCharTy : Context.SignedCharTy; |
| case NeonTypeFlags::Int16: |
| return Flags.isUnsigned() ? Context.UnsignedShortTy : Context.ShortTy; |
| case NeonTypeFlags::Int32: |
| return Flags.isUnsigned() ? Context.UnsignedIntTy : Context.IntTy; |
| case NeonTypeFlags::Int64: |
| if (IsInt64Long) |
| return Flags.isUnsigned() ? Context.UnsignedLongTy : Context.LongTy; |
| else |
| return Flags.isUnsigned() ? Context.UnsignedLongLongTy |
| : Context.LongLongTy; |
| case NeonTypeFlags::Poly8: |
| return IsPolyUnsigned ? Context.UnsignedCharTy : Context.SignedCharTy; |
| case NeonTypeFlags::Poly16: |
| return IsPolyUnsigned ? Context.UnsignedShortTy : Context.ShortTy; |
| case NeonTypeFlags::Poly64: |
| if (IsInt64Long) |
| return Context.UnsignedLongTy; |
| else |
| return Context.UnsignedLongLongTy; |
| case NeonTypeFlags::Poly128: |
| break; |
| case NeonTypeFlags::Float16: |
| return Context.HalfTy; |
| case NeonTypeFlags::Float32: |
| return Context.FloatTy; |
| case NeonTypeFlags::Float64: |
| return Context.DoubleTy; |
| case NeonTypeFlags::BFloat16: |
| return Context.BFloat16Ty; |
| } |
| llvm_unreachable("Invalid NeonTypeFlag!"); |
| } |
| |
| bool Sema::CheckSVEBuiltinFunctionCall(unsigned BuiltinID, CallExpr *TheCall) { |
| // Range check SVE intrinsics that take immediate values. |
| SmallVector<std::tuple<int,int,int>, 3> ImmChecks; |
| |
| switch (BuiltinID) { |
| default: |
| return false; |
| #define GET_SVE_IMMEDIATE_CHECK |
| #include "clang/Basic/arm_sve_sema_rangechecks.inc" |
| #undef GET_SVE_IMMEDIATE_CHECK |
| } |
| |
| // Perform all the immediate checks for this builtin call. |
| bool HasError = false; |
| for (auto &I : ImmChecks) { |
| int ArgNum, CheckTy, ElementSizeInBits; |
| std::tie(ArgNum, CheckTy, ElementSizeInBits) = I; |
| |
| typedef bool(*OptionSetCheckFnTy)(int64_t Value); |
| |
| // Function that checks whether the operand (ArgNum) is an immediate |
| // that is one of the predefined values. |
| auto CheckImmediateInSet = [&](OptionSetCheckFnTy CheckImm, |
| int ErrDiag) -> bool { |
| // We can't check the value of a dependent argument. |
| Expr *Arg = TheCall->getArg(ArgNum); |
| if (Arg->isTypeDependent() || Arg->isValueDependent()) |
| return false; |
| |
| // Check constant-ness first. |
| llvm::APSInt Imm; |
| if (SemaBuiltinConstantArg(TheCall, ArgNum, Imm)) |
| return true; |
| |
| if (!CheckImm(Imm.getSExtValue())) |
| return Diag(TheCall->getBeginLoc(), ErrDiag) << Arg->getSourceRange(); |
| return false; |
| }; |
| |
| switch ((SVETypeFlags::ImmCheckType)CheckTy) { |
| case SVETypeFlags::ImmCheck0_31: |
| if (SemaBuiltinConstantArgRange(TheCall, ArgNum, 0, 31)) |
| HasError = true; |
| break; |
| case SVETypeFlags::ImmCheck0_13: |
| if (SemaBuiltinConstantArgRange(TheCall, ArgNum, 0, 13)) |
| HasError = true; |
| break; |
| case SVETypeFlags::ImmCheck1_16: |
| if (SemaBuiltinConstantArgRange(TheCall, ArgNum, 1, 16)) |
| HasError = true; |
| break; |
| case SVETypeFlags::ImmCheck0_7: |
| if (SemaBuiltinConstantArgRange(TheCall, ArgNum, 0, 7)) |
| HasError = true; |
| break; |
| case SVETypeFlags::ImmCheckExtract: |
| if (SemaBuiltinConstantArgRange(TheCall, ArgNum, 0, |
| (2048 / ElementSizeInBits) - 1)) |
| HasError = true; |
| break; |
| case SVETypeFlags::ImmCheckShiftRight: |
| if (SemaBuiltinConstantArgRange(TheCall, ArgNum, 1, ElementSizeInBits)) |
| HasError = true; |
| break; |
| case SVETypeFlags::ImmCheckShiftRightNarrow: |
| if (SemaBuiltinConstantArgRange(TheCall, ArgNum, 1, |
| ElementSizeInBits / 2)) |
| HasError = true; |
| break; |
| case SVETypeFlags::ImmCheckShiftLeft: |
| if (SemaBuiltinConstantArgRange(TheCall, ArgNum, 0, |
| ElementSizeInBits - 1)) |
| HasError = true; |
| break; |
| case SVETypeFlags::ImmCheckLaneIndex: |
| if (SemaBuiltinConstantArgRange(TheCall, ArgNum, 0, |
| (128 / (1 * ElementSizeInBits)) - 1)) |
| HasError = true; |
| break; |
| case SVETypeFlags::ImmCheckLaneIndexCompRotate: |
| if (SemaBuiltinConstantArgRange(TheCall, ArgNum, 0, |
| (128 / (2 * ElementSizeInBits)) - 1)) |
| HasError = true; |
| break; |
| case SVETypeFlags::ImmCheckLaneIndexDot: |
| if (SemaBuiltinConstantArgRange(TheCall, ArgNum, 0, |
| (128 / (4 * ElementSizeInBits)) - 1)) |
| HasError = true; |
| break; |
| case SVETypeFlags::ImmCheckComplexRot90_270: |
| if (CheckImmediateInSet([](int64_t V) { return V == 90 || V == 270; }, |
| diag::err_rotation_argument_to_cadd)) |
| HasError = true; |
| break; |
| case SVETypeFlags::ImmCheckComplexRotAll90: |
| if (CheckImmediateInSet( |
| [](int64_t V) { |
| return V == 0 || V == 90 || V == 180 || V == 270; |
| }, |
| diag::err_rotation_argument_to_cmla)) |
| HasError = true; |
| break; |
| case SVETypeFlags::ImmCheck0_1: |
| if (SemaBuiltinConstantArgRange(TheCall, ArgNum, 0, 1)) |
| HasError = true; |
| break; |
| case SVETypeFlags::ImmCheck0_2: |
| if (SemaBuiltinConstantArgRange(TheCall, ArgNum, 0, 2)) |
| HasError = true; |
| break; |
| case SVETypeFlags::ImmCheck0_3: |
| if (SemaBuiltinConstantArgRange(TheCall, ArgNum, 0, 3)) |
| HasError = true; |
| break; |
| } |
| } |
| |
| return HasError; |
| } |
| |
| bool Sema::CheckNeonBuiltinFunctionCall(const TargetInfo &TI, |
| unsigned BuiltinID, CallExpr *TheCall) { |
| llvm::APSInt Result; |
| uint64_t mask = 0; |
| unsigned TV = 0; |
| int PtrArgNum = -1; |
| bool HasConstPtr = false; |
| switch (BuiltinID) { |
| #define GET_NEON_OVERLOAD_CHECK |
| #include "clang/Basic/arm_neon.inc" |
| #include "clang/Basic/arm_fp16.inc" |
| #undef GET_NEON_OVERLOAD_CHECK |
| } |
| |
| // For NEON intrinsics which are overloaded on vector element type, validate |
| // the immediate which specifies which variant to emit. |
| unsigned ImmArg = TheCall->getNumArgs()-1; |
| if (mask) { |
| if (SemaBuiltinConstantArg(TheCall, ImmArg, Result)) |
| return true; |
| |
| TV = Result.getLimitedValue(64); |
| if ((TV > 63) || (mask & (1ULL << TV)) == 0) |
| return Diag(TheCall->getBeginLoc(), diag::err_invalid_neon_type_code) |
| << TheCall->getArg(ImmArg)->getSourceRange(); |
| } |
| |
| if (PtrArgNum >= 0) { |
| // Check that pointer arguments have the specified type. |
| Expr *Arg = TheCall->getArg(PtrArgNum); |
| if (ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(Arg)) |
| Arg = ICE->getSubExpr(); |
| ExprResult RHS = DefaultFunctionArrayLvalueConversion(Arg); |
| QualType RHSTy = RHS.get()->getType(); |
| |
| llvm::Triple::ArchType Arch = TI.getTriple().getArch(); |
| bool IsPolyUnsigned = Arch == llvm::Triple::aarch64 || |
| Arch == llvm::Triple::aarch64_32 || |
| Arch == llvm::Triple::aarch64_be; |
| bool IsInt64Long = TI.getInt64Type() == TargetInfo::SignedLong; |
| QualType EltTy = |
| getNeonEltType(NeonTypeFlags(TV), Context, IsPolyUnsigned, IsInt64Long); |
| if (HasConstPtr) |
| EltTy = EltTy.withConst(); |
| QualType LHSTy = Context.getPointerType(EltTy); |
| AssignConvertType ConvTy; |
| ConvTy = CheckSingleAssignmentConstraints(LHSTy, RHS); |
| if (RHS.isInvalid()) |
| return true; |
| if (DiagnoseAssignmentResult(ConvTy, Arg->getBeginLoc(), LHSTy, RHSTy, |
| RHS.get(), AA_Assigning)) |
| return true; |
| } |
| |
| // For NEON intrinsics which take an immediate value as part of the |
| // instruction, range check them here. |
| unsigned i = 0, l = 0, u = 0; |
| switch (BuiltinID) { |
| default: |
| return false; |
| #define GET_NEON_IMMEDIATE_CHECK |
| #include "clang/Basic/arm_neon.inc" |
| #include "clang/Basic/arm_fp16.inc" |
| #undef GET_NEON_IMMEDIATE_CHECK |
| } |
| |
| return SemaBuiltinConstantArgRange(TheCall, i, l, u + l); |
| } |
| |
| bool Sema::CheckMVEBuiltinFunctionCall(unsigned BuiltinID, CallExpr *TheCall) { |
| switch (BuiltinID) { |
| default: |
| return false; |
| #include "clang/Basic/arm_mve_builtin_sema.inc" |
| } |
| } |
| |
| bool Sema::CheckCDEBuiltinFunctionCall(const TargetInfo &TI, unsigned BuiltinID, |
| CallExpr *TheCall) { |
| bool Err = false; |
| switch (BuiltinID) { |
| default: |
| return false; |
| #include "clang/Basic/arm_cde_builtin_sema.inc" |
| } |
| |
| if (Err) |
| return true; |
| |
| return CheckARMCoprocessorImmediate(TI, TheCall->getArg(0), /*WantCDE*/ true); |
| } |
| |
| bool Sema::CheckARMCoprocessorImmediate(const TargetInfo &TI, |
| const Expr *CoprocArg, bool WantCDE) { |
| if (isConstantEvaluated()) |
| return false; |
| |
| // We can't check the value of a dependent argument. |
| if (CoprocArg->isTypeDependent() || CoprocArg->isValueDependent()) |
| return false; |
| |
| llvm::APSInt CoprocNoAP = *CoprocArg->getIntegerConstantExpr(Context); |
| int64_t CoprocNo = CoprocNoAP.getExtValue(); |
| assert(CoprocNo >= 0 && "Coprocessor immediate must be non-negative"); |
| |
| uint32_t CDECoprocMask = TI.getARMCDECoprocMask(); |
| bool IsCDECoproc = CoprocNo <= 7 && (CDECoprocMask & (1 << CoprocNo)); |
| |
| if (IsCDECoproc != WantCDE) |
| return Diag(CoprocArg->getBeginLoc(), diag::err_arm_invalid_coproc) |
| << (int)CoprocNo << (int)WantCDE << CoprocArg->getSourceRange(); |
| |
| return false; |
| } |
| |
| bool Sema::CheckARMBuiltinExclusiveCall(unsigned BuiltinID, CallExpr *TheCall, |
| unsigned MaxWidth) { |
| assert((BuiltinID == ARM::BI__builtin_arm_ldrex || |
| BuiltinID == ARM::BI__builtin_arm_ldaex || |
| BuiltinID == ARM::BI__builtin_arm_strex || |
| BuiltinID == ARM::BI__builtin_arm_stlex || |
| BuiltinID == AArch64::BI__builtin_arm_ldrex || |
| BuiltinID == AArch64::BI__builtin_arm_ldaex || |
| BuiltinID == AArch64::BI__builtin_arm_strex || |
| BuiltinID == AArch64::BI__builtin_arm_stlex) && |
| "unexpected ARM builtin"); |
| bool IsLdrex = BuiltinID == ARM::BI__builtin_arm_ldrex || |
| BuiltinID == ARM::BI__builtin_arm_ldaex || |
| BuiltinID == AArch64::BI__builtin_arm_ldrex || |
| BuiltinID == AArch64::BI__builtin_arm_ldaex; |
| |
| DeclRefExpr *DRE =cast<DeclRefExpr>(TheCall->getCallee()->IgnoreParenCasts()); |
| |
| // Ensure that we have the proper number of arguments. |
| if (checkArgCount(*this, TheCall, IsLdrex ? 1 : 2)) |
| return true; |
| |
| // Inspect the pointer argument of the atomic builtin. This should always be |
| // a pointer type, whose element is an integral scalar or pointer type. |
| // Because it is a pointer type, we don't have to worry about any implicit |
| // casts here. |
| Expr *PointerArg = TheCall->getArg(IsLdrex ? 0 : 1); |
| ExprResult PointerArgRes = DefaultFunctionArrayLvalueConversion(PointerArg); |
| if (PointerArgRes.isInvalid()) |
| return true; |
| PointerArg = PointerArgRes.get(); |
| |
| const PointerType *pointerType = PointerArg->getType()->getAs<PointerType>(); |
| if (!pointerType) { |
| Diag(DRE->getBeginLoc(), diag::err_atomic_builtin_must_be_pointer) |
| << PointerArg->getType() << PointerArg->getSourceRange(); |
| return true; |
| } |
| |
| // ldrex takes a "const volatile T*" and strex takes a "volatile T*". Our next |
| // task is to insert the appropriate casts into the AST. First work out just |
| // what the appropriate type is. |
| QualType ValType = pointerType->getPointeeType(); |
| QualType AddrType = ValType.getUnqualifiedType().withVolatile(); |
| if (IsLdrex) |
| AddrType.addConst(); |
| |
| // Issue a warning if the cast is dodgy. |
| CastKind CastNeeded = CK_NoOp; |
| if (!AddrType.isAtLeastAsQualifiedAs(ValType)) { |
| CastNeeded = CK_BitCast; |
| Diag(DRE->getBeginLoc(), diag::ext_typecheck_convert_discards_qualifiers) |
| << PointerArg->getType() << Context.getPointerType(AddrType) |
| << AA_Passing << PointerArg->getSourceRange(); |
| } |
| |
| // Finally, do the cast and replace the argument with the corrected version. |
| AddrType = Context.getPointerType(AddrType); |
| PointerArgRes = ImpCastExprToType(PointerArg, AddrType, CastNeeded); |
| if (PointerArgRes.isInvalid()) |
| return true; |
| PointerArg = PointerArgRes.get(); |
| |
| TheCall->setArg(IsLdrex ? 0 : 1, PointerArg); |
| |
| // In general, we allow ints, floats and pointers to be loaded and stored. |
| if (!ValType->isIntegerType() && !ValType->isAnyPointerType() && |
| !ValType->isBlockPointerType() && !ValType->isFloatingType()) { |
| Diag(DRE->getBeginLoc(), diag::err_atomic_builtin_must_be_pointer_intfltptr) |
| << PointerArg->getType() << PointerArg->getSourceRange(); |
| return true; |
| } |
| |
| // But ARM doesn't have instructions to deal with 128-bit versions. |
| if (Context.getTypeSize(ValType) > MaxWidth) { |
| assert(MaxWidth == 64 && "Diagnostic unexpectedly inaccurate"); |
| Diag(DRE->getBeginLoc(), diag::err_atomic_exclusive_builtin_pointer_size) |
| << PointerArg->getType() << PointerArg->getSourceRange(); |
| return true; |
| } |
| |
| switch (ValType.getObjCLifetime()) { |
| case Qualifiers::OCL_None: |
| case Qualifiers::OCL_ExplicitNone: |
| // okay |
| break; |
| |
| case Qualifiers::OCL_Weak: |
| case Qualifiers::OCL_Strong: |
| case Qualifiers::OCL_Autoreleasing: |
| Diag(DRE->getBeginLoc(), diag::err_arc_atomic_ownership) |
| << ValType << PointerArg->getSourceRange(); |
| return true; |
| } |
| |
| if (IsLdrex) { |
| TheCall->setType(ValType); |
| return false; |
| } |
| |
| // Initialize the argument to be stored. |
| ExprResult ValArg = TheCall->getArg(0); |
| InitializedEntity Entity = InitializedEntity::InitializeParameter( |
| Context, ValType, /*consume*/ false); |
| ValArg = PerformCopyInitialization(Entity, SourceLocation(), ValArg); |
| if (ValArg.isInvalid()) |
| return true; |
| TheCall->setArg(0, ValArg.get()); |
| |
| // __builtin_arm_strex always returns an int. It's marked as such in the .def, |
| // but the custom checker bypasses all default analysis. |
| TheCall->setType(Context.IntTy); |
| return false; |
| } |
| |
| bool Sema::CheckARMBuiltinFunctionCall(const TargetInfo &TI, unsigned BuiltinID, |
| CallExpr *TheCall) { |
| if (BuiltinID == ARM::BI__builtin_arm_ldrex || |
| BuiltinID == ARM::BI__builtin_arm_ldaex || |
| BuiltinID == ARM::BI__builtin_arm_strex || |
| BuiltinID == ARM::BI__builtin_arm_stlex) { |
| return CheckARMBuiltinExclusiveCall(BuiltinID, TheCall, 64); |
| } |
| |
| if (BuiltinID == ARM::BI__builtin_arm_prefetch) { |
| return SemaBuiltinConstantArgRange(TheCall, 1, 0, 1) || |
| SemaBuiltinConstantArgRange(TheCall, 2, 0, 1); |
| } |
| |
| if (BuiltinID == ARM::BI__builtin_arm_rsr64 || |
| BuiltinID == ARM::BI__builtin_arm_wsr64) |
| return SemaBuiltinARMSpecialReg(BuiltinID, TheCall, 0, 3, false); |
| |
| if (BuiltinID == ARM::BI__builtin_arm_rsr || |
| BuiltinID == ARM::BI__builtin_arm_rsrp || |
| BuiltinID == ARM::BI__builtin_arm_wsr || |
| BuiltinID == ARM::BI__builtin_arm_wsrp) |
| return SemaBuiltinARMSpecialReg(BuiltinID, TheCall, 0, 5, true); |
| |
| if (CheckNeonBuiltinFunctionCall(TI, BuiltinID, TheCall)) |
| return true; |
| if (CheckMVEBuiltinFunctionCall(BuiltinID, TheCall)) |
| return true; |
| if (CheckCDEBuiltinFunctionCall(TI, BuiltinID, TheCall)) |
| return true; |
| |
| // For intrinsics which take an immediate value as part of the instruction, |
| // range check them here. |
| // FIXME: VFP Intrinsics should error if VFP not present. |
| switch (BuiltinID) { |
| default: return false; |
| case ARM::BI__builtin_arm_ssat: |
| return SemaBuiltinConstantArgRange(TheCall, 1, 1, 32); |
| case ARM::BI__builtin_arm_usat: |
| return SemaBuiltinConstantArgRange(TheCall, 1, 0, 31); |
| case ARM::BI__builtin_arm_ssat16: |
| return SemaBuiltinConstantArgRange(TheCall, 1, 1, 16); |
| case ARM::BI__builtin_arm_usat16: |
| return SemaBuiltinConstantArgRange(TheCall, 1, 0, 15); |
| case ARM::BI__builtin_arm_vcvtr_f: |
| case ARM::BI__builtin_arm_vcvtr_d: |
| return SemaBuiltinConstantArgRange(TheCall, 1, 0, 1); |
| case ARM::BI__builtin_arm_dmb: |
| case ARM::BI__builtin_arm_dsb: |
| case ARM::BI__builtin_arm_isb: |
| case ARM::BI__builtin_arm_dbg: |
| return SemaBuiltinConstantArgRange(TheCall, 0, 0, 15); |
| case ARM::BI__builtin_arm_cdp: |
| case ARM::BI__builtin_arm_cdp2: |
| case ARM::BI__builtin_arm_mcr: |
| case ARM::BI__builtin_arm_mcr2: |
| case ARM::BI__builtin_arm_mrc: |
| case ARM::BI__builtin_arm_mrc2: |
| case ARM::BI__builtin_arm_mcrr: |
| case ARM::BI__builtin_arm_mcrr2: |
| case ARM::BI__builtin_arm_mrrc: |
| case ARM::BI__builtin_arm_mrrc2: |
| case ARM::BI__builtin_arm_ldc: |
| case ARM::BI__builtin_arm_ldcl: |
| case ARM::BI__builtin_arm_ldc2: |
| case ARM::BI__builtin_arm_ldc2l: |
| case ARM::BI__builtin_arm_stc: |
| case ARM::BI__builtin_arm_stcl: |
| case ARM::BI__builtin_arm_stc2: |
| case ARM::BI__builtin_arm_stc2l: |
| return SemaBuiltinConstantArgRange(TheCall, 0, 0, 15) || |
| CheckARMCoprocessorImmediate(TI, TheCall->getArg(0), |
| /*WantCDE*/ false); |
| } |
| } |
| |
| bool Sema::CheckAArch64BuiltinFunctionCall(const TargetInfo &TI, |
| unsigned BuiltinID, |
| CallExpr *TheCall) { |
| if (BuiltinID == AArch64::BI__builtin_arm_ldrex || |
| BuiltinID == AArch64::BI__builtin_arm_ldaex || |
| BuiltinID == AArch64::BI__builtin_arm_strex || |
| BuiltinID == AArch64::BI__builtin_arm_stlex) { |
| return CheckARMBuiltinExclusiveCall(BuiltinID, TheCall, 128); |
| } |
| |
| if (BuiltinID == AArch64::BI__builtin_arm_prefetch) { |
| return SemaBuiltinConstantArgRange(TheCall, 1, 0, 1) || |
| SemaBuiltinConstantArgRange(TheCall, 2, 0, 2) || |
| SemaBuiltinConstantArgRange(TheCall, 3, 0, 1) || |
| SemaBuiltinConstantArgRange(TheCall, 4, 0, 1); |
| } |
| |
| if (BuiltinID == AArch64::BI__builtin_arm_rsr64 || |
| BuiltinID == AArch64::BI__builtin_arm_wsr64) |
| return SemaBuiltinARMSpecialReg(BuiltinID, TheCall, 0, 5, true); |
| |
| // Memory Tagging Extensions (MTE) Intrinsics |
| if (BuiltinID == AArch64::BI__builtin_arm_irg || |
| BuiltinID == AArch64::BI__builtin_arm_addg || |
| BuiltinID == AArch64::BI__builtin_arm_gmi || |
| BuiltinID == AArch64::BI__builtin_arm_ldg || |
| BuiltinID == AArch64::BI__builtin_arm_stg || |
| BuiltinID == AArch64::BI__builtin_arm_subp) { |
| return SemaBuiltinARMMemoryTaggingCall(BuiltinID, TheCall); |
| } |
| |
| if (BuiltinID == AArch64::BI__builtin_arm_rsr || |
| BuiltinID == AArch64::BI__builtin_arm_rsrp || |
| BuiltinID == AArch64::BI__builtin_arm_wsr || |
| BuiltinID == AArch64::BI__builtin_arm_wsrp) |
| return SemaBuiltinARMSpecialReg(BuiltinID, TheCall, 0, 5, true); |
| |
| // Only check the valid encoding range. Any constant in this range would be |
| // converted to a register of the form S1_2_C3_C4_5. Let the hardware throw |
| // an exception for incorrect registers. This matches MSVC behavior. |
| if (BuiltinID == AArch64::BI_ReadStatusReg || |
| BuiltinID == AArch64::BI_WriteStatusReg) |
| return SemaBuiltinConstantArgRange(TheCall, 0, 0, 0x7fff); |
| |
| if (BuiltinID == AArch64::BI__getReg) |
| return SemaBuiltinConstantArgRange(TheCall, 0, 0, 31); |
| |
| if (CheckNeonBuiltinFunctionCall(TI, BuiltinID, TheCall)) |
| return true; |
| |
| if (CheckSVEBuiltinFunctionCall(BuiltinID, TheCall)) |
| return true; |
| |
| // For intrinsics which take an immediate value as part of the instruction, |
| // range check them here. |
| unsigned i = 0, l = 0, u = 0; |
| switch (BuiltinID) { |
| default: return false; |
| case AArch64::BI__builtin_arm_dmb: |
| case AArch64::BI__builtin_arm_dsb: |
| case AArch64::BI__builtin_arm_isb: l = 0; u = 15; break; |
| case AArch64::BI__builtin_arm_tcancel: l = 0; u = 65535; break; |
| } |
| |
| return SemaBuiltinConstantArgRange(TheCall, i, l, u + l); |
| } |
| |
| static bool isValidBPFPreserveFieldInfoArg(Expr *Arg) { |
| if (Arg->getType()->getAsPlaceholderType()) |
| return false; |
| |
| // The first argument needs to be a record field access. |
| // If it is an array element access, we delay decision |
| // to BPF backend to check whether the access is a |
| // field access or not. |
| return (Arg->IgnoreParens()->getObjectKind() == OK_BitField || |
| isa<MemberExpr>(Arg->IgnoreParens()) || |
| isa<ArraySubscriptExpr>(Arg->IgnoreParens())); |
| } |
| |
| static bool isEltOfVectorTy(ASTContext &Context, CallExpr *Call, Sema &S, |
| QualType VectorTy, QualType EltTy) { |
| QualType VectorEltTy = VectorTy->castAs<VectorType>()->getElementType(); |
| if (!Context.hasSameType(VectorEltTy, EltTy)) { |
| S.Diag(Call->getBeginLoc(), diag::err_typecheck_call_different_arg_types) |
| << Call->getSourceRange() << VectorEltTy << EltTy; |
| return false; |
| } |
| return true; |
| } |
| |
| static bool isValidBPFPreserveTypeInfoArg(Expr *Arg) { |
| QualType ArgType = Arg->getType(); |
| if (ArgType->getAsPlaceholderType()) |
| return false; |
| |
| // for TYPE_EXISTENCE/TYPE_SIZEOF reloc type |
| // format: |
| // 1. __builtin_preserve_type_info(*(<type> *)0, flag); |
| // 2. <type> var; |
| // __builtin_preserve_type_info(var, flag); |
| if (!isa<DeclRefExpr>(Arg->IgnoreParens()) && |
| !isa<UnaryOperator>(Arg->IgnoreParens())) |
| return false; |
| |
| // Typedef type. |
| if (ArgType->getAs<TypedefType>()) |
| return true; |
| |
| // Record type or Enum type. |
| const Type *Ty = ArgType->getUnqualifiedDesugaredType(); |
| if (const auto *RT = Ty->getAs<RecordType>()) { |
| if (!RT->getDecl()->getDeclName().isEmpty()) |
| return true; |
| } else if (const auto *ET = Ty->getAs<EnumType>()) { |
| if (!ET->getDecl()->getDeclName().isEmpty()) |
| return true; |
| } |
| |
| return false; |
| } |
| |
| static bool isValidBPFPreserveEnumValueArg(Expr *Arg) { |
| QualType ArgType = Arg->getType(); |
| if (ArgType->getAsPlaceholderType()) |
| return false; |
| |
| // for ENUM_VALUE_EXISTENCE/ENUM_VALUE reloc type |
| // format: |
| // __builtin_preserve_enum_value(*(<enum_type> *)<enum_value>, |
| // flag); |
| const auto *UO = dyn_cast<UnaryOperator>(Arg->IgnoreParens()); |
| if (!UO) |
| return false; |
| |
| const auto *CE = dyn_cast<CStyleCastExpr>(UO->getSubExpr()); |
| if (!CE) |
| return false; |
| if (CE->getCastKind() != CK_IntegralToPointer && |
| CE->getCastKind() != CK_NullToPointer) |
| return false; |
| |
| // The integer must be from an EnumConstantDecl. |
| const auto *DR = dyn_cast<DeclRefExpr>(CE->getSubExpr()); |
| if (!DR) |
| return false; |
| |
| const EnumConstantDecl *Enumerator = |
| dyn_cast<EnumConstantDecl>(DR->getDecl()); |
| if (!Enumerator) |
| return false; |
| |
| // The type must be EnumType. |
| const Type *Ty = ArgType->getUnqualifiedDesugaredType(); |
| const auto *ET = Ty->getAs<EnumType>(); |
| if (!ET) |
| return false; |
| |
| // The enum value must be supported. |
| return llvm::is_contained(ET->getDecl()->enumerators(), Enumerator); |
| } |
| |
| bool Sema::CheckBPFBuiltinFunctionCall(unsigned BuiltinID, |
| CallExpr *TheCall) { |
| assert((BuiltinID == BPF::BI__builtin_preserve_field_info || |
| BuiltinID == BPF::BI__builtin_btf_type_id || |
| BuiltinID == BPF::BI__builtin_preserve_type_info || |
| BuiltinID == BPF::BI__builtin_preserve_enum_value) && |
| "unexpected BPF builtin"); |
| |
| if (checkArgCount(*this, TheCall, 2)) |
| return true; |
| |
| // The second argument needs to be a constant int |
| Expr *Arg = TheCall->getArg(1); |
| Optional<llvm::APSInt> Value = Arg->getIntegerConstantExpr(Context); |
| diag::kind kind; |
| if (!Value) { |
| if (BuiltinID == BPF::BI__builtin_preserve_field_info) |
| kind = diag::err_preserve_field_info_not_const; |
| else if (BuiltinID == BPF::BI__builtin_btf_type_id) |
| kind = diag::err_btf_type_id_not_const; |
| else if (BuiltinID == BPF::BI__builtin_preserve_type_info) |
| kind = diag::err_preserve_type_info_not_const; |
| else |
| kind = diag::err_preserve_enum_value_not_const; |
| Diag(Arg->getBeginLoc(), kind) << 2 << Arg->getSourceRange(); |
| return true; |
| } |
| |
| // The first argument |
| Arg = TheCall->getArg(0); |
| bool InvalidArg = false; |
| bool ReturnUnsignedInt = true; |
| if (BuiltinID == BPF::BI__builtin_preserve_field_info) { |
| if (!isValidBPFPreserveFieldInfoArg(Arg)) { |
| InvalidArg = true; |
| kind = diag::err_preserve_field_info_not_field; |
| } |
| } else if (BuiltinID == BPF::BI__builtin_preserve_type_info) { |
| if (!isValidBPFPreserveTypeInfoArg(Arg)) { |
| InvalidArg = true; |
| kind = diag::err_preserve_type_info_invalid; |
| } |
| } else if (BuiltinID == BPF::BI__builtin_preserve_enum_value) { |
| if (!isValidBPFPreserveEnumValueArg(Arg)) { |
| InvalidArg = true; |
| kind = diag::err_preserve_enum_value_invalid; |
| } |
| ReturnUnsignedInt = false; |
| } else if (BuiltinID == BPF::BI__builtin_btf_type_id) { |
| ReturnUnsignedInt = false; |
| } |
| |
| if (InvalidArg) { |
| Diag(Arg->getBeginLoc(), kind) << 1 << Arg->getSourceRange(); |
| return true; |
| } |
| |
| if (ReturnUnsignedInt) |
| TheCall->setType(Context.UnsignedIntTy); |
| else |
| TheCall->setType(Context.UnsignedLongTy); |
| return false; |
| } |
| |
| bool Sema::CheckHexagonBuiltinArgument(unsigned BuiltinID, CallExpr *TheCall) { |
| struct ArgInfo { |
| uint8_t OpNum; |
| bool IsSigned; |
| uint8_t BitWidth; |
| uint8_t Align; |
| }; |
| struct BuiltinInfo { |
| unsigned BuiltinID; |
| ArgInfo Infos[2]; |
| }; |
| |
| static BuiltinInfo Infos[] = { |
| { Hexagon::BI__builtin_circ_ldd, {{ 3, true, 4, 3 }} }, |
| { Hexagon::BI__builtin_circ_ldw, {{ 3, true, 4, 2 }} }, |
| { Hexagon::BI__builtin_circ_ldh, {{ 3, true, 4, 1 }} }, |
| { Hexagon::BI__builtin_circ_lduh, {{ 3, true, 4, 1 }} }, |
| { Hexagon::BI__builtin_circ_ldb, {{ 3, true, 4, 0 }} }, |
| { Hexagon::BI__builtin_circ_ldub, {{ 3, true, 4, 0 }} }, |
| { Hexagon::BI__builtin_circ_std, {{ 3, true, 4, 3 }} }, |
| { Hexagon::BI__builtin_circ_stw, {{ 3, true, 4, 2 }} }, |
| { Hexagon::BI__builtin_circ_sth, {{ 3, true, 4, 1 }} }, |
| { Hexagon::BI__builtin_circ_sthhi, {{ 3, true, 4, 1 }} }, |
| { Hexagon::BI__builtin_circ_stb, {{ 3, true, 4, 0 }} }, |
| |
| { Hexagon::BI__builtin_HEXAGON_L2_loadrub_pci, {{ 1, true, 4, 0 }} }, |
| { Hexagon::BI__builtin_HEXAGON_L2_loadrb_pci, {{ 1, true, 4, 0 }} }, |
| { Hexagon::BI__builtin_HEXAGON_L2_loadruh_pci, {{ 1, true, 4, 1 }} }, |
| { Hexagon::BI__builtin_HEXAGON_L2_loadrh_pci, {{ 1, true, 4, 1 }} }, |
| { Hexagon::BI__builtin_HEXAGON_L2_loadri_pci, {{ 1, true, 4, 2 }} }, |
| { Hexagon::BI__builtin_HEXAGON_L2_loadrd_pci, {{ 1, true, 4, 3 }} }, |
| { Hexagon::BI__builtin_HEXAGON_S2_storerb_pci, {{ 1, true, 4, 0 }} }, |
| { Hexagon::BI__builtin_HEXAGON_S2_storerh_pci, {{ 1, true, 4, 1 }} }, |
| { Hexagon::BI__builtin_HEXAGON_S2_storerf_pci, {{ 1, true, 4, 1 }} }, |
| { Hexagon::BI__builtin_HEXAGON_S2_storeri_pci, {{ 1, true, 4, 2 }} }, |
| { Hexagon::BI__builtin_HEXAGON_S2_storerd_pci, {{ 1, true, 4, 3 }} }, |
| |
| { Hexagon::BI__builtin_HEXAGON_A2_combineii, {{ 1, true, 8, 0 }} }, |
| { Hexagon::BI__builtin_HEXAGON_A2_tfrih, {{ 1, false, 16, 0 }} }, |
| { Hexagon::BI__builtin_HEXAGON_A2_tfril, {{ 1, false, 16, 0 }} }, |
| { Hexagon::BI__builtin_HEXAGON_A2_tfrpi, {{ 0, true, 8, 0 }} }, |
| { Hexagon::BI__builtin_HEXAGON_A4_bitspliti, {{ 1, false, 5, 0 }} }, |
| { Hexagon::BI__builtin_HEXAGON_A4_cmpbeqi, {{ 1, false, 8, 0 }} }, |
| { Hexagon::BI__builtin_HEXAGON_A4_cmpbgti, {{ 1, true, 8, 0 }} }, |
| { Hexagon::BI__builtin_HEXAGON_A4_cround_ri, {{ 1, false, 5, 0 }} }, |
| { Hexagon::BI__builtin_HEXAGON_A4_round_ri, {{ 1, false, 5, 0 }} }, |
| { Hexagon::BI__builtin_HEXAGON_A4_round_ri_sat, {{ 1, false, 5, 0 }} }, |
| { Hexagon::BI__builtin_HEXAGON_A4_vcmpbeqi, {{ 1, false, 8, 0 }} }, |
| { Hexagon::BI__builtin_HEXAGON_A4_vcmpbgti, {{ 1, true, 8, 0 }} }, |
| { Hexagon::BI__builtin_HEXAGON_A4_vcmpbgtui, {{ 1, false, 7, 0 }} }, |
| { Hexagon::BI__builtin_HEXAGON_A4_vcmpheqi, {{ 1, true, 8, 0 }} }, |
| { Hexagon::BI__builtin_HEXAGON_A4_vcmphgti, {{ 1, true, 8, 0 }} }, |
| { Hexagon::BI__builtin_HEXAGON_A4_vcmphgtui, {{ 1, false, 7, 0 }} }, |
| { Hexagon::BI__builtin_HEXAGON_A4_vcmpweqi, {{ 1, true, 8, 0 }} }, |
| { Hexagon::BI__builtin_HEXAGON_A4_vcmpwgti, {{ 1, true, 8, 0 }} }, |
| { Hexagon::BI__builtin_HEXAGON_A4_vcmpwgtui, {{ 1, false, 7, 0 }} }, |
| { Hexagon::BI__builtin_HEXAGON_C2_bitsclri, {{ 1, false, 6, 0 }} }, |
| { Hexagon::BI__builtin_HEXAGON_C2_muxii, {{ 2, true, 8, 0 }} }, |
| { Hexagon::BI__builtin_HEXAGON_C4_nbitsclri, {{ 1, false, 6, 0 }} }, |
| { Hexagon::BI__builtin_HEXAGON_F2_dfclass, {{ 1, false, 5, 0 }} }, |
| { Hexagon::BI__builtin_HEXAGON_F2_dfimm_n, {{ 0, false, 10, 0 }} }, |
| { Hexagon::BI__builtin_HEXAGON_F2_dfimm_p, {{ 0, false, 10, 0 }} }, |
| { Hexagon::BI__builtin_HEXAGON_F2_sfclass, {{ 1, false, 5, 0 }} }, |
| { Hexagon::BI__builtin_HEXAGON_F2_sfimm_n, {{ 0, false, 10, 0 }} }, |
| { Hexagon::BI__builtin_HEXAGON_F2_sfimm_p, {{ 0, false, 10, 0 }} }, |
| { Hexagon::BI__builtin_HEXAGON_M4_mpyri_addi, {{ 2, false, 6, 0 }} }, |
| { Hexagon::BI__builtin_HEXAGON_M4_mpyri_addr_u2, {{ 1, false, 6, 2 }} }, |
| { Hexagon::BI__builtin_HEXAGON_S2_addasl_rrri, {{ 2, false, 3, 0 }} }, |
| { Hexagon::BI__builtin_HEXAGON_S2_asl_i_p_acc, {{ 2, false, 6, 0 }} }, |
| { Hexagon::BI__builtin_HEXAGON_S2_asl_i_p_and, {{ 2, false, 6, 0 }} }, |
| { Hexagon::BI__builtin_HEXAGON_S2_asl_i_p, {{ 1, false, 6, 0 }} }, |
| { Hexagon::BI__builtin_HEXAGON_S2_asl_i_p_nac, {{ 2, false, 6, 0 }} }, |
| { Hexagon::BI__builtin_HEXAGON_S2_asl_i_p_or, {{ 2, false, 6, 0 }} }, |
| { Hexagon::BI__builtin_HEXAGON_S2_asl_i_p_xacc, {{ 2, false, 6, 0 }} }, |
| { Hexagon::BI__builtin_HEXAGON_S2_asl_i_r_acc, {{ 2, false, 5, 0 }} }, |
| { Hexagon::BI__builtin_HEXAGON_S2_asl_i_r_and, {{ 2, false, 5, 0 }} }, |
| { Hexagon::BI__builtin_HEXAGON_S2_asl_i_r, {{ 1, false, 5, 0 }} }, |
| { Hexagon::BI__builtin_HEXAGON_S2_asl_i_r_nac, {{ 2, false, 5, 0 }} }, |
| { Hexagon::BI__builtin_HEXAGON_S2_asl_i_r_or, {{ 2, false, 5, 0 }} }, |
| { Hexagon::BI__builtin_HEXAGON_S2_asl_i_r_sat, {{ 1, false, 5, 0 }} }, |
| { Hexagon::BI__builtin_HEXAGON_S2_asl_i_r_xacc, {{ 2, false, 5, 0 }} }, |
| { Hexagon::BI__builtin_HEXAGON_S2_asl_i_vh, {{ 1, false, 4, 0 }} }, |
| { Hexagon::BI__builtin_HEXAGON_S2_asl_i_vw, {{ 1, false, 5, 0 }} }, |
| { Hexagon::BI__builtin_HEXAGON_S2_asr_i_p_acc, {{ 2, false, 6, 0 }} }, |
| { Hexagon::BI__builtin_HEXAGON_S2_asr_i_p_and, {{ 2, false, 6, 0 }} }, |
| { Hexagon::BI__builtin_HEXAGON_S2_asr_i_p, {{ 1, false, 6, 0 }} }, |
| { Hexagon::BI__builtin_HEXAGON_S2_asr_i_p_nac, {{ 2, false, 6, 0 }} }, |
| { Hexagon::BI__builtin_HEXAGON_S2_asr_i_p_or, {{ 2, false, 6, 0 }} }, |
| { Hexagon::BI__builtin_HEXAGON_S2_asr_i_p_rnd_goodsyntax, |
| {{ 1, false, 6, 0 }} }, |
| { Hexagon::BI__builtin_HEXAGON_S2_asr_i_p_rnd, {{ 1, false, 6, 0 }} }, |
| { Hexagon::BI__builtin_HEXAGON_S2_asr_i_r_acc, {{ 2, false, 5, 0 }} }, |
| { Hexagon::BI__builtin_HEXAGON_S2_asr_i_r_and, {{ 2, false, 5, 0 }} }, |
| { Hexagon::BI__builtin_HEXAGON_S2_asr_i_r, {{ 1, false, 5, 0 }} }, |
| { Hexagon::BI__builtin_HEXAGON_S2_asr_i_r_nac, {{ 2, false, 5, 0 }} }, |
| { Hexagon::BI__builtin_HEXAGON_S2_asr_i_r_or, {{ 2, false, 5, 0 }} }, |
| { Hexagon::BI__builtin_HEXAGON_S2_asr_i_r_rnd_goodsyntax, |
| {{ 1, false, 5, 0 }} }, |
| { Hexagon::BI__builtin_HEXAGON_S2_asr_i_r_rnd, {{ 1, false, 5, 0 }} }, |
| { Hexagon::BI__builtin_HEXAGON_S2_asr_i_svw_trun, {{ 1, false, 5, 0 }} }, |
| { Hexagon::BI__builtin_HEXAGON_S2_asr_i_vh, {{ 1, false, 4, 0 }} }, |
| { Hexagon::BI__builtin_HEXAGON_S2_asr_i_vw, {{ 1, false, 5, 0 }} }, |
| { Hexagon::BI__builtin_HEXAGON_S2_clrbit_i, {{ 1, false, 5, 0 }} }, |
| { Hexagon::BI__builtin_HEXAGON_S2_extractu, {{ 1, false, 5, 0 }, |
| { 2, false, 5, 0 }} }, |
| { Hexagon::BI__builtin_HEXAGON_S2_extractup, {{ 1, false, 6, 0 }, |
| { 2, false, 6, 0 }} }, |
| { Hexagon::BI__builtin_HEXAGON_S2_insert, {{ 2, false, 5, 0 }, |
| { 3, false, 5, 0 }} }, |
| { Hexagon::BI__builtin_HEXAGON_S2_insertp, {{ 2, false, 6, 0 }, |
| { 3, false, 6, 0 }} }, |
| { Hexagon::BI__builtin_HEXAGON_S2_lsr_i_p_acc, {{ 2, false, 6, 0 }} }, |
| { Hexagon::BI__builtin_HEXAGON_S2_lsr_i_p_and, {{ 2, false, 6, 0 }} }, |
| { Hexagon::BI__builtin_HEXAGON_S2_lsr_i_p, {{ 1, false, 6, 0 }} }, |
| { Hexagon::BI__builtin_HEXAGON_S2_lsr_i_p_nac, {{ 2, false, 6, 0 }} }, |
| { Hexagon::BI__builtin_HEXAGON_S2_lsr_i_p_or, {{ 2, false, 6, 0 }} }, |
| { Hexagon::BI__builtin_HEXAGON_S2_lsr_i_p_xacc, {{ 2, false, 6, 0 }} }, |
| { Hexagon::BI__builtin_HEXAGON_S2_lsr_i_r_acc, {{ 2, false, 5, 0 }} }, |
| { Hexagon::BI__builtin_HEXAGON_S2_lsr_i_r_and, {{ 2, false, 5, 0 }} }, |
| { Hexagon::BI__builtin_HEXAGON_S2_lsr_i_r, {{ 1, false, 5, 0 }} }, |
| { Hexagon::BI__builtin_HEXAGON_S2_lsr_i_r_nac, {{ 2, false, 5, 0 }} }, |
| { Hexagon::BI__builtin_HEXAGON_S2_lsr_i_r_or, {{ 2, false, 5, 0 }} }, |
| { Hexagon::BI__builtin_HEXAGON_S2_lsr_i_r_xacc, {{ 2, false, 5, 0 }} }, |
| { Hexagon::BI__builtin_HEXAGON_S2_lsr_i_vh, {{ 1, false, 4, 0 }} }, |
| { Hexagon::BI__builtin_HEXAGON_S2_lsr_i_vw, {{ 1, false, 5, 0 }} }, |
| { Hexagon::BI__builtin_HEXAGON_S2_setbit_i, {{ 1, false, 5, 0 }} }, |
| { Hexagon::BI__builtin_HEXAGON_S2_tableidxb_goodsyntax, |
| {{ 2, false, 4, 0 }, |
| { 3, false, 5, 0 }} }, |
| { Hexagon::BI__builtin_HEXAGON_S2_tableidxd_goodsyntax, |
| {{ 2, false, 4, 0 }, |
| { 3, false, 5, 0 }} }, |
| { Hexagon::BI__builtin_HEXAGON_S2_tableidxh_goodsyntax, |
| {{ 2, false, 4, 0 }, |
| { 3, false, 5, 0 }} }, |
| { Hexagon::BI__builtin_HEXAGON_S2_tableidxw_goodsyntax, |
| {{ 2, false, 4, 0 }, |
| { 3, false, 5, 0 }} }, |
| { Hexagon::BI__builtin_HEXAGON_S2_togglebit_i, {{ 1, false, 5, 0 }} }, |
| { Hexagon::BI__builtin_HEXAGON_S2_tstbit_i, {{ 1, false, 5, 0 }} }, |
| { Hexagon::BI__builtin_HEXAGON_S2_valignib, {{ 2, false, 3, 0 }} }, |
| { Hexagon::BI__builtin_HEXAGON_S2_vspliceib, {{ 2, false, 3, 0 }} }, |
| { Hexagon::BI__builtin_HEXAGON_S4_addi_asl_ri, {{ 2, false, 5, 0 }} }, |
| { Hexagon::BI__builtin_HEXAGON_S4_addi_lsr_ri, {{ 2, false, 5, 0 }} }, |
| { Hexagon::BI__builtin_HEXAGON_S4_andi_asl_ri, {{ 2, false, 5, 0 }} }, |
| { Hexagon::BI__builtin_HEXAGON_S4_andi_lsr_ri, {{ 2, false, 5, 0 }} }, |
| { Hexagon::BI__builtin_HEXAGON_S4_clbaddi, {{ 1, true , 6, 0 }} }, |
| { Hexagon::BI__builtin_HEXAGON_S4_clbpaddi, {{ 1, true, 6, 0 }} }, |
| { Hexagon::BI__builtin_HEXAGON_S4_extract, {{ 1, false, 5, 0 }, |
| { 2, false, 5, 0 }} }, |
| { Hexagon::BI__builtin_HEXAGON_S4_extractp, {{ 1, false, 6, 0 }, |
| { 2, false, 6, 0 }} }, |
| { Hexagon::BI__builtin_HEXAGON_S4_lsli, {{ 0, true, 6, 0 }} }, |
| { Hexagon::BI__builtin_HEXAGON_S4_ntstbit_i, {{ 1, false, 5, 0 }} }, |
| { Hexagon::BI__builtin_HEXAGON_S4_ori_asl_ri, {{ 2, false, 5, 0 }} }, |
| { Hexagon::BI__builtin_HEXAGON_S4_ori_lsr_ri, {{ 2, false, 5, 0 }} }, |
| { Hexagon::BI__builtin_HEXAGON_S4_subi_asl_ri, {{ 2, false, 5, 0 }} }, |
| { Hexagon::BI__builtin_HEXAGON_S4_subi_lsr_ri, {{ 2, false, 5, 0 }} }, |
| { Hexagon::BI__builtin_HEXAGON_S4_vrcrotate_acc, {{ 3, false, 2, 0 }} }, |
| { Hexagon::BI__builtin_HEXAGON_S4_vrcrotate, {{ 2, false, 2, 0 }} }, |
| { Hexagon::BI__builtin_HEXAGON_S5_asrhub_rnd_sat_goodsyntax, |
| {{ 1, false, 4, 0 }} }, |
| { Hexagon::BI__builtin_HEXAGON_S5_asrhub_sat, {{ 1, false, 4, 0 }} }, |
| { Hexagon::BI__builtin_HEXAGON_S5_vasrhrnd_goodsyntax, |
| {{ 1, false, 4, 0 }} }, |
| { Hexagon::BI__builtin_HEXAGON_S6_rol_i_p, {{ 1, false, 6, 0 }} }, |
| { Hexagon::BI__builtin_HEXAGON_S6_rol_i_p_acc, {{ 2, false, 6, 0 }} }, |
| { Hexagon::BI__builtin_HEXAGON_S6_rol_i_p_and, {{ 2, false, 6, 0 }} }, |
| { Hexagon::BI__builtin_HEXAGON_S6_rol_i_p_nac, {{ 2, false, 6, 0 }} }, |
| { Hexagon::BI__builtin_HEXAGON_S6_rol_i_p_or, {{ 2, false, 6, 0 }} }, |
| { Hexagon::BI__builtin_HEXAGON_S6_rol_i_p_xacc, {{ 2, false, 6, 0 }} }, |
| { Hexagon::BI__builtin_HEXAGON_S6_rol_i_r, {{ 1, false, 5, 0 }} }, |
| { Hexagon::BI__builtin_HEXAGON_S6_rol_i_r_acc, {{ 2, false, 5, 0 }} }, |
| { Hexagon::BI__builtin_HEXAGON_S6_rol_i_r_and, {{ 2, false, 5, 0 }} }, |
| { Hexagon::BI__builtin_HEXAGON_S6_rol_i_r_nac, {{ 2, false, 5, 0 }} }, |
| { Hexagon::BI__builtin_HEXAGON_S6_rol_i_r_or, {{ 2, false, 5, 0 }} }, |
| { Hexagon::BI__builtin_HEXAGON_S6_rol_i_r_xacc, {{ 2, false, 5, 0 }} }, |
| { Hexagon::BI__builtin_HEXAGON_V6_valignbi, {{ 2, false, 3, 0 }} }, |
| { Hexagon::BI__builtin_HEXAGON_V6_valignbi_128B, {{ 2, false, 3, 0 }} }, |
| { Hexagon::BI__builtin_HEXAGON_V6_vlalignbi, {{ 2, false, 3, 0 }} }, |
| { Hexagon::BI__builtin_HEXAGON_V6_vlalignbi_128B, {{ 2, false, 3, 0 }} }, |
| { Hexagon::BI__builtin_HEXAGON_V6_vrmpybusi, {{ 2, false, 1, 0 }} }, |
| { Hexagon::BI__builtin_HEXAGON_V6_vrmpybusi_128B, {{ 2, false, 1, 0 }} }, |
| { Hexagon::BI__builtin_HEXAGON_V6_vrmpybusi_acc, {{ 3, false, 1, 0 }} }, |
| { Hexagon::BI__builtin_HEXAGON_V6_vrmpybusi_acc_128B, |
| {{ 3, false, 1, 0 }} }, |
| { Hexagon::BI__builtin_HEXAGON_V6_vrmpyubi, {{ 2, false, 1, 0 }} }, |
| { Hexagon::BI__builtin_HEXAGON_V6_vrmpyubi_128B, {{ 2, false, 1, 0 }} }, |
| { Hexagon::BI__builtin_HEXAGON_V6_vrmpyubi_acc, {{ 3, false, 1, 0 }} }, |
| { Hexagon::BI__builtin_HEXAGON_V6_vrmpyubi_acc_128B, |
| {{ 3, false, 1, 0 }} }, |
| { Hexagon::BI__builtin_HEXAGON_V6_vrsadubi, {{ 2, false, 1, 0 }} }, |
| { Hexagon::BI__builtin_HEXAGON_V6_vrsadubi_128B, {{ 2, false, 1, 0 }} }, |
| { Hexagon::BI__builtin_HEXAGON_V6_vrsadubi_acc, {{ 3, false, 1, 0 }} }, |
| { Hexagon::BI__builtin_HEXAGON_V6_vrsadubi_acc_128B, |
| {{ 3, false, 1, 0 }} }, |
| }; |
| |
| // Use a dynamically initialized static to sort the table exactly once on |
| // first run. |
| static const bool SortOnce = |
| (llvm::sort(Infos, |
| [](const BuiltinInfo &LHS, const BuiltinInfo &RHS) { |
| return LHS.BuiltinID < RHS.BuiltinID; |
| }), |
| true); |
| (void)SortOnce; |
| |
| const BuiltinInfo *F = llvm::partition_point( |
| Infos, [=](const BuiltinInfo &BI) { return BI.BuiltinID < BuiltinID; }); |
| if (F == std::end(Infos) || F->BuiltinID != BuiltinID) |
| return false; |
| |
| bool Error = false; |
| |
| for (const ArgInfo &A : F->Infos) { |
| // Ignore empty ArgInfo elements. |
| if (A.BitWidth == 0) |
| continue; |
| |
| int32_t Min = A.IsSigned ? -(1 << (A.BitWidth - 1)) : 0; |
| int32_t Max = (1 << (A.IsSigned ? A.BitWidth - 1 : A.BitWidth)) - 1; |
| if (!A.Align) { |
| Error |= SemaBuiltinConstantArgRange(TheCall, A.OpNum, Min, Max); |
| } else { |
| unsigned M = 1 << A.Align; |
| Min *= M; |
| Max *= M; |
| Error |= SemaBuiltinConstantArgRange(TheCall, A.OpNum, Min, Max); |
| Error |= SemaBuiltinConstantArgMultiple(TheCall, A.OpNum, M); |
| } |
| } |
| return Error; |
| } |
| |
| bool Sema::CheckHexagonBuiltinFunctionCall(unsigned BuiltinID, |
| CallExpr *TheCall) { |
| return CheckHexagonBuiltinArgument(BuiltinID, TheCall); |
| } |
| |
| bool Sema::CheckMipsBuiltinFunctionCall(const TargetInfo &TI, |
| unsigned BuiltinID, CallExpr *TheCall) { |
| return CheckMipsBuiltinCpu(TI, BuiltinID, TheCall) || |
| CheckMipsBuiltinArgument(BuiltinID, TheCall); |
| } |
| |
| bool Sema::CheckMipsBuiltinCpu(const TargetInfo &TI, unsigned BuiltinID, |
| CallExpr *TheCall) { |
| |
| if (Mips::BI__builtin_mips_addu_qb <= BuiltinID && |
| BuiltinID <= Mips::BI__builtin_mips_lwx) { |
| if (!TI.hasFeature("dsp")) |
| return Diag(TheCall->getBeginLoc(), diag::err_mips_builtin_requires_dsp); |
| } |
| |
| if (Mips::BI__builtin_mips_absq_s_qb <= BuiltinID && |
| BuiltinID <= Mips::BI__builtin_mips_subuh_r_qb) { |
| if (!TI.hasFeature("dspr2")) |
| return Diag(TheCall->getBeginLoc(), |
| diag::err_mips_builtin_requires_dspr2); |
| } |
| |
| if (Mips::BI__builtin_msa_add_a_b <= BuiltinID && |
| BuiltinID <= Mips::BI__builtin_msa_xori_b) { |
| if (!TI.hasFeature("msa")) |
| return Diag(TheCall->getBeginLoc(), diag::err_mips_builtin_requires_msa); |
| } |
| |
| return false; |
| } |
| |
| // CheckMipsBuiltinArgument - Checks the constant value passed to the |
| // intrinsic is correct. The switch statement is ordered by DSP, MSA. The |
| // ordering for DSP is unspecified. MSA is ordered by the data format used |
| // by the underlying instruction i.e., df/m, df/n and then by size. |
| // |
| // FIXME: The size tests here should instead be tablegen'd along with the |
| // definitions from include/clang/Basic/BuiltinsMips.def. |
| // FIXME: GCC is strict on signedness for some of these intrinsics, we should |
| // be too. |
| bool Sema::CheckMipsBuiltinArgument(unsigned BuiltinID, CallExpr *TheCall) { |
| unsigned i = 0, l = 0, u = 0, m = 0; |
| switch (BuiltinID) { |
| default: return false; |
| case Mips::BI__builtin_mips_wrdsp: i = 1; l = 0; u = 63; break; |
| case Mips::BI__builtin_mips_rddsp: i = 0; l = 0; u = 63; break; |
| case Mips::BI__builtin_mips_append: i = 2; l = 0; u = 31; break; |
| case Mips::BI__builtin_mips_balign: i = 2; l = 0; u = 3; break; |
| case Mips::BI__builtin_mips_precr_sra_ph_w: i = 2; l = 0; u = 31; break; |
| case Mips::BI__builtin_mips_precr_sra_r_ph_w: i = 2; l = 0; u = 31; break; |
| case Mips::BI__builtin_mips_prepend: i = 2; l = 0; u = 31; break; |
| // MSA intrinsics. Instructions (which the intrinsics maps to) which use the |
| // df/m field. |
| // These intrinsics take an unsigned 3 bit immediate. |
| case Mips::BI__builtin_msa_bclri_b: |
| case Mips::BI__builtin_msa_bnegi_b: |
| case Mips::BI__builtin_msa_bseti_b: |
| case Mips::BI__builtin_msa_sat_s_b: |
| case Mips::BI__builtin_msa_sat_u_b: |
| case Mips::BI__builtin_msa_slli_b: |
| case Mips::BI__builtin_msa_srai_b: |
| case Mips::BI__builtin_msa_srari_b: |
| case Mips::BI__builtin_msa_srli_b: |
| case Mips::BI__builtin_msa_srlri_b: i = 1; l = 0; u = 7; break; |
| case Mips::BI__builtin_msa_binsli_b: |
| case Mips::BI__builtin_msa_binsri_b: i = 2; l = 0; u = 7; break; |
| // These intrinsics take an unsigned 4 bit immediate. |
| case Mips::BI__builtin_msa_bclri_h: |
| case Mips::BI__builtin_msa_bnegi_h: |
| case Mips::BI__builtin_msa_bseti_h: |
| case Mips::BI__builtin_msa_sat_s_h: |
| case Mips::BI__builtin_msa_sat_u_h: |
| case Mips::BI__builtin_msa_slli_h: |
| case Mips::BI__builtin_msa_srai_h: |
| case Mips::BI__builtin_msa_srari_h: |
| case Mips::BI__builtin_msa_srli_h: |
| case Mips::BI__builtin_msa_srlri_h: i = 1; l = 0; u = 15; break; |
| case Mips::BI__builtin_msa_binsli_h: |
| case Mips::BI__builtin_msa_binsri_h: i = 2; l = 0; u = 15; break; |
| // These intrinsics take an unsigned 5 bit immediate. |
| // The first block of intrinsics actually have an unsigned 5 bit field, |
| // not a df/n field. |
| case Mips::BI__builtin_msa_cfcmsa: |
| case Mips::BI__builtin_msa_ctcmsa: i = 0; l = 0; u = 31; break; |
| case Mips::BI__builtin_msa_clei_u_b: |
| case Mips::BI__builtin_msa_clei_u_h: |
| case Mips::BI__builtin_msa_clei_u_w: |
| case Mips::BI__builtin_msa_clei_u_d: |
| case Mips::BI__builtin_msa_clti_u_b: |
| case Mips::BI__builtin_msa_clti_u_h: |
| case Mips::BI__builtin_msa_clti_u_w: |
| case Mips::BI__builtin_msa_clti_u_d: |
| case Mips::BI__builtin_msa_maxi_u_b: |
| case Mips::BI__builtin_msa_maxi_u_h: |
| case Mips::BI__builtin_msa_maxi_u_w: |
| case Mips::BI__builtin_msa_maxi_u_d: |
| case Mips::BI__builtin_msa_mini_u_b: |
| case Mips::BI__builtin_msa_mini_u_h: |
| case Mips::BI__builtin_msa_mini_u_w: |
| case Mips::BI__builtin_msa_mini_u_d: |
| case Mips::BI__builtin_msa_addvi_b: |
| case Mips::BI__builtin_msa_addvi_h: |
| case Mips::BI__builtin_msa_addvi_w: |
| case Mips::BI__builtin_msa_addvi_d: |
| case Mips::BI__builtin_msa_bclri_w: |
| case Mips::BI__builtin_msa_bnegi_w: |
| case Mips::BI__builtin_msa_bseti_w: |
| case Mips::BI__builtin_msa_sat_s_w: |
| case Mips::BI__builtin_msa_sat_u_w: |
| case Mips::BI__builtin_msa_slli_w: |
| case Mips::BI__builtin_msa_srai_w: |
| case Mips::BI__builtin_msa_srari_w: |
| case Mips::BI__builtin_msa_srli_w: |
| case Mips::BI__builtin_msa_srlri_w: |
| case Mips::BI__builtin_msa_subvi_b: |
| case Mips::BI__builtin_msa_subvi_h: |
| case Mips::BI__builtin_msa_subvi_w: |
| case Mips::BI__builtin_msa_subvi_d: i = 1; l = 0; u = 31; break; |
| case Mips::BI__builtin_msa_binsli_w: |
| case Mips::BI__builtin_msa_binsri_w: i = 2; l = 0; u = 31; break; |
| // These intrinsics take an unsigned 6 bit immediate. |
| case Mips::BI__builtin_msa_bclri_d: |
| case Mips::BI__builtin_msa_bnegi_d: |
| case Mips::BI__builtin_msa_bseti_d: |
| case Mips::BI__builtin_msa_sat_s_d: |
| case Mips::BI__builtin_msa_sat_u_d: |
| case Mips::BI__builtin_msa_slli_d: |
| case Mips::BI__builtin_msa_srai_d: |
| case Mips::BI__builtin_msa_srari_d: |
| case Mips::BI__builtin_msa_srli_d: |
| case Mips::BI__builtin_msa_srlri_d: i = 1; l = 0; u = 63; break; |
| case Mips::BI__builtin_msa_binsli_d: |
| case Mips::BI__builtin_msa_binsri_d: i = 2; l = 0; u = 63; break; |
| // These intrinsics take a signed 5 bit immediate. |
| case Mips::BI__builtin_msa_ceqi_b: |
| case Mips::BI__builtin_msa_ceqi_h: |
| case Mips::BI__builtin_msa_ceqi_w: |
| case Mips::BI__builtin_msa_ceqi_d: |
| case Mips::BI__builtin_msa_clti_s_b: |
| case Mips::BI__builtin_msa_clti_s_h: |
| case Mips::BI__builtin_msa_clti_s_w: |
| case Mips::BI__builtin_msa_clti_s_d: |
| case Mips::BI__builtin_msa_clei_s_b: |
| case Mips::BI__builtin_msa_clei_s_h: |
| case Mips::BI__builtin_msa_clei_s_w: |
| case Mips::BI__builtin_msa_clei_s_d: |
| case Mips::BI__builtin_msa_maxi_s_b: |
| case Mips::BI__builtin_msa_maxi_s_h: |
| case Mips::BI__builtin_msa_maxi_s_w: |
| case Mips::BI__builtin_msa_maxi_s_d: |
| case Mips::BI__builtin_msa_mini_s_b: |
| case Mips::BI__builtin_msa_mini_s_h: |
| case Mips::BI__builtin_msa_mini_s_w: |
| case Mips::BI__builtin_msa_mini_s_d: i = 1; l = -16; u = 15; break; |
| // These intrinsics take an unsigned 8 bit immediate. |
| case Mips::BI__builtin_msa_andi_b: |
| case Mips::BI__builtin_msa_nori_b: |
| case Mips::BI__builtin_msa_ori_b: |
| case Mips::BI__builtin_msa_shf_b: |
| case Mips::BI__builtin_msa_shf_h: |
| case Mips::BI__builtin_msa_shf_w: |
| case Mips::BI__builtin_msa_xori_b: i = 1; l = 0; u = 255; break; |
| case Mips::BI__builtin_msa_bseli_b: |
| case Mips::BI__builtin_msa_bmnzi_b: |
| case Mips::BI__builtin_msa_bmzi_b: i = 2; l = 0; u = 255; break; |
| // df/n format |
| // These intrinsics take an unsigned 4 bit immediate. |
| case Mips::BI__builtin_msa_copy_s_b: |
| case Mips::BI__builtin_msa_copy_u_b: |
| case Mips::BI__builtin_msa_insve_b: |
| case Mips::BI__builtin_msa_splati_b: i = 1; l = 0; u = 15; break; |
| case Mips::BI__builtin_msa_sldi_b: i = 2; l = 0; u = 15; break; |
| // These intrinsics take an unsigned 3 bit immediate. |
| case Mips::BI__builtin_msa_copy_s_h: |
| case Mips::BI__builtin_msa_copy_u_h: |
| case Mips::BI__builtin_msa_insve_h: |
| case Mips::BI__builtin_msa_splati_h: i = 1; l = 0; u = 7; break; |
| case Mips::BI__builtin_msa_sldi_h: i = 2; l = 0; u = 7; break; |
| // These intrinsics take an unsigned 2 bit immediate. |
| case Mips::BI__builtin_msa_copy_s_w: |
| case Mips::BI__builtin_msa_copy_u_w: |
| case Mips::BI__builtin_msa_insve_w: |
| case Mips::BI__builtin_msa_splati_w: i = 1; l = 0; u = 3; break; |
| case Mips::BI__builtin_msa_sldi_w: i = 2; l = 0; u = 3; break; |
| // These intrinsics take an unsigned 1 bit immediate. |
| case Mips::BI__builtin_msa_copy_s_d: |
| case Mips::BI__builtin_msa_copy_u_d: |
| case Mips::BI__builtin_msa_insve_d: |
| case Mips::BI__builtin_msa_splati_d: i = 1; l = 0; u = 1; break; |
| case Mips::BI__builtin_msa_sldi_d: i = 2; l = 0; u = 1; break; |
| // Memory offsets and immediate loads. |
| // These intrinsics take a signed 10 bit immediate. |
| case Mips::BI__builtin_msa_ldi_b: i = 0; l = -128; u = 255; break; |
| case Mips::BI__builtin_msa_ldi_h: |
| case Mips::BI__builtin_msa_ldi_w: |
| case Mips::BI__builtin_msa_ldi_d: i = 0; l = -512; u = 511; break; |
| case Mips::BI__builtin_msa_ld_b: i = 1; l = -512; u = 511; m = 1; break; |
| case Mips::BI__builtin_msa_ld_h: i = 1; l = -1024; u = 1022; m = 2; break; |
| case Mips::BI__builtin_msa_ld_w: i = 1; l = -2048; u = 2044; m = 4; break; |
| case Mips::BI__builtin_msa_ld_d: i = 1; l = -4096; u = 4088; m = 8; break; |
| case Mips::BI__builtin_msa_ldr_d: i = 1; l = -4096; u = 4088; m = 8; break; |
| case Mips::BI__builtin_msa_ldr_w: i = 1; l = -2048; u = 2044; m = 4; break; |
| case Mips::BI__builtin_msa_st_b: i = 2; l = -512; u = 511; m = 1; break; |
| case Mips::BI__builtin_msa_st_h: i = 2; l = -1024; u = 1022; m = 2; break; |
| case Mips::BI__builtin_msa_st_w: i = 2; l = -2048; u = 2044; m = 4; break; |
| case Mips::BI__builtin_msa_st_d: i = 2; l = -4096; u = 4088; m = 8; break; |
| case Mips::BI__builtin_msa_str_d: i = 2; l = -4096; u = 4088; m = 8; break; |
| case Mips::BI__builtin_msa_str_w: i = 2; l = -2048; u = 2044; m = 4; break; |
| } |
| |
| if (!m) |
| return SemaBuiltinConstantArgRange(TheCall, i, l, u); |
| |
| return SemaBuiltinConstantArgRange(TheCall, i, l, u) || |
| SemaBuiltinConstantArgMultiple(TheCall, i, m); |
| } |
| |
| /// DecodePPCMMATypeFromStr - This decodes one PPC MMA type descriptor from Str, |
| /// advancing the pointer over the consumed characters. The decoded type is |
| /// returned. If the decoded type represents a constant integer with a |
| /// constraint on its value then Mask is set to that value. The type descriptors |
| /// used in Str are specific to PPC MMA builtins and are documented in the file |
| /// defining the PPC builtins. |
| static QualType DecodePPCMMATypeFromStr(ASTContext &Context, const char *&Str, |
| unsigned &Mask) { |
| bool RequireICE = false; |
| ASTContext::GetBuiltinTypeError Error = ASTContext::GE_None; |
| switch (*Str++) { |
| case 'V': |
| return Context.getVectorType(Context.UnsignedCharTy, 16, |
| VectorType::VectorKind::AltiVecVector); |
| case 'i': { |
| char *End; |
| unsigned size = strtoul(Str, &End, 10); |
| assert(End != Str && "Missing constant parameter constraint"); |
| Str = End; |
| Mask = size; |
| return Context.IntTy; |
| } |
| case 'W': { |
| char *End; |
| unsigned size = strtoul(Str, &End, 10); |
| assert(End != Str && "Missing PowerPC MMA type size"); |
| Str = End; |
| QualType Type; |
| switch (size) { |
| #define PPC_VECTOR_TYPE(typeName, Id, size) \ |
| case size: Type = Context.Id##Ty; break; |
| #include "clang/Basic/PPCTypes.def" |
| default: llvm_unreachable("Invalid PowerPC MMA vector type"); |
| } |
| bool CheckVectorArgs = false; |
| while (!CheckVectorArgs) { |
| switch (*Str++) { |
| case '*': |
| Type = Context.getPointerType(Type); |
| break; |
| case 'C': |
| Type = Type.withConst(); |
| break; |
| default: |
| CheckVectorArgs = true; |
| --Str; |
| break; |
| } |
| } |
| return Type; |
| } |
| default: |
| return Context.DecodeTypeStr(--Str, Context, Error, RequireICE, true); |
| } |
| } |
| |
| static bool isPPC_64Builtin(unsigned BuiltinID) { |
| // These builtins only work on PPC 64bit targets. |
| switch (BuiltinID) { |
| case PPC::BI__builtin_divde: |
| case PPC::BI__builtin_divdeu: |
| case PPC::BI__builtin_bpermd: |
| case PPC::BI__builtin_ppc_ldarx: |
| case PPC::BI__builtin_ppc_stdcx: |
| case PPC::BI__builtin_ppc_tdw: |
| case PPC::BI__builtin_ppc_trapd: |
| case PPC::BI__builtin_ppc_cmpeqb: |
| case PPC::BI__builtin_ppc_setb: |
| case PPC::BI__builtin_ppc_mulhd: |
| case PPC::BI__builtin_ppc_mulhdu: |
| case PPC::BI__builtin_ppc_maddhd: |
| case PPC::BI__builtin_ppc_maddhdu: |
| case PPC::BI__builtin_ppc_maddld: |
| case PPC::BI__builtin_ppc_load8r: |
| case PPC::BI__builtin_ppc_store8r: |
| case PPC::BI__builtin_ppc_insert_exp: |
| case PPC::BI__builtin_ppc_extract_sig: |
| case PPC::BI__builtin_ppc_addex: |
| case PPC::BI__builtin_darn: |
| case PPC::BI__builtin_darn_raw: |
| case PPC::BI__builtin_ppc_compare_and_swaplp: |
| case PPC::BI__builtin_ppc_fetch_and_addlp: |
| case PPC::BI__builtin_ppc_fetch_and_andlp: |
| case PPC::BI__builtin_ppc_fetch_and_orlp: |
| case PPC::BI__builtin_ppc_fetch_and_swaplp: |
| return true; |
| } |
| return false; |
| } |
| |
| static bool SemaFeatureCheck(Sema &S, CallExpr *TheCall, |
| StringRef FeatureToCheck, unsigned DiagID, |
| StringRef DiagArg = "") { |
| if (S.Context.getTargetInfo().hasFeature(FeatureToCheck)) |
| return false; |
| |
| if (DiagArg.empty()) |
| S.Diag(TheCall->getBeginLoc(), DiagID) << TheCall->getSourceRange(); |
| else |
| S.Diag(TheCall->getBeginLoc(), DiagID) |
| << DiagArg << TheCall->getSourceRange(); |
| |
| return true; |
| } |
| |
| /// Returns true if the argument consists of one contiguous run of 1s with any |
| /// number of 0s on either side. The 1s are allowed to wrap from LSB to MSB, so |
| /// 0x000FFF0, 0x0000FFFF, 0xFF0000FF, 0x0 are all runs. 0x0F0F0000 is not, |
| /// since all 1s are not contiguous. |
| bool Sema::SemaValueIsRunOfOnes(CallExpr *TheCall, unsigned ArgNum) { |
| llvm::APSInt Result; |
| // We can't check the value of a dependent argument. |
| Expr *Arg = TheCall->getArg(ArgNum); |
| if (Arg->isTypeDependent() || Arg->isValueDependent()) |
| return false; |
| |
| // Check constant-ness first. |
| if (SemaBuiltinConstantArg(TheCall, ArgNum, Result)) |
| return true; |
| |
| // Check contiguous run of 1s, 0xFF0000FF is also a run of 1s. |
| if (Result.isShiftedMask() || (~Result).isShiftedMask()) |
| return false; |
| |
| return Diag(TheCall->getBeginLoc(), |
| diag::err_argument_not_contiguous_bit_field) |
| << ArgNum << Arg->getSourceRange(); |
| } |
| |
| bool Sema::CheckPPCBuiltinFunctionCall(const TargetInfo &TI, unsigned BuiltinID, |
| CallExpr *TheCall) { |
| unsigned i = 0, l = 0, u = 0; |
| bool IsTarget64Bit = TI.getTypeWidth(TI.getIntPtrType()) == 64; |
| llvm::APSInt Result; |
| |
| if (isPPC_64Builtin(BuiltinID) && !IsTarget64Bit) |
| return Diag(TheCall->getBeginLoc(), diag::err_64_bit_builtin_32_bit_tgt) |
| << TheCall->getSourceRange(); |
| |
| switch (BuiltinID) { |
| default: return false; |
| case PPC::BI__builtin_altivec_crypto_vshasigmaw: |
| case PPC::BI__builtin_altivec_crypto_vshasigmad: |
| return SemaBuiltinConstantArgRange(TheCall, 1, 0, 1) || |
| SemaBuiltinConstantArgRange(TheCall, 2, 0, 15); |
| case PPC::BI__builtin_altivec_dss: |
| return SemaBuiltinConstantArgRange(TheCall, 0, 0, 3); |
| case PPC::BI__builtin_tbegin: |
| case PPC::BI__builtin_tend: i = 0; l = 0; u = 1; break; |
| case PPC::BI__builtin_tsr: i = 0; l = 0; u = 7; break; |
| case PPC::BI__builtin_tabortwc: |
| case PPC::BI__builtin_tabortdc: i = 0; l = 0; u = 31; break; |
| case PPC::BI__builtin_tabortwci: |
| case PPC::BI__builtin_tabortdci: |
| return SemaBuiltinConstantArgRange(TheCall, 0, 0, 31) || |
| SemaBuiltinConstantArgRange(TheCall, 2, 0, 31); |
| // According to GCC 'Basic PowerPC Built-in Functions Available on ISA 2.05', |
| // __builtin_(un)pack_longdouble are available only if long double uses IBM |
| // extended double representation. |
| case PPC::BI__builtin_unpack_longdouble: |
| if (SemaBuiltinConstantArgRange(TheCall, 1, 0, 1)) |
| return true; |
| LLVM_FALLTHROUGH; |
| case PPC::BI__builtin_pack_longdouble: |
| if (&TI.getLongDoubleFormat() != &llvm::APFloat::PPCDoubleDouble()) |
| return Diag(TheCall->getBeginLoc(), diag::err_ppc_builtin_requires_abi) |
| << "ibmlongdouble"; |
| return false; |
| case PPC::BI__builtin_altivec_dst: |
| case PPC::BI__builtin_altivec_dstt: |
| case PPC::BI__builtin_altivec_dstst: |
| case PPC::BI__builtin_altivec_dststt: |
| return SemaBuiltinConstantArgRange(TheCall, 2, 0, 3); |
| case PPC::BI__builtin_vsx_xxpermdi: |
| case PPC::BI__builtin_vsx_xxsldwi: |
| return SemaBuiltinVSX(TheCall); |
| case PPC::BI__builtin_divwe: |
| case PPC::BI__builtin_divweu: |
| case PPC::BI__builtin_divde: |
| case PPC::BI__builtin_divdeu: |
| return SemaFeatureCheck(*this, TheCall, "extdiv", |
| diag::err_ppc_builtin_only_on_arch, "7"); |
| case PPC::BI__builtin_bpermd: |
| return SemaFeatureCheck(*this, TheCall, "bpermd", |
| diag::err_ppc_builtin_only_on_arch, "7"); |
| case PPC::BI__builtin_unpack_vector_int128: |
| return SemaFeatureCheck(*this, TheCall, "vsx", |
| diag::err_ppc_builtin_only_on_arch, "7") || |
| SemaBuiltinConstantArgRange(TheCall, 1, 0, 1); |
| case PPC::BI__builtin_pack_vector_int128: |
| return SemaFeatureCheck(*this, TheCall, "vsx", |
| diag::err_ppc_builtin_only_on_arch, "7"); |
| case PPC::BI__builtin_altivec_vgnb: |
| return SemaBuiltinConstantArgRange(TheCall, 1, 2, 7); |
| case PPC::BI__builtin_altivec_vec_replace_elt: |
| case PPC::BI__builtin_altivec_vec_replace_unaligned: { |
| QualType VecTy = TheCall->getArg(0)->getType(); |
| QualType EltTy = TheCall->getArg(1)->getType(); |
| unsigned Width = Context.getIntWidth(EltTy); |
| return SemaBuiltinConstantArgRange(TheCall, 2, 0, Width == 32 ? 12 : 8) || |
| !isEltOfVectorTy(Context, TheCall, *this, VecTy, EltTy); |
| } |
| case PPC::BI__builtin_vsx_xxeval: |
| return SemaBuiltinConstantArgRange(TheCall, 3, 0, 255); |
| case PPC::BI__builtin_altivec_vsldbi: |
| return SemaBuiltinConstantArgRange(TheCall, 2, 0, 7); |
| case PPC::BI__builtin_altivec_vsrdbi: |
| return SemaBuiltinConstantArgRange(TheCall, 2, 0, 7); |
| case PPC::BI__builtin_vsx_xxpermx: |
| return SemaBuiltinConstantArgRange(TheCall, 3, 0, 7); |
| case PPC::BI__builtin_ppc_tw: |
| case PPC::BI__builtin_ppc_tdw: |
| return SemaBuiltinConstantArgRange(TheCall, 2, 1, 31); |
| case PPC::BI__builtin_ppc_cmpeqb: |
| case PPC::BI__builtin_ppc_setb: |
| case PPC::BI__builtin_ppc_maddhd: |
| case PPC::BI__builtin_ppc_maddhdu: |
| case PPC::BI__builtin_ppc_maddld: |
| return SemaFeatureCheck(*this, TheCall, "isa-v30-instructions", |
| diag::err_ppc_builtin_only_on_arch, "9"); |
| case PPC::BI__builtin_ppc_cmprb: |
| return SemaFeatureCheck(*this, TheCall, "isa-v30-instructions", |
| diag::err_ppc_builtin_only_on_arch, "9") || |
| SemaBuiltinConstantArgRange(TheCall, 0, 0, 1); |
| // For __rlwnm, __rlwimi and __rldimi, the last parameter mask must |
| // be a constant that represents a contiguous bit field. |
| case PPC::BI__builtin_ppc_rlwnm: |
| return SemaValueIsRunOfOnes(TheCall, 2); |
| case PPC::BI__builtin_ppc_rlwimi: |
| case PPC::BI__builtin_ppc_rldimi: |
| return SemaBuiltinConstantArg(TheCall, 2, Result) || |
| SemaValueIsRunOfOnes(TheCall, 3); |
| case PPC::BI__builtin_ppc_extract_exp: |
| case PPC::BI__builtin_ppc_extract_sig: |
| case PPC::BI__builtin_ppc_insert_exp: |
| return SemaFeatureCheck(*this, TheCall, "power9-vector", |
| diag::err_ppc_builtin_only_on_arch, "9"); |
| case PPC::BI__builtin_ppc_addex: { |
| if (SemaFeatureCheck(*this, TheCall, "isa-v30-instructions", |
| diag::err_ppc_builtin_only_on_arch, "9") || |
| SemaBuiltinConstantArgRange(TheCall, 2, 0, 3)) |
| return true; |
| // Output warning for reserved values 1 to 3. |
| int ArgValue = |
| TheCall->getArg(2)->getIntegerConstantExpr(Context)->getSExtValue(); |
| if (ArgValue != 0) |
| Diag(TheCall->getBeginLoc(), diag::warn_argument_undefined_behaviour) |
| << ArgValue; |
| return false; |
| } |
| case PPC::BI__builtin_ppc_mtfsb0: |
| case PPC::BI__builtin_ppc_mtfsb1: |
| return SemaBuiltinConstantArgRange(TheCall, 0, 0, 31); |
| case PPC::BI__builtin_ppc_mtfsf: |
| return SemaBuiltinConstantArgRange(TheCall, 0, 0, 255); |
| case PPC::BI__builtin_ppc_mtfsfi: |
| return SemaBuiltinConstantArgRange(TheCall, 0, 0, 7) || |
| SemaBuiltinConstantArgRange(TheCall, 1, 0, 15); |
| case PPC::BI__builtin_ppc_alignx: |
| return SemaBuiltinConstantArgPower2(TheCall, 0); |
| case PPC::BI__builtin_ppc_rdlam: |
| return SemaValueIsRunOfOnes(TheCall, 2); |
| case PPC::BI__builtin_ppc_icbt: |
| case PPC::BI__builtin_ppc_sthcx: |
| case PPC::BI__builtin_ppc_stbcx: |
| case PPC::BI__builtin_ppc_lharx: |
| case PPC::BI__builtin_ppc_lbarx: |
| return SemaFeatureCheck(*this, TheCall, "isa-v207-instructions", |
| diag::err_ppc_builtin_only_on_arch, "8"); |
| case PPC::BI__builtin_vsx_ldrmb: |
| case PPC::BI__builtin_vsx_strmb: |
| return SemaFeatureCheck(*this, TheCall, "isa-v207-instructions", |
| diag::err_ppc_builtin_only_on_arch, "8") || |
| SemaBuiltinConstantArgRange(TheCall, 1, 1, 16); |
| case PPC::BI__builtin_altivec_vcntmbb: |
| case PPC::BI__builtin_altivec_vcntmbh: |
| case PPC::BI__builtin_altivec_vcntmbw: |
| case PPC::BI__builtin_altivec_vcntmbd: |
| return SemaBuiltinConstantArgRange(TheCall, 1, 0, 1); |
| case PPC::BI__builtin_darn: |
| case PPC::BI__builtin_darn_raw: |
| case PPC::BI__builtin_darn_32: |
| return SemaFeatureCheck(*this, TheCall, "isa-v30-instructions", |
| diag::err_ppc_builtin_only_on_arch, "9"); |
| case PPC::BI__builtin_vsx_xxgenpcvbm: |
| case PPC::BI__builtin_vsx_xxgenpcvhm: |
| case PPC::BI__builtin_vsx_xxgenpcvwm: |
| case PPC::BI__builtin_vsx_xxgenpcvdm: |
| return SemaBuiltinConstantArgRange(TheCall, 1, 0, 3); |
| case PPC::BI__builtin_ppc_compare_exp_uo: |
| case PPC::BI__builtin_ppc_compare_exp_lt: |
| case PPC::BI__builtin_ppc_compare_exp_gt: |
| case PPC::BI__builtin_ppc_compare_exp_eq: |
| return SemaFeatureCheck(*this, TheCall, "isa-v30-instructions", |
| diag::err_ppc_builtin_only_on_arch, "9") || |
| SemaFeatureCheck(*this, TheCall, "vsx", |
| diag::err_ppc_builtin_requires_vsx); |
| case PPC::BI__builtin_ppc_test_data_class: { |
| // Check if the first argument of the __builtin_ppc_test_data_class call is |
| // valid. The argument must be either a 'float' or a 'double'. |
| QualType ArgType = TheCall->getArg(0)->getType(); |
| if (ArgType != QualType(Context.FloatTy) && |
| ArgType != QualType(Context.DoubleTy)) |
| return Diag(TheCall->getBeginLoc(), |
| diag::err_ppc_invalid_test_data_class_type); |
| return SemaFeatureCheck(*this, TheCall, "isa-v30-instructions", |
| diag::err_ppc_builtin_only_on_arch, "9") || |
| SemaFeatureCheck(*this, TheCall, "vsx", |
| diag::err_ppc_builtin_requires_vsx) || |
| SemaBuiltinConstantArgRange(TheCall, 1, 0, 127); |
| } |
| case PPC::BI__builtin_ppc_load8r: |
| case PPC::BI__builtin_ppc_store8r: |
| return SemaFeatureCheck(*this, TheCall, "isa-v206-instructions", |
| diag::err_ppc_builtin_only_on_arch, "7"); |
| #define CUSTOM_BUILTIN(Name, Intr, Types, Acc) \ |
| case PPC::BI__builtin_##Name: \ |
| return SemaBuiltinPPCMMACall(TheCall, BuiltinID, Types); |
| #include "clang/Basic/BuiltinsPPC.def" |
| } |
| return SemaBuiltinConstantArgRange(TheCall, i, l, u); |
| } |
| |
| // Check if the given type is a non-pointer PPC MMA type. This function is used |
| // in Sema to prevent invalid uses of restricted PPC MMA types. |
| bool Sema::CheckPPCMMAType(QualType Type, SourceLocation TypeLoc) { |
| if (Type->isPointerType() || Type->isArrayType()) |
| return false; |
| |
| QualType CoreType = Type.getCanonicalType().getUnqualifiedType(); |
| #define PPC_VECTOR_TYPE(Name, Id, Size) || CoreType == Context.Id##Ty |
| if (false |
| #include "clang/Basic/PPCTypes.def" |
| ) { |
| Diag(TypeLoc, diag::err_ppc_invalid_use_mma_type); |
| return true; |
| } |
| return false; |
| } |
| |
| bool Sema::CheckAMDGCNBuiltinFunctionCall(unsigned BuiltinID, |
| CallExpr *TheCall) { |
| // position of memory order and scope arguments in the builtin |
| unsigned OrderIndex, ScopeIndex; |
| switch (BuiltinID) { |
| case AMDGPU::BI__builtin_amdgcn_atomic_inc32: |
| case AMDGPU::BI__builtin_amdgcn_atomic_inc64: |
| case AMDGPU::BI__builtin_amdgcn_atomic_dec32: |
| case AMDGPU::BI__builtin_amdgcn_atomic_dec64: |
| OrderIndex = 2; |
| ScopeIndex = 3; |
| break; |
| case AMDGPU::BI__builtin_amdgcn_fence: |
| OrderIndex = 0; |
| ScopeIndex = 1; |
| break; |
| default: |
| return false; |
| } |
| |
| ExprResult Arg = TheCall->getArg(OrderIndex); |
| auto ArgExpr = Arg.get(); |
| Expr::EvalResult ArgResult; |
| |
| if (!ArgExpr->EvaluateAsInt(ArgResult, Context)) |
| return Diag(ArgExpr->getExprLoc(), diag::err_typecheck_expect_int) |
| << ArgExpr->getType(); |
| auto Ord = ArgResult.Val.getInt().getZExtValue(); |
| |
| // Check validity of memory ordering as per C11 / C++11's memody model. |
| // Only fence needs check. Atomic dec/inc allow all memory orders. |
| if (!llvm::isValidAtomicOrderingCABI(Ord)) |
| return Diag(ArgExpr->getBeginLoc(), |
| diag::warn_atomic_op_has_invalid_memory_order) |
| << ArgExpr->getSourceRange(); |
| switch (static_cast<llvm::AtomicOrderingCABI>(Ord)) { |
| case llvm::AtomicOrderingCABI::relaxed: |
| case llvm::AtomicOrderingCABI::consume: |
| if (BuiltinID == AMDGPU::BI__builtin_amdgcn_fence) |
| return Diag(ArgExpr->getBeginLoc(), |
| diag::warn_atomic_op_has_invalid_memory_order) |
| << ArgExpr->getSourceRange(); |
| break; |
| case llvm::AtomicOrderingCABI::acquire: |
| case llvm::AtomicOrderingCABI::release: |
| case llvm::AtomicOrderingCABI::acq_rel: |
| case llvm::AtomicOrderingCABI::seq_cst: |
| break; |
| } |
| |
| Arg = TheCall->getArg(ScopeIndex); |
| ArgExpr = Arg.get(); |
| Expr::EvalResult ArgResult1; |
| // Check that sync scope is a constant literal |
| if (!ArgExpr->EvaluateAsConstantExpr(ArgResult1, Context)) |
| return Diag(ArgExpr->getExprLoc(), diag::err_expr_not_string_literal) |
| << ArgExpr->getType(); |
| |
| return false; |
| } |
| |
| bool Sema::CheckRISCVLMUL(CallExpr *TheCall, unsigned ArgNum) { |
| llvm::APSInt Result; |
| |
| // We can't check the value of a dependent argument. |
| Expr *Arg = TheCall->getArg(ArgNum); |
| if (Arg->isTypeDependent() || Arg->isValueDependent()) |
| return false; |
| |
| // Check constant-ness first. |
| if (SemaBuiltinConstantArg(TheCall, ArgNum, Result)) |
| return true; |
| |
| int64_t Val = Result.getSExtValue(); |
| if ((Val >= 0 && Val <= 3) || (Val >= 5 && Val <= 7)) |
| return false; |
| |
| return Diag(TheCall->getBeginLoc(), diag::err_riscv_builtin_invalid_lmul) |
| << Arg->getSourceRange(); |
| } |
| |
| bool Sema::CheckRISCVBuiltinFunctionCall(const TargetInfo &TI, |
| unsigned BuiltinID, |
| CallExpr *TheCall) { |
| // CodeGenFunction can also detect this, but this gives a better error |
| // message. |
| bool FeatureMissing = false; |
| SmallVector<StringRef> ReqFeatures; |
| StringRef Features = Context.BuiltinInfo.getRequiredFeatures(BuiltinID); |
| Features.split(ReqFeatures, ','); |
| |
| // Check if each required feature is included |
| for (StringRef F : ReqFeatures) { |
| if (TI.hasFeature(F)) |
| continue; |
| |
| // If the feature is 64bit, alter the string so it will print better in |
| // the diagnostic. |
| if (F == "64bit") |
| F = "RV64"; |
| |
| // Convert features like "zbr" and "experimental-zbr" to "Zbr". |
| F.consume_front("experimental-"); |
| std::string FeatureStr = F.str(); |
| FeatureStr[0] = std::toupper(FeatureStr[0]); |
| |
| // Error message |
| FeatureMissing = true; |
| Diag(TheCall->getBeginLoc(), diag::err_riscv_builtin_requires_extension) |
| << TheCall->getSourceRange() << StringRef(FeatureStr); |
| } |
| |
| if (FeatureMissing) |
| return true; |
| |
| switch (BuiltinID) { |
| case RISCVVector::BI__builtin_rvv_vsetvli: |
| return SemaBuiltinConstantArgRange(TheCall, 1, 0, 3) || |
| CheckRISCVLMUL(TheCall, 2); |
| case RISCVVector::BI__builtin_rvv_vsetvlimax: |
| return SemaBuiltinConstantArgRange(TheCall, 0, 0, 3) || |
| CheckRISCVLMUL(TheCall, 1); |
| } |
| |
| return false; |
| } |
| |
| bool Sema::CheckSystemZBuiltinFunctionCall(unsigned BuiltinID, |
| CallExpr *TheCall) { |
| if (BuiltinID == SystemZ::BI__builtin_tabort) { |
| Expr *Arg = TheCall->getArg(0); |
| if (Optional<llvm::APSInt> AbortCode = Arg->getIntegerConstantExpr(Context)) |
| if (AbortCode->getSExtValue() >= 0 && AbortCode->getSExtValue() < 256) |
| return Diag(Arg->getBeginLoc(), diag::err_systemz_invalid_tabort_code) |
| << Arg->getSourceRange(); |
| } |
| |
| // For intrinsics which take an immediate value as part of the instruction, |
| // range check them here. |
| unsigned i = 0, l = 0, u = 0; |
| switch (BuiltinID) { |
| default: return false; |
| case SystemZ::BI__builtin_s390_lcbb: i = 1; l = 0; u = 15; break; |
| case SystemZ::BI__builtin_s390_verimb: |
| case SystemZ::BI__builtin_s390_verimh: |
| case SystemZ::BI__builtin_s390_verimf: |
| case SystemZ::BI__builtin_s390_verimg: i = 3; l = 0; u = 255; break; |
| case SystemZ::BI__builtin_s390_vfaeb: |
| case SystemZ::BI__builtin_s390_vfaeh: |
| case SystemZ::BI__builtin_s390_vfaef: |
| case SystemZ::BI__builtin_s390_vfaebs: |
| case SystemZ::BI__builtin_s390_vfaehs: |
| case SystemZ::BI__builtin_s390_vfaefs: |
| case SystemZ::BI__builtin_s390_vfaezb: |
| case SystemZ::BI__builtin_s390_vfaezh: |
| case SystemZ::BI__builtin_s390_vfaezf: |
| case SystemZ::BI__builtin_s390_vfaezbs: |
| case SystemZ::BI__builtin_s390_vfaezhs: |
| case SystemZ::BI__builtin_s390_vfaezfs: i = 2; l = 0; u = 15; break; |
| case SystemZ::BI__builtin_s390_vfisb: |
| case SystemZ::BI__builtin_s390_vfidb: |
| return SemaBuiltinConstantArgRange(TheCall, 1, 0, 15) || |
| SemaBuiltinConstantArgRange(TheCall, 2, 0, 15); |
| case SystemZ::BI__builtin_s390_vftcisb: |
| case SystemZ::BI__builtin_s390_vftcidb: i = 1; l = 0; u = 4095; break; |
| case SystemZ::BI__builtin_s390_vlbb: i = 1; l = 0; u = 15; break; |
| case SystemZ::BI__builtin_s390_vpdi: i = 2; l = 0; u = 15; break; |
| case SystemZ::BI__builtin_s390_vsldb: i = 2; l = 0; u = 15; break; |
| case SystemZ::BI__builtin_s390_vstrcb: |
| case SystemZ::BI__builtin_s390_vstrch: |
| case SystemZ::BI__builtin_s390_vstrcf: |
| case SystemZ::BI__builtin_s390_vstrczb: |
| case SystemZ::BI__builtin_s390_vstrczh: |
| case SystemZ::BI__builtin_s390_vstrczf: |
| case SystemZ::BI__builtin_s390_vstrcbs: |
| case SystemZ::BI__builtin_s390_vstrchs: |
| case SystemZ::BI__builtin_s390_vstrcfs: |
| case SystemZ::BI__builtin_s390_vstrczbs: |
| case SystemZ::BI__builtin_s390_vstrczhs: |
| case SystemZ::BI__builtin_s390_vstrczfs: i = 3; l = 0; u = 15; break; |
| case SystemZ::BI__builtin_s390_vmslg: i = 3; l = 0; u = 15; break; |
| case SystemZ::BI__builtin_s390_vfminsb: |
| case SystemZ::BI__builtin_s390_vfmaxsb: |
| case SystemZ::BI__builtin_s390_vfmindb: |
| case SystemZ::BI__builtin_s390_vfmaxdb: i = 2; l = 0; u = 15; break; |
| case SystemZ::BI__builtin_s390_vsld: i = 2; l = 0; u = 7; break; |
| case SystemZ::BI__builtin_s390_vsrd: i = 2; l = 0; u = 7; break; |
| case SystemZ::BI__builtin_s390_vclfnhs: |
| case SystemZ::BI__builtin_s390_vclfnls: |
| case SystemZ::BI__builtin_s390_vcfn: |
| case SystemZ::BI__builtin_s390_vcnf: i = 1; l = 0; u = 15; break; |
| case SystemZ::BI__builtin_s390_vcrnfs: i = 2; l = 0; u = 15; break; |
| } |
| return SemaBuiltinConstantArgRange(TheCall, i, l, u); |
| } |
| |
| /// SemaBuiltinCpuSupports - Handle __builtin_cpu_supports(char *). |
| /// This checks that the target supports __builtin_cpu_supports and |
| /// that the string argument is constant and valid. |
| static bool SemaBuiltinCpuSupports(Sema &S, const TargetInfo &TI, |
| CallExpr *TheCall) { |
| Expr *Arg = TheCall->getArg(0); |
| |
| // Check if the argument is a string literal. |
| if (!isa<StringLiteral>(Arg->IgnoreParenImpCasts())) |
| return S.Diag(TheCall->getBeginLoc(), diag::err_expr_not_string_literal) |
| << Arg->getSourceRange(); |
| |
| // Check the contents of the string. |
| StringRef Feature = |
| cast<StringLiteral>(Arg->IgnoreParenImpCasts())->getString(); |
| if (!TI.validateCpuSupports(Feature)) |
| return S.Diag(TheCall->getBeginLoc(), diag::err_invalid_cpu_supports) |
| << Arg->getSourceRange(); |
| return false; |
| } |
| |
| /// SemaBuiltinCpuIs - Handle __builtin_cpu_is(char *). |
| /// This checks that the target supports __builtin_cpu_is and |
| /// that the string argument is constant and valid. |
| static bool SemaBuiltinCpuIs(Sema &S, const TargetInfo &TI, CallExpr *TheCall) { |
| Expr *Arg = TheCall->getArg(0); |
| |
| // Check if the argument is a string literal. |
| if (!isa<StringLiteral>(Arg->IgnoreParenImpCasts())) |
| return S.Diag(TheCall->getBeginLoc(), diag::err_expr_not_string_literal) |
| << Arg->getSourceRange(); |
| |
| // Check the contents of the string. |
| StringRef Feature = |
| cast<StringLiteral>(Arg->IgnoreParenImpCasts())->getString(); |
| if (!TI.validateCpuIs(Feature)) |
| return S.Diag(TheCall->getBeginLoc(), diag::err_invalid_cpu_is) |
| << Arg->getSourceRange(); |
| return false; |
| } |
| |
| // Check if the rounding mode is legal. |
| bool Sema::CheckX86BuiltinRoundingOrSAE(unsigned BuiltinID, CallExpr *TheCall) { |
| // Indicates if this instruction has rounding control or just SAE. |
| bool HasRC = false; |
| |
| unsigned ArgNum = 0; |
| switch (BuiltinID) { |
| default: |
| return false; |
| case X86::BI__builtin_ia32_vcvttsd2si32: |
| case X86::BI__builtin_ia32_vcvttsd2si64: |
| case X86::BI__builtin_ia32_vcvttsd2usi32: |
| case X86::BI__builtin_ia32_vcvttsd2usi64: |
| case X86::BI__builtin_ia32_vcvttss2si32: |
| case X86::BI__builtin_ia32_vcvttss2si64: |
| case X86::BI__builtin_ia32_vcvttss2usi32: |
| case X86::BI__builtin_ia32_vcvttss2usi64: |
| case X86::BI__builtin_ia32_vcvttsh2si32: |
| case X86::BI__builtin_ia32_vcvttsh2si64: |
| case X86::BI__builtin_ia32_vcvttsh2usi32: |
| case X86::BI__builtin_ia32_vcvttsh2usi64: |
| ArgNum = 1; |
| break; |
| case X86::BI__builtin_ia32_maxpd512: |
| case X86::BI__builtin_ia32_maxps512: |
| case X86::BI__builtin_ia32_minpd512: |
| case X86::BI__builtin_ia32_minps512: |
| case X86::BI__builtin_ia32_maxph512: |
| case X86::BI__builtin_ia32_minph512: |
| ArgNum = 2; |
| break; |
| case X86::BI__builtin_ia32_vcvtph2pd512_mask: |
| case X86::BI__builtin_ia32_vcvtph2psx512_mask: |
| case X86::BI__builtin_ia32_cvtps2pd512_mask: |
| case X86::BI__builtin_ia32_cvttpd2dq512_mask: |
| case X86::BI__builtin_ia32_cvttpd2qq512_mask: |
| case X86::BI__builtin_ia32_cvttpd2udq512_mask: |
| case X86::BI__builtin_ia32_cvttpd2uqq512_mask: |
| case X86::BI__builtin_ia32_cvttps2dq512_mask: |
| case X86::BI__builtin_ia32_cvttps2qq512_mask: |
| case X86::BI__builtin_ia32_cvttps2udq512_mask: |
| case X86::BI__builtin_ia32_cvttps2uqq512_mask: |
| case X86::BI__builtin_ia32_vcvttph2w512_mask: |
| case X86::BI__builtin_ia32_vcvttph2uw512_mask: |
| case X86::BI__builtin_ia32_vcvttph2dq512_mask: |
| case X86::BI__builtin_ia32_vcvttph2udq512_mask: |
| case X86::BI__builtin_ia32_vcvttph2qq512_mask: |
| case X86::BI__builtin_ia32_vcvttph2uqq512_mask: |
| case X86::BI__builtin_ia32_exp2pd_mask: |
| case X86::BI__builtin_ia32_exp2ps_mask: |
| case X86::BI__builtin_ia32_getexppd512_mask: |
| case X86::BI__builtin_ia32_getexpps512_mask: |
| case X86::BI__builtin_ia32_getexpph512_mask: |
| case X86::BI__builtin_ia32_rcp28pd_mask: |
| case X86::BI__builtin_ia32_rcp28ps_mask: |
| case X86::BI__builtin_ia32_rsqrt28pd_mask: |
| case X86::BI__builtin_ia32_rsqrt28ps_mask: |
| case X86::BI__builtin_ia32_vcomisd: |
| case X86::BI__builtin_ia32_vcomiss: |
| case X86::BI__builtin_ia32_vcomish: |
| case X86::BI__builtin_ia32_vcvtph2ps512_mask: |
| ArgNum = 3; |
| break; |
| case X86::BI__builtin_ia32_cmppd512_mask: |
| case X86::BI__builtin_ia32_cmpps512_mask: |
| case X86::BI__builtin_ia32_cmpsd_mask: |
| case X86::BI__builtin_ia32_cmpss_mask: |
| case X86::BI__builtin_ia32_cmpsh_mask: |
| case X86::BI__builtin_ia32_vcvtsh2sd_round_mask: |
| case X86::BI__builtin_ia32_vcvtsh2ss_round_mask: |
| case X86::BI__builtin_ia32_cvtss2sd_round_mask: |
| case X86::BI__builtin_ia32_getexpsd128_round_mask: |
| case X86::BI__builtin_ia32_getexpss128_round_mask: |
| case X86::BI__builtin_ia32_getexpsh128_round_mask: |
| case X86::BI__builtin_ia32_getmantpd512_mask: |
| case X86::BI__builtin_ia32_getmantps512_mask: |
| case X86::BI__builtin_ia32_getmantph512_mask: |
| case X86::BI__builtin_ia32_maxsd_round_mask: |
| case X86::BI__builtin_ia32_maxss_round_mask: |
| case X86::BI__builtin_ia32_maxsh_round_mask: |
| case X86::BI__builtin_ia32_minsd_round_mask: |
| case X86::BI__builtin_ia32_minss_round_mask: |
| case X86::BI__builtin_ia32_minsh_round_mask: |
| case X86::BI__builtin_ia32_rcp28sd_round_mask: |
| case X86::BI__builtin_ia32_rcp28ss_round_mask: |
| case X86::BI__builtin_ia32_reducepd512_mask: |
| case X86::BI__builtin_ia32_reduceps512_mask: |
| case X86::BI__builtin_ia32_reduceph512_mask: |
| case X86::BI__builtin_ia32_rndscalepd_mask: |
| case X86::BI__builtin_ia32_rndscaleps_mask: |
| case X86::BI__builtin_ia32_rndscaleph_mask: |
| case X86::BI__builtin_ia32_rsqrt28sd_round_mask: |
| case X86::BI__builtin_ia32_rsqrt28ss_round_mask: |
| ArgNum = 4; |
| break; |
| case X86::BI__builtin_ia32_fixupimmpd512_mask: |
| case X86::BI__builtin_ia32_fixupimmpd512_maskz: |
| case X86::BI__builtin_ia32_fixupimmps512_mask: |
| case X86::BI__builtin_ia32_fixupimmps512_maskz: |
| case X86::BI__builtin_ia32_fixupimmsd_mask: |
| case X86::BI__builtin_ia32_fixupimmsd_maskz: |
| case X86::BI__builtin_ia32_fixupimmss_mask: |
| case X86::BI__builtin_ia32_fixupimmss_maskz: |
| case X86::BI__builtin_ia32_getmantsd_round_mask: |
| case X86::BI__builtin_ia32_getmantss_round_mask: |
| case X86::BI__builtin_ia32_getmantsh_round_mask: |
| case X86::BI__builtin_ia32_rangepd512_mask: |
| case X86::BI__builtin_ia32_rangeps512_mask: |
| case X86::BI__builtin_ia32_rangesd128_round_mask: |
| case X86::BI__builtin_ia32_rangess128_round_mask: |
| case X86::BI__builtin_ia32_reducesd_mask: |
| case X86::BI__builtin_ia32_reducess_mask: |
| case X86::BI__builtin_ia32_reducesh_mask: |
| case X86::BI__builtin_ia32_rndscalesd_round_mask: |
| case X86::BI__builtin_ia32_rndscaless_round_mask: |
| case X86::BI__builtin_ia32_rndscalesh_round_mask: |
| ArgNum = 5; |
| break; |
| case X86::BI__builtin_ia32_vcvtsd2si64: |
| case X86::BI__builtin_ia32_vcvtsd2si32: |
| case X86::BI__builtin_ia32_vcvtsd2usi32: |
| case X86::BI__builtin_ia32_vcvtsd2usi64: |
| case X86::BI__builtin_ia32_vcvtss2si32: |
| case X86::BI__builtin_ia32_vcvtss2si64: |
| case X86::BI__builtin_ia32_vcvtss2usi32: |
| case X86::BI__builtin_ia32_vcvtss2usi64: |
| case X86::BI__builtin_ia32_vcvtsh2si32: |
| case X86::BI__builtin_ia32_vcvtsh2si64: |
| case X86::BI__builtin_ia32_vcvtsh2usi32: |
| case X86::BI__builtin_ia32_vcvtsh2usi64: |
| case X86::BI__builtin_ia32_sqrtpd512: |
| case X86::BI__builtin_ia32_sqrtps512: |
| case X86::BI__builtin_ia32_sqrtph512: |
| ArgNum = 1; |
| HasRC = true; |
| break; |
| case X86::BI__builtin_ia32_addph512: |
| case X86::BI__builtin_ia32_divph512: |
| case X86::BI__builtin_ia32_mulph512: |
| case X86::BI__builtin_ia32_subph512: |
| case X86::BI__builtin_ia32_addpd512: |
| case X86::BI__builtin_ia32_addps512: |
| case X86::BI__builtin_ia32_divpd512: |
| case X86::BI__builtin_ia32_divps512: |
| case X86::BI__builtin_ia32_mulpd512: |
| case X86::BI__builtin_ia32_mulps512: |
| case X86::BI__builtin_ia32_subpd512: |
| case X86::BI__builtin_ia32_subps512: |
| case X86::BI__builtin_ia32_cvtsi2sd64: |
| case X86::BI__builtin_ia32_cvtsi2ss32: |
| case X86::BI__builtin_ia32_cvtsi2ss64: |
| case X86::BI__builtin_ia32_cvtusi2sd64: |
| case X86::BI__builtin_ia32_cvtusi2ss32: |
| case X86::BI__builtin_ia32_cvtusi2ss64: |
| case X86::BI__builtin_ia32_vcvtusi2sh: |
| case X86::BI__builtin_ia32_vcvtusi642sh: |
| case X86::BI__builtin_ia32_vcvtsi2sh: |
| case X86::BI__builtin_ia32_vcvtsi642sh: |
| ArgNum = 2; |
| HasRC = true; |
| break; |
| case X86::BI__builtin_ia32_cvtdq2ps512_mask: |
| case X86::BI__builtin_ia32_cvtudq2ps512_mask: |
| case X86::BI__builtin_ia32_vcvtpd2ph512_mask: |
| case X86::BI__builtin_ia32_vcvtps2phx512_mask: |
| case X86::BI__builtin_ia32_cvtpd2ps512_mask: |
| case X86::BI__builtin_ia32_cvtpd2dq512_mask: |
| case X86::BI__builtin_ia32_cvtpd2qq512_mask: |
| case X86::BI__builtin_ia32_cvtpd2udq512_mask: |
| case X86::BI__builtin_ia32_cvtpd2uqq512_mask: |
| case X86::BI__builtin_ia32_cvtps2dq512_mask: |
| case X86::BI__builtin_ia32_cvtps2qq512_mask: |
| case X86::BI__builtin_ia32_cvtps2udq512_mask: |
| case X86::BI__builtin_ia32_cvtps2uqq512_mask: |
| case X86::BI__builtin_ia32_cvtqq2pd512_mask: |
| case X86::BI__builtin_ia32_cvtqq2ps512_mask: |
| case X86::BI__builtin_ia32_cvtuqq2pd512_mask: |
| case X86::BI__builtin_ia32_cvtuqq2ps512_mask: |
| case X86::BI__builtin_ia32_vcvtdq2ph512_mask: |
| case X86::BI__builtin_ia32_vcvtudq2ph512_mask: |
| case X86::BI__builtin_ia32_vcvtw2ph512_mask: |
| case X86::BI__builtin_ia32_vcvtuw2ph512_mask: |
| case X86::BI__builtin_ia32_vcvtph2w512_mask: |
| case X86::BI__builtin_ia32_vcvtph2uw512_mask: |
| case X86::BI__builtin_ia32_vcvtph2dq512_mask: |
| case X86::BI__builtin_ia32_vcvtph2udq512_mask: |
| case X86::BI__builtin_ia32_vcvtph2qq512_mask: |
| case X86::BI__builtin_ia32_vcvtph2uqq512_mask: |
| case X86::BI__builtin_ia32_vcvtqq2ph512_mask: |
| case X86::BI__builtin_ia32_vcvtuqq2ph512_mask: |
| ArgNum = 3; |
| HasRC = true; |
| break; |
| case X86::BI__builtin_ia32_addsh_round_mask: |
| case X86::BI__builtin_ia32_addss_round_mask: |
| case X86::BI__builtin_ia32_addsd_round_mask: |
| case X86::BI__builtin_ia32_divsh_round_mask: |
| case X86::BI__builtin_ia32_divss_round_mask: |
| case X86::BI__builtin_ia32_divsd_round_mask: |
| case X86::BI__builtin_ia32_mulsh_round_mask: |
| case X86::BI__builtin_ia32_mulss_round_mask: |
| case X86::BI__builtin_ia32_mulsd_round_mask: |
| case X86::BI__builtin_ia32_subsh_round_mask: |
| case X86::BI__builtin_ia32_subss_round_mask: |
| case X86::BI__builtin_ia32_subsd_round_mask: |
| case X86::BI__builtin_ia32_scalefph512_mask: |
| case X86::BI__builtin_ia32_scalefpd512_mask: |
| case X86::BI__builtin_ia32_scalefps512_mask: |
| case X86::BI__builtin_ia32_scalefsd_round_mask: |
| case X86::BI__builtin_ia32_scalefss_round_mask: |
| case X86::BI__builtin_ia32_scalefsh_round_mask: |
| case X86::BI__builtin_ia32_cvtsd2ss_round_mask: |
| case X86::BI__builtin_ia32_vcvtss2sh_round_mask: |
| case X86::BI__builtin_ia32_vcvtsd2sh_round_mask: |
| case X86::BI__builtin_ia32_sqrtsd_round_mask: |
| case X86::BI__builtin_ia32_sqrtss_round_mask: |
| case X86::BI__builtin_ia32_sqrtsh_round_mask: |
| case X86::BI__builtin_ia32_vfmaddsd3_mask: |
| case X86::BI__builtin_ia32_vfmaddsd3_maskz: |
| case X86::BI__builtin_ia32_vfmaddsd3_mask3: |
| case X86::BI__builtin_ia32_vfmaddss3_mask: |
| case X86::BI__builtin_ia32_vfmaddss3_maskz: |
| case X86::BI__builtin_ia32_vfmaddss3_mask3: |
| case X86::BI__builtin_ia32_vfmaddsh3_mask: |
| case X86::BI__builtin_ia32_vfmaddsh3_maskz: |
| case X86::BI__builtin_ia32_vfmaddsh3_mask3: |
| case X86::BI__builtin_ia32_vfmaddpd512_mask: |
| case X86::BI__builtin_ia32_vfmaddpd512_maskz: |
| case X86::BI__builtin_ia32_vfmaddpd512_mask3: |
| case X86::BI__builtin_ia32_vfmsubpd512_mask3: |
| case X86::BI__builtin_ia32_vfmaddps512_mask: |
| case X86::BI__builtin_ia32_vfmaddps512_maskz: |
| case X86::BI__builtin_ia32_vfmaddps512_mask3: |
| case X86::BI__builtin_ia32_vfmsubps512_mask3: |
| case X86::BI__builtin_ia32_vfmaddph512_mask: |
| case X86::BI__builtin_ia32_vfmaddph512_maskz: |
| case X86::BI__builtin_ia32_vfmaddph512_mask3: |
| case X86::BI__builtin_ia32_vfmsubph512_mask3: |
| case X86::BI__builtin_ia32_vfmaddsubpd512_mask: |
| case X86::BI__builtin_ia32_vfmaddsubpd512_maskz: |
| case X86::BI__builtin_ia32_vfmaddsubpd512_mask3: |
| case X86::BI__builtin_ia32_vfmsubaddpd512_mask3: |
| case X86::BI__builtin_ia32_vfmaddsubps512_mask: |
| case X86::BI__builtin_ia32_vfmaddsubps512_maskz: |
| case X86::BI__builtin_ia32_vfmaddsubps512_mask3: |
| case X86::BI__builtin_ia32_vfmsubaddps512_mask3: |
| case X86::BI__builtin_ia32_vfmaddsubph512_mask: |
| case X86::BI__builtin_ia32_vfmaddsubph512_maskz: |
| case X86::BI__builtin_ia32_vfmaddsubph512_mask3: |
| case X86::BI__builtin_ia32_vfmsubaddph512_mask3: |
| case X86::BI__builtin_ia32_vfmaddcsh_mask: |
| case X86::BI__builtin_ia32_vfmaddcsh_round_mask: |
| case X86::BI__builtin_ia32_vfmaddcsh_round_mask3: |
| case X86::BI__builtin_ia32_vfmaddcph512_mask: |
| case X86::BI__builtin_ia32_vfmaddcph512_maskz: |
| case X86::BI__builtin_ia32_vfmaddcph512_mask3: |
| case X86::BI__builtin_ia32_vfcmaddcsh_mask: |
| case X86::BI__builtin_ia32_vfcmaddcsh_round_mask: |
| case X86::BI__builtin_ia32_vfcmaddcsh_round_mask3: |
| case X86::BI__builtin_ia32_vfcmaddcph512_mask: |
| case X86::BI__builtin_ia32_vfcmaddcph512_maskz: |
| case X86::BI__builtin_ia32_vfcmaddcph512_mask3: |
| case X86::BI__builtin_ia32_vfmulcsh_mask: |
| case X86::BI__builtin_ia32_vfmulcph512_mask: |
| case X86::BI__builtin_ia32_vfcmulcsh_mask: |
| case X86::BI__builtin_ia32_vfcmulcph512_mask: |
| ArgNum = 4; |
| HasRC = true; |
| break; |
| } |
| |
| llvm::APSInt Result; |
| |
| // We can't check the value of a dependent argument. |
| Expr *Arg = TheCall->getArg(ArgNum); |
| if (Arg->isTypeDependent() || Arg->isValueDependent()) |
| return false; |
| |
| // Check constant-ness first. |
| if (SemaBuiltinConstantArg(TheCall, ArgNum, Result)) |
| return true; |
| |
| // Make sure rounding mode is either ROUND_CUR_DIRECTION or ROUND_NO_EXC bit |
| // is set. If the intrinsic has rounding control(bits 1:0), make sure its only |
| // combined with ROUND_NO_EXC. If the intrinsic does not have rounding |
| // control, allow ROUND_NO_EXC and ROUND_CUR_DIRECTION together. |
| if (Result == 4/*ROUND_CUR_DIRECTION*/ || |
| Result == 8/*ROUND_NO_EXC*/ || |
| (!HasRC && Result == 12/*ROUND_CUR_DIRECTION|ROUND_NO_EXC*/) || |
| (HasRC && Result.getZExtValue() >= 8 && Result.getZExtValue() <= 11)) |
| return false; |
| |
| return Diag(TheCall->getBeginLoc(), diag::err_x86_builtin_invalid_rounding) |
| << Arg->getSourceRange(); |
| } |
| |
| // Check if the gather/scatter scale is legal. |
| bool Sema::CheckX86BuiltinGatherScatterScale(unsigned BuiltinID, |
| CallExpr *TheCall) { |
| unsigned ArgNum = 0; |
| switch (BuiltinID) { |
| default: |
| return false; |
| case X86::BI__builtin_ia32_gatherpfdpd: |
| case X86::BI__builtin_ia32_gatherpfdps: |
| case X86::BI__builtin_ia32_gatherpfqpd: |
| case X86::BI__builtin_ia32_gatherpfqps: |
| case X86::BI__builtin_ia32_scatterpfdpd: |
| case X86::BI__builtin_ia32_scatterpfdps: |
| case X86::BI__builtin_ia32_scatterpfqpd: |
| case X86::BI__builtin_ia32_scatterpfqps: |
| ArgNum = 3; |
| break; |
| case X86::BI__builtin_ia32_gatherd_pd: |
| case X86::BI__builtin_ia32_gatherd_pd256: |
| case X86::BI__builtin_ia32_gatherq_pd: |
| case X86::BI__builtin_ia32_gatherq_pd256: |
| case X86::BI__builtin_ia32_gatherd_ps: |
| case X86::BI__builtin_ia32_gatherd_ps256: |
| case X86::BI__builtin_ia32_gatherq_ps: |
| case X86::BI__builtin_ia32_gatherq_ps256: |
| case X86::BI__builtin_ia32_gatherd_q: |
| case X86::BI__builtin_ia32_gatherd_q256: |
| case X86::BI__builtin_ia32_gatherq_q: |
| case X86::BI__builtin_ia32_gatherq_q256: |
| case X86::BI__builtin_ia32_gatherd_d: |
| case X86::BI__builtin_ia32_gatherd_d256: |
| case X86::BI__builtin_ia32_gatherq_d: |
| case X86::BI__builtin_ia32_gatherq_d256: |
| case X86::BI__builtin_ia32_gather3div2df: |
| case X86::BI__builtin_ia32_gather3div2di: |
| case X86::BI__builtin_ia32_gather3div4df: |
| case X86::BI__builtin_ia32_gather3div4di: |
| case X86::BI__builtin_ia32_gather3div4sf: |
| case X86::BI__builtin_ia32_gather3div4si: |
| case X86::BI__builtin_ia32_gather3div8sf: |
| case X86::BI__builtin_ia32_gather3div8si: |
| case X86::BI__builtin_ia32_gather3siv2df: |
| case X86::BI__builtin_ia32_gather3siv2di: |
| case X86::BI__builtin_ia32_gather3siv4df: |
| case X86::BI__builtin_ia32_gather3siv4di: |
| case X86::BI__builtin_ia32_gather3siv4sf: |
| case X86::BI__builtin_ia32_gather3siv4si: |
| case X86::BI__builtin_ia32_gather3siv8sf: |
| case X86::BI__builtin_ia32_gather3siv8si: |
| case X86::BI__builtin_ia32_gathersiv8df: |
| case X86::BI__builtin_ia32_gathersiv16sf: |
| case X86::BI__builtin_ia32_gatherdiv8df: |
| case X86::BI__builtin_ia32_gatherdiv16sf: |
| case X86::BI__builtin_ia32_gathersiv8di: |
| case X86::BI__builtin_ia32_gathersiv16si: |
| case X86::BI__builtin_ia32_gatherdiv8di: |
| case X86::BI__builtin_ia32_gatherdiv16si: |
| case X86::BI__builtin_ia32_scatterdiv2df: |
| case X86::BI__builtin_ia32_scatterdiv2di: |
| case X86::BI__builtin_ia32_scatterdiv4df: |
| case X86::BI__builtin_ia32_scatterdiv4di: |
| case X86::BI__builtin_ia32_scatterdiv4sf: |
| case X86::BI__builtin_ia32_scatterdiv4si: |
| case X86::BI__builtin_ia32_scatterdiv8sf: |
| case X86::BI__builtin_ia32_scatterdiv8si: |
| case X86::BI__builtin_ia32_scattersiv2df: |
| case X86::BI__builtin_ia32_scattersiv2di: |
| case X86::BI__builtin_ia32_scattersiv4df: |
| case X86::BI__builtin_ia32_scattersiv4di: |
| case X86::BI__builtin_ia32_scattersiv4sf: |
| case X86::BI__builtin_ia32_scattersiv4si: |
| case X86::BI__builtin_ia32_scattersiv8sf: |
| case X86::BI__builtin_ia32_scattersiv8si: |
| case X86::BI__builtin_ia32_scattersiv8df: |
| case X86::BI__builtin_ia32_scattersiv16sf: |
| case X86::BI__builtin_ia32_scatterdiv8df: |
| case X86::BI__builtin_ia32_scatterdiv16sf: |
| case X86::BI__builtin_ia32_scattersiv8di: |
| case X86::BI__builtin_ia32_scattersiv16si: |
| case X86::BI__builtin_ia32_scatterdiv8di: |
| case X86::BI__builtin_ia32_scatterdiv16si: |
| ArgNum = 4; |
| break; |
| } |
| |
| llvm::APSInt Result; |
| |
| // We can't check the value of a dependent argument. |
| Expr *Arg = TheCall->getArg(ArgNum); |
| if (Arg->isTypeDependent() || Arg->isValueDependent()) |
| return false; |
| |
| // Check constant-ness first. |
| if (SemaBuiltinConstantArg(TheCall, ArgNum, Result)) |
| return true; |
| |
| if (Result == 1 || Result == 2 || Result == 4 || Result == 8) |
| return false; |
| |
| return Diag(TheCall->getBeginLoc(), diag::err_x86_builtin_invalid_scale) |
| << Arg->getSourceRange(); |
| } |
| |
| enum { TileRegLow = 0, TileRegHigh = 7 }; |
| |
| bool Sema::CheckX86BuiltinTileArgumentsRange(CallExpr *TheCall, |
| ArrayRef<int> ArgNums) { |
| for (int ArgNum : ArgNums) { |
| if (SemaBuiltinConstantArgRange(TheCall, ArgNum, TileRegLow, TileRegHigh)) |
| return true; |
| } |
| return false; |
| } |
| |
| bool Sema::CheckX86BuiltinTileDuplicate(CallExpr *TheCall, |
| ArrayRef<int> ArgNums) { |
| // Because the max number of tile register is TileRegHigh + 1, so here we use |
| // each bit to represent the usage of them in bitset. |
| std::bitset<TileRegHigh + 1> ArgValues; |
| for (int ArgNum : ArgNums) { |
| Expr *Arg = TheCall->getArg(ArgNum); |
| if (Arg->isTypeDependent() || Arg->isValueDependent()) |
| continue; |
| |
| llvm::APSInt Result; |
| if (SemaBuiltinConstantArg(TheCall, ArgNum, Result)) |
| return true; |
| int ArgExtValue = Result.getExtValue(); |
| assert((ArgExtValue >= TileRegLow || ArgExtValue <= TileRegHigh) && |
| "Incorrect tile register num."); |
| if (ArgValues.test(ArgExtValue)) |
| return Diag(TheCall->getBeginLoc(), |
| diag::err_x86_builtin_tile_arg_duplicate) |
| << TheCall->getArg(ArgNum)->getSourceRange(); |
| ArgValues.set(ArgExtValue); |
| } |
| return false; |
| } |
| |
| bool Sema::CheckX86BuiltinTileRangeAndDuplicate(CallExpr *TheCall, |
| ArrayRef<int> ArgNums) { |
| return CheckX86BuiltinTileArgumentsRange(TheCall, ArgNums) || |
| CheckX86BuiltinTileDuplicate(TheCall, ArgNums); |
| } |
| |
| bool Sema::CheckX86BuiltinTileArguments(unsigned BuiltinID, CallExpr *TheCall) { |
| switch (BuiltinID) { |
| default: |
| return false; |
| case X86::BI__builtin_ia32_tileloadd64: |
| case X86::BI__builtin_ia32_tileloaddt164: |
| case X86::BI__builtin_ia32_tilestored64: |
| case X86::BI__builtin_ia32_tilezero: |
| return CheckX86BuiltinTileArgumentsRange(TheCall, 0); |
| case X86::BI__builtin_ia32_tdpbssd: |
| case X86::BI__builtin_ia32_tdpbsud: |
| case X86::BI__builtin_ia32_tdpbusd: |
| case X86::BI__builtin_ia32_tdpbuud: |
| case X86::BI__builtin_ia32_tdpbf16ps: |
| return CheckX86BuiltinTileRangeAndDuplicate(TheCall, {0, 1, 2}); |
| } |
| } |
| static bool isX86_32Builtin(unsigned BuiltinID) { |
| // These builtins only work on x86-32 targets. |
| switch (BuiltinID) { |
| case X86::BI__builtin_ia32_readeflags_u32: |
| case X86::BI__builtin_ia32_writeeflags_u32: |
| return true; |
| } |
| |
| return false; |
| } |
| |
| bool Sema::CheckX86BuiltinFunctionCall(const TargetInfo &TI, unsigned BuiltinID, |
| CallExpr *TheCall) { |
| if (BuiltinID == X86::BI__builtin_cpu_supports) |
| return SemaBuiltinCpuSupports(*this, TI, TheCall); |
| |
| if (BuiltinID == X86::BI__builtin_cpu_is) |
| return SemaBuiltinCpuIs(*this, TI, TheCall); |
| |
| // Check for 32-bit only builtins on a 64-bit target. |
| const llvm::Triple &TT = TI.getTriple(); |
| if (TT.getArch() != llvm::Triple::x86 && isX86_32Builtin(BuiltinID)) |
| return Diag(TheCall->getCallee()->getBeginLoc(), |
| diag::err_32_bit_builtin_64_bit_tgt); |
| |
| // If the intrinsic has rounding or SAE make sure its valid. |
| if (CheckX86BuiltinRoundingOrSAE(BuiltinID, TheCall)) |
| return true; |
| |
| // If the intrinsic has a gather/scatter scale immediate make sure its valid. |
| if (CheckX86BuiltinGatherScatterScale(BuiltinID, TheCall)) |
| return true; |
| |
| // If the intrinsic has a tile arguments, make sure they are valid. |
| if (CheckX86BuiltinTileArguments(BuiltinID, TheCall)) |
| return true; |
| |
| // For intrinsics which take an immediate value as part of the instruction, |
| // range check them here. |
| int i = 0, l = 0, u = 0; |
| switch (BuiltinID) { |
| default: |
| return false; |
| case X86::BI__builtin_ia32_vec_ext_v2si: |
| case X86::BI__builtin_ia32_vec_ext_v2di: |
| case X86::BI__builtin_ia32_vextractf128_pd256: |
| case X86::BI__builtin_ia32_vextractf128_ps256: |
| case X86::BI__builtin_ia32_vextractf128_si256: |
| case X86::BI__builtin_ia32_extract128i256: |
| case X86::BI__builtin_ia32_extractf64x4_mask: |
| case X86::BI__builtin_ia32_extracti64x4_mask: |
| case X86::BI__builtin_ia32_extractf32x8_mask: |
| case X86::BI__builtin_ia32_extracti32x8_mask: |
| case X86::BI__builtin_ia32_extractf64x2_256_mask: |
| case X86::BI__builtin_ia32_extracti64x2_256_mask: |
| case X86::BI__builtin_ia32_extractf32x4_256_mask: |
| case X86::BI__builtin_ia32_extracti32x4_256_mask: |
| i = 1; l = 0; u = 1; |
| break; |
| case X86::BI__builtin_ia32_vec_set_v2di: |
| case X86::BI__builtin_ia32_vinsertf128_pd256: |
| case X86::BI__builtin_ia32_vinsertf128_ps256: |
| case X86::BI__builtin_ia32_vinsertf128_si256: |
| case X86::BI__builtin_ia32_insert128i256: |
| case X86::BI__builtin_ia32_insertf32x8: |
| case X86::BI__builtin_ia32_inserti32x8: |
| case X86::BI__builtin_ia32_insertf64x4: |
| case X86::BI__builtin_ia32_inserti64x4: |
| case X86::BI__builtin_ia32_insertf64x2_256: |
| case X86::BI__builtin_ia32_inserti64x2_256: |
| case X86::BI__builtin_ia32_insertf32x4_256: |
| case X86::BI__builtin_ia32_inserti32x4_256: |
| i = 2; l = 0; u = 1; |
| break; |
| case X86::BI__builtin_ia32_vpermilpd: |
| case X86::BI__builtin_ia32_vec_ext_v4hi: |
| case X86::BI__builtin_ia32_vec_ext_v4si: |
| case X86::BI__builtin_ia32_vec_ext_v4sf: |
| case X86::BI__builtin_ia32_vec_ext_v4di: |
| case X86::BI__builtin_ia32_extractf32x4_mask: |
| case X86::BI__builtin_ia32_extracti32x4_mask: |
| case X86::BI__builtin_ia32_extractf64x2_512_mask: |
| case X86::BI__builtin_ia32_extracti64x2_512_mask: |
| i = 1; l = 0; u = 3; |
| break; |
| case X86::BI_mm_prefetch: |
| case X86::BI__builtin_ia32_vec_ext_v8hi: |
| case X86::BI__builtin_ia32_vec_ext_v8si: |
| i = 1; l = 0; u = 7; |
| break; |
| case X86::BI__builtin_ia32_sha1rnds4: |
| case X86::BI__builtin_ia32_blendpd: |
| case X86::BI__builtin_ia32_shufpd: |
| case X86::BI__builtin_ia32_vec_set_v4hi: |
| case X86::BI__builtin_ia32_vec_set_v4si: |
| case X86::BI__builtin_ia32_vec_set_v4di: |
| case X86::BI__builtin_ia32_shuf_f32x4_256: |
| case X86::BI__builtin_ia32_shuf_f64x2_256: |
| case X86::BI__builtin_ia32_shuf_i32x4_256: |
| case X86::BI__builtin_ia32_shuf_i64x2_256: |
| case X86::BI__builtin_ia32_insertf64x2_512: |
| case X86::BI__builtin_ia32_inserti64x2_512: |
| case X86::BI__builtin_ia32_insertf32x4: |
| case X86::BI__builtin_ia32_inserti32x4: |
| i = 2; l = 0; u = 3; |
| break; |
| case X86::BI__builtin_ia32_vpermil2pd: |
| case X86::BI__builtin_ia32_vpermil2pd256: |
| case X86::BI__builtin_ia32_vpermil2ps: |
| case X86::BI__builtin_ia32_vpermil2ps256: |
| i = 3; l = 0; u = 3; |
| break; |
| case X86::BI__builtin_ia32_cmpb128_mask: |
| case X86::BI__builtin_ia32_cmpw128_mask: |
| case X86::BI__builtin_ia32_cmpd128_mask: |
| case X86::BI__builtin_ia32_cmpq128_mask: |
| case X86::BI__builtin_ia32_cmpb256_mask: |
| case X86::BI__builtin_ia32_cmpw256_mask: |
| case X86::BI__builtin_ia32_cmpd256_mask: |
| case X86::BI__builtin_ia32_cmpq256_mask: |
| case X86::BI__builtin_ia32_cmpb512_mask: |
| case X86::BI__builtin_ia32_cmpw512_mask: |
| case X86::BI__builtin_ia32_cmpd512_mask: |
| case X86::BI__builtin_ia32_cmpq512_mask: |
| case X86::BI__builtin_ia32_ucmpb128_mask: |
| case X86::BI__builtin_ia32_ucmpw128_mask: |
| case X86::BI__builtin_ia32_ucmpd128_mask: |
| case X86::BI__builtin_ia32_ucmpq128_mask: |
| case X86::BI__builtin_ia32_ucmpb256_mask: |
| case X86::BI__builtin_ia32_ucmpw256_mask: |
| case X86::BI__builtin_ia32_ucmpd256_mask: |
| case X86::BI__builtin_ia32_ucmpq256_mask: |
| case X86::BI__builtin_ia32_ucmpb512_mask: |
| case X86::BI__builtin_ia32_ucmpw512_mask: |
| case X86::BI__builtin_ia32_ucmpd512_mask: |
| case X86::BI__builtin_ia32_ucmpq512_mask: |
| case X86::BI__builtin_ia32_vpcomub: |
| case X86::BI__builtin_ia32_vpcomuw: |
| case X86::BI__builtin_ia32_vpcomud: |
| case X86::BI__builtin_ia32_vpcomuq: |
| case X86::BI__builtin_ia32_vpcomb: |
| case X86::BI__builtin_ia32_vpcomw: |
| case X86::BI__builtin_ia32_vpcomd: |
| case X86::BI__builtin_ia32_vpcomq: |
| case X86::BI__builtin_ia32_vec_set_v8hi: |
| case X86::BI__builtin_ia32_vec_set_v8si: |
| i = 2; l = 0; u = 7; |
| break; |
| case X86::BI__builtin_ia32_vpermilpd256: |
| case X86::BI__builtin_ia32_roundps: |
| case X86::BI__builtin_ia32_roundpd: |
| case X86::BI__builtin_ia32_roundps256: |
| case X86::BI__builtin_ia32_roundpd256: |
| case X86::BI__builtin_ia32_getmantpd128_mask: |
| case X86::BI__builtin_ia32_getmantpd256_mask: |
| case X86::BI__builtin_ia32_getmantps128_mask: |
| case X86::BI__builtin_ia32_getmantps256_mask: |
| case X86::BI__builtin_ia32_getmantpd512_mask: |
| case X86::BI__builtin_ia32_getmantps512_mask: |
| case X86::BI__builtin_ia32_getmantph128_mask: |
| case X86::BI__builtin_ia32_getmantph256_mask: |
| case X86::BI__builtin_ia32_getmantph512_mask: |
| case X86::BI__builtin_ia32_vec_ext_v16qi: |
| case X86::BI__builtin_ia32_vec_ext_v16hi: |
| i = 1; l = 0; u = 15; |
| break; |
| case X86::BI__builtin_ia32_pblendd128: |
| case X86::BI__builtin_ia32_blendps: |
| case X86::BI__builtin_ia32_blendpd256: |
| case X86::BI__builtin_ia32_shufpd256: |
| case X86::BI__builtin_ia32_roundss: |
| case X86::BI__builtin_ia32_roundsd: |
| case X86::BI__builtin_ia32_rangepd128_mask: |
| case X86::BI__builtin_ia32_rangepd256_mask: |
| case X86::BI__builtin_ia32_rangepd512_mask: |
| case X86::BI__builtin_ia32_rangeps128_mask: |
| case X86::BI__builtin_ia32_rangeps256_mask: |
| case X86::BI__builtin_ia32_rangeps512_mask: |
| case X86::BI__builtin_ia32_getmantsd_round_mask: |
| case X86::BI__builtin_ia32_getmantss_round_mask: |
| case X86::BI__builtin_ia32_getmantsh_round_mask: |
| case X86::BI__builtin_ia32_vec_set_v16qi: |
| case X86::BI__builtin_ia32_vec_set_v16hi: |
| i = 2; l = 0; u = 15; |
| break; |
| case X86::BI__builtin_ia32_vec_ext_v32qi: |
| i = 1; l = 0; u = 31; |
| break; |
| case X86::BI__builtin_ia32_cmpps: |
| case X86::BI__builtin_ia32_cmpss: |
| case X86::BI__builtin_ia32_cmppd: |
| case X86::BI__builtin_ia32_cmpsd: |
| case X86::BI__builtin_ia32_cmpps256: |
| case X86::BI__builtin_ia32_cmppd256: |
| case X86::BI__builtin_ia32_cmpps128_mask: |
| case X86::BI__builtin_ia32_cmppd128_mask: |
| case X86::BI__builtin_ia32_cmpps256_mask: |
| case X86::BI__builtin_ia32_cmppd256_mask: |
| case X86::BI__builtin_ia32_cmpps512_mask: |
| case X86::BI__builtin_ia32_cmppd512_mask: |
| case X86::BI__builtin_ia32_cmpsd_mask: |
| case X86::BI__builtin_ia32_cmpss_mask: |
| case X86::BI__builtin_ia32_vec_set_v32qi: |
| i = 2; l = 0; u = 31; |
| break; |
| case X86::BI__builtin_ia32_permdf256: |
| case X86::BI__builtin_ia32_permdi256: |
| case X86::BI__builtin_ia32_permdf512: |
| case X86::BI__builtin_ia32_permdi512: |
| case X86::BI__builtin_ia32_vpermilps: |
| case X86::BI__builtin_ia32_vpermilps256: |
| case X86::BI__builtin_ia32_vpermilpd512: |
| case X86::BI__builtin_ia32_vpermilps512: |
| case X86::BI__builtin_ia32_pshufd: |
| case X86::BI__builtin_ia32_pshufd256: |
| case X86::BI__builtin_ia32_pshufd512: |
| case X86::BI__builtin_ia32_pshufhw: |
| case X86::BI__builtin_ia32_pshufhw256: |
| case X86::BI__builtin_ia32_pshufhw512: |
| case X86::BI__builtin_ia32_pshuflw: |
| case X86::BI__builtin_ia32_pshuflw256: |
| case X86::BI__builtin_ia32_pshuflw512: |
| case X86::BI__builtin_ia32_vcvtps2ph: |
| case X86::BI__builtin_ia32_vcvtps2ph_mask: |
| case X86::BI__builtin_ia32_vcvtps2ph256: |
| case X86::BI__builtin_ia32_vcvtps2ph256_mask: |
| case X86::BI__builtin_ia32_vcvtps2ph512_mask: |
| case X86::BI__builtin_ia32_rndscaleps_128_mask: |
| case X86::BI__builtin_ia32_rndscalepd_128_mask: |
| case X86::BI__builtin_ia32_rndscaleps_256_mask: |
| case X86::BI__builtin_ia32_rndscalepd_256_mask: |
| case X86::BI__builtin_ia32_rndscaleps_mask: |
| case X86::BI__builtin_ia32_rndscalepd_mask: |
| case X86::BI__builtin_ia32_rndscaleph_mask: |
| case X86::BI__builtin_ia32_reducepd128_mask: |
| case X86::BI__builtin_ia32_reducepd256_mask: |
| case X86::BI__builtin_ia32_reducepd512_mask: |
| case X86::BI__builtin_ia32_reduceps128_mask: |
| case X86::BI__builtin_ia32_reduceps256_mask: |
| case X86::BI__builtin_ia32_reduceps512_mask: |
| case X86::BI__builtin_ia32_reduceph128_mask: |
| case X86::BI__builtin_ia32_reduceph256_mask: |
| case X86::BI__builtin_ia32_reduceph512_mask: |
| case X86::BI__builtin_ia32_prold512: |
| case X86::BI__builtin_ia32_prolq512: |
| case X86::BI__builtin_ia32_prold128: |
| case X86::BI__builtin_ia32_prold256: |
| case X86::BI__builtin_ia32_prolq128: |
| case X86::BI__builtin_ia32_prolq256: |
| case X86::BI__builtin_ia32_prord512: |
| case X86::BI__builtin_ia32_prorq512: |
| case X86::BI__builtin_ia32_prord128: |
| case X86::BI__builtin_ia32_prord256: |
| case X86::BI__builtin_ia32_prorq128: |
| case X86::BI__builtin_ia32_prorq256: |
| case X86::BI__builtin_ia32_fpclasspd128_mask: |
| case X86::BI__builtin_ia32_fpclasspd256_mask: |
| case X86::BI__builtin_ia32_fpclassps128_mask: |
| case X86::BI__builtin_ia32_fpclassps256_mask: |
| case X86::BI__builtin_ia32_fpclassps512_mask: |
| case X86::BI__builtin_ia32_fpclasspd512_mask: |
| case X86::BI__builtin_ia32_fpclassph128_mask: |
| case X86::BI__builtin_ia32_fpclassph256_mask: |
| case X86::BI__builtin_ia32_fpclassph512_mask: |
| case X86::BI__builtin_ia32_fpclasssd_mask: |
| case X86::BI__builtin_ia32_fpclassss_mask: |
| case X86::BI__builtin_ia32_fpclasssh_mask: |
| case X86::BI__builtin_ia32_pslldqi128_byteshift: |
| case X86::BI__builtin_ia32_pslldqi256_byteshift: |
| case X86::BI__builtin_ia32_pslldqi512_byteshift: |
| case X86::BI__builtin_ia32_psrldqi128_byteshift: |
| case X86::BI__builtin_ia32_psrldqi256_byteshift: |
| case X86::BI__builtin_ia32_psrldqi512_byteshift: |
| case X86::BI__builtin_ia32_kshiftliqi: |
| case X86::BI__builtin_ia32_kshiftlihi: |
| case X86::BI__builtin_ia32_kshiftlisi: |
| case X86::BI__builtin_ia32_kshiftlidi: |
| case X86::BI__builtin_ia32_kshiftriqi: |
| case X86::BI__builtin_ia32_kshiftrihi: |
| case X86::BI__builtin_ia32_kshiftrisi: |
| case X86::BI__builtin_ia32_kshiftridi: |
| i = 1; l = 0; u = 255; |
| break; |
| case X86::BI__builtin_ia32_vperm2f128_pd256: |
| case X86::BI__builtin_ia32_vperm2f128_ps256: |
| case X86::BI__builtin_ia32_vperm2f128_si256: |
| case X86::BI__builtin_ia32_permti256: |
| case X86::BI__builtin_ia32_pblendw128: |
| case X86::BI__builtin_ia32_pblendw256: |
| case X86::BI__builtin_ia32_blendps256: |
| case X86::BI__builtin_ia32_pblendd256: |
| case X86::BI__builtin_ia32_palignr128: |
| case X86::BI__builtin_ia32_palignr256: |
| case X86::BI__builtin_ia32_palignr512: |
| case X86::BI__builtin_ia32_alignq512: |
| case X86::BI__builtin_ia32_alignd512: |
| case X86::BI__builtin_ia32_alignd128: |
| case X86::BI__builtin_ia32_alignd256: |
| case X86::BI__builtin_ia32_alignq128: |
| case X86::BI__builtin_ia32_alignq256: |
| case X86::BI__builtin_ia32_vcomisd: |
| case X86::BI__builtin_ia32_vcomiss: |
| case X86::BI__builtin_ia32_shuf_f32x4: |
| case X86::BI__builtin_ia32_shuf_f64x2: |
| case X86::BI__builtin_ia32_shuf_i32x4: |
| case X86::BI__builtin_ia32_shuf_i64x2: |
| case X86::BI__builtin_ia32_shufpd512: |
| case X86::BI__builtin_ia32_shufps: |
| case X86::BI__builtin_ia32_shufps256: |
| case X86::BI__builtin_ia32_shufps512: |
| case X86::BI__builtin_ia32_dbpsadbw128: |
| case X86::BI__builtin_ia32_dbpsadbw256: |
| case X86::BI__builtin_ia32_dbpsadbw512: |
| case X86::BI__builtin_ia32_vpshldd128: |
| case X86::BI__builtin_ia32_vpshldd256: |
| case X86::BI__builtin_ia32_vpshldd512: |
| case X86::BI__builtin_ia32_vpshldq128: |
| case X86::BI__builtin_ia32_vpshldq256: |
| case X86::BI__builtin_ia32_vpshldq512: |
| case X86::BI__builtin_ia32_vpshldw128: |
| case X86::BI__builtin_ia32_vpshldw256: |
| case X86::BI__builtin_ia32_vpshldw512: |
| case X86::BI__builtin_ia32_vpshrdd128: |
| case X86::BI__builtin_ia32_vpshrdd256: |
| case X86::BI__builtin_ia32_vpshrdd512: |
| case X86::BI__builtin_ia32_vpshrdq128: |
| case X86::BI__builtin_ia32_vpshrdq256: |
| case X86::BI__builtin_ia32_vpshrdq512: |
| case X86::BI__builtin_ia32_vpshrdw128: |
| case X86::BI__builtin_ia32_vpshrdw256: |
| case X86::BI__builtin_ia32_vpshrdw512: |
| i = 2; l = 0; u = 255; |
| break; |
| case X86::BI__builtin_ia32_fixupimmpd512_mask: |
| case X86::BI__builtin_ia32_fixupimmpd512_maskz: |
| case X86::BI__builtin_ia32_fixupimmps512_mask: |
| case X86::BI__builtin_ia32_fixupimmps512_maskz: |
| case X86::BI__builtin_ia32_fixupimmsd_mask: |
| case X86::BI__builtin_ia32_fixupimmsd_maskz: |
| case X86::BI__builtin_ia32_fixupimmss_mask: |
| case X86::BI__builtin_ia32_fixupimmss_maskz: |
| case X86::BI__builtin_ia32_fixupimmpd128_mask: |
| case X86::BI__builtin_ia32_fixupimmpd128_maskz: |
| case X86::BI__builtin_ia32_fixupimmpd256_mask: |
| case X86::BI__builtin_ia32_fixupimmpd256_maskz: |
| case X86::BI__builtin_ia32_fixupimmps128_mask: |
| case X86::BI__builtin_ia32_fixupimmps128_maskz: |
| case X86::BI__builtin_ia32_fixupimmps256_mask: |
| case X86::BI__builtin_ia32_fixupimmps256_maskz: |
| case X86::BI__builtin_ia32_pternlogd512_mask: |
| case X86::BI__builtin_ia32_pternlogd512_maskz: |
| case X86::BI__builtin_ia32_pternlogq512_mask: |
| case X86::BI__builtin_ia32_pternlogq512_maskz: |
| case X86::BI__builtin_ia32_pternlogd128_mask: |
| case X86::BI__builtin_ia32_pternlogd128_maskz: |
| case X86::BI__builtin_ia32_pternlogd256_mask: |
| case X86::BI__builtin_ia32_pternlogd256_maskz: |
| case X86::BI__builtin_ia32_pternlogq128_mask: |
| case X86::BI__builtin_ia32_pternlogq128_maskz: |
| case X86::BI__builtin_ia32_pternlogq256_mask: |
| case X86::BI__builtin_ia32_pternlogq256_maskz: |
| i = 3; l = 0; u = 255; |
| break; |
| case X86::BI__builtin_ia32_gatherpfdpd: |
| case X86::BI__builtin_ia32_gatherpfdps: |
| case X86::BI__builtin_ia32_gatherpfqpd: |
| case X86::BI__builtin_ia32_gatherpfqps: |
| case X86::BI__builtin_ia32_scatterpfdpd: |
| case X86::BI__builtin_ia32_scatterpfdps: |
| case X86::BI__builtin_ia32_scatterpfqpd: |
| case X86::BI__builtin_ia32_scatterpfqps: |
| i = 4; l = 2; u = 3; |
| break; |
| case X86::BI__builtin_ia32_reducesd_mask: |
| case X86::BI__builtin_ia32_reducess_mask: |
| case X86::BI__builtin_ia32_rndscalesd_round_mask: |
| case X86::BI__builtin_ia32_rndscaless_round_mask: |
| case X86::BI__builtin_ia32_rndscalesh_round_mask: |
| case X86::BI__builtin_ia32_reducesh_mask: |
| i = 4; l = 0; u = 255; |
| break; |
| } |
| |
| // Note that we don't force a hard error on the range check here, allowing |
| // template-generated or macro-generated dead code to potentially have out-of- |
| // range values. These need to code generate, but don't need to necessarily |
| // make any sense. We use a warning that defaults to an error. |
| return SemaBuiltinConstantArgRange(TheCall, i, l, u, /*RangeIsError*/ false); |
| } |
| |
| /// Given a FunctionDecl's FormatAttr, attempts to populate the FomatStringInfo |
| /// parameter with the FormatAttr's correct format_idx and firstDataArg. |
| /// Returns true when the format fits the function and the FormatStringInfo has |
| /// been populated. |
| bool Sema::getFormatStringInfo(const FormatAttr *Format, bool IsCXXMember, |
| FormatStringInfo *FSI) { |
| FSI->HasVAListArg = Format->getFirstArg() == 0; |
| FSI->FormatIdx = Format->getFormatIdx() - 1; |
| FSI->FirstDataArg = FSI->HasVAListArg ? 0 : Format->getFirstArg() - 1; |
| |
| // The way the format attribute works in GCC, the implicit this argument |
| // of member functions is counted. However, it doesn't appear in our own |
| // lists, so decrement format_idx in that case. |
| if (IsCXXMember) { |
| if(FSI->FormatIdx == 0) |
| return false; |
| --FSI->FormatIdx; |
| if (FSI->FirstDataArg != 0) |
| --FSI->FirstDataArg; |
| } |
| return true; |
| } |
| |
| /// Checks if a the given expression evaluates to null. |
| /// |
| /// Returns true if the value evaluates to null. |
| static bool CheckNonNullExpr(Sema &S, const Expr *Expr) { |
| // If the expression has non-null type, it doesn't evaluate to null. |
| if (auto nullability |
| = Expr->IgnoreImplicit()->getType()->getNullability(S.Context)) { |
| if (*nullability == NullabilityKind::NonNull) |
| return false; |
| } |
| |
| // As a special case, transparent unions initialized with zero are |
| // considered null for the purposes of the nonnull attribute. |
| if (const RecordType *UT = Expr->getType()->getAsUnionType()) { |
| if (UT->getDecl()->hasAttr<TransparentUnionAttr>()) |
| if (const CompoundLiteralExpr *CLE = |
| dyn_cast<CompoundLiteralExpr>(Expr)) |
| if (const InitListExpr *ILE = |
| dyn_cast<InitListExpr>(CLE->getInitializer())) |
| Expr = ILE->getInit(0); |
| } |
| |
| bool Result; |
| return (!Expr->isValueDependent() && |
| Expr->EvaluateAsBooleanCondition(Result, S.Context) && |
| !Result); |
| } |
| |
| static void CheckNonNullArgument(Sema &S, |
| const Expr *ArgExpr, |
| SourceLocation CallSiteLoc) { |
| if (CheckNonNullExpr(S, ArgExpr)) |
| S.DiagRuntimeBehavior(CallSiteLoc, ArgExpr, |
| S.PDiag(diag::warn_null_arg) |
| << ArgExpr->getSourceRange()); |
| } |
| |
| bool Sema::GetFormatNSStringIdx(const FormatAttr *Format, unsigned &Idx) { |
| FormatStringInfo FSI; |
| if ((GetFormatStringType(Format) == FST_NSString) && |
| getFormatStringInfo(Format, false, &FSI)) { |
| Idx = FSI.FormatIdx; |
| return true; |
| } |
| return false; |
| } |
| |
| /// Diagnose use of %s directive in an NSString which is being passed |
| /// as formatting string to formatting method. |
| static void |
| DiagnoseCStringFormatDirectiveInCFAPI(Sema &S, |
| const NamedDecl *FDecl, |
| Expr **Args, |
| unsigned NumArgs) { |
| unsigned Idx = 0; |
| bool Format = false; |
| ObjCStringFormatFamily SFFamily = FDecl->getObjCFStringFormattingFamily(); |
| if (SFFamily == ObjCStringFormatFamily::SFF_CFString) { |
| Idx = 2; |
| Format = true; |
| } |
| else |
| for (const auto *I : FDecl->specific_attrs<FormatAttr>()) { |
| if (S.GetFormatNSStringIdx(I, Idx)) { |
| Format = true; |
| break; |
| } |
| } |
| if (!Format || NumArgs <= Idx) |
| return; |
| const Expr *FormatExpr = Args[Idx]; |
| if (const CStyleCastExpr *CSCE = dyn_cast<CStyleCastExpr>(FormatExpr)) |
| FormatExpr = CSCE->getSubExpr(); |
| const StringLiteral *FormatString; |
| if (const ObjCStringLiteral *OSL = |
| dyn_cast<ObjCStringLiteral>(FormatExpr->IgnoreParenImpCasts())) |
| FormatString = OSL->getString(); |
| else |
| FormatString = dyn_cast<StringLiteral>(FormatExpr->IgnoreParenImpCasts()); |
| if (!FormatString) |
| return; |
| if (S.FormatStringHasSArg(FormatString)) { |
| S.Diag(FormatExpr->getExprLoc(), diag::warn_objc_cdirective_format_string) |
| << "%s" << 1 << 1; |
| S.Diag(FDecl->getLocation(), diag::note_entity_declared_at) |
| << FDecl->getDeclName(); |
| } |
| } |
| |
| /// Determine whether the given type has a non-null nullability annotation. |
| static bool isNonNullType(ASTContext &ctx, QualType type) { |
| if (auto nullability = type->getNullability(ctx)) |
| return *nullability == NullabilityKind::NonNull; |
| |
| return false; |
| } |
| |
| static void CheckNonNullArguments(Sema &S, |
| const NamedDecl *FDecl, |
| const FunctionProtoType *Proto, |
| ArrayRef<const Expr *> Args, |
| SourceLocation CallSiteLoc) { |
| assert((FDecl || Proto) && "Need a function declaration or prototype"); |
| |
| // Already checked by by constant evaluator. |
| if (S.isConstantEvaluated()) |
| return; |
| // Check the attributes attached to the method/function itself. |
| llvm::SmallBitVector NonNullArgs; |
| if (FDecl) { |
| // Handle the nonnull attribute on the function/method declaration itself. |
| for (const auto *NonNull : FDecl->specific_attrs<NonNullAttr>()) { |
| if (!NonNull->args_size()) { |
| // Easy case: all pointer arguments are nonnull. |
| for (const auto *Arg : Args) |
| if (S.isValidPointerAttrType(Arg->getType())) |
| CheckNonNullArgument(S, Arg, CallSiteLoc); |
| return; |
| } |
| |
| for (const ParamIdx &Idx : NonNull->args()) { |
| unsigned IdxAST = Idx.getASTIndex(); |
| if (IdxAST >= Args.size()) |
| continue; |
| if (NonNullArgs.empty()) |
| NonNullArgs.resize(Args.size()); |
| NonNullArgs.set(IdxAST); |
| } |
| } |
| } |
| |
| if (FDecl && (isa<FunctionDecl>(FDecl) || isa<ObjCMethodDecl>(FDecl))) { |
| // Handle the nonnull attribute on the parameters of the |
| // function/method. |
| ArrayRef<ParmVarDecl*> parms; |
| if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(FDecl)) |
| parms = FD->parameters(); |
| else |
| parms = cast<ObjCMethodDecl>(FDecl)->parameters(); |
| |
| unsigned ParamIndex = 0; |
| for (ArrayRef<ParmVarDecl*>::iterator I = parms.begin(), E = parms.end(); |
| I != E; ++I, ++ParamIndex) { |
| const ParmVarDecl *PVD = *I; |
| if (PVD->hasAttr<NonNullAttr>() || |
| isNonNullType(S.Context, PVD->getType())) { |
| if (NonNullArgs.empty()) |
| NonNullArgs.resize(Args.size()); |
| |
| NonNullArgs.set(ParamIndex); |
| } |
| } |
| } else { |
| // If we have a non-function, non-method declaration but no |
| // function prototype, try to dig out the function prototype. |
| if (!Proto) { |
| if (const ValueDecl *VD = dyn_cast<ValueDecl>(FDecl)) { |
| QualType type = VD->getType().getNonReferenceType(); |
| if (auto pointerType = type->getAs<PointerType>()) |
| type = pointerType->getPointeeType(); |
| else if (auto blockType = type->getAs<BlockPointerType>()) |
| type = blockType->getPointeeType(); |
| // FIXME: data member pointers? |
| |
| // Dig out the function prototype, if there is one. |
| Proto = type->getAs<FunctionProtoType>(); |
| } |
| } |
| |
| // Fill in non-null argument information from the nullability |
| // information on the parameter types (if we have them). |
| if (Proto) { |
| unsigned Index = 0; |
| for (auto paramType : Proto->getParamTypes()) { |
| if (isNonNullType(S.Context, paramType)) { |
| if (NonNullArgs.empty()) |
| NonNullArgs.resize(Args.size()); |
| |
| NonNullArgs.set(Index); |
| } |
| |
| ++Index; |
| } |
| } |
| } |
| |
| // Check for non-null arguments. |
| for (unsigned ArgIndex = 0, ArgIndexEnd = NonNullArgs.size(); |
| ArgIndex != ArgIndexEnd; ++ArgIndex) { |
| if (NonNullArgs[ArgIndex]) |
| CheckNonNullArgument(S, Args[ArgIndex], CallSiteLoc); |
| } |
| } |
| |
| /// Warn if a pointer or reference argument passed to a function points to an |
| /// object that is less aligned than the parameter. This can happen when |
| /// creating a typedef with a lower alignment than the original type and then |
| /// calling functions defined in terms of the original type. |
| void Sema::CheckArgAlignment(SourceLocation Loc, NamedDecl *FDecl, |
| StringRef ParamName, QualType ArgTy, |
| QualType ParamTy) { |
| |
| // If a function accepts a pointer or reference type |
| if (!ParamTy->isPointerType() && !ParamTy->isReferenceType()) |
| return; |
| |
| // If the parameter is a pointer type, get the pointee type for the |
| // argument too. If the parameter is a reference type, don't try to get |
| // the pointee type for the argument. |
| if (ParamTy->isPointerType()) |
| ArgTy = ArgTy->getPointeeType(); |
| |
| // Remove reference or pointer |
| ParamTy = ParamTy->getPointeeType(); |
| |
| // Find expected alignment, and the actual alignment of the passed object. |
| // getTypeAlignInChars requires complete types |
| if (ArgTy.isNull() || ParamTy->isIncompleteType() || |
| ArgTy->isIncompleteType() || ParamTy->isUndeducedType() || |
| ArgTy->isUndeducedType()) |
| return; |
| |
| CharUnits ParamAlign = Context.getTypeAlignInChars(ParamTy); |
| CharUnits ArgAlign = Context.getTypeAlignInChars(ArgTy); |
| |
| // If the argument is less aligned than the parameter, there is a |
| // potential alignment issue. |
| if (ArgAlign < ParamAlign) |
| Diag(Loc, diag::warn_param_mismatched_alignment) |
| << (int)ArgAlign.getQuantity() << (int)ParamAlign.getQuantity() |
| << ParamName << (FDecl != nullptr) << FDecl; |
| } |
| |
| /// Handles the checks for format strings, non-POD arguments to vararg |
| /// functions, NULL arguments passed to non-NULL parameters, and diagnose_if |
| /// attributes. |
| void Sema::checkCall(NamedDecl *FDecl, const FunctionProtoType *Proto, |
| const Expr *ThisArg, ArrayRef<const Expr *> Args, |
| bool IsMemberFunction, SourceLocation Loc, |
| SourceRange Range, VariadicCallType CallType) { |
| // FIXME: We should check as much as we can in the template definition. |
| if (CurContext->isDependentContext()) |
| return; |
| |
| // Printf and scanf checking. |
| llvm::SmallBitVector CheckedVarArgs; |
| if (FDecl) { |
| for (const auto *I : FDecl->specific_attrs<FormatAttr>()) { |
| // Only create vector if there are format attributes. |
| CheckedVarArgs.resize(Args.size()); |
| |
| CheckFormatArguments(I, Args, IsMemberFunction, CallType, Loc, Range, |
| CheckedVarArgs); |
| } |
| } |
| |
| // Refuse POD arguments that weren't caught by the format string |
| // checks above. |
| auto *FD = dyn_cast_or_null<FunctionDecl>(FDecl); |
| if (CallType != VariadicDoesNotApply && |
| (!FD || FD->getBuiltinID() != Builtin::BI__noop)) { |
| unsigned NumParams = Proto ? Proto->getNumParams() |
| : FDecl && isa<FunctionDecl>(FDecl) |
| ? cast<FunctionDecl>(FDecl)->getNumParams() |
| : FDecl && isa<ObjCMethodDecl>(FDecl) |
| ? cast<ObjCMethodDecl>(FDecl)->param_size() |
| : 0; |
| |
| for (unsigned ArgIdx = NumParams; ArgIdx < Args.size(); ++ArgIdx) { |
| // Args[ArgIdx] can be null in malformed code. |
| if (const Expr *Arg = Args[ArgIdx]) { |
| if (CheckedVarArgs.empty() || !CheckedVarArgs[ArgIdx]) |
| checkVariadicArgument(Arg, CallType); |
| } |
| } |
| } |
| |
| if (FDecl || Proto) { |
| CheckNonNullArguments(*this, FDecl, Proto, Args, Loc); |
| |
| // Type safety checking. |
| if (FDecl) { |
| for (const auto *I : FDecl->specific_attrs<ArgumentWithTypeTagAttr>()) |
| CheckArgumentWithTypeTag(I, Args, Loc); |
| } |
| } |
| |
| // Check that passed arguments match the alignment of original arguments. |
| // Try to get the missing prototype from the declaration. |
| if (!Proto && FDecl) { |
| const auto *FT = FDecl->getFunctionType(); |
| if (isa_and_nonnull<FunctionProtoType>(FT)) |
| Proto = cast<FunctionProtoType>(FDecl->getFunctionType()); |
| } |
| if (Proto) { |
| // For variadic functions, we may have more args than parameters. |
| // For some K&R functions, we may have less args than parameters. |
| const auto N = std::min<unsigned>(Proto->getNumParams(), Args.size()); |
| for (unsigned ArgIdx = 0; ArgIdx < N; ++ArgIdx) { |
| // Args[ArgIdx] can be null in malformed code. |
| if (const Expr *Arg = Args[ArgIdx]) { |
| if (Arg->containsErrors()) |
| continue; |
| |
| QualType ParamTy = Proto->getParamType(ArgIdx); |
| QualType ArgTy = Arg->getType(); |
| CheckArgAlignment(Arg->getExprLoc(), FDecl, std::to_string(ArgIdx + 1), |
| ArgTy, ParamTy); |
| } |
| } |
| } |
| |
| if (FDecl && FDecl->hasAttr<AllocAlignAttr>()) { |
| auto *AA = FDecl->getAttr<AllocAlignAttr>(); |
| const Expr *Arg = Args[AA->getParamIndex().getASTIndex()]; |
| if (!Arg->isValueDependent()) { |
| Expr::EvalResult Align; |
| if (Arg->EvaluateAsInt(Align, Context)) { |
| const llvm::APSInt &I = Align.Val.getInt(); |
| if (!I.isPowerOf2()) |
| Diag(Arg->getExprLoc(), diag::warn_alignment_not_power_of_two) |
| << Arg->getSourceRange(); |
| |
| if (I > Sema::MaximumAlignment) |
| Diag(Arg->getExprLoc(), diag::warn_assume_aligned_too_great) |
| << Arg->getSourceRange() << Sema::MaximumAlignment; |
| } |
| } |
| } |
| |
| if (FD) |
| diagnoseArgDependentDiagnoseIfAttrs(FD, ThisArg, Args, Loc); |
| } |
| |
| /// CheckConstructorCall - Check a constructor call for correctness and safety |
| /// properties not enforced by the C type system. |
| void Sema::CheckConstructorCall(FunctionDecl *FDecl, QualType ThisType, |
| ArrayRef<const Expr *> Args, |
| const FunctionProtoType *Proto, |
| SourceLocation Loc) { |
| VariadicCallType CallType = |
| Proto->isVariadic() ? VariadicConstructor : VariadicDoesNotApply; |
| |
| auto *Ctor = cast<CXXConstructorDecl>(FDecl); |
| CheckArgAlignment(Loc, FDecl, "'this'", Context.getPointerType(ThisType), |
| Context.getPointerType(Ctor->getThisObjectType())); |
| |
| checkCall(FDecl, Proto, /*ThisArg=*/nullptr, Args, /*IsMemberFunction=*/true, |
| Loc, SourceRange(), CallType); |
| } |
| |
| /// CheckFunctionCall - Check a direct function call for various correctness |
| /// and safety properties not strictly enforced by the C type system. |
| bool Sema::CheckFunctionCall(FunctionDecl *FDecl, CallExpr *TheCall, |
| const FunctionProtoType *Proto) { |
| bool IsMemberOperatorCall = isa<CXXOperatorCallExpr>(TheCall) && |
| isa<CXXMethodDecl>(FDecl); |
| bool IsMemberFunction = isa<CXXMemberCallExpr>(TheCall) || |
| IsMemberOperatorCall; |
| VariadicCallType CallType = getVariadicCallType(FDecl, Proto, |
| TheCall->getCallee()); |
| Expr** Args = TheCall->getArgs(); |
| unsigned NumArgs = TheCall->getNumArgs(); |
| |
| Expr *ImplicitThis = nullptr; |
| if (IsMemberOperatorCall) { |
| // If this is a call to a member operator, hide the first argument |
| // from checkCall. |
| // FIXME: Our choice of AST representation here is less than ideal. |
| ImplicitThis = Args[0]; |
| ++Args; |
| --NumArgs; |
| } else if (IsMemberFunction) |
| ImplicitThis = |
| cast<CXXMemberCallExpr>(TheCall)->getImplicitObjectArgument(); |
| |
| if (ImplicitThis) { |
| // ImplicitThis may or may not be a pointer, depending on whether . or -> is |
| // used. |
| QualType ThisType = ImplicitThis->getType(); |
| if (!ThisType->isPointerType()) { |
| assert(!ThisType->isReferenceType()); |
| ThisType = Context.getPointerType(ThisType); |
| } |
| |
| QualType ThisTypeFromDecl = |
| Context.getPointerType(cast<CXXMethodDecl>(FDecl)->getThisObjectType()); |
| |
| CheckArgAlignment(TheCall->getRParenLoc(), FDecl, "'this'", ThisType, |
| ThisTypeFromDecl); |
| } |
| |
| checkCall(FDecl, Proto, ImplicitThis, llvm::makeArrayRef(Args, NumArgs), |
| IsMemberFunction, TheCall->getRParenLoc(), |
| TheCall->getCallee()->getSourceRange(), CallType); |
| |
| IdentifierInfo *FnInfo = FDecl->getIdentifier(); |
| // None of the checks below are needed for functions that don't have |
| // simple names (e.g., C++ conversion functions). |
| if (!FnInfo) |
| return false; |
| |
| CheckTCBEnforcement(TheCall, FDecl); |
| |
| CheckAbsoluteValueFunction(TheCall, FDecl); |
| CheckMaxUnsignedZero(TheCall, FDecl); |
| |
| if (getLangOpts().ObjC) |
| DiagnoseCStringFormatDirectiveInCFAPI(*this, FDecl, Args, NumArgs); |
| |
| unsigned CMId = FDecl->getMemoryFunctionKind(); |
| |
| // Handle memory setting and copying functions. |
| switch (CMId) { |
| case 0: |
| return false; |
| case Builtin::BIstrlcpy: // fallthrough |
| case Builtin::BIstrlcat: |
| CheckStrlcpycatArguments(TheCall, FnInfo); |
| break; |
| case Builtin::BIstrncat: |
| CheckStrncatArguments(TheCall, FnInfo); |
| break; |
| case Builtin::BIfree: |
| CheckFreeArguments(TheCall); |
| break; |
| default: |
| CheckMemaccessArguments(TheCall, CMId, FnInfo); |
| } |
| |
| return false; |
| } |
| |
| bool Sema::CheckObjCMethodCall(ObjCMethodDecl *Method, SourceLocation lbrac, |
| ArrayRef<const Expr *> Args) { |
| VariadicCallType CallType = |
| Method->isVariadic() ? VariadicMethod : VariadicDoesNotApply; |
| |
| checkCall(Method, nullptr, /*ThisArg=*/nullptr, Args, |
| /*IsMemberFunction=*/false, lbrac, Method->getSourceRange(), |
| CallType); |
| |
| return false; |
| } |
| |
| bool Sema::CheckPointerCall(NamedDecl *NDecl, CallExpr *TheCall, |
| const FunctionProtoType *Proto) { |
| QualType Ty; |
| if (const auto *V = dyn_cast<VarDecl>(NDecl)) |
| Ty = V->getType().getNonReferenceType(); |
| else if (const auto *F = dyn_cast<FieldDecl>(NDecl)) |
| Ty = F->getType().getNonReferenceType(); |
| else |
| return false; |
| |
| if (!Ty->isBlockPointerType() && !Ty->isFunctionPointerType() && |
| !Ty->isFunctionProtoType()) |
| return false; |
| |
| VariadicCallType CallType; |
| if (!Proto || !Proto->isVariadic()) { |
| CallType = VariadicDoesNotApply; |
| } else if (Ty->isBlockPointerType()) { |
| CallType = VariadicBlock; |
| } else { // Ty->isFunctionPointerType() |
| CallType = VariadicFunction; |
| } |
| |
| checkCall(NDecl, Proto, /*ThisArg=*/nullptr, |
| llvm::makeArrayRef(TheCall->getArgs(), TheCall->getNumArgs()), |
| /*IsMemberFunction=*/false, TheCall->getRParenLoc(), |
| TheCall->getCallee()->getSourceRange(), CallType); |
| |
| return false; |
| } |
| |
| /// Checks function calls when a FunctionDecl or a NamedDecl is not available, |
| /// such as function pointers returned from functions. |
| bool Sema::CheckOtherCall(CallExpr *TheCall, const FunctionProtoType *Proto) { |
| VariadicCallType CallType = getVariadicCallType(/*FDecl=*/nullptr, Proto, |
| TheCall->getCallee()); |
| checkCall(/*FDecl=*/nullptr, Proto, /*ThisArg=*/nullptr, |
| llvm::makeArrayRef(TheCall->getArgs(), TheCall->getNumArgs()), |
| /*IsMemberFunction=*/false, TheCall->getRParenLoc(), |
| TheCall->getCallee()->getSourceRange(), CallType); |
| |
| return false; |
| } |
| |
| static bool isValidOrderingForOp(int64_t Ordering, AtomicExpr::AtomicOp Op) { |
| if (!llvm::isValidAtomicOrderingCABI(Ordering)) |
| return false; |
| |
| auto OrderingCABI = (llvm::AtomicOrderingCABI)Ordering; |
| switch (Op) { |
| case AtomicExpr::AO__c11_atomic_init: |
| case AtomicExpr::AO__opencl_atomic_init: |
| llvm_unreachable("There is no ordering argument for an init"); |
| |
| case AtomicExpr::AO__c11_atomic_load: |
| case AtomicExpr::AO__opencl_atomic_load: |
| case AtomicExpr::AO__hip_atomic_load: |
| case AtomicExpr::AO__atomic_load_n: |
| case AtomicExpr::AO__atomic_load: |
| return OrderingCABI != llvm::AtomicOrderingCABI::release && |
| OrderingCABI != llvm::AtomicOrderingCABI::acq_rel; |
| |
| case AtomicExpr::AO__c11_atomic_store: |
| case AtomicExpr::AO__opencl_atomic_store: |
| case AtomicExpr::AO__hip_atomic_store: |
| case AtomicExpr::AO__atomic_store: |
| case AtomicExpr::AO__atomic_store_n: |
| return OrderingCABI != llvm::AtomicOrderingCABI::consume && |
| OrderingCABI != llvm::AtomicOrderingCABI::acquire && |
| OrderingCABI != llvm::AtomicOrderingCABI::acq_rel; |
| |
| default: |
| return true; |
| } |
| } |
| |
| ExprResult Sema::SemaAtomicOpsOverloaded(ExprResult TheCallResult, |
| AtomicExpr::AtomicOp Op) { |
| CallExpr *TheCall = cast<CallExpr>(TheCallResult.get()); |
| DeclRefExpr *DRE =cast<DeclRefExpr>(TheCall->getCallee()->IgnoreParenCasts()); |
| MultiExprArg Args{TheCall->getArgs(), TheCall->getNumArgs()}; |
| return BuildAtomicExpr({TheCall->getBeginLoc(), TheCall->getEndLoc()}, |
| DRE->getSourceRange(), TheCall->getRParenLoc(), Args, |
| Op); |
| } |
| |
| ExprResult Sema::BuildAtomicExpr(SourceRange CallRange, SourceRange ExprRange, |
| SourceLocation RParenLoc, MultiExprArg Args, |
| AtomicExpr::AtomicOp Op, |
| AtomicArgumentOrder ArgOrder) { |
| // All the non-OpenCL operations take one of the following forms. |
| // The OpenCL operations take the __c11 forms with one extra argument for |
| // synchronization scope. |
| enum { |
| // C __c11_atomic_init(A *, C) |
| Init, |
| |
| // C __c11_atomic_load(A *, int) |
| Load, |
| |
| // void __atomic_load(A *, CP, int) |
| LoadCopy, |
| |
| // void __atomic_store(A *, CP, int) |
| Copy, |
| |
| // C __c11_atomic_add(A *, M, int) |
| Arithmetic, |
| |
| // C __atomic_exchange_n(A *, CP, int) |
| Xchg, |
| |
| // void __atomic_exchange(A *, C *, CP, int) |
| GNUXchg, |
| |
| // bool __c11_atomic_compare_exchange_strong(A *, C *, CP, int, int) |
| C11CmpXchg, |
| |
| // bool __atomic_compare_exchange(A *, C *, CP, bool, int, int) |
| GNUCmpXchg |
| } Form = Init; |
| |
| const unsigned NumForm = GNUCmpXchg + 1; |
| const unsigned NumArgs[] = { 2, 2, 3, 3, 3, 3, 4, 5, 6 }; |
| const unsigned NumVals[] = { 1, 0, 1, 1, 1, 1, 2, 2, 3 }; |
| // where: |
| // C is an appropriate type, |
| // A is volatile _Atomic(C) for __c11 builtins and is C for GNU builtins, |
| // CP is C for __c11 builtins and GNU _n builtins and is C * otherwise, |
| // M is C if C is an integer, and ptrdiff_t if C is a pointer, and |
| // the int parameters are for orderings. |
| |
| static_assert(sizeof(NumArgs)/sizeof(NumArgs[0]) == NumForm |
| && sizeof(NumVals)/sizeof(NumVals[0]) == NumForm, |
| "need to update code for modified forms"); |
| static_assert(AtomicExpr::AO__c11_atomic_init == 0 && |
| AtomicExpr::AO__c11_atomic_fetch_min + 1 == |
| AtomicExpr::AO__atomic_load, |
| "need to update code for modified C11 atomics"); |
| bool IsOpenCL = Op >= AtomicExpr::AO__opencl_atomic_init && |
| Op <= AtomicExpr::AO__opencl_atomic_fetch_max; |
| bool IsHIP = Op >= AtomicExpr::AO__hip_atomic_load && |
| Op <= AtomicExpr::AO__hip_atomic_fetch_max; |
| bool IsC11 = (Op >= AtomicExpr::AO__c11_atomic_init && |
| Op <= AtomicExpr::AO__c11_atomic_fetch_min) || |
| IsOpenCL; |
| bool IsN = Op == AtomicExpr::AO__atomic_load_n || |
| Op == AtomicExpr::AO__atomic_store_n || |
| Op == AtomicExpr::AO__atomic_exchange_n || |
| Op == AtomicExpr::AO__atomic_compare_exchange_n; |
| bool IsAddSub = false; |
| |
| switch (Op) { |
| case AtomicExpr::AO__c11_atomic_init: |
| case AtomicExpr::AO__opencl_atomic_init: |
| Form = Init; |
| break; |
| |
| case AtomicExpr::AO__c11_atomic_load: |
| case AtomicExpr::AO__opencl_atomic_load: |
| case AtomicExpr::AO__hip_atomic_load: |
| case AtomicExpr::AO__atomic_load_n: |
| Form = Load; |
| break; |
| |
| case AtomicExpr::AO__atomic_load: |
| Form = LoadCopy; |
| break; |
| |
| case AtomicExpr::AO__c11_atomic_store: |
| case AtomicExpr::AO__opencl_atomic_store: |
| case AtomicExpr::AO__hip_atomic_store: |
| case AtomicExpr::AO__atomic_store: |
| case AtomicExpr::AO__atomic_store_n: |
| Form = Copy; |
| break; |
| case AtomicExpr::AO__hip_atomic_fetch_add: |
| case AtomicExpr::AO__hip_atomic_fetch_min: |
| case AtomicExpr::AO__hip_atomic_fetch_max: |
| case AtomicExpr::AO__c11_atomic_fetch_add: |
| case AtomicExpr::AO__c11_atomic_fetch_sub: |
| case AtomicExpr::AO__opencl_atomic_fetch_add: |
| case AtomicExpr::AO__opencl_atomic_fetch_sub: |
| case AtomicExpr::AO__atomic_fetch_add: |
| case AtomicExpr::AO__atomic_fetch_sub: |
| case AtomicExpr::AO__atomic_add_fetch: |
| case AtomicExpr::AO__atomic_sub_fetch: |
| IsAddSub = true; |
| Form = Arithmetic; |
| break; |
| case AtomicExpr::AO__c11_atomic_fetch_and: |
| case AtomicExpr::AO__c11_atomic_fetch_or: |
| case AtomicExpr::AO__c11_atomic_fetch_xor: |
| case AtomicExpr::AO__hip_atomic_fetch_and: |
| case AtomicExpr::AO__hip_atomic_fetch_or: |
| case AtomicExpr::AO__hip_atomic_fetch_xor: |
| case AtomicExpr::AO__c11_atomic_fetch_nand: |
| case AtomicExpr::AO__opencl_atomic_fetch_and: |
| case AtomicExpr::AO__opencl_atomic_fetch_or: |
| case AtomicExpr::AO__opencl_atomic_fetch_xor: |
| case AtomicExpr::AO__atomic_fetch_and: |
| case AtomicExpr::AO__atomic_fetch_or: |
| case AtomicExpr::AO__atomic_fetch_xor: |
| case AtomicExpr::AO__atomic_fetch_nand: |
| case AtomicExpr::AO__atomic_and_fetch: |
| case AtomicExpr::AO__atomic_or_fetch: |
| case AtomicExpr::AO__atomic_xor_fetch: |
| case AtomicExpr::AO__atomic_nand_fetch: |
| Form = Arithmetic; |
| break; |
| case AtomicExpr::AO__c11_atomic_fetch_min: |
| case AtomicExpr::AO__c11_atomic_fetch_max: |
| case AtomicExpr::AO__opencl_atomic_fetch_min: |
| case AtomicExpr::AO__opencl_atomic_fetch_max: |
| case AtomicExpr::AO__atomic_min_fetch: |
| case AtomicExpr::AO__atomic_max_fetch: |
| case AtomicExpr::AO__atomic_fetch_min: |
| case AtomicExpr::AO__atomic_fetch_max: |
| Form = Arithmetic; |
| break; |
| |
| case AtomicExpr::AO__c11_atomic_exchange: |
| case AtomicExpr::AO__hip_atomic_exchange: |
| case AtomicExpr::AO__opencl_atomic_exchange: |
| case AtomicExpr::AO__atomic_exchange_n: |
| Form = Xchg; |
| break; |
| |
| case AtomicExpr::AO__atomic_exchange: |
| Form = GNUXchg; |
| break; |
| |
| case AtomicExpr::AO__c11_atomic_compare_exchange_strong: |
| case AtomicExpr::AO__c11_atomic_compare_exchange_weak: |
| case AtomicExpr::AO__hip_atomic_compare_exchange_strong: |
| case AtomicExpr::AO__opencl_atomic_compare_exchange_strong: |
| case AtomicExpr::AO__opencl_atomic_compare_exchange_weak: |
| case AtomicExpr::AO__hip_atomic_compare_exchange_weak: |
| Form = C11CmpXchg; |
| break; |
| |
| case AtomicExpr::AO__atomic_compare_exchange: |
| case AtomicExpr::AO__atomic_compare_exchange_n: |
| Form = GNUCmpXchg; |
| break; |
| } |
| |
| unsigned AdjustedNumArgs = NumArgs[Form]; |
| if ((IsOpenCL || IsHIP) && Op != AtomicExpr::AO__opencl_atomic_init) |
| ++AdjustedNumArgs; |
| // Check we have the right number of arguments. |
| if (Args.size() < AdjustedNumArgs) { |
| Diag(CallRange.getEnd(), diag::err_typecheck_call_too_few_args) |
| << 0 << AdjustedNumArgs << static_cast<unsigned>(Args.size()) |
| << ExprRange; |
| return ExprError(); |
| } else if (Args.size() > AdjustedNumArgs) { |
| Diag(Args[AdjustedNumArgs]->getBeginLoc(), |
| diag::err_typecheck_call_too_many_args) |
| << 0 << AdjustedNumArgs << static_cast<unsigned>(Args.size()) |
| << ExprRange; |
| return ExprError(); |
| } |
| |
| // Inspect the first argument of the atomic operation. |
| Expr *Ptr = Args[0]; |
| ExprResult ConvertedPtr = DefaultFunctionArrayLvalueConversion(Ptr); |
| if (ConvertedPtr.isInvalid()) |
| return ExprError(); |
| |
| Ptr = ConvertedPtr.get(); |
| const PointerType *pointerType = Ptr->getType()->getAs<PointerType>(); |
| if (!pointerType) { |
| Diag(ExprRange.getBegin(), diag::err_atomic_builtin_must_be_pointer) |
| << Ptr->getType() << Ptr->getSourceRange(); |
| return ExprError(); |
| } |
| |
| // For a __c11 builtin, this should be a pointer to an _Atomic type. |
| QualType AtomTy = pointerType->getPointeeType(); // 'A' |
| QualType ValType = AtomTy; // 'C' |
| if (IsC11) { |
| if (!AtomTy->isAtomicType()) { |
| Diag(ExprRange.getBegin(), diag::err_atomic_op_needs_atomic) |
| << Ptr->getType() << Ptr->getSourceRange(); |
| return ExprError(); |
| } |
| if ((Form != Load && Form != LoadCopy && AtomTy.isConstQualified()) || |
| AtomTy.getAddressSpace() == LangAS::opencl_constant) { |
| Diag(ExprRange.getBegin(), diag::err_atomic_op_needs_non_const_atomic) |
| << (AtomTy.isConstQualified() ? 0 : 1) << Ptr->getType() |
| << Ptr->getSourceRange(); |
| return ExprError(); |
| } |
| ValType = AtomTy->castAs<AtomicType>()->getValueType(); |
| } else if (Form != Load && Form != LoadCopy) { |
| if (ValType.isConstQualified()) { |
| Diag(ExprRange.getBegin(), diag::err_atomic_op_needs_non_const_pointer) |
| << Ptr->getType() << Ptr->getSourceRange(); |
| return ExprError(); |
| } |
| } |
| |
| // For an arithmetic operation, the implied arithmetic must be well-formed. |
| if (Form == Arithmetic) { |
| // GCC does not enforce these rules for GNU atomics, but we do, because if |
| // we didn't it would be very confusing. FIXME: For whom? How so? |
| auto IsAllowedValueType = [&](QualType ValType) { |
| if (ValType->isIntegerType()) |
| return true; |
| if (ValType->isPointerType()) |
| return true; |
| if (!ValType->isFloatingType()) |
| return false; |
| // LLVM Parser does not allow atomicrmw with x86_fp80 type. |
| if (ValType->isSpecificBuiltinType(BuiltinType::LongDouble) && |
| &Context.getTargetInfo().getLongDoubleFormat() == |
| &llvm::APFloat::x87DoubleExtended()) |
| return false; |
| return true; |
| }; |
| if (IsAddSub && !IsAllowedValueType(ValType)) { |
| Diag(ExprRange.getBegin(), diag::err_atomic_op_needs_atomic_int_ptr_or_fp) |
| << IsC11 << Ptr->getType() << Ptr->getSourceRange(); |
| return ExprError(); |
| } |
| if (!IsAddSub && !ValType->isIntegerType()) { |
| Diag(ExprRange.getBegin(), diag::err_atomic_op_needs_atomic_int) |
| << IsC11 << Ptr->getType() << Ptr->getSourceRange(); |
| return ExprError(); |
| } |
| if (IsC11 && ValType->isPointerType() && |
| RequireCompleteType(Ptr->getBeginLoc(), ValType->getPointeeType(), |
| diag::err_incomplete_type)) { |
| return ExprError(); |
| } |
| } else if (IsN && !ValType->isIntegerType() && !ValType->isPointerType()) { |
| // For __atomic_*_n operations, the value type must be a scalar integral or |
| // pointer type which is 1, 2, 4, 8 or 16 bytes in length. |
| Diag(ExprRange.getBegin(), diag::err_atomic_op_needs_atomic_int_or_ptr) |
| << IsC11 << Ptr->getType() << Ptr->getSourceRange(); |
| return ExprError(); |
| } |
| |
| if (!IsC11 && !AtomTy.isTriviallyCopyableType(Context) && |
| !AtomTy->isScalarType()) { |
| // For GNU atomics, require a trivially-copyable type. This is not part of |
| // the GNU atomics specification, but we enforce it, because if we didn't it |
| // would be very confusing. FIXME: For whom? How so? |
| Diag(ExprRange.getBegin(), diag::err_atomic_op_needs_trivial_copy) |
| << Ptr->getType() << Ptr->getSourceRange(); |
| return ExprError(); |
| } |
| |
| switch (ValType.getObjCLifetime()) { |
| case Qualifiers::OCL_None: |
| case Qualifiers::OCL_ExplicitNone: |
| // okay |
| break; |
| |
| case Qualifiers::OCL_Weak: |
| case Qualifiers::OCL_Strong: |
| case Qualifiers::OCL_Autoreleasing: |
| // FIXME: Can this happen? By this point, ValType should be known |
| // to be trivially copyable. |
| Diag(ExprRange.getBegin(), diag::err_arc_atomic_ownership) |
| << ValType << Ptr->getSourceRange(); |
| return ExprError(); |
| } |
| |
| // All atomic operations have an overload which takes a pointer to a volatile |
| // 'A'. We shouldn't let the volatile-ness of the pointee-type inject itself |
| // into the result or the other operands. Similarly atomic_load takes a |
| // pointer to a const 'A'. |
| ValType.removeLocalVolatile(); |
| ValType.removeLocalConst(); |
| QualType ResultType = ValType; |
| if (Form == Copy || Form == LoadCopy || Form == GNUXchg || |
| Form == Init) |
| ResultType = Context.VoidTy; |
| else if (Form == C11CmpXchg || Form == GNUCmpXchg) |
| ResultType = Context.BoolTy; |
| |
| // The type of a parameter passed 'by value'. In the GNU atomics, such |
| // arguments are actually passed as pointers. |
| QualType ByValType = ValType; // 'CP' |
| bool IsPassedByAddress = false; |
| if (!IsC11 && !IsHIP && !IsN) { |
| ByValType = Ptr->getType(); |
| IsPassedByAddress = true; |
| } |
| |
| SmallVector<Expr *, 5> APIOrderedArgs; |
| if (ArgOrder == Sema::AtomicArgumentOrder::AST) { |
| APIOrderedArgs.push_back(Args[0]); |
| switch (Form) { |
| case Init: |
| case Load: |
| APIOrderedArgs.push_back(Args[1]); // Val1/Order |
| break; |
| case LoadCopy: |
| case Copy: |
| case Arithmetic: |
| case Xchg: |
| APIOrderedArgs.push_back(Args[2]); // Val1 |
| APIOrderedArgs.push_back(Args[1]); // Order |
| break; |
| case GNUXchg: |
| APIOrderedArgs.push_back(Args[2]); // Val1 |
| APIOrderedArgs.push_back(Args[3]); // Val2 |
| APIOrderedArgs.push_back(Args[1]); // Order |
| break; |
| case C11CmpXchg: |
| APIOrderedArgs.push_back(Args[2]); // Val1 |
| APIOrderedArgs.push_back(Args[4]); // Val2 |
| APIOrderedArgs.push_back(Args[1]); // Order |
| APIOrderedArgs.push_back(Args[3]); // OrderFail |
| break; |
| case GNUCmpXchg: |
| APIOrderedArgs.push_back(Args[2]); // Val1 |
| APIOrderedArgs.push_back(Args[4]); // Val2 |
| APIOrderedArgs.push_back(Args[5]); // Weak |
| APIOrderedArgs.push_back(Args[1]); // Order |
| APIOrderedArgs.push_back(Args[3]); // OrderFail |
| break; |
| } |
| } else |
| APIOrderedArgs.append(Args.begin(), Args.end()); |
| |
| // The first argument's non-CV pointer type is used to deduce the type of |
| // subsequent arguments, except for: |
| // - weak flag (always converted to bool) |
| // - memory order (always converted to int) |
| // - scope (always converted to int) |
| for (unsigned i = 0; i != APIOrderedArgs.size(); ++i) { |
| QualType Ty; |
| if (i < NumVals[Form] + 1) { |
| switch (i) { |
| case 0: |
| // The first argument is always a pointer. It has a fixed type. |
| // It is always dereferenced, a nullptr is undefined. |
| CheckNonNullArgument(*this, APIOrderedArgs[i], ExprRange.getBegin()); |
| // Nothing else to do: we already know all we want about this pointer. |
| continue; |
| case 1: |
| // The second argument is the non-atomic operand. For arithmetic, this |
| // is always passed by value, and for a compare_exchange it is always |
| // passed by address. For the rest, GNU uses by-address and C11 uses |
| // by-value. |
| assert(Form != Load); |
| if (Form == Arithmetic && ValType->isPointerType()) |
| Ty = Context.getPointerDiffType(); |
| else if (Form == Init || Form == Arithmetic) |
| Ty = ValType; |
| else if (Form == Copy || Form == Xchg) { |
| if (IsPassedByAddress) { |
| // The value pointer is always dereferenced, a nullptr is undefined. |
| CheckNonNullArgument(*this, APIOrderedArgs[i], |
| ExprRange.getBegin()); |
| } |
| Ty = ByValType; |
| } else { |
| Expr *ValArg = APIOrderedArgs[i]; |
| // The value pointer is always dereferenced, a nullptr is undefined. |
| CheckNonNullArgument(*this, ValArg, ExprRange.getBegin()); |
| LangAS AS = LangAS::Default; |
| // Keep address space of non-atomic pointer type. |
| if (const PointerType *PtrTy = |
| ValArg->getType()->getAs<PointerType>()) { |
| AS = PtrTy->getPointeeType().getAddressSpace(); |
| } |
| Ty = Context.getPointerType( |
| Context.getAddrSpaceQualType(ValType.getUnqualifiedType(), AS)); |
| } |
| break; |
| case 2: |
| // The third argument to compare_exchange / GNU exchange is the desired |
| // value, either by-value (for the C11 and *_n variant) or as a pointer. |
| if (IsPassedByAddress) |
| CheckNonNullArgument(*this, APIOrderedArgs[i], ExprRange.getBegin()); |
| Ty = ByValType; |
| break; |
| case 3: |
| // The fourth argument to GNU compare_exchange is a 'weak' flag. |
| Ty = Context.BoolTy; |
| break; |
| } |
| } else { |
| // The order(s) and scope are always converted to int. |
| Ty = Context.IntTy; |
| } |
| |
| InitializedEntity Entity = |
| InitializedEntity::InitializeParameter(Context, Ty, false); |
| ExprResult Arg = APIOrderedArgs[i]; |
| Arg = PerformCopyInitialization(Entity, SourceLocation(), Arg); |
| if (Arg.isInvalid()) |
| return true; |
| APIOrderedArgs[i] = Arg.get(); |
| } |
| |
| // Permute the arguments into a 'consistent' order. |
| SmallVector<Expr*, 5> SubExprs; |
| SubExprs.push_back(Ptr); |
| switch (Form) { |
| case Init: |
| // Note, AtomicExpr::getVal1() has a special case for this atomic. |
| SubExprs.push_back(APIOrderedArgs[1]); // Val1 |
| break; |
| case Load: |
| SubExprs.push_back(APIOrderedArgs[1]); // Order |
| break; |
| case LoadCopy: |
| case Copy: |
| case Arithmetic: |
| case Xchg: |
| SubExprs.push_back(APIOrderedArgs[2]); // Order |
| SubExprs.push_back(APIOrderedArgs[1]); // Val1 |
| break; |
| case GNUXchg: |
| // Note, AtomicExpr::getVal2() has a special case for this atomic. |
| SubExprs.push_back(APIOrderedArgs[3]); // Order |
| SubExprs.push_back(APIOrderedArgs[1]); // Val1 |
| SubExprs.push_back(APIOrderedArgs[2]); // Val2 |
| break; |
| case C11CmpXchg: |
| SubExprs.push_back(APIOrderedArgs[3]); // Order |
| SubExprs.push_back(APIOrderedArgs[1]); // Val1 |
| SubExprs.push_back(APIOrderedArgs[4]); // OrderFail |
| SubExprs.push_back(APIOrderedArgs[2]); // Val2 |
| break; |
| case GNUCmpXchg: |
| SubExprs.push_back(APIOrderedArgs[4]); // Order |
| SubExprs.push_back(APIOrderedArgs[1]); // Val1 |
| SubExprs.push_back(APIOrderedArgs[5]); // OrderFail |
| SubExprs.push_back(APIOrderedArgs[2]); // Val2 |
| SubExprs.push_back(APIOrderedArgs[3]); // Weak |
| break; |
| } |
| |
| if (SubExprs.size() >= 2 && Form != Init) { |
| if (Optional<llvm::APSInt> Result = |
| SubExprs[1]->getIntegerConstantExpr(Context)) |
| if (!isValidOrderingForOp(Result->getSExtValue(), Op)) |
| Diag(SubExprs[1]->getBeginLoc(), |
| diag::warn_atomic_op_has_invalid_memory_order) |
| << SubExprs[1]->getSourceRange(); |
| } |
| |
| if (auto ScopeModel = AtomicExpr::getScopeModel(Op)) { |
| auto *Scope = Args[Args.size() - 1]; |
| if (Optional<llvm::APSInt> Result = |
| Scope->getIntegerConstantExpr(Context)) { |
| if (!ScopeModel->isValid(Result->getZExtValue())) |
| Diag(Scope->getBeginLoc(), diag::err_atomic_op_has_invalid_synch_scope) |
| << Scope->getSourceRange(); |
| } |
| SubExprs.push_back(Scope); |
| } |
| |
| AtomicExpr *AE = new (Context) |
| AtomicExpr(ExprRange.getBegin(), SubExprs, ResultType, Op, RParenLoc); |
| |
| if ((Op == AtomicExpr::AO__c11_atomic_load || |
| Op == AtomicExpr::AO__c11_atomic_store || |
| Op == AtomicExpr::AO__opencl_atomic_load || |
| Op == AtomicExpr::AO__hip_atomic_load || |
| Op == AtomicExpr::AO__opencl_atomic_store || |
| Op == AtomicExpr::AO__hip_atomic_store) && |
| Context.AtomicUsesUnsupportedLibcall(AE)) |
| Diag(AE->getBeginLoc(), diag::err_atomic_load_store_uses_lib) |
| << ((Op == AtomicExpr::AO__c11_atomic_load || |
| Op == AtomicExpr::AO__opencl_atomic_load || |
| Op == AtomicExpr::AO__hip_atomic_load) |
| ? 0 |
| : 1); |
| |
| if (ValType->isExtIntType()) { |
| Diag(Ptr->getExprLoc(), diag::err_atomic_builtin_ext_int_prohibit); |
| return ExprError(); |
| } |
| |
| return AE; |
| } |
| |
| /// checkBuiltinArgument - Given a call to a builtin function, perform |
| /// normal type-checking on the given argument, updating the call in |
| /// place. This is useful when a builtin function requires custom |
| /// type-checking for some of its arguments but not necessarily all of |
| /// them. |
| /// |
| /// Returns true on error. |
| static bool checkBuiltinArgument(Sema &S, CallExpr *E, unsigned ArgIndex) { |
| FunctionDecl *Fn = E->getDirectCallee(); |
| assert(Fn && "builtin call without direct callee!"); |
| |
| ParmVarDecl *Param = Fn->getParamDecl(ArgIndex); |
| InitializedEntity Entity = |
| InitializedEntity::InitializeParameter(S.Context, Param); |
| |
| ExprResult Arg = E->getArg(0); |
| Arg = S.PerformCopyInitialization(Entity, SourceLocation(), Arg); |
| if (Arg.isInvalid()) |
| return true; |
| |
| E->setArg(ArgIndex, Arg.get()); |
| return false; |
| } |
| |
| /// We have a call to a function like __sync_fetch_and_add, which is an |
| /// overloaded function based on the pointer type of its first argument. |
| /// The main BuildCallExpr routines have already promoted the types of |
| /// arguments because all of these calls are prototyped as void(...). |
| /// |
| /// This function goes through and does final semantic checking for these |
| /// builtins, as well as generating any warnings. |
| ExprResult |
| Sema::SemaBuiltinAtomicOverloaded(ExprResult TheCallResult) { |
| CallExpr *TheCall = static_cast<CallExpr *>(TheCallResult.get()); |
| Expr *Callee = TheCall->getCallee(); |
| DeclRefExpr *DRE = cast<DeclRefExpr>(Callee->IgnoreParenCasts()); |
| FunctionDecl *FDecl = cast<FunctionDecl>(DRE->getDecl()); |
| |
| // Ensure that we have at least one argument to do type inference from. |
| if (TheCall->getNumArgs() < 1) { |
| Diag(TheCall->getEndLoc(), diag::err_typecheck_call_too_few_args_at_least) |
| << 0 << 1 << TheCall->getNumArgs() << Callee->getSourceRange(); |
| return ExprError(); |
| } |
| |
| // Inspect the first argument of the atomic builtin. This should always be |
| // a pointer type, whose element is an integral scalar or pointer type. |
| // Because it is a pointer type, we don't have to worry about any implicit |
| // casts here. |
| // FIXME: We don't allow floating point scalars as input. |
| Expr *FirstArg = TheCall->getArg(0); |
| ExprResult FirstArgResult = DefaultFunctionArrayLvalueConversion(FirstArg); |
| if (FirstArgResult.isInvalid()) |
| return ExprError(); |
| FirstArg = FirstArgResult.get(); |
| TheCall->setArg(0, FirstArg); |
| |
| const PointerType *pointerType = FirstArg->getType()->getAs<PointerType>(); |
| if (!pointerType) { |
| Diag(DRE->getBeginLoc(), diag::err_atomic_builtin_must_be_pointer) |
| << FirstArg->getType() << FirstArg->getSourceRange(); |
| return ExprError(); |
| } |
| |
| QualType ValType = pointerType->getPointeeType(); |
| if (!ValType->isIntegerType() && !ValType->isAnyPointerType() && |
| !ValType->isBlockPointerType()) { |
| Diag(DRE->getBeginLoc(), diag::err_atomic_builtin_must_be_pointer_intptr) |
| << FirstArg->getType() << FirstArg->getSourceRange(); |
| return ExprError(); |
| } |
| |
| if (ValType.isConstQualified()) { |
| Diag(DRE->getBeginLoc(), diag::err_atomic_builtin_cannot_be_const) |
| << FirstArg->getType() << FirstArg->getSourceRange(); |
| return ExprError(); |
| } |
| |
| switch (ValType.getObjCLifetime()) { |
| case Qualifiers::OCL_None: |
| case Qualifiers::OCL_ExplicitNone: |
| // okay |
| break; |
| |
| case Qualifiers::OCL_Weak: |
| case Qualifiers::OCL_Strong: |
| case Qualifiers::OCL_Autoreleasing: |
| Diag(DRE->getBeginLoc(), diag::err_arc_atomic_ownership) |
| << ValType << FirstArg->getSourceRange(); |
| return ExprError(); |
| } |
| |
| // Strip any qualifiers off ValType. |
| ValType = ValType.getUnqualifiedType(); |
| |
| // The majority of builtins return a value, but a few have special return |
| // types, so allow them to override appropriately below. |
| QualType ResultType = ValType; |
| |
| // We need to figure out which concrete builtin this maps onto. For example, |
| // __sync_fetch_and_add with a 2 byte object turns into |
| // __sync_fetch_and_add_2. |
| #define BUILTIN_ROW(x) \ |
| { Builtin::BI##x##_1, Builtin::BI##x##_2, Builtin::BI##x##_4, \ |
| Builtin::BI##x##_8, Builtin::BI##x##_16 } |
| |
| static const unsigned BuiltinIndices[][5] = { |
| BUILTIN_ROW(__sync_fetch_and_add), |
| BUILTIN_ROW(__sync_fetch_and_sub), |
| BUILTIN_ROW(__sync_fetch_and_or), |
| BUILTIN_ROW(__sync_fetch_and_and), |
| BUILTIN_ROW(__sync_fetch_and_xor), |
| BUILTIN_ROW(__sync_fetch_and_nand), |
| |
| BUILTIN_ROW(__sync_add_and_fetch), |
| BUILTIN_ROW(__sync_sub_and_fetch), |
| BUILTIN_ROW(__sync_and_and_fetch), |
| BUILTIN_ROW(__sync_or_and_fetch), |
| BUILTIN_ROW(__sync_xor_and_fetch), |
| BUILTIN_ROW(__sync_nand_and_fetch), |
| |
| BUILTIN_ROW(__sync_val_compare_and_swap), |
| BUILTIN_ROW(__sync_bool_compare_and_swap), |
| BUILTIN_ROW(__sync_lock_test_and_set), |
| BUILTIN_ROW(__sync_lock_release), |
| BUILTIN_ROW(__sync_swap) |
| }; |
| #undef BUILTIN_ROW |
| |
| // Determine the index of the size. |
| unsigned SizeIndex; |
| switch (Context.getTypeSizeInChars(ValType).getQuantity()) { |
| case 1: SizeIndex = 0; break; |
| case 2: SizeIndex = 1; break; |
| case 4: SizeIndex = 2; break; |
| case 8: SizeIndex = 3; break; |
| case 16: SizeIndex = 4; break; |
| default: |
| Diag(DRE->getBeginLoc(), diag::err_atomic_builtin_pointer_size) |
| << FirstArg->getType() << FirstArg->getSourceRange(); |
| return ExprError(); |
| } |
| |
| // Each of these builtins has one pointer argument, followed by some number of |
| // values (0, 1 or 2) followed by a potentially empty varags list of stuff |
| // that we ignore. Find out which row of BuiltinIndices to read from as well |
| // as the number of fixed args. |
| unsigned BuiltinID = FDecl->getBuiltinID(); |
| unsigned BuiltinIndex, NumFixed = 1; |
| bool WarnAboutSemanticsChange = false; |
| switch (BuiltinID) { |
| default: llvm_unreachable("Unknown overloaded atomic builtin!"); |
| case Builtin::BI__sync_fetch_and_add: |
| case Builtin::BI__sync_fetch_and_add_1: |
| case Builtin::BI__sync_fetch_and_add_2: |
| case Builtin::BI__sync_fetch_and_add_4: |
| case Builtin::BI__sync_fetch_and_add_8: |
| case Builtin::BI__sync_fetch_and_add_16: |
| BuiltinIndex = 0; |
| break; |
| |
| case Builtin::BI__sync_fetch_and_sub: |
| case Builtin::BI__sync_fetch_and_sub_1: |
| case Builtin::BI__sync_fetch_and_sub_2: |
| case Builtin::BI__sync_fetch_and_sub_4: |
| case Builtin::BI__sync_fetch_and_sub_8: |
| case Builtin::BI__sync_fetch_and_sub_16: |
| BuiltinIndex = 1; |
| break; |
| |
| case Builtin::BI__sync_fetch_and_or: |
| case Builtin::BI__sync_fetch_and_or_1: |
| case Builtin::BI__sync_fetch_and_or_2: |
| case Builtin::BI__sync_fetch_and_or_4: |
| case Builtin::BI__sync_fetch_and_or_8: |
| case Builtin::BI__sync_fetch_and_or_16: |
| BuiltinIndex = 2; |
| break; |
| |
| case Builtin::BI__sync_fetch_and_and: |
| case Builtin::BI__sync_fetch_and_and_1: |
| case Builtin::BI__sync_fetch_and_and_2: |
| case Builtin::BI__sync_fetch_and_and_4: |
| case Builtin::BI__sync_fetch_and_and_8: |
| case Builtin::BI__sync_fetch_and_and_16: |
| BuiltinIndex = 3; |
| break; |
| |
| case Builtin::BI__sync_fetch_and_xor: |
| case Builtin::BI__sync_fetch_and_xor_1: |
| case Builtin::BI__sync_fetch_and_xor_2: |
| case Builtin::BI__sync_fetch_and_xor_4: |
| case Builtin::BI__sync_fetch_and_xor_8: |
| case Builtin::BI__sync_fetch_and_xor_16: |
| BuiltinIndex = 4; |
| break; |
| |
| case Builtin::BI__sync_fetch_and_nand: |
| case Builtin::BI__sync_fetch_and_nand_1: |
| case Builtin::BI__sync_fetch_and_nand_2: |
| case Builtin::BI__sync_fetch_and_nand_4: |
| case Builtin::BI__sync_fetch_and_nand_8: |
| case Builtin::BI__sync_fetch_and_nand_16: |
| BuiltinIndex = 5; |
| WarnAboutSemanticsChange = true; |
| break; |
| |
| case Builtin::BI__sync_add_and_fetch: |
| case Builtin::BI__sync_add_and_fetch_1: |
| case Builtin::BI__sync_add_and_fetch_2: |
| case Builtin::BI__sync_add_and_fetch_4: |
| case Builtin::BI__sync_add_and_fetch_8: |
| case Builtin::BI__sync_add_and_fetch_16: |
| BuiltinIndex = 6; |
| break; |
| |
| case Builtin::BI__sync_sub_and_fetch: |
| case Builtin::BI__sync_sub_and_fetch_1: |
| case Builtin::BI__sync_sub_and_fetch_2: |
| case Builtin::BI__sync_sub_and_fetch_4: |
| case Builtin::BI__sync_sub_and_fetch_8: |
| case Builtin::BI__sync_sub_and_fetch_16: |
| BuiltinIndex = 7; |
| break; |
| |
| case Builtin::BI__sync_and_and_fetch: |
| case Builtin::BI__sync_and_and_fetch_1: |
| case Builtin::BI__sync_and_and_fetch_2: |
| case Builtin::BI__sync_and_and_fetch_4: |
| case Builtin::BI__sync_and_and_fetch_8: |
| case Builtin::BI__sync_and_and_fetch_16: |
| BuiltinIndex = 8; |
| break; |
| |
| case Builtin::BI__sync_or_and_fetch: |
| case Builtin::BI__sync_or_and_fetch_1: |
| case Builtin::BI__sync_or_and_fetch_2: |
| case Builtin::BI__sync_or_and_fetch_4: |
| case Builtin::BI__sync_or_and_fetch_8: |
| case Builtin::BI__sync_or_and_fetch_16: |
| BuiltinIndex = 9; |
| break; |
| |
| case Builtin::BI__sync_xor_and_fetch: |
| case Builtin::BI__sync_xor_and_fetch_1: |
| case Builtin::BI__sync_xor_and_fetch_2: |
| case Builtin::BI__sync_xor_and_fetch_4: |
| case Builtin::BI__sync_xor_and_fetch_8: |
| case Builtin::BI__sync_xor_and_fetch_16: |
| BuiltinIndex = 10; |
| break; |
| |
| case Builtin::BI__sync_nand_and_fetch: |
| case Builtin::BI__sync_nand_and_fetch_1: |
| case Builtin::BI__sync_nand_and_fetch_2: |
| case Builtin::BI__sync_nand_and_fetch_4: |
| case Builtin::BI__sync_nand_and_fetch_8: |
| case Builtin::BI__sync_nand_and_fetch_16: |
| BuiltinIndex = 11; |
| WarnAboutSemanticsChange = true; |
| break; |
| |
| case Builtin::BI__sync_val_compare_and_swap: |
| case Builtin::BI__sync_val_compare_and_swap_1: |
| case Builtin::BI__sync_val_compare_and_swap_2: |
| case Builtin::BI__sync_val_compare_and_swap_4: |
| case Builtin::BI__sync_val_compare_and_swap_8: |
| case Builtin::BI__sync_val_compare_and_swap_16: |
| BuiltinIndex = 12; |
| NumFixed = 2; |
| break; |
| |
| case Builtin::BI__sync_bool_compare_and_swap: |
| case Builtin::BI__sync_bool_compare_and_swap_1: |
| case Builtin::BI__sync_bool_compare_and_swap_2: |
| case Builtin::BI__sync_bool_compare_and_swap_4: |
| case Builtin::BI__sync_bool_compare_and_swap_8: |
| case Builtin::BI__sync_bool_compare_and_swap_16: |
| BuiltinIndex = 13; |
| NumFixed = 2; |
| ResultType = Context.BoolTy; |
| break; |
| |
| case Builtin::BI__sync_lock_test_and_set: |
| case Builtin::BI__sync_lock_test_and_set_1: |
| case Builtin::BI__sync_lock_test_and_set_2: |
| case Builtin::BI__sync_lock_test_and_set_4: |
| case Builtin::BI__sync_lock_test_and_set_8: |
| case Builtin::BI__sync_lock_test_and_set_16: |
| BuiltinIndex = 14; |
| break; |
| |
| case Builtin::BI__sync_lock_release: |
| case Builtin::BI__sync_lock_release_1: |
| case Builtin::BI__sync_lock_release_2: |
| case Builtin::BI__sync_lock_release_4: |
| case Builtin::BI__sync_lock_release_8: |
| case Builtin::BI__sync_lock_release_16: |
| BuiltinIndex = 15; |
| NumFixed = 0; |
| ResultType = Context.VoidTy; |
| break; |
| |
| case Builtin::BI__sync_swap: |
| case Builtin::BI__sync_swap_1: |
| case Builtin::BI__sync_swap_2: |
| case Builtin::BI__sync_swap_4: |
| case Builtin::BI__sync_swap_8: |
| case Builtin::BI__sync_swap_16: |
| BuiltinIndex = 16; |
| break; |
| } |
| |
| // Now that we know how many fixed arguments we expect, first check that we |
| // have at least that many. |
| if (TheCall->getNumArgs() < 1+NumFixed) { |
| Diag(TheCall->getEndLoc(), diag::err_typecheck_call_too_few_args_at_least) |
| << 0 << 1 + NumFixed << TheCall->getNumArgs() |
| << Callee->getSourceRange(); |
| return ExprError(); |
| } |
| |
| Diag(TheCall->getEndLoc(), diag::warn_atomic_implicit_seq_cst) |
| << Callee->getSourceRange(); |
| |
| if (WarnAboutSemanticsChange) { |
| Diag(TheCall->getEndLoc(), diag::warn_sync_fetch_and_nand_semantics_change) |
| << Callee->getSourceRange(); |
| } |
| |
| // Get the decl for the concrete builtin from this, we can tell what the |
| // concrete integer type we should convert to is. |
| unsigned NewBuiltinID = BuiltinIndices[BuiltinIndex][SizeIndex]; |
| const char *NewBuiltinName = Context.BuiltinInfo.getName(NewBuiltinID); |
| FunctionDecl *NewBuiltinDecl; |
| if (NewBuiltinID == BuiltinID) |
| NewBuiltinDecl = FDecl; |
| else { |
| // Perform builtin lookup to avoid redeclaring it. |
| DeclarationName DN(&Context.Idents.get(NewBuiltinName)); |
| LookupResult Res(*this, DN, DRE->getBeginLoc(), LookupOrdinaryName); |
| LookupName(Res, TUScope, /*AllowBuiltinCreation=*/true); |
| assert(Res.getFoundDecl()); |
| NewBuiltinDecl = dyn_cast<FunctionDecl>(Res.getFoundDecl()); |
| if (!NewBuiltinDecl) |
| return ExprError(); |
| } |
| |
| // The first argument --- the pointer --- has a fixed type; we |
| // deduce the types of the rest of the arguments accordingly. Walk |
| // the remaining arguments, converting them to the deduced value type. |
| for (unsigned i = 0; i != NumFixed; ++i) { |
| ExprResult Arg = TheCall->getArg(i+1); |
| |
| // GCC does an implicit conversion to the pointer or integer ValType. This |
| // can fail in some cases (1i -> int**), check for this error case now. |
| // Initialize the argument. |
| InitializedEntity Entity = InitializedEntity::InitializeParameter(Context, |
| ValType, /*consume*/ false); |
| Arg = PerformCopyInitialization(Entity, SourceLocation(), Arg); |
| if (Arg.isInvalid()) |
| return ExprError(); |
| |
| // Okay, we have something that *can* be converted to the right type. Check |
| // to see if there is a potentially weird extension going on here. This can |
| // happen when you do an atomic operation on something like an char* and |
| // pass in 42. The 42 gets converted to char. This is even more strange |
| // for things like 45.123 -> char, etc. |
| // FIXME: Do this check. |
| TheCall->setArg(i+1, Arg.get()); |
| } |
| |
| // Create a new DeclRefExpr to refer to the new decl. |
| DeclRefExpr *NewDRE = DeclRefExpr::Create( |
| Context, DRE->getQualifierLoc(), SourceLocation(), NewBuiltinDecl, |
| /*enclosing*/ false, DRE->getLocation(), Context.BuiltinFnTy, |
| DRE->getValueKind(), nullptr, nullptr, DRE->isNonOdrUse()); |
| |
| // Set the callee in the CallExpr. |
| // FIXME: This loses syntactic information. |
| QualType CalleePtrTy = Context.getPointerType(NewBuiltinDecl->getType()); |
| ExprResult PromotedCall = ImpCastExprToType(NewDRE, CalleePtrTy, |
| CK_BuiltinFnToFnPtr); |
| TheCall->setCallee(PromotedCall.get()); |
| |
| // Change the result type of the call to match the original value type. This |
| // is arbitrary, but the codegen for these builtins ins design to handle it |
| // gracefully. |
| TheCall->setType(ResultType); |
| |
| // Prohibit use of _ExtInt with atomic builtins. |
| // The arguments would have already been converted to the first argument's |
| // type, so only need to check the first argument. |
| const auto *ExtIntValType = ValType->getAs<ExtIntType>(); |
| if (ExtIntValType && !llvm::isPowerOf2_64(ExtIntValType->getNumBits())) { |
| Diag(FirstArg->getExprLoc(), diag::err_atomic_builtin_ext_int_size); |
| return ExprError(); |
| } |
| |
| return TheCallResult; |
| } |
| |
| /// SemaBuiltinNontemporalOverloaded - We have a call to |
| /// __builtin_nontemporal_store or __builtin_nontemporal_load, which is an |
| /// overloaded function based on the pointer type of its last argument. |
| /// |
| /// This function goes through and does final semantic checking for these |
| /// builtins. |
| ExprResult Sema::SemaBuiltinNontemporalOverloaded(ExprResult TheCallResult) { |
| CallExpr *TheCall = (CallExpr *)TheCallResult.get(); |
| DeclRefExpr *DRE = |
| cast<DeclRefExpr>(TheCall->getCallee()->IgnoreParenCasts()); |
| FunctionDecl *FDecl = cast<FunctionDecl>(DRE->getDecl()); |
| unsigned BuiltinID = FDecl->getBuiltinID(); |
| assert((BuiltinID == Builtin::BI__builtin_nontemporal_store || |
| BuiltinID == Builtin::BI__builtin_nontemporal_load) && |
| "Unexpected nontemporal load/store builtin!"); |
| bool isStore = BuiltinID == Builtin::BI__builtin_nontemporal_store; |
| unsigned numArgs = isStore ? 2 : 1; |
| |
| // Ensure that we have the proper number of arguments. |
| if (checkArgCount(*this, TheCall, numArgs)) |
| return ExprError(); |
| |
| // Inspect the last argument of the nontemporal builtin. This should always |
| // be a pointer type, from which we imply the type of the memory access. |
| // Because it is a pointer type, we don't have to worry about any implicit |
| // casts here. |
| Expr *PointerArg = TheCall->getArg(numArgs - 1); |
| ExprResult PointerArgResult = |
| DefaultFunctionArrayLvalueConversion(PointerArg); |
| |
| if (PointerArgResult.isInvalid()) |
| return ExprError(); |
| PointerArg = PointerArgResult.get(); |
| TheCall->setArg(numArgs - 1, PointerArg); |
| |
| const PointerType *pointerType = PointerArg->getType()->getAs<PointerType>(); |
| if (!pointerType) { |
| Diag(DRE->getBeginLoc(), diag::err_nontemporal_builtin_must_be_pointer) |
| << PointerArg->getType() << PointerArg->getSourceRange(); |
| return ExprError(); |
| } |
| |
| QualType ValType = pointerType->getPointeeType(); |
| |
| // Strip any qualifiers off ValType. |
| ValType = ValType.getUnqualifiedType(); |
| if (!ValType->isIntegerType() && !ValType->isAnyPointerType() && |
| !ValType->isBlockPointerType() && !ValType->isFloatingType() && |
| !ValType->isVectorType()) { |
| Diag(DRE->getBeginLoc(), |
| diag::err_nontemporal_builtin_must_be_pointer_intfltptr_or_vector) |
| << PointerArg->getType() << PointerArg->getSourceRange(); |
| return ExprError(); |
| } |
| |
| if (!isStore) { |
| TheCall->setType(ValType); |
| return TheCallResult; |
| } |
| |
| ExprResult ValArg = TheCall->getArg(0); |
| InitializedEntity Entity = InitializedEntity::InitializeParameter( |
| Context, ValType, /*consume*/ false); |
| ValArg = PerformCopyInitialization(Entity, SourceLocation(), ValArg); |
| if (ValArg.isInvalid()) |
| return ExprError(); |
| |
| TheCall->setArg(0, ValArg.get()); |
| TheCall->setType(Context.VoidTy); |
| return TheCallResult; |
| } |
| |
| /// CheckObjCString - Checks that the argument to the builtin |
| /// CFString constructor is correct |
| /// Note: It might also make sense to do the UTF-16 conversion here (would |
| /// simplify the backend). |
| bool Sema::CheckObjCString(Expr *Arg) { |
| Arg = Arg->IgnoreParenCasts(); |
| StringLiteral *Literal = dyn_cast<StringLiteral>(Arg); |
| |
| if (!Literal || !Literal->isAscii()) { |
| Diag(Arg->getBeginLoc(), diag::err_cfstring_literal_not_string_constant) |
| << Arg->getSourceRange(); |
| return true; |
| } |
| |
| if (Literal->containsNonAsciiOrNull()) { |
| StringRef String = Literal->getString(); |
| unsigned NumBytes = String.size(); |
| SmallVector<llvm::UTF16, 128> ToBuf(NumBytes); |
| const llvm::UTF8 *FromPtr = (const llvm::UTF8 *)String.data(); |
| llvm::UTF16 *ToPtr = &ToBuf[0]; |
| |
| llvm::ConversionResult Result = |
| llvm::ConvertUTF8toUTF16(&FromPtr, FromPtr + NumBytes, &ToPtr, |
| ToPtr + NumBytes, llvm::strictConversion); |
| // Check for conversion failure. |
| if (Result != llvm::conversionOK) |
| Diag(Arg->getBeginLoc(), diag::warn_cfstring_truncated) |
| << Arg->getSourceRange(); |
| } |
| return false; |
| } |
| |
| /// CheckObjCString - Checks that the format string argument to the os_log() |
| /// and os_trace() functions is correct, and converts it to const char *. |
| ExprResult Sema::CheckOSLogFormatStringArg(Expr *Arg) { |
| Arg = Arg->IgnoreParenCasts(); |
| auto *Literal = dyn_cast<StringLiteral>(Arg); |
| if (!Literal) { |
| if (auto *ObjcLiteral = dyn_cast<ObjCStringLiteral>(Arg)) { |
| Literal = ObjcLiteral->getString(); |
| } |
| } |
| |
| if (!Literal || (!Literal->isAscii() && !Literal->isUTF8())) { |
| return ExprError( |
| Diag(Arg->getBeginLoc(), diag::err_os_log_format_not_string_constant) |
| << Arg->getSourceRange()); |
| } |
| |
| ExprResult Result(Literal); |
| QualType ResultTy = Context.getPointerType(Context.CharTy.withConst()); |
| InitializedEntity Entity = |
| InitializedEntity::InitializeParameter(Context, ResultTy, false); |
| Result = PerformCopyInitialization(Entity, SourceLocation(), Result); |
| return Result; |
| } |
| |
| /// Check that the user is calling the appropriate va_start builtin for the |
| /// target and calling convention. |
| static bool checkVAStartABI(Sema &S, unsigned BuiltinID, Expr *Fn) { |
| const llvm::Triple &TT = S.Context.getTargetInfo().getTriple(); |
| bool IsX64 = TT.getArch() == llvm::Triple::x86_64; |
| bool IsAArch64 = (TT.getArch() == llvm::Triple::aarch64 || |
| TT.getArch() == llvm::Triple::aarch64_32); |
| bool IsWindows = TT.isOSWindows(); |
| bool IsMSVAStart = BuiltinID == Builtin::BI__builtin_ms_va_start; |
| if (IsX64 || IsAArch64) { |
| CallingConv CC = CC_C; |
| if (const FunctionDecl *FD = S.getCurFunctionDecl()) |
| CC = FD->getType()->castAs<FunctionType>()->getCallConv(); |
| if (IsMSVAStart) { |
| // Don't allow this in System V ABI functions. |
| if (CC == CC_X86_64SysV || (!IsWindows && CC != CC_Win64)) |
| return S.Diag(Fn->getBeginLoc(), |
| diag::err_ms_va_start_used_in_sysv_function); |
| } else { |
| // On x86-64/AArch64 Unix, don't allow this in Win64 ABI functions. |
| // On x64 Windows, don't allow this in System V ABI functions. |
| // (Yes, that means there's no corresponding way to support variadic |
| // System V ABI functions on Windows.) |
| if ((IsWindows && CC == CC_X86_64SysV) || |
| (!IsWindows && CC == CC_Win64)) |
| return S.Diag(Fn->getBeginLoc(), |
| diag::err_va_start_used_in_wrong_abi_function) |
| << !IsWindows; |
| } |
| return false; |
| } |
| |
| if (IsMSVAStart) |
| return S.Diag(Fn->getBeginLoc(), diag::err_builtin_x64_aarch64_only); |
| return false; |
| } |
| |
| static bool checkVAStartIsInVariadicFunction(Sema &S, Expr *Fn, |
| ParmVarDecl **LastParam = nullptr) { |
| // Determine whether the current function, block, or obj-c method is variadic |
| // and get its parameter list. |
| bool IsVariadic = false; |
| ArrayRef<ParmVarDecl *> Params; |
| DeclContext *Caller = S.CurContext; |
| if (auto *Block = dyn_cast<BlockDecl>(Caller)) { |
| IsVariadic = Block->isVariadic(); |
| Params = Block->parameters(); |
| } else if (auto *FD = dyn_cast<FunctionDecl>(Caller)) { |
| IsVariadic = FD->isVariadic(); |
| Params = FD->parameters(); |
| } else if (auto *MD = dyn_cast<ObjCMethodDecl>(Caller)) { |
| IsVariadic = MD->isVariadic(); |
| // FIXME: This isn't correct for methods (results in bogus warning). |
| Params = MD->parameters(); |
| } else if (isa<CapturedDecl>(Caller)) { |
| // We don't support va_start in a CapturedDecl. |
| S.Diag(Fn->getBeginLoc(), diag::err_va_start_captured_stmt); |
| return true; |
| } else { |
| // This must be some other declcontext that parses exprs. |
| S.Diag(Fn->getBeginLoc(), diag::err_va_start_outside_function); |
| return true; |
| } |
| |
| if (!IsVariadic) { |
| S.Diag(Fn->getBeginLoc(), diag::err_va_start_fixed_function); |
| return true; |
| } |
| |
| if (LastParam) |
| *LastParam = Params.empty() ? nullptr : Params.back(); |
| |
| return false; |
| } |
| |
| /// Check the arguments to '__builtin_va_start' or '__builtin_ms_va_start' |
| /// for validity. Emit an error and return true on failure; return false |
| /// on success. |
| bool Sema::SemaBuiltinVAStart(unsigned BuiltinID, CallExpr *TheCall) { |
| Expr *Fn = TheCall->getCallee(); |
| |
| if (checkVAStartABI(*this, BuiltinID, Fn)) |
| return true; |
| |
| if (checkArgCount(*this, TheCall, 2)) |
| return true; |
| |
| // Type-check the first argument normally. |
| if (checkBuiltinArgument(*this, TheCall, 0)) |
| return true; |
| |
| // Check that the current function is variadic, and get its last parameter. |
| ParmVarDecl *LastParam; |
| if (checkVAStartIsInVariadicFunction(*this, Fn, &LastParam)) |
| return true; |
| |
| // Verify that the second argument to the builtin is the last argument of the |
| // current function or method. |
| bool SecondArgIsLastNamedArgument = false; |
| const Expr *Arg = TheCall->getArg(1)->IgnoreParenCasts(); |
| |
| // These are valid if SecondArgIsLastNamedArgument is false after the next |
| // block. |
| QualType Type; |
| SourceLocation ParamLoc; |
| bool IsCRegister = false; |
| |
| if (const DeclRefExpr *DR = dyn_cast<DeclRefExpr>(Arg)) { |
| if (const ParmVarDecl *PV = dyn_cast<ParmVarDecl>(DR->getDecl())) { |
| SecondArgIsLastNamedArgument = PV == LastParam; |
| |
| Type = PV->getType(); |
| ParamLoc = PV->getLocation(); |
| IsCRegister = |
| PV->getStorageClass() == SC_Register && !getLangOpts().CPlusPlus; |
| } |
| } |
| |
| if (!SecondArgIsLastNamedArgument) |
| Diag(TheCall->getArg(1)->getBeginLoc(), |
| diag::warn_second_arg_of_va_start_not_last_named_param); |
| else if (IsCRegister || Type->isReferenceType() || |
| Type->isSpecificBuiltinType(BuiltinType::Float) || [=] { |
| // Promotable integers are UB, but enumerations need a bit of |
| // extra checking to see what their promotable type actually is. |
| if (!Type->isPromotableIntegerType()) |
| return false; |
| if (!Type->isEnumeralType()) |
| return true; |
| const EnumDecl *ED = Type->castAs<EnumType>()->getDecl(); |
| return !(ED && |
| Context.typesAreCompatible(ED->getPromotionType(), Type)); |
| }()) { |
| unsigned Reason = 0; |
| if (Type->isReferenceType()) Reason = 1; |
| else if (IsCRegister) Reason = 2; |
| Diag(Arg->getBeginLoc(), diag::warn_va_start_type_is_undefined) << Reason; |
| Diag(ParamLoc, diag::note_parameter_type) << Type; |
| } |
| |
| TheCall->setType(Context.VoidTy); |
| return false; |
| } |
| |
| bool Sema::SemaBuiltinVAStartARMMicrosoft(CallExpr *Call) { |
| auto IsSuitablyTypedFormatArgument = [this](const Expr *Arg) -> bool { |
| const LangOptions &LO = getLangOpts(); |
| |
| if (LO.CPlusPlus) |
| return Arg->getType() |
| .getCanonicalType() |
| .getTypePtr() |
| ->getPointeeType() |
| .withoutLocalFastQualifiers() == Context.CharTy; |
| |
| // In C, allow aliasing through `char *`, this is required for AArch64 at |
| // least. |
| return true; |
| }; |
| |
| // void __va_start(va_list *ap, const char *named_addr, size_t slot_size, |
| // const char *named_addr); |
| |
| Expr *Func = Call->getCallee(); |
| |
| if (Call->getNumArgs() < 3) |
| return Diag(Call->getEndLoc(), |
| diag::err_typecheck_call_too_few_args_at_least) |
| << 0 /*function call*/ << 3 << Call->getNumArgs(); |
| |
| // Type-check the first argument normally. |
| if (checkBuiltinArgument(*this, Call, 0)) |
| return true; |
| |
| // Check that the current function is variadic. |
| if (checkVAStartIsInVariadicFunction(*this, Func)) |
| return true; |
| |
| // __va_start on Windows does not validate the parameter qualifiers |
| |
| const Expr *Arg1 = Call->getArg(1)->IgnoreParens(); |
| const Type *Arg1Ty = Arg1->getType().getCanonicalType().getTypePtr(); |
| |
| const Expr *Arg2 = Call->getArg(2)->IgnoreParens(); |
| const Type *Arg2Ty = Arg2->getType().getCanonicalType().getTypePtr(); |
| |
| const QualType &ConstCharPtrTy = |
| Context.getPointerType(Context.CharTy.withConst()); |
| if (!Arg1Ty->isPointerType() || !IsSuitablyTypedFormatArgument(Arg1)) |
| Diag(Arg1->getBeginLoc(), diag::err_typecheck_convert_incompatible) |
| << Arg1->getType() << ConstCharPtrTy << 1 /* different class */ |
| << 0 /* qualifier difference */ |
| << 3 /* parameter mismatch */ |
| << 2 << Arg1->getType() << ConstCharPtrTy; |
| |
| const QualType SizeTy = Context.getSizeType(); |
| if (Arg2Ty->getCanonicalTypeInternal().withoutLocalFastQualifiers() != SizeTy) |
| Diag(Arg2->getBeginLoc(), diag::err_typecheck_convert_incompatible) |
| << Arg2->getType() << SizeTy << 1 /* different class */ |
| << 0 /* qualifier difference */ |
| << 3 /* parameter mismatch */ |
| << 3 << Arg2->getType() << SizeTy; |
| |
| return false; |
| } |
| |
| /// SemaBuiltinUnorderedCompare - Handle functions like __builtin_isgreater and |
| /// friends. This is declared to take (...), so we have to check everything. |
| bool Sema::SemaBuiltinUnorderedCompare(CallExpr *TheCall) { |
| if (checkArgCount(*this, TheCall, 2)) |
| return true; |
| |
| ExprResult OrigArg0 = TheCall->getArg(0); |
| ExprResult OrigArg1 = TheCall->getArg(1); |
| |
| // Do standard promotions between the two arguments, returning their common |
| // type. |
| QualType Res = UsualArithmeticConversions( |
| OrigArg0, OrigArg1, TheCall->getExprLoc(), ACK_Comparison); |
| if (OrigArg0.isInvalid() || OrigArg1.isInvalid()) |
| return true; |
| |
| // Make sure any conversions are pushed back into the call; this is |
| // type safe since unordered compare builtins are declared as "_Bool |
| // foo(...)". |
| TheCall->setArg(0, OrigArg0.get()); |
| TheCall->setArg(1, OrigArg1.get()); |
| |
| if (OrigArg0.get()->isTypeDependent() || OrigArg1.get()->isTypeDependent()) |
| return false; |
| |
| // If the common type isn't a real floating type, then the arguments were |
| // invalid for this operation. |
| if (Res.isNull() || !Res->isRealFloatingType()) |
| return Diag(OrigArg0.get()->getBeginLoc(), |
| diag::err_typecheck_call_invalid_ordered_compare) |
| << OrigArg0.get()->getType() << OrigArg1.get()->getType() |
| << SourceRange(OrigArg0.get()->getBeginLoc(), |
| OrigArg1.get()->getEndLoc()); |
| |
| return false; |
| } |
| |
| /// SemaBuiltinSemaBuiltinFPClassification - Handle functions like |
| /// __builtin_isnan and friends. This is declared to take (...), so we have |
| /// to check everything. We expect the last argument to be a floating point |
| /// value. |
| bool Sema::SemaBuiltinFPClassification(CallExpr *TheCall, unsigned NumArgs) { |
| if (checkArgCount(*this, TheCall, NumArgs)) |
| return true; |
| |
| // __builtin_fpclassify is the only case where NumArgs != 1, so we can count |
| // on all preceding parameters just being int. Try all of those. |
| for (unsigned i = 0; i < NumArgs - 1; ++i) { |
| Expr *Arg = TheCall->getArg(i); |
| |
| if (Arg->isTypeDependent()) |
| return false; |
| |
| ExprResult Res = PerformImplicitConversion(Arg, Context.IntTy, AA_Passing); |
| |
| if (Res.isInvalid()) |
| return true; |
| TheCall->setArg(i, Res.get()); |
| } |
| |
| Expr *OrigArg = TheCall->getArg(NumArgs-1); |
| |
| if (OrigArg->isTypeDependent()) |
| return false; |
| |
| // Usual Unary Conversions will convert half to float, which we want for |
| // machines that use fp16 conversion intrinsics. Else, we wnat to leave the |
| // type how it is, but do normal L->Rvalue conversions. |
| if (Context.getTargetInfo().useFP16ConversionIntrinsics()) |
| OrigArg = UsualUnaryConversions(OrigArg).get(); |
| else |
| OrigArg = DefaultFunctionArrayLvalueConversion(OrigArg).get(); |
| TheCall->setArg(NumArgs - 1, OrigArg); |
| |
| // This operation requires a non-_Complex floating-point number. |
| if (!OrigArg->getType()->isRealFloatingType()) |
| return Diag(OrigArg->getBeginLoc(), |
| diag::err_typecheck_call_invalid_unary_fp) |
| << OrigArg->getType() << OrigArg->getSourceRange(); |
| |
| return false; |
| } |
| |
| /// Perform semantic analysis for a call to __builtin_complex. |
| bool Sema::SemaBuiltinComplex(CallExpr *TheCall) { |
| if (checkArgCount(*this, TheCall, 2)) |
| return true; |
| |
| bool Dependent = false; |
| for (unsigned I = 0; I != 2; ++I) { |
| Expr *Arg = TheCall->getArg(I); |
| QualType T = Arg->getType(); |
| if (T->isDependentType()) { |
| Dependent = true; |
| continue; |
| } |
| |
| // Despite supporting _Complex int, GCC requires a real floating point type |
| // for the operands of __builtin_complex. |
| if (!T->isRealFloatingType()) { |
| return Diag(Arg->getBeginLoc(), diag::err_typecheck_call_requires_real_fp) |
| << Arg->getType() << Arg->getSourceRange(); |
| } |
| |
| ExprResult Converted = DefaultLvalueConversion(Arg); |
| if (Converted.isInvalid()) |
| return true; |
| TheCall->setArg(I, Converted.get()); |
| } |
| |
| if (Dependent) { |
| TheCall->setType(Context.DependentTy); |
| return false; |
| } |
| |
| Expr *Real = TheCall->getArg(0); |
| Expr *Imag = TheCall->getArg(1); |
| if (!Context.hasSameType(Real->getType(), Imag->getType())) { |
| return Diag(Real->getBeginLoc(), |
| diag::err_typecheck_call_different_arg_types) |
| << Real->getType() << Imag->getType() |
| << Real->getSourceRange() << Imag->getSourceRange(); |
| } |
| |
| // We don't allow _Complex _Float16 nor _Complex __fp16 as type specifiers; |
| // don't allow this builtin to form those types either. |
| // FIXME: Should we allow these types? |
| if (Real->getType()->isFloat16Type()) |
| return Diag(TheCall->getBeginLoc(), diag::err_invalid_complex_spec) |
| << "_Float16"; |
| if (Real->getType()->isHalfType()) |
| return Diag(TheCall->getBeginLoc(), diag::err_invalid_complex_spec) |
| << "half"; |
| |
| TheCall->setType(Context.getComplexType(Real->getType())); |
| return false; |
| } |
| |
| // Customized Sema Checking for VSX builtins that have the following signature: |
| // vector [...] builtinName(vector [...], vector [...], const int); |
| // Which takes the same type of vectors (any legal vector type) for the first |
| // two arguments and takes compile time constant for the third argument. |
| // Example builtins are : |
| // vector double vec_xxpermdi(vector double, vector double, int); |
| // vector short vec_xxsldwi(vector short, vector short, int); |
| bool Sema::SemaBuiltinVSX(CallExpr *TheCall) { |
| unsigned ExpectedNumArgs = 3; |
| if (checkArgCount(*this, TheCall, ExpectedNumArgs)) |
| return true; |
| |
| // Check the third argument is a compile time constant |
| if (!TheCall->getArg(2)->isIntegerConstantExpr(Context)) |
| return Diag(TheCall->getBeginLoc(), |
| diag::err_vsx_builtin_nonconstant_argument) |
| << 3 /* argument index */ << TheCall->getDirectCallee() |
| << SourceRange(TheCall->getArg(2)->getBeginLoc(), |
| TheCall->getArg(2)->getEndLoc()); |
| |
| QualType Arg1Ty = TheCall->getArg(0)->getType(); |
| QualType Arg2Ty = TheCall->getArg(1)->getType(); |
| |
| // Check the type of argument 1 and argument 2 are vectors. |
| SourceLocation BuiltinLoc = TheCall->getBeginLoc(); |
| if ((!Arg1Ty->isVectorType() && !Arg1Ty->isDependentType()) || |
| (!Arg2Ty->isVectorType() && !Arg2Ty->isDependentType())) { |
| return Diag(BuiltinLoc, diag::err_vec_builtin_non_vector) |
| << TheCall->getDirectCallee() |
| << SourceRange(TheCall->getArg(0)->getBeginLoc(), |
| TheCall->getArg(1)->getEndLoc()); |
| } |
| |
| // Check the first two arguments are the same type. |
| if (!Context.hasSameUnqualifiedType(Arg1Ty, Arg2Ty)) { |
| return Diag(BuiltinLoc, diag::err_vec_builtin_incompatible_vector) |
| << TheCall->getDirectCallee() |
| << SourceRange(TheCall->getArg(0)->getBeginLoc(), |
| TheCall->getArg(1)->getEndLoc()); |
| } |
| |
| // When default clang type checking is turned off and the customized type |
| // checking is used, the returning type of the function must be explicitly |
| // set. Otherwise it is _Bool by default. |
| TheCall->setType(Arg1Ty); |
| |
| return false; |
| } |
| |
| /// SemaBuiltinShuffleVector - Handle __builtin_shufflevector. |
| // This is declared to take (...), so we have to check everything. |
| ExprResult Sema::SemaBuiltinShuffleVector(CallExpr *TheCall) { |
| if (TheCall->getNumArgs() < 2) |
| return ExprError(Diag(TheCall->getEndLoc(), |
| diag::err_typecheck_call_too_few_args_at_least) |
| << 0 /*function call*/ << 2 << TheCall->getNumArgs() |
| << TheCall->getSourceRange()); |
| |
| // Determine which of the following types of shufflevector we're checking: |
| // 1) unary, vector mask: (lhs, mask) |
| // 2) binary, scalar mask: (lhs, rhs, index, ..., index) |
| QualType resType = TheCall->getArg(0)->getType(); |
| unsigned numElements = 0; |
| |
| if (!TheCall->getArg(0)->isTypeDependent() && |
| !TheCall->getArg(1)->isTypeDependent()) { |
| QualType LHSType = TheCall->getArg(0)->getType(); |
| QualType RHSType = TheCall->getArg(1)->getType(); |
| |
| if (!LHSType->isVectorType() || !RHSType->isVectorType()) |
| return ExprError( |
| Diag(TheCall->getBeginLoc(), diag::err_vec_builtin_non_vector) |
| << TheCall->getDirectCallee() |
| << SourceRange(TheCall->getArg(0)->getBeginLoc(), |
| TheCall->getArg(1)->getEndLoc())); |
| |
| numElements = LHSType->castAs<VectorType>()->getNumElements(); |
| unsigned numResElements = TheCall->getNumArgs() - 2; |
| |
| // Check to see if we have a call with 2 vector arguments, the unary shuffle |
| // with mask. If so, verify that RHS is an integer vector type with the |
| // same number of elts as lhs. |
| if (TheCall->getNumArgs() == 2) { |
| if (!RHSType->hasIntegerRepresentation() || |
| RHSType->castAs<VectorType>()->getNumElements() != numElements) |
| return ExprError(Diag(TheCall->getBeginLoc(), |
| diag::err_vec_builtin_incompatible_vector) |
| << TheCall->getDirectCallee() |
| << SourceRange(TheCall->getArg(1)->getBeginLoc(), |
| TheCall->getArg(1)->getEndLoc())); |
| } else if (!Context.hasSameUnqualifiedType(LHSType, RHSType)) { |
| return ExprError(Diag(TheCall->getBeginLoc(), |
| diag::err_vec_builtin_incompatible_vector) |
| << TheCall->getDirectCallee() |
| << SourceRange(TheCall->getArg(0)->getBeginLoc(), |
| TheCall->getArg(1)->getEndLoc())); |
| } else if (numElements != numResElements) { |
| QualType eltType = LHSType->castAs<VectorType>()->getElementType(); |
| resType = Context.getVectorType(eltType, numResElements, |
| VectorType::GenericVector); |
| } |
| } |
| |
| for (unsigned i = 2; i < TheCall->getNumArgs(); i++) { |
| if (TheCall->getArg(i)->isTypeDependent() || |
| TheCall->getArg(i)->isValueDependent()) |
| continue; |
| |
| Optional<llvm::APSInt> Result; |
| if (!(Result = TheCall->getArg(i)->getIntegerConstantExpr(Context))) |
| return ExprError(Diag(TheCall->getBeginLoc(), |
| diag::err_shufflevector_nonconstant_argument) |
| << TheCall->getArg(i)->getSourceRange()); |
| |
| // Allow -1 which will be translated to undef in the IR. |
| if (Result->isSigned() && Result->isAllOnes()) |
| continue; |
| |
| if (Result->getActiveBits() > 64 || |
| Result->getZExtValue() >= numElements * 2) |
| return ExprError(Diag(TheCall->getBeginLoc(), |
| diag::err_shufflevector_argument_too_large) |
| << TheCall->getArg(i)->getSourceRange()); |
| } |
| |
| SmallVector<Expr*, 32> exprs; |
| |
| for (unsigned i = 0, e = TheCall->getNumArgs(); i != e; i++) { |
| exprs.push_back(TheCall->getArg(i)); |
| TheCall->setArg(i, nullptr); |
| } |
| |
| return new (Context) ShuffleVectorExpr(Context, exprs, resType, |
| TheCall->getCallee()->getBeginLoc(), |
| TheCall->getRParenLoc()); |
| } |
| |
| /// SemaConvertVectorExpr - Handle __builtin_convertvector |
| ExprResult Sema::SemaConvertVectorExpr(Expr *E, TypeSourceInfo *TInfo, |
| SourceLocation BuiltinLoc, |
| SourceLocation RParenLoc) { |
| ExprValueKind VK = VK_PRValue; |
| ExprObjectKind OK = OK_Ordinary; |
| QualType DstTy = TInfo->getType(); |
| QualType SrcTy = E->getType(); |
| |
| if (!SrcTy->isVectorType() && !SrcTy->isDependentType()) |
| return ExprError(Diag(BuiltinLoc, |
| diag::err_convertvector_non_vector) |
| << E->getSourceRange()); |
| if (!DstTy->isVectorType() && !DstTy->isDependentType()) |
| return ExprError(Diag(BuiltinLoc, |
| diag::err_convertvector_non_vector_type)); |
| |
| if (!SrcTy->isDependentType() && !DstTy->isDependentType()) { |
| unsigned SrcElts = SrcTy->castAs<VectorType>()->getNumElements(); |
| unsigned DstElts = DstTy->castAs<VectorType>()->getNumElements(); |
| if (SrcElts != DstElts) |
| return ExprError(Diag(BuiltinLoc, |
| diag::err_convertvector_incompatible_vector) |
| << E->getSourceRange()); |
| } |
| |
| return new (Context) |
| ConvertVectorExpr(E, TInfo, DstTy, VK, OK, BuiltinLoc, RParenLoc); |
| } |
| |
| /// SemaBuiltinPrefetch - Handle __builtin_prefetch. |
| // This is declared to take (const void*, ...) and can take two |
| // optional constant int args. |
| bool Sema::SemaBuiltinPrefetch(CallExpr *TheCall) { |
| unsigned NumArgs = TheCall->getNumArgs(); |
| |
| if (NumArgs > 3) |
| return Diag(TheCall->getEndLoc(), |
| diag::err_typecheck_call_too_many_args_at_most) |
| << 0 /*function call*/ << 3 << NumArgs << TheCall->getSourceRange(); |
| |
| // Argument 0 is checked for us and the remaining arguments must be |
| // constant integers. |
| for (unsigned i = 1; i != NumArgs; ++i) |
| if (SemaBuiltinConstantArgRange(TheCall, i, 0, i == 1 ? 1 : 3)) |
| return true; |
| |
| return false; |
| } |
| |
| /// SemaBuiltinArithmeticFence - Handle __arithmetic_fence. |
| bool Sema::SemaBuiltinArithmeticFence(CallExpr *TheCall) { |
| if (!Context.getTargetInfo().checkArithmeticFenceSupported()) |
| return Diag(TheCall->getBeginLoc(), diag::err_builtin_target_unsupported) |
| << SourceRange(TheCall->getBeginLoc(), TheCall->getEndLoc()); |
| if (checkArgCount(*this, TheCall, 1)) |
| return true; |
| Expr *Arg = TheCall->getArg(0); |
| if (Arg->isInstantiationDependent()) |
| return false; |
| |
| QualType ArgTy = Arg->getType(); |
| if (!ArgTy->hasFloatingRepresentation()) |
| return Diag(TheCall->getEndLoc(), diag::err_typecheck_expect_flt_or_vector) |
| << ArgTy; |
| if (Arg->isLValue()) { |
| ExprResult FirstArg = DefaultLvalueConversion(Arg); |
| TheCall->setArg(0, FirstArg.get()); |
| } |
| TheCall->setType(TheCall->getArg(0)->getType()); |
| return false; |
| } |
| |
| /// SemaBuiltinAssume - Handle __assume (MS Extension). |
| // __assume does not evaluate its arguments, and should warn if its argument |
| // has side effects. |
| bool Sema::SemaBuiltinAssume(CallExpr *TheCall) { |
| Expr *Arg = TheCall->getArg(0); |
| if (Arg->isInstantiationDependent()) return false; |
| |
| if (Arg->HasSideEffects(Context)) |
| Diag(Arg->getBeginLoc(), diag::warn_assume_side_effects) |
| << Arg->getSourceRange() |
| << cast<FunctionDecl>(TheCall->getCalleeDecl())->getIdentifier(); |
| |
| return false; |
| } |
| |
| /// Handle __builtin_alloca_with_align. This is declared |
| /// as (size_t, size_t) where the second size_t must be a power of 2 greater |
| /// than 8. |
| bool Sema::SemaBuiltinAllocaWithAlign(CallExpr *TheCall) { |
| // The alignment must be a constant integer. |
| Expr *Arg = TheCall->getArg(1); |
| |
| // We can't check the value of a dependent argument. |
| if (!Arg->isTypeDependent() && !Arg->isValueDependent()) { |
| if (const auto *UE = |
| dyn_cast<UnaryExprOrTypeTraitExpr>(Arg->IgnoreParenImpCasts())) |
| if (UE->getKind() == UETT_AlignOf || |
| UE->getKind() == UETT_PreferredAlignOf) |
| Diag(TheCall->getBeginLoc(), diag::warn_alloca_align_alignof) |
| << Arg->getSourceRange(); |
| |
| llvm::APSInt Result = Arg->EvaluateKnownConstInt(Context); |
| |
| if (!Result.isPowerOf2()) |
| return Diag(TheCall->getBeginLoc(), diag::err_alignment_not_power_of_two) |
| << Arg->getSourceRange(); |
| |
| if (Result < Context.getCharWidth()) |
| return Diag(TheCall->getBeginLoc(), diag::err_alignment_too_small) |
| << (unsigned)Context.getCharWidth() << Arg->getSourceRange(); |
| |
| if (Result > std::numeric_limits<int32_t>::max()) |
| return Diag(TheCall->getBeginLoc(), diag::err_alignment_too_big) |
| << std::numeric_limits<int32_t>::max() << Arg->getSourceRange(); |
| } |
| |
| return false; |
| } |
| |
| /// Handle __builtin_assume_aligned. This is declared |
| /// as (const void*, size_t, ...) and can take one optional constant int arg. |
| bool Sema::SemaBuiltinAssumeAligned(CallExpr *TheCall) { |
| unsigned NumArgs = TheCall->getNumArgs(); |
| |
| if (NumArgs > 3) |
| return Diag(TheCall->getEndLoc(), |
| diag::err_typecheck_call_too_many_args_at_most) |
| << 0 /*function call*/ << 3 << NumArgs << TheCall->getSourceRange(); |
| |
| // The alignment must be a constant integer. |
| Expr *Arg = TheCall->getArg(1); |
| |
| // We can't check the value of a dependent argument. |
| if (!Arg->isTypeDependent() && !Arg->isValueDependent()) { |
| llvm::APSInt Result; |
| if (SemaBuiltinConstantArg(TheCall, 1, Result)) |
| return true; |
| |
| if (!Result.isPowerOf2()) |
| return Diag(TheCall->getBeginLoc(), diag::err_alignment_not_power_of_two) |
| << Arg->getSourceRange(); |
| |
| if (Result > Sema::MaximumAlignment) |
| Diag(TheCall->getBeginLoc(), diag::warn_assume_aligned_too_great) |
| << Arg->getSourceRange() << Sema::MaximumAlignment; |
| } |
| |
| if (NumArgs > 2) { |
| ExprResult Arg(TheCall->getArg(2)); |
| InitializedEntity Entity = InitializedEntity::InitializeParameter(Context, |
| Context.getSizeType(), false); |
| Arg = PerformCopyInitialization(Entity, SourceLocation(), Arg); |
| if (Arg.isInvalid()) return true; |
| TheCall->setArg(2, Arg.get()); |
| } |
| |
| return false; |
| } |
| |
| bool Sema::SemaBuiltinOSLogFormat(CallExpr *TheCall) { |
| unsigned BuiltinID = |
| cast<FunctionDecl>(TheCall->getCalleeDecl())->getBuiltinID(); |
| bool IsSizeCall = BuiltinID == Builtin::BI__builtin_os_log_format_buffer_size; |
| |
| unsigned NumArgs = TheCall->getNumArgs(); |
| unsigned NumRequiredArgs = IsSizeCall ? 1 : 2; |
| if (NumArgs < NumRequiredArgs) { |
| return Diag(TheCall->getEndLoc(), diag::err_typecheck_call_too_few_args) |
| << 0 /* function call */ << NumRequiredArgs << NumArgs |
| << TheCall->getSourceRange(); |
| } |
| if (NumArgs >= NumRequiredArgs + 0x100) { |
| return Diag(TheCall->getEndLoc(), |
| diag::err_typecheck_call_too_many_args_at_most) |
| << 0 /* function call */ << (NumRequiredArgs + 0xff) << NumArgs |
| << TheCall->getSourceRange(); |
| } |
| unsigned i = 0; |
| |
| // For formatting call, check buffer arg. |
| if (!IsSizeCall) { |
| ExprResult Arg(TheCall->getArg(i)); |
| InitializedEntity Entity = InitializedEntity::InitializeParameter( |
| Context, Context.VoidPtrTy, false); |
| Arg = PerformCopyInitialization(Entity, SourceLocation(), Arg); |
| if (Arg.isInvalid()) |
| return true; |
| TheCall->setArg(i, Arg.get()); |
| i++; |
| } |
| |
| // Check string literal arg. |
| unsigned FormatIdx = i; |
| { |
| ExprResult Arg = CheckOSLogFormatStringArg(TheCall->getArg(i)); |
| if (Arg.isInvalid()) |
| return true; |
| TheCall->setArg(i, Arg.get()); |
| i++; |
| } |
| |
| // Make sure variadic args are scalar. |
| unsigned FirstDataArg = i; |
| while (i < NumArgs) { |
| ExprResult Arg = DefaultVariadicArgumentPromotion( |
| TheCall->getArg(i), VariadicFunction, nullptr); |
| if (Arg.isInvalid()) |
| return true; |
| CharUnits ArgSize = Context.getTypeSizeInChars(Arg.get()->getType()); |
| if (ArgSize.getQuantity() >= 0x100) { |
| return Diag(Arg.get()->getEndLoc(), diag::err_os_log_argument_too_big) |
| << i << (int)ArgSize.getQuantity() << 0xff |
| << TheCall->getSourceRange(); |
| } |
| TheCall->setArg(i, Arg.get()); |
| i++; |
| } |
| |
| // Check formatting specifiers. NOTE: We're only doing this for the non-size |
| // call to avoid duplicate diagnostics. |
| if (!IsSizeCall) { |
| llvm::SmallBitVector CheckedVarArgs(NumArgs, false); |
| ArrayRef<const Expr *> Args(TheCall->getArgs(), TheCall->getNumArgs()); |
| bool Success = CheckFormatArguments( |
| Args, /*HasVAListArg*/ false, FormatIdx, FirstDataArg, FST_OSLog, |
| VariadicFunction, TheCall->getBeginLoc(), SourceRange(), |
| CheckedVarArgs); |
| if (!Success) |
| return true; |
| } |
| |
| if (IsSizeCall) { |
| TheCall->setType(Context.getSizeType()); |
| } else { |
| TheCall->setType(Context.VoidPtrTy); |
| } |
| return false; |
| } |
| |
| /// SemaBuiltinConstantArg - Handle a check if argument ArgNum of CallExpr |
| /// TheCall is a constant expression. |
| bool Sema::SemaBuiltinConstantArg(CallExpr *TheCall, int ArgNum, |
| llvm::APSInt &Result) { |
| Expr *Arg = TheCall->getArg(ArgNum); |
| DeclRefExpr *DRE =cast<DeclRefExpr>(TheCall->getCallee()->IgnoreParenCasts()); |
| FunctionDecl *FDecl = cast<FunctionDecl>(DRE->getDecl()); |
| |
| if (Arg->isTypeDependent() || Arg->isValueDependent()) return false; |
| |
| Optional<llvm::APSInt> R; |
| if (!(R = Arg->getIntegerConstantExpr(Context))) |
| return Diag(TheCall->getBeginLoc(), diag::err_constant_integer_arg_type) |
| << FDecl->getDeclName() << Arg->getSourceRange(); |
| Result = *R; |
| return false; |
| } |
| |
| /// SemaBuiltinConstantArgRange - Handle a check if argument ArgNum of CallExpr |
| /// TheCall is a constant expression in the range [Low, High]. |
| bool Sema::SemaBuiltinConstantArgRange(CallExpr *TheCall, int ArgNum, |
| int Low, int High, bool RangeIsError) { |
| if (isConstantEvaluated()) |
| return false; |
| llvm::APSInt Result; |
| |
| // We can't check the value of a dependent argument. |
| Expr *Arg = TheCall->getArg(ArgNum); |
| if (Arg->isTypeDependent() || Arg->isValueDependent()) |
| return false; |
| |
| // Check constant-ness first. |
| if (SemaBuiltinConstantArg(TheCall, ArgNum, Result)) |
| return true; |
| |
| if (Result.getSExtValue() < Low || Result.getSExtValue() > High) { |
| if (RangeIsError) |
| return Diag(TheCall->getBeginLoc(), diag::err_argument_invalid_range) |
| << toString(Result, 10) << Low << High << Arg->getSourceRange(); |
| else |
| // Defer the warning until we know if the code will be emitted so that |
| // dead code can ignore this. |
| DiagRuntimeBehavior(TheCall->getBeginLoc(), TheCall, |
| PDiag(diag::warn_argument_invalid_range) |
| << toString(Result, 10) << Low << High |
| << Arg->getSourceRange()); |
| } |
| |
| return false; |
| } |
| |
| /// SemaBuiltinConstantArgMultiple - Handle a check if argument ArgNum of CallExpr |
| /// TheCall is a constant expression is a multiple of Num.. |
| bool Sema::SemaBuiltinConstantArgMultiple(CallExpr *TheCall, int ArgNum, |
| unsigned Num) { |
| llvm::APSInt Result; |
| |
| // We can't check the value of a dependent argument. |
| Expr *Arg = TheCall->getArg(ArgNum); |
| if (Arg->isTypeDependent() || Arg->isValueDependent()) |
| return false; |
| |
| // Check constant-ness first. |
| if (SemaBuiltinConstantArg(TheCall, ArgNum, Result)) |
| return true; |
| |
| if (Result.getSExtValue() % Num != 0) |
| return Diag(TheCall->getBeginLoc(), diag::err_argument_not_multiple) |
| << Num << Arg->getSourceRange(); |
| |
| return false; |
| } |
| |
| /// SemaBuiltinConstantArgPower2 - Check if argument ArgNum of TheCall is a |
| /// constant expression representing a power of 2. |
| bool Sema::SemaBuiltinConstantArgPower2(CallExpr *TheCall, int ArgNum) { |
| llvm::APSInt Result; |
| |
| // We can't check the value of a dependent argument. |
| Expr *Arg = TheCall->getArg(ArgNum); |
| if (Arg->isTypeDependent() || Arg->isValueDependent()) |
| return false; |
| |
| // Check constant-ness first. |
| if (SemaBuiltinConstantArg(TheCall, ArgNum, Result)) |
| return true; |
| |
| // Bit-twiddling to test for a power of 2: for x > 0, x & (x-1) is zero if |
| // and only if x is a power of 2. |
| if (Result.isStrictlyPositive() && (Result & (Result - 1)) == 0) |
| return false; |
| |
| return Diag(TheCall->getBeginLoc(), diag::err_argument_not_power_of_2) |
| << Arg->getSourceRange(); |
| } |
| |
| static bool IsShiftedByte(llvm::APSInt Value) { |
| if (Value.isNegative()) |
| return false; |
| |
| // Check if it's a shifted byte, by shifting it down |
| while (true) { |
| // If the value fits in the bottom byte, the check passes. |
| if (Value < 0x100) |
| return true; |
| |
| // Otherwise, if the value has _any_ bits in the bottom byte, the check |
| // fails. |
| if ((Value & 0xFF) != 0) |
| return false; |
| |
| // If the bottom 8 bits are all 0, but something above that is nonzero, |
| // then shifting the value right by 8 bits won't affect whether it's a |
| // shifted byte or not. So do that, and go round again. |
| Value >>= 8; |
| } |
| } |
| |
| /// SemaBuiltinConstantArgShiftedByte - Check if argument ArgNum of TheCall is |
| /// a constant expression representing an arbitrary byte value shifted left by |
| /// a multiple of 8 bits. |
| bool Sema::SemaBuiltinConstantArgShiftedByte(CallExpr *TheCall, int ArgNum, |
| unsigned ArgBits) { |
| llvm::APSInt Result; |
| |
| // We can't check the value of a dependent argument. |
| Expr *Arg = TheCall->getArg(ArgNum); |
| if (Arg->isTypeDependent() || Arg->isValueDependent()) |
| return false; |
| |
| // Check constant-ness first. |
| if (SemaBuiltinConstantArg(TheCall, ArgNum, Result)) |
| return true; |
| |
| // Truncate to the given size. |
| Result = Result.getLoBits(ArgBits); |
| Result.setIsUnsigned(true); |
| |
| if (IsShiftedByte(Result)) |
| return false; |
| |
| return Diag(TheCall->getBeginLoc(), diag::err_argument_not_shifted_byte) |
| << Arg->getSourceRange(); |
| } |
| |
| /// SemaBuiltinConstantArgShiftedByteOr0xFF - Check if argument ArgNum of |
| /// TheCall is a constant expression representing either a shifted byte value, |
| /// or a value of the form 0x??FF (i.e. a member of the arithmetic progression |
| /// 0x00FF, 0x01FF, ..., 0xFFFF). This strange range check is needed for some |
| /// Arm MVE intrinsics. |
| bool Sema::SemaBuiltinConstantArgShiftedByteOrXXFF(CallExpr *TheCall, |
| int ArgNum, |
| unsigned ArgBits) { |
| llvm::APSInt Result; |
| |
| // We can't check the value of a dependent argument. |
| Expr *Arg = TheCall->getArg(ArgNum); |
| if (Arg->isTypeDependent() || Arg->isValueDependent()) |
| return false; |
| |
| // Check constant-ness first. |
| if (SemaBuiltinConstantArg(TheCall, ArgNum, Result)) |
| return true; |
| |
| // Truncate to the given size. |
| Result = Result.getLoBits(ArgBits); |
| Result.setIsUnsigned(true); |
| |
| // Check to see if it's in either of the required forms. |
| if (IsShiftedByte(Result) || |
| (Result > 0 && Result < 0x10000 && (Result & 0xFF) == 0xFF)) |
| return false; |
| |
| return Diag(TheCall->getBeginLoc(), |
| diag::err_argument_not_shifted_byte_or_xxff) |
| << Arg->getSourceRange(); |
| } |
| |
| /// SemaBuiltinARMMemoryTaggingCall - Handle calls of memory tagging extensions |
| bool Sema::SemaBuiltinARMMemoryTaggingCall(unsigned BuiltinID, CallExpr *TheCall) { |
| if (BuiltinID == AArch64::BI__builtin_arm_irg) { |
| if (checkArgCount(*this, TheCall, 2)) |
| return true; |
| Expr *Arg0 = TheCall->getArg(0); |
| Expr *Arg1 = TheCall->getArg(1); |
| |
| ExprResult FirstArg = DefaultFunctionArrayLvalueConversion(Arg0); |
| if (FirstArg.isInvalid()) |
| return true; |
| QualType FirstArgType = FirstArg.get()->getType(); |
| if (!FirstArgType->isAnyPointerType()) |
| return Diag(TheCall->getBeginLoc(), diag::err_memtag_arg_must_be_pointer) |
| << "first" << FirstArgType << Arg0->getSourceRange(); |
| TheCall->setArg(0, FirstArg.get()); |
| |
| ExprResult SecArg = DefaultLvalueConversion(Arg1); |
| if (SecArg.isInvalid()) |
| return true; |
| QualType SecArgType = SecArg.get()->getType(); |
| if (!SecArgType->isIntegerType()) |
| return Diag(TheCall->getBeginLoc(), diag::err_memtag_arg_must_be_integer) |
| << "second" << SecArgType << Arg1->getSourceRange(); |
| |
| // Derive the return type from the pointer argument. |
| TheCall->setType(FirstArgType); |
| return false; |
| } |
| |
| if (BuiltinID == AArch64::BI__builtin_arm_addg) { |
| if (checkArgCount(*this, TheCall, 2)) |
| return true; |
| |
| Expr *Arg0 = TheCall->getArg(0); |
| ExprResult FirstArg = DefaultFunctionArrayLvalueConversion(Arg0); |
| if (FirstArg.isInvalid()) |
| return true; |
| QualType FirstArgType = FirstArg.get()->getType(); |
| if (!FirstArgType->isAnyPointerType()) |
| return Diag(TheCall->getBeginLoc(), diag::err_memtag_arg_must_be_pointer) |
| << "first" << FirstArgType << Arg0->getSourceRange(); |
| TheCall->setArg(0, FirstArg.get()); |
| |
| // Derive the return type from the pointer argument. |
| TheCall->setType(FirstArgType); |
| |
| // Second arg must be an constant in range [0,15] |
| return SemaBuiltinConstantArgRange(TheCall, 1, 0, 15); |
| } |
| |
| if (BuiltinID == AArch64::BI__builtin_arm_gmi) { |
| if (checkArgCount(*this, TheCall, 2)) |
| return true; |
| Expr *Arg0 = TheCall->getArg(0); |
| Expr *Arg1 = TheCall->getArg(1); |
| |
| ExprResult FirstArg = DefaultFunctionArrayLvalueConversion(Arg0); |
| if (FirstArg.isInvalid()) |
| return true; |
| QualType FirstArgType = FirstArg.get()->getType(); |
| if (!FirstArgType->isAnyPointerType()) |
| return Diag(TheCall->getBeginLoc(), diag::err_memtag_arg_must_be_pointer) |
| << "first" << FirstArgType << Arg0->getSourceRange(); |
| |
| QualType SecArgType = Arg1->getType(); |
| if (!SecArgType->isIntegerType()) |
| return Diag(TheCall->getBeginLoc(), diag::err_memtag_arg_must_be_integer) |
| << "second" << SecArgType << Arg1->getSourceRange(); |
| TheCall->setType(Context.IntTy); |
| return false; |
| } |
| |
| if (BuiltinID == AArch64::BI__builtin_arm_ldg || |
| BuiltinID == AArch64::BI__builtin_arm_stg) { |
| if (checkArgCount(*this, TheCall, 1)) |
| return true; |
| Expr *Arg0 = TheCall->getArg(0); |
| ExprResult FirstArg = DefaultFunctionArrayLvalueConversion(Arg0); |
| if (FirstArg.isInvalid()) |
| return true; |
| |
| QualType FirstArgType = FirstArg.get()->getType(); |
| if (!FirstArgType->isAnyPointerType()) |
| return Diag(TheCall->getBeginLoc(), diag::err_memtag_arg_must_be_pointer) |
| << "first" << FirstArgType << Arg0->getSourceRange(); |
| TheCall->setArg(0, FirstArg.get()); |
| |
| // Derive the return type from the pointer argument. |
| if (BuiltinID == AArch64::BI__builtin_arm_ldg) |
| TheCall->setType(FirstArgType); |
| return false; |
| } |
| |
| if (BuiltinID == AArch64::BI__builtin_arm_subp) { |
| Expr *ArgA = TheCall->getArg(0); |
| Expr *ArgB = TheCall->getArg(1); |
| |
| ExprResult ArgExprA = DefaultFunctionArrayLvalueConversion(ArgA); |
| ExprResult ArgExprB = DefaultFunctionArrayLvalueConversion(ArgB); |
| |
| if (ArgExprA.isInvalid() || ArgExprB.isInvalid()) |
| return true; |
| |
| QualType ArgTypeA = ArgExprA.get()->getType(); |
| QualType ArgTypeB = ArgExprB.get()->getType(); |
| |
| auto isNull = [&] (Expr *E) -> bool { |
| return E->isNullPointerConstant( |
| Context, Expr::NPC_ValueDependentIsNotNull); }; |
| |
| // argument should be either a pointer or null |
| if (!ArgTypeA->isAnyPointerType() && !isNull(ArgA)) |
| return Diag(TheCall->getBeginLoc(), diag::err_memtag_arg_null_or_pointer) |
| << "first" << ArgTypeA << ArgA->getSourceRange(); |
| |
| if (!ArgTypeB->isAnyPointerType() && !isNull(ArgB)) |
| return Diag(TheCall->getBeginLoc(), diag::err_memtag_arg_null_or_pointer) |
| << "second" << ArgTypeB << ArgB->getSourceRange(); |
| |
| // Ensure Pointee types are compatible |
| if (ArgTypeA->isAnyPointerType() && !isNull(ArgA) && |
| ArgTypeB->isAnyPointerType() && !isNull(ArgB)) { |
| QualType pointeeA = ArgTypeA->getPointeeType(); |
| QualType pointeeB = ArgTypeB->getPointeeType(); |
| if (!Context.typesAreCompatible( |
| Context.getCanonicalType(pointeeA).getUnqualifiedType(), |
| Context.getCanonicalType(pointeeB).getUnqualifiedType())) { |
| return Diag(TheCall->getBeginLoc(), diag::err_typecheck_sub_ptr_compatible) |
| << ArgTypeA << ArgTypeB << ArgA->getSourceRange() |
| << ArgB->getSourceRange(); |
| } |
| } |
| |
| // at least one argument should be pointer type |
| if (!ArgTypeA->isAnyPointerType() && !ArgTypeB->isAnyPointerType()) |
| return Diag(TheCall->getBeginLoc(), diag::err_memtag_any2arg_pointer) |
| << ArgTypeA << ArgTypeB << ArgA->getSourceRange(); |
| |
| if (isNull(ArgA)) // adopt type of the other pointer |
| ArgExprA = ImpCastExprToType(ArgExprA.get(), ArgTypeB, CK_NullToPointer); |
| |
| if (isNull(ArgB)) |
| ArgExprB = ImpCastExprToType(ArgExprB.get(), ArgTypeA, CK_NullToPointer); |
| |
| TheCall->setArg(0, ArgExprA.get()); |
| TheCall->setArg(1, ArgExprB.get()); |
| TheCall->setType(Context.LongLongTy); |
| return false; |
| } |
| assert(false && "Unhandled ARM MTE intrinsic"); |
| return true; |
| } |
| |
| /// SemaBuiltinARMSpecialReg - Handle a check if argument ArgNum of CallExpr |
| /// TheCall is an ARM/AArch64 special register string literal. |
| bool Sema::SemaBuiltinARMSpecialReg(unsigned BuiltinID, CallExpr *TheCall, |
| int ArgNum, unsigned ExpectedFieldNum, |
| bool AllowName) { |
| bool IsARMBuiltin = BuiltinID == ARM::BI__builtin_arm_rsr64 || |
| BuiltinID == ARM::BI__builtin_arm_wsr64 || |
| BuiltinID == ARM::BI__builtin_arm_rsr || |
| BuiltinID == ARM::BI__builtin_arm_rsrp || |
| BuiltinID == ARM::BI__builtin_arm_wsr || |
| BuiltinID == ARM::BI__builtin_arm_wsrp; |
| bool IsAArch64Builtin = BuiltinID == AArch64::BI__builtin_arm_rsr64 || |
| BuiltinID == AArch64::BI__builtin_arm_wsr64 || |
| BuiltinID == AArch64::BI__builtin_arm_rsr || |
| BuiltinID == AArch64::BI__builtin_arm_rsrp || |
| BuiltinID == AArch64::BI__builtin_arm_wsr || |
| BuiltinID == AArch64::BI__builtin_arm_wsrp; |
| assert((IsARMBuiltin || IsAArch64Builtin) && "Unexpected ARM builtin."); |
| |
| // We can't check the value of a dependent argument. |
| Expr *Arg = TheCall->getArg(ArgNum); |
| if (Arg->isTypeDependent() || Arg->isValueDependent()) |
| return false; |
| |
| // Check if the argument is a string literal. |
| if (!isa<StringLiteral>(Arg->IgnoreParenImpCasts())) |
| return Diag(TheCall->getBeginLoc(), diag::err_expr_not_string_literal) |
| << Arg->getSourceRange(); |
| |
| // Check the type of special register given. |
| StringRef Reg = cast<StringLiteral>(Arg->IgnoreParenImpCasts())->getString(); |
| SmallVector<StringRef, 6> Fields; |
| Reg.split(Fields, ":"); |
| |
| if (Fields.size() != ExpectedFieldNum && !(AllowName && Fields.size() == 1)) |
| return Diag(TheCall->getBeginLoc(), diag::err_arm_invalid_specialreg) |
| << Arg->getSourceRange(); |
| |
| // If the string is the name of a register then we cannot check that it is |
| // valid here but if the string is of one the forms described in ACLE then we |
| // can check that the supplied fields are integers and within the valid |
| // ranges. |
| if (Fields.size() > 1) { |
| bool FiveFields = Fields.size() == 5; |
| |
| bool ValidString = true; |
| if (IsARMBuiltin) { |
| ValidString &= Fields[0].startswith_insensitive("cp") || |
| Fields[0].startswith_insensitive("p"); |
| if (ValidString) |
| Fields[0] = Fields[0].drop_front( |
| Fields[0].startswith_insensitive("cp") ? 2 : 1); |
| |
| ValidString &= Fields[2].startswith_insensitive("c"); |
| if (ValidString) |
| Fields[2] = Fields[2].drop_front(1); |
| |
| if (FiveFields) { |
| ValidString &= Fields[3].startswith_insensitive("c"); |
| if (ValidString) |
| Fields[3] = Fields[3].drop_front(1); |
| } |
| } |
| |
| SmallVector<int, 5> Ranges; |
| if (FiveFields) |
| Ranges.append({IsAArch64Builtin ? 1 : 15, 7, 15, 15, 7}); |
| else |
| Ranges.append({15, 7, 15}); |
| |
| for (unsigned i=0; i<Fields.size(); ++i) { |
| int IntField; |
| ValidString &= !Fields[i].getAsInteger(10, IntField); |
| ValidString &= (IntField >= 0 && IntField <= Ranges[i]); |
| } |
| |
| if (!ValidString) |
| return Diag(TheCall->getBeginLoc(), diag::err_arm_invalid_specialreg) |
| << Arg->getSourceRange(); |
| } else if (IsAArch64Builtin && Fields.size() == 1) { |
| // If the register name is one of those that appear in the condition below |
| // and the special register builtin being used is one of the write builtins, |
| // then we require that the argument provided for writing to the register |
| // is an integer constant expression. This is because it will be lowered to |
| // an MSR (immediate) instruction, so we need to know the immediate at |
| // compile time. |
| if (TheCall->getNumArgs() != 2) |
| return false; |
| |
| std::string RegLower = Reg.lower(); |
| if (RegLower != "spsel" && RegLower != "daifset" && RegLower != "daifclr" && |
| RegLower != "pan" && RegLower != "uao") |
| return false; |
| |
| return SemaBuiltinConstantArgRange(TheCall, 1, 0, 15); |
| } |
| |
| return false; |
| } |
| |
| /// SemaBuiltinPPCMMACall - Check the call to a PPC MMA builtin for validity. |
| /// Emit an error and return true on failure; return false on success. |
| /// TypeStr is a string containing the type descriptor of the value returned by |
| /// the builtin and the descriptors of the expected type of the arguments. |
| bool Sema::SemaBuiltinPPCMMACall(CallExpr *TheCall, unsigned BuiltinID, |
| const char *TypeStr) { |
| |
| assert((TypeStr[0] != '\0') && |
| "Invalid types in PPC MMA builtin declaration"); |
| |
| switch (BuiltinID) { |
| default: |
| // This function is called in CheckPPCBuiltinFunctionCall where the |
| // BuiltinID is guaranteed to be an MMA or pair vector memop builtin, here |
| // we are isolating the pair vector memop builtins that can be used with mma |
| // off so the default case is every builtin that requires mma and paired |
| // vector memops. |
| if (SemaFeatureCheck(*this, TheCall, "paired-vector-memops", |
| diag::err_ppc_builtin_only_on_arch, "10") || |
| SemaFeatureCheck(*this, TheCall, "mma", |
| diag::err_ppc_builtin_only_on_arch, "10")) |
| return true; |
| break; |
| case PPC::BI__builtin_vsx_lxvp: |
| case PPC::BI__builtin_vsx_stxvp: |
| case PPC::BI__builtin_vsx_assemble_pair: |
| case PPC::BI__builtin_vsx_disassemble_pair: |
| if (SemaFeatureCheck(*this, TheCall, "paired-vector-memops", |
| diag::err_ppc_builtin_only_on_arch, "10")) |
| return true; |
| break; |
| } |
| |
| unsigned Mask = 0; |
| unsigned ArgNum = 0; |
| |
| // The first type in TypeStr is the type of the value returned by the |
| // builtin. So we first read that type and change the type of TheCall. |
| QualType type = DecodePPCMMATypeFromStr(Context, TypeStr, Mask); |
| TheCall->setType(type); |
| |
| while (*TypeStr != '\0') { |
| Mask = 0; |
| QualType ExpectedType = DecodePPCMMATypeFromStr(Context, TypeStr, Mask); |
| if (ArgNum >= TheCall->getNumArgs()) { |
| ArgNum++; |
| break; |
| } |
| |
| Expr *Arg = TheCall->getArg(ArgNum); |
| QualType PassedType = Arg->getType(); |
| QualType StrippedRVType = PassedType.getCanonicalType(); |
| |
| // Strip Restrict/Volatile qualifiers. |
| if (StrippedRVType.isRestrictQualified() || |
| StrippedRVType.isVolatileQualified()) |
| StrippedRVType = StrippedRVType.getCanonicalType().getUnqualifiedType(); |
| |
| // The only case where the argument type and expected type are allowed to |
| // mismatch is if the argument type is a non-void pointer (or array) and |
| // expected type is a void pointer. |
| if (StrippedRVType != ExpectedType) |
| if (!(ExpectedType->isVoidPointerType() && |
| (StrippedRVType->isPointerType() || StrippedRVType->isArrayType()))) |
| return Diag(Arg->getBeginLoc(), |
| diag::err_typecheck_convert_incompatible) |
| << PassedType << ExpectedType << 1 << 0 << 0; |
| |
| // If the value of the Mask is not 0, we have a constraint in the size of |
| // the integer argument so here we ensure the argument is a constant that |
| // is in the valid range. |
| if (Mask != 0 && |
| SemaBuiltinConstantArgRange(TheCall, ArgNum, 0, Mask, true)) |
| return true; |
| |
| ArgNum++; |
| } |
| |
| // In case we exited early from the previous loop, there are other types to |
| // read from TypeStr. So we need to read them all to ensure we have the right |
| // number of arguments in TheCall and if it is not the case, to display a |
| // better error message. |
| while (*TypeStr != '\0') { |
| (void) DecodePPCMMATypeFromStr(Context, TypeStr, Mask); |
| ArgNum++; |
| } |
| if (checkArgCount(*this, TheCall, ArgNum)) |
| return true; |
| |
| return false; |
| } |
| |
| /// SemaBuiltinLongjmp - Handle __builtin_longjmp(void *env[5], int val). |
| /// This checks that the target supports __builtin_longjmp and |
| /// that val is a constant 1. |
| bool Sema::SemaBuiltinLongjmp(CallExpr *TheCall) { |
| if (!Context.getTargetInfo().hasSjLjLowering()) |
| return Diag(TheCall->getBeginLoc(), diag::err_builtin_longjmp_unsupported) |
| << SourceRange(TheCall->getBeginLoc(), TheCall->getEndLoc()); |
| |
| Expr *Arg = TheCall->getArg(1); |
| llvm::APSInt Result; |
| |
| // TODO: This is less than ideal. Overload this to take a value. |
| if (SemaBuiltinConstantArg(TheCall, 1, Result)) |
| return true; |
| |
| if (Result != 1) |
| return Diag(TheCall->getBeginLoc(), diag::err_builtin_longjmp_invalid_val) |
| << SourceRange(Arg->getBeginLoc(), Arg->getEndLoc()); |
| |
| return false; |
| } |
| |
| /// SemaBuiltinSetjmp - Handle __builtin_setjmp(void *env[5]). |
| /// This checks that the target supports __builtin_setjmp. |
| bool Sema::SemaBuiltinSetjmp(CallExpr *TheCall) { |
| if (!Context.getTargetInfo().hasSjLjLowering()) |
| return Diag(TheCall->getBeginLoc(), diag::err_builtin_setjmp_unsupported) |
| << SourceRange(TheCall->getBeginLoc(), TheCall->getEndLoc()); |
| return false; |
| } |
| |
| namespace { |
| |
| class UncoveredArgHandler { |
| enum { Unknown = -1, AllCovered = -2 }; |
| |
| signed FirstUncoveredArg = Unknown; |
| SmallVector<const Expr *, 4> DiagnosticExprs; |
| |
| public: |
| UncoveredArgHandler() = default; |
| |
| bool hasUncoveredArg() const { |
| return (FirstUncoveredArg >= 0); |
| } |
| |
| unsigned getUncoveredArg() const { |
| assert(hasUncoveredArg() && "no uncovered argument"); |
| return FirstUncoveredArg; |
| } |
| |
| void setAllCovered() { |
| // A string has been found with all arguments covered, so clear out |
| // the diagnostics. |
| DiagnosticExprs.clear(); |
| FirstUncoveredArg = AllCovered; |
| } |
| |
| void Update(signed NewFirstUncoveredArg, const Expr *StrExpr) { |
| assert(NewFirstUncoveredArg >= 0 && "Outside range"); |
| |
| // Don't update if a previous string covers all arguments. |
| if (FirstUncoveredArg == AllCovered) |
| return; |
| |
| // UncoveredArgHandler tracks the highest uncovered argument index |
| // and with it all the strings that match this index. |
| if (NewFirstUncoveredArg == FirstUncoveredArg) |
| DiagnosticExprs.push_back(StrExpr); |
| else if (NewFirstUncoveredArg > FirstUncoveredArg) { |
| DiagnosticExprs.clear(); |
| DiagnosticExprs.push_back(StrExpr); |
| FirstUncoveredArg = NewFirstUncoveredArg; |
| } |
| } |
| |
| void Diagnose(Sema &S, bool IsFunctionCall, const Expr *ArgExpr); |
| }; |
| |
| enum StringLiteralCheckType { |
| SLCT_NotALiteral, |
| SLCT_UncheckedLiteral, |
| SLCT_CheckedLiteral |
| }; |
| |
| } // namespace |
| |
| static void sumOffsets(llvm::APSInt &Offset, llvm::APSInt Addend, |
| BinaryOperatorKind BinOpKind, |
| bool AddendIsRight) { |
| unsigned BitWidth = Offset.getBitWidth(); |
| unsigned AddendBitWidth = Addend.getBitWidth(); |
| // There might be negative interim results. |
| if (Addend.isUnsigned()) { |
| Addend = Addend.zext(++AddendBitWidth); |
| Addend.setIsSigned(true); |
| } |
| // Adjust the bit width of the APSInts. |
| if (AddendBitWidth > BitWidth) { |
| Offset = Offset.sext(AddendBitWidth); |
| BitWidth = AddendBitWidth; |
| } else if (BitWidth > AddendBitWidth) { |
| Addend = Addend.sext(BitWidth); |
| } |
| |
| bool Ov = false; |
| llvm::APSInt ResOffset = Offset; |
| if (BinOpKind == BO_Add) |
| ResOffset = Offset.sadd_ov(Addend, Ov); |
| else { |
| assert(AddendIsRight && BinOpKind == BO_Sub && |
| "operator must be add or sub with addend on the right"); |
| ResOffset = Offset.ssub_ov(Addend, Ov); |
| } |
| |
| // We add an offset to a pointer here so we should support an offset as big as |
| // possible. |
| if (Ov) { |
| assert(BitWidth <= std::numeric_limits<unsigned>::max() / 2 && |
| "index (intermediate) result too big"); |
| Offset = Offset.sext(2 * BitWidth); |
| sumOffsets(Offset, Addend, BinOpKind, AddendIsRight); |
| return; |
| } |
| |
| Offset = ResOffset; |
| } |
| |
| namespace { |
| |
| // This is a wrapper class around StringLiteral to support offsetted string |
| // literals as format strings. It takes the offset into account when returning |
| // the string and its length or the source locations to display notes correctly. |
| class FormatStringLiteral { |
| const StringLiteral *FExpr; |
| int64_t Offset; |
| |
| public: |
| FormatStringLiteral(const StringLiteral *fexpr, int64_t Offset = 0) |
| : FExpr(fexpr), Offset(Offset) {} |
| |
| StringRef getString() const { |
| return FExpr->getString().drop_front(Offset); |
| } |
| |
| unsigned getByteLength() const { |
| return FExpr->getByteLength() - getCharByteWidth() * Offset; |
| } |
| |
| unsigned getLength() const { return FExpr->getLength() - Offset; } |
| unsigned getCharByteWidth() const { return FExpr->getCharByteWidth(); } |
| |
| StringLiteral::StringKind getKind() const { return FExpr->getKind(); } |
| |
| QualType getType() const { return FExpr->getType(); } |
| |
| bool isAscii() const { return FExpr->isAscii(); } |
| bool isWide() const { return FExpr->isWide(); } |
| bool isUTF8() const { return FExpr->isUTF8(); } |
| bool isUTF16() const { return FExpr->isUTF16(); } |
| bool isUTF32() const { return FExpr->isUTF32(); } |
| bool isPascal() const { return FExpr->isPascal(); } |
| |
| SourceLocation getLocationOfByte( |
| unsigned ByteNo, const SourceManager &SM, const LangOptions &Features, |
| const TargetInfo &Target, unsigned *StartToken = nullptr, |
| unsigned *StartTokenByteOffset = nullptr) const { |
| return FExpr->getLocationOfByte(ByteNo + Offset, SM, Features, Target, |
| StartToken, StartTokenByteOffset); |
| } |
| |
| SourceLocation getBeginLoc() const LLVM_READONLY { |
| return FExpr->getBeginLoc().getLocWithOffset(Offset); |
| } |
| |
| SourceLocation getEndLoc() const LLVM_READONLY { return FExpr->getEndLoc(); } |
| }; |
| |
| } // namespace |
| |
| static void CheckFormatString(Sema &S, const FormatStringLiteral *FExpr, |
| const Expr *OrigFormatExpr, |
| ArrayRef<const Expr *> Args, |
| bool HasVAListArg, unsigned format_idx, |
| unsigned firstDataArg, |
| Sema::FormatStringType Type, |
| bool inFunctionCall, |
| Sema::VariadicCallType CallType, |
| llvm::SmallBitVector &CheckedVarArgs, |
| UncoveredArgHandler &UncoveredArg, |
| bool IgnoreStringsWithoutSpecifiers); |
| |
| // Determine if an expression is a string literal or constant string. |
| // If this function returns false on the arguments to a function expecting a |
| // format string, we will usually need to emit a warning. |
| // True string literals are then checked by CheckFormatString. |
| static StringLiteralCheckType |
| checkFormatStringExpr(Sema &S, const Expr *E, ArrayRef<const Expr *> Args, |
| bool HasVAListArg, unsigned format_idx, |
| unsigned firstDataArg, Sema::FormatStringType Type, |
| Sema::VariadicCallType CallType, bool InFunctionCall, |
| llvm::SmallBitVector &CheckedVarArgs, |
| UncoveredArgHandler &UncoveredArg, |
| llvm::APSInt Offset, |
| bool IgnoreStringsWithoutSpecifiers = false) { |
| if (S.isConstantEvaluated()) |
| return SLCT_NotALiteral; |
| tryAgain: |
| assert(Offset.isSigned() && "invalid offset"); |
| |
| if (E->isTypeDependent() || E->isValueDependent()) |
| return SLCT_NotALiteral; |
| |
| E = E->IgnoreParenCasts(); |
| |
| if (E->isNullPointerConstant(S.Context, Expr::NPC_ValueDependentIsNotNull)) |
| // Technically -Wformat-nonliteral does not warn about this case. |
| // The behavior of printf and friends in this case is implementation |
| // dependent. Ideally if the format string cannot be null then |
| // it should have a 'nonnull' attribute in the function prototype. |
| return SLCT_UncheckedLiteral; |
| |
| switch (E->getStmtClass()) { |
| case Stmt::BinaryConditionalOperatorClass: |
| case Stmt::ConditionalOperatorClass: { |
| // The expression is a literal if both sub-expressions were, and it was |
| // completely checked only if both sub-expressions were checked. |
| const AbstractConditionalOperator *C = |
| cast<AbstractConditionalOperator>(E); |
| |
| // Determine whether it is necessary to check both sub-expressions, for |
| // example, because the condition expression is a constant that can be |
| // evaluated at compile time. |
| bool CheckLeft = true, CheckRight = true; |
| |
| bool Cond; |
| if (C->getCond()->EvaluateAsBooleanCondition(Cond, S.getASTContext(), |
| S.isConstantEvaluated())) { |
| if (Cond) |
| CheckRight = false; |
| else |
| CheckLeft = false; |
| } |
| |
| // We need to maintain the offsets for the right and the left hand side |
| // separately to check if every possible indexed expression is a valid |
| // string literal. They might have different offsets for different string |
| // literals in the end. |
| StringLiteralCheckType Left; |
| if (!CheckLeft) |
| Left = SLCT_UncheckedLiteral; |
| else { |
| Left = checkFormatStringExpr(S, C->getTrueExpr(), Args, |
| HasVAListArg, format_idx, firstDataArg, |
| Type, CallType, InFunctionCall, |
| CheckedVarArgs, UncoveredArg, Offset, |
| IgnoreStringsWithoutSpecifiers); |
| if (Left == SLCT_NotALiteral || !CheckRight) { |
| return Left; |
| } |
| } |
| |
| StringLiteralCheckType Right = checkFormatStringExpr( |
| S, C->getFalseExpr(), Args, HasVAListArg, format_idx, firstDataArg, |
| Type, CallType, InFunctionCall, CheckedVarArgs, UncoveredArg, Offset, |
| IgnoreStringsWithoutSpecifiers); |
| |
| return (CheckLeft && Left < Right) ? Left : Right; |
| } |
| |
| case Stmt::ImplicitCastExprClass: |
| E = cast<ImplicitCastExpr>(E)->getSubExpr(); |
| goto tryAgain; |
| |
| case Stmt::OpaqueValueExprClass: |
| if (const Expr *src = cast<OpaqueValueExpr>(E)->getSourceExpr()) { |
| E = src; |
| goto tryAgain; |
| } |
| return SLCT_NotALiteral; |
| |
| case Stmt::PredefinedExprClass: |
| // While __func__, etc., are technically not string literals, they |
| // cannot contain format specifiers and thus are not a security |
| // liability. |
| return SLCT_UncheckedLiteral; |
| |
| case Stmt::DeclRefExprClass: { |
| const DeclRefExpr *DR = cast<DeclRefExpr>(E); |
| |
| // As an exception, do not flag errors for variables binding to |
| // const string literals. |
| if (const VarDecl *VD = dyn_cast<VarDecl>(DR->getDecl())) { |
| bool isConstant = false; |
| QualType T = DR->getType(); |
| |
| if (const ArrayType *AT = S.Context.getAsArrayType(T)) { |
| isConstant = AT->getElementType().isConstant(S.Context); |
| } else if (const PointerType *PT = T->getAs<PointerType>()) { |
| isConstant = T.isConstant(S.Context) && |
| PT->getPointeeType().isConstant(S.Context); |
| } else if (T->isObjCObjectPointerType()) { |
| // In ObjC, there is usually no "const ObjectPointer" type, |
| // so don't check if the pointee type is constant. |
| isConstant = T.isConstant(S.Context); |
| } |
| |
| if (isConstant) { |
| if (const Expr *Init = VD->getAnyInitializer()) { |
| // Look through initializers like const char c[] = { "foo" } |
| if (const InitListExpr *InitList = dyn_cast<InitListExpr>(Init)) { |
| if (InitList->isStringLiteralInit()) |
| Init = InitList->getInit(0)->IgnoreParenImpCasts(); |
| } |
| return checkFormatStringExpr(S, Init, Args, |
| HasVAListArg, format_idx, |
| firstDataArg, Type, CallType, |
| /*InFunctionCall*/ false, CheckedVarArgs, |
| UncoveredArg, Offset); |
| } |
| } |
| |
| // For vprintf* functions (i.e., HasVAListArg==true), we add a |
| // special check to see if the format string is a function parameter |
| // of the function calling the printf function. If the function |
| // has an attribute indicating it is a printf-like function, then we |
| // should suppress warnings concerning non-literals being used in a call |
| // to a vprintf function. For example: |
| // |
| // void |
| // logmessage(char const *fmt __attribute__ (format (printf, 1, 2)), ...){ |
| // va_list ap; |
| // va_start(ap, fmt); |
| // vprintf(fmt, ap); // Do NOT emit a warning about "fmt". |
| // ... |
| // } |
| if (HasVAListArg) { |
| if (const ParmVarDecl *PV = dyn_cast<ParmVarDecl>(VD)) { |
| if (const Decl *D = dyn_cast<Decl>(PV->getDeclContext())) { |
| int PVIndex = PV->getFunctionScopeIndex() + 1; |
| for (const auto *PVFormat : D->specific_attrs<FormatAttr>()) { |
| // adjust for implicit parameter |
| if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(D)) |
| if (MD->isInstance()) |
| ++PVIndex; |
| // We also check if the formats are compatible. |
| // We can't pass a 'scanf' string to a 'printf' function. |
| if (PVIndex == PVFormat->getFormatIdx() && |
| Type == S.GetFormatStringType(PVFormat)) |
| return SLCT_UncheckedLiteral; |
| } |
| } |
| } |
| } |
| } |
| |
| return SLCT_NotALiteral; |
| } |
| |
| case Stmt::CallExprClass: |
| case Stmt::CXXMemberCallExprClass: { |
| const CallExpr *CE = cast<CallExpr>(E); |
| if (const NamedDecl *ND = dyn_cast_or_null<NamedDecl>(CE->getCalleeDecl())) { |
| bool IsFirst = true; |
| StringLiteralCheckType CommonResult; |
| for (const auto *FA : ND->specific_attrs<FormatArgAttr>()) { |
| const Expr *Arg = CE->getArg(FA->getFormatIdx().getASTIndex()); |
| StringLiteralCheckType Result = checkFormatStringExpr( |
| S, Arg, Args, HasVAListArg, format_idx, firstDataArg, Type, |
| CallType, InFunctionCall, CheckedVarArgs, UncoveredArg, Offset, |
| IgnoreStringsWithoutSpecifiers); |
| if (IsFirst) { |
| CommonResult = Result; |
| IsFirst = false; |
| } |
| } |
| if (!IsFirst) |
| return CommonResult; |
| |
| if (const auto *FD = dyn_cast<FunctionDecl>(ND)) { |
| unsigned BuiltinID = FD->getBuiltinID(); |
| if (BuiltinID == Builtin::BI__builtin___CFStringMakeConstantString || |
| BuiltinID == Builtin::BI__builtin___NSStringMakeConstantString) { |
| const Expr *Arg = CE->getArg(0); |
| return checkFormatStringExpr(S, Arg, Args, |
| HasVAListArg, format_idx, |
| firstDataArg, Type, CallType, |
| InFunctionCall, CheckedVarArgs, |
| UncoveredArg, Offset, |
| IgnoreStringsWithoutSpecifiers); |
| } |
| } |
| } |
| |
| return SLCT_NotALiteral; |
| } |
| case Stmt::ObjCMessageExprClass: { |
| const auto *ME = cast<ObjCMessageExpr>(E); |
| if (const auto *MD = ME->getMethodDecl()) { |
| if (const auto *FA = MD->getAttr<FormatArgAttr>()) { |
| // As a special case heuristic, if we're using the method -[NSBundle |
| // localizedStringForKey:value:table:], ignore any key strings that lack |
| // format specifiers. The idea is that if the key doesn't have any |
| // format specifiers then its probably just a key to map to the |
| // localized strings. If it does have format specifiers though, then its |
| // likely that the text of the key is the format string in the |
| // programmer's language, and should be checked. |
| const ObjCInterfaceDecl *IFace; |
| if (MD->isInstanceMethod() && (IFace = MD->getClassInterface()) && |
| IFace->getIdentifier()->isStr("NSBundle") && |
| MD->getSelector().isKeywordSelector( |
| {"localizedStringForKey", "value", "table"})) { |
| IgnoreStringsWithoutSpecifiers = true; |
| } |
| |
| const Expr *Arg = ME->getArg(FA->getFormatIdx().getASTIndex()); |
| return checkFormatStringExpr( |
| S, Arg, Args, HasVAListArg, format_idx, firstDataArg, Type, |
| CallType, InFunctionCall, CheckedVarArgs, UncoveredArg, Offset, |
| IgnoreStringsWithoutSpecifiers); |
| } |
| } |
| |
| return SLCT_NotALiteral; |
| } |
| case Stmt::ObjCStringLiteralClass: |
| case Stmt::StringLiteralClass: { |
| const StringLiteral *StrE = nullptr; |
| |
| if (const ObjCStringLiteral *ObjCFExpr = dyn_cast<ObjCStringLiteral>(E)) |
| StrE = ObjCFExpr->getString(); |
| else |
| StrE = cast<StringLiteral>(E); |
| |
| if (StrE) { |
| if (Offset.isNegative() || Offset > StrE->getLength()) { |
| // TODO: It would be better to have an explicit warning for out of |
| // bounds literals. |
| return SLCT_NotALiteral; |
| } |
| FormatStringLiteral FStr(StrE, Offset.sextOrTrunc(64).getSExtValue()); |
| CheckFormatString(S, &FStr, E, Args, HasVAListArg, format_idx, |
| firstDataArg, Type, InFunctionCall, CallType, |
| CheckedVarArgs, UncoveredArg, |
| IgnoreStringsWithoutSpecifiers); |
| return SLCT_CheckedLiteral; |
| } |
| |
| return SLCT_NotALiteral; |
| } |
| case Stmt::BinaryOperatorClass: { |
| const BinaryOperator *BinOp = cast<BinaryOperator>(E); |
| |
| // A string literal + an int offset is still a string literal. |
| if (BinOp->isAdditiveOp()) { |
| Expr::EvalResult LResult, RResult; |
| |
| bool LIsInt = BinOp->getLHS()->EvaluateAsInt( |
| LResult, S.Context, Expr::SE_NoSideEffects, S.isConstantEvaluated()); |
| bool RIsInt = BinOp->getRHS()->EvaluateAsInt( |
| RResult, S.Context, Expr::SE_NoSideEffects, S.isConstantEvaluated()); |
| |
| if (LIsInt != RIsInt) { |
| BinaryOperatorKind BinOpKind = BinOp->getOpcode(); |
| |
| if (LIsInt) { |
| if (BinOpKind == BO_Add) { |
| sumOffsets(Offset, LResult.Val.getInt(), BinOpKind, RIsInt); |
| E = BinOp->getRHS(); |
| goto tryAgain; |
| } |
| } else { |
| sumOffsets(Offset, RResult.Val.getInt(), BinOpKind, RIsInt); |
| E = BinOp->getLHS(); |
| goto tryAgain; |
| } |
| } |
| } |
| |
| return SLCT_NotALiteral; |
| } |
| case Stmt::UnaryOperatorClass: { |
| const UnaryOperator *UnaOp = cast<UnaryOperator>(E); |
| auto ASE = dyn_cast<ArraySubscriptExpr>(UnaOp->getSubExpr()); |
| if (UnaOp->getOpcode() == UO_AddrOf && ASE) { |
| Expr::EvalResult IndexResult; |
| if (ASE->getRHS()->EvaluateAsInt(IndexResult, S.Context, |
| Expr::SE_NoSideEffects, |
| S.isConstantEvaluated())) { |
| sumOffsets(Offset, IndexResult.Val.getInt(), BO_Add, |
| /*RHS is int*/ true); |
| E = ASE->getBase(); |
| goto tryAgain; |
| } |
| } |
| |
| return SLCT_NotALiteral; |
| } |
| |
| default: |
| return SLCT_NotALiteral; |
| } |
| } |
| |
| Sema::FormatStringType Sema::GetFormatStringType(const FormatAttr *Format) { |
| return llvm::StringSwitch<FormatStringType>(Format->getType()->getName()) |
| .Case("scanf", FST_Scanf) |
| .Cases("printf", "printf0", FST_Printf) |
| .Cases("NSString", "CFString", FST_NSString) |
| .Case("strftime", FST_Strftime) |
| .Case("strfmon", FST_Strfmon) |
| .Cases("kprintf", "cmn_err", "vcmn_err", "zcmn_err", FST_Kprintf) |
| .Case("freebsd_kprintf", FST_FreeBSDKPrintf) |
| .Case("os_trace", FST_OSLog) |
| .Case("os_log", FST_OSLog) |
| .Default(FST_Unknown); |
| } |
| |
| /// CheckFormatArguments - Check calls to printf and scanf (and similar |
| /// functions) for correct use of format strings. |
| /// Returns true if a format string has been fully checked. |
| bool Sema::CheckFormatArguments(const FormatAttr *Format, |
| ArrayRef<const Expr *> Args, |
| bool IsCXXMember, |
| VariadicCallType CallType, |
| SourceLocation Loc, SourceRange Range, |
| llvm::SmallBitVector &CheckedVarArgs) { |
| FormatStringInfo FSI; |
| if (getFormatStringInfo(Format, IsCXXMember, &FSI)) |
| return CheckFormatArguments(Args, FSI.HasVAListArg, FSI.FormatIdx, |
| FSI.FirstDataArg, GetFormatStringType(Format), |
| CallType, Loc, Range, CheckedVarArgs); |
| return false; |
| } |
| |
| bool Sema::CheckFormatArguments(ArrayRef<const Expr *> Args, |
| bool HasVAListArg, unsigned format_idx, |
| unsigned firstDataArg, FormatStringType Type, |
| VariadicCallType CallType, |
| SourceLocation Loc, SourceRange Range, |
| llvm::SmallBitVector &CheckedVarArgs) { |
| // CHECK: printf/scanf-like function is called with no format string. |
| if (format_idx >= Args.size()) { |
| Diag(Loc, diag::warn_missing_format_string) << Range; |
| return false; |
| } |
| |
| const Expr *OrigFormatExpr = Args[format_idx]->IgnoreParenCasts(); |
| |
| // CHECK: format string is not a string literal. |
| // |
| // Dynamically generated format strings are difficult to |
| // automatically vet at compile time. Requiring that format strings |
| // are string literals: (1) permits the checking of format strings by |
| // the compiler and thereby (2) can practically remove the source of |
| // many format string exploits. |
| |
| // Format string can be either ObjC string (e.g. @"%d") or |
| // C string (e.g. "%d") |
| // ObjC string uses the same format specifiers as C string, so we can use |
| // the same format string checking logic for both ObjC and C strings. |
| UncoveredArgHandler UncoveredArg; |
| StringLiteralCheckType CT = |
| checkFormatStringExpr(*this, OrigFormatExpr, Args, HasVAListArg, |
| format_idx, firstDataArg, Type, CallType, |
| /*IsFunctionCall*/ true, CheckedVarArgs, |
| UncoveredArg, |
| /*no string offset*/ llvm::APSInt(64, false) = 0); |
| |
| // Generate a diagnostic where an uncovered argument is detected. |
| if (UncoveredArg.hasUncoveredArg()) { |
| unsigned ArgIdx = UncoveredArg.getUncoveredArg() + firstDataArg; |
| assert(ArgIdx < Args.size() && "ArgIdx outside bounds"); |
| UncoveredArg.Diagnose(*this, /*IsFunctionCall*/true, Args[ArgIdx]); |
| } |
| |
| if (CT != SLCT_NotALiteral) |
| // Literal format string found, check done! |
| return CT == SLCT_CheckedLiteral; |
| |
| // Strftime is particular as it always uses a single 'time' argument, |
| // so it is safe to pass a non-literal string. |
| if (Type == FST_Strftime) |
| return false; |
| |
| // Do not emit diag when the string param is a macro expansion and the |
| // format is either NSString or CFString. This is a hack to prevent |
| // diag when using the NSLocalizedString and CFCopyLocalizedString macros |
| // which are usually used in place of NS and CF string literals. |
| SourceLocation FormatLoc = Args[format_idx]->getBeginLoc(); |
| if (Type == FST_NSString && SourceMgr.isInSystemMacro(FormatLoc)) |
| return false; |
| |
| // If there are no arguments specified, warn with -Wformat-security, otherwise |
| // warn only with -Wformat-nonliteral. |
| if (Args.size() == firstDataArg) { |
| Diag(FormatLoc, diag::warn_format_nonliteral_noargs) |
| << OrigFormatExpr->getSourceRange(); |
| switch (Type) { |
| default: |
| break; |
| case FST_Kprintf: |
| case FST_FreeBSDKPrintf: |
| case FST_Printf: |
| Diag(FormatLoc, diag::note_format_security_fixit) |
| << FixItHint::CreateInsertion(FormatLoc, "\"%s\", "); |
| break; |
| case FST_NSString: |
| Diag(FormatLoc, diag::note_format_security_fixit) |
| << FixItHint::CreateInsertion(FormatLoc, "@\"%@\", "); |
| break; |
| } |
| } else { |
| Diag(FormatLoc, diag::warn_format_nonliteral) |
| << OrigFormatExpr->getSourceRange(); |
| } |
| return false; |
| } |
| |
| namespace { |
| |
| class CheckFormatHandler : public analyze_format_string::FormatStringHandler { |
| protected: |
| Sema &S; |
| const FormatStringLiteral *FExpr; |
| const Expr *OrigFormatExpr; |
| const Sema::FormatStringType FSType; |
| const unsigned FirstDataArg; |
| const unsigned NumDataArgs; |
| const char *Beg; // Start of format string. |
| const bool HasVAListArg; |
| ArrayRef<const Expr *> Args; |
| unsigned FormatIdx; |
| llvm::SmallBitVector CoveredArgs; |
| bool usesPositionalArgs = false; |
| bool atFirstArg = true; |
| bool inFunctionCall; |
| Sema::VariadicCallType CallType; |
| llvm::SmallBitVector &CheckedVarArgs; |
| UncoveredArgHandler &UncoveredArg; |
| |
| public: |
| CheckFormatHandler(Sema &s, const FormatStringLiteral *fexpr, |
| const Expr *origFormatExpr, |
| const Sema::FormatStringType type, unsigned firstDataArg, |
| unsigned numDataArgs, const char *beg, bool hasVAListArg, |
| ArrayRef<const Expr *> Args, unsigned formatIdx, |
| bool inFunctionCall, Sema::VariadicCallType callType, |
| llvm::SmallBitVector &CheckedVarArgs, |
| UncoveredArgHandler &UncoveredArg) |
| : S(s), FExpr(fexpr), OrigFormatExpr(origFormatExpr), FSType(type), |
| FirstDataArg(firstDataArg), NumDataArgs(numDataArgs), Beg(beg), |
| HasVAListArg(hasVAListArg), Args(Args), FormatIdx(formatIdx), |
| inFunctionCall(inFunctionCall), CallType(callType), |
| CheckedVarArgs(CheckedVarArgs), UncoveredArg(UncoveredArg) { |
| CoveredArgs.resize(numDataArgs); |
| CoveredArgs.reset(); |
| } |
| |
| void DoneProcessing(); |
| |
| void HandleIncompleteSpecifier(const char *startSpecifier, |
| unsigned specifierLen) override; |
| |
| void HandleInvalidLengthModifier( |
| const analyze_format_string::FormatSpecifier &FS, |
| const analyze_format_string::ConversionSpecifier &CS, |
| const char *startSpecifier, unsigned specifierLen, |
| unsigned DiagID); |
| |
| void HandleNonStandardLengthModifier( |
| const analyze_format_string::FormatSpecifier &FS, |
| const char *startSpecifier, unsigned specifierLen); |
| |
| void HandleNonStandardConversionSpecifier( |
| const analyze_format_string::ConversionSpecifier &CS, |
| const char *startSpecifier, unsigned specifierLen); |
| |
| void HandlePosition(const char *startPos, unsigned posLen) override; |
| |
| void HandleInvalidPosition(const char *startSpecifier, |
| unsigned specifierLen, |
| analyze_format_string::PositionContext p) override; |
| |
| void HandleZeroPosition(const char *startPos, unsigned posLen) override; |
| |
| void HandleNullChar(const char *nullCharacter) override; |
| |
| template <typename Range> |
| static void |
| EmitFormatDiagnostic(Sema &S, bool inFunctionCall, const Expr *ArgumentExpr, |
| const PartialDiagnostic &PDiag, SourceLocation StringLoc, |
| bool IsStringLocation, Range StringRange, |
| ArrayRef<FixItHint> Fixit = None); |
| |
| protected: |
| bool HandleInvalidConversionSpecifier(unsigned argIndex, SourceLocation Loc, |
| const char *startSpec, |
| unsigned specifierLen, |
| const char *csStart, unsigned csLen); |
| |
| void HandlePositionalNonpositionalArgs(SourceLocation Loc, |
| const char *startSpec, |
| unsigned specifierLen); |
| |
| SourceRange getFormatStringRange(); |
| CharSourceRange getSpecifierRange(const char *startSpecifier, |
| unsigned specifierLen); |
| SourceLocation getLocationOfByte(const char *x); |
| |
| const Expr *getDataArg(unsigned i) const; |
| |
| bool CheckNumArgs(const analyze_format_string::FormatSpecifier &FS, |
| const analyze_format_string::ConversionSpecifier &CS, |
| const char *startSpecifier, unsigned specifierLen, |
| unsigned argIndex); |
| |
| template <typename Range> |
| void EmitFormatDiagnostic(PartialDiagnostic PDiag, SourceLocation StringLoc, |
| bool IsStringLocation, Range StringRange, |
| ArrayRef<FixItHint> Fixit = None); |
| }; |
| |
| } // namespace |
| |
| SourceRange CheckFormatHandler::getFormatStringRange() { |
| return OrigFormatExpr->getSourceRange(); |
| } |
| |
| CharSourceRange CheckFormatHandler:: |
| getSpecifierRange(const char *startSpecifier, unsigned specifierLen) { |
| SourceLocation Start = getLocationOfByte(startSpecifier); |
| SourceLocation End = getLocationOfByte(startSpecifier + specifierLen - 1); |
| |
| // Advance the end SourceLocation by one due to half-open ranges. |
| End = End.getLocWithOffset(1); |
| |
| return CharSourceRange::getCharRange(Start, End); |
| } |
| |
| SourceLocation CheckFormatHandler::getLocationOfByte(const char *x) { |
| return FExpr->getLocationOfByte(x - Beg, S.getSourceManager(), |
| S.getLangOpts(), S.Context.getTargetInfo()); |
| } |
| |
| void CheckFormatHandler::HandleIncompleteSpecifier(const char *startSpecifier, |
| unsigned specifierLen){ |
| EmitFormatDiagnostic(S.PDiag(diag::warn_printf_incomplete_specifier), |
| getLocationOfByte(startSpecifier), |
| /*IsStringLocation*/true, |
| getSpecifierRange(startSpecifier, specifierLen)); |
| } |
| |
| void CheckFormatHandler::HandleInvalidLengthModifier( |
| const analyze_format_string::FormatSpecifier &FS, |
| const analyze_format_string::ConversionSpecifier &CS, |
| const char *startSpecifier, unsigned specifierLen, unsigned DiagID) { |
| using namespace analyze_format_string; |
| |
| const LengthModifier &LM = FS.getLengthModifier(); |
| CharSourceRange LMRange = getSpecifierRange(LM.getStart(), LM.getLength()); |
| |
| // See if we know how to fix this length modifier. |
| Optional<LengthModifier> FixedLM = FS.getCorrectedLengthModifier(); |
| if (FixedLM) { |
| EmitFormatDiagnostic(S.PDiag(DiagID) << LM.toString() << CS.toString(), |
| getLocationOfByte(LM.getStart()), |
| /*IsStringLocation*/true, |
| getSpecifierRange(startSpecifier, specifierLen)); |
| |
| S.Diag(getLocationOfByte(LM.getStart()), diag::note_format_fix_specifier) |
| << FixedLM->toString() |
| << FixItHint::CreateReplacement(LMRange, FixedLM->toString()); |
| |
| } else { |
| FixItHint Hint; |
| if (DiagID == diag::warn_format_nonsensical_length) |
| Hint = FixItHint::CreateRemoval(LMRange); |
| |
| EmitFormatDiagnostic(S.PDiag(DiagID) << LM.toString() << CS.toString(), |
| getLocationOfByte(LM.getStart()), |
| /*IsStringLocation*/true, |
| getSpecifierRange(startSpecifier, specifierLen), |
| Hint); |
| } |
| } |
| |
| void CheckFormatHandler::HandleNonStandardLengthModifier( |
| const analyze_format_string::FormatSpecifier &FS, |
| const char *startSpecifier, unsigned specifierLen) { |
| using namespace analyze_format_string; |
| |
| const LengthModifier &LM = FS.getLengthModifier(); |
| CharSourceRange LMRange = getSpecifierRange(LM.getStart(), LM.getLength()); |
| |
| // See if we know how to fix this length modifier. |
| Optional<LengthModifier> FixedLM = FS.getCorrectedLengthModifier(); |
| if (FixedLM) { |
| EmitFormatDiagnostic(S.PDiag(diag::warn_format_non_standard) |
| << LM.toString() << 0, |
| getLocationOfByte(LM.getStart()), |
| /*IsStringLocation*/true, |
| getSpecifierRange(startSpecifier, specifierLen)); |
| |
| S.Diag(getLocationOfByte(LM.getStart()), diag::note_format_fix_specifier) |
| << FixedLM->toString() |
| << FixItHint::CreateReplacement(LMRange, FixedLM->toString()); |
| |
| } else { |
| EmitFormatDiagnostic(S.PDiag(diag::warn_format_non_standard) |
| << LM.toString() << 0, |
| getLocationOfByte(LM.getStart()), |
| /*IsStringLocation*/true, |
| getSpecifierRange(startSpecifier, specifierLen)); |
| } |
| } |
| |
| void CheckFormatHandler::HandleNonStandardConversionSpecifier( |
| const analyze_format_string::ConversionSpecifier &CS, |
| const char *startSpecifier, unsigned specifierLen) { |
| using namespace analyze_format_string; |
| |
| // See if we know how to fix this conversion specifier. |
| Optional<ConversionSpecifier> FixedCS = CS.getStandardSpecifier(); |
| if (FixedCS) { |
| EmitFormatDiagnostic(S.PDiag(diag::warn_format_non_standard) |
| << CS.toString() << /*conversion specifier*/1, |
| getLocationOfByte(CS.getStart()), |
| /*IsStringLocation*/true, |
| getSpecifierRange(startSpecifier, specifierLen)); |
| |
| CharSourceRange CSRange = getSpecifierRange(CS.getStart(), CS.getLength()); |
| S.Diag(getLocationOfByte(CS.getStart()), diag::note_format_fix_specifier) |
| << FixedCS->toString() |
| << FixItHint::CreateReplacement(CSRange, FixedCS->toString()); |
| } else { |
| EmitFormatDiagnostic(S.PDiag(diag::warn_format_non_standard) |
| << CS.toString() << /*conversion specifier*/1, |
| getLocationOfByte(CS.getStart()), |
| /*IsStringLocation*/true, |
| getSpecifierRange(startSpecifier, specifierLen)); |
| } |
| } |
| |
| void CheckFormatHandler::HandlePosition(const char *startPos, |
| unsigned posLen) { |
| EmitFormatDiagnostic(S.PDiag(diag::warn_format_non_standard_positional_arg), |
| getLocationOfByte(startPos), |
| /*IsStringLocation*/true, |
| getSpecifierRange(startPos, posLen)); |
| } |
| |
| void |
| CheckFormatHandler::HandleInvalidPosition(const char *startPos, unsigned posLen, |
| analyze_format_string::PositionContext p) { |
| EmitFormatDiagnostic(S.PDiag(diag::warn_format_invalid_positional_specifier) |
| << (unsigned) p, |
| getLocationOfByte(startPos), /*IsStringLocation*/true, |
| getSpecifierRange(startPos, posLen)); |
| } |
| |
| void CheckFormatHandler::HandleZeroPosition(const char *startPos, |
| unsigned posLen) { |
| EmitFormatDiagnostic(S.PDiag(diag::warn_format_zero_positional_specifier), |
| getLocationOfByte(startPos), |
| /*IsStringLocation*/true, |
| getSpecifierRange(startPos, posLen)); |
| } |
| |
| void CheckFormatHandler::HandleNullChar(const char *nullCharacter) { |
| if (!isa<ObjCStringLiteral>(OrigFormatExpr)) { |
| // The presence of a null character is likely an error. |
| EmitFormatDiagnostic( |
| S.PDiag(diag::warn_printf_format_string_contains_null_char), |
| getLocationOfByte(nullCharacter), /*IsStringLocation*/true, |
| getFormatStringRange()); |
| } |
| } |
| |
| // Note that this may return NULL if there was an error parsing or building |
| // one of the argument expressions. |
| const Expr *CheckFormatHandler::getDataArg(unsigned i) const { |
| return Args[FirstDataArg + i]; |
| } |
| |
| void CheckFormatHandler::DoneProcessing() { |
| // Does the number of data arguments exceed the number of |
| // format conversions in the format string? |
| if (!HasVAListArg) { |
| // Find any arguments that weren't covered. |
| CoveredArgs.flip(); |
| signed notCoveredArg = CoveredArgs.find_first(); |
| if (notCoveredArg >= 0) { |
| assert((unsigned)notCoveredArg < NumDataArgs); |
| UncoveredArg.Update(notCoveredArg, OrigFormatExpr); |
| } else { |
| UncoveredArg.setAllCovered(); |
| } |
| } |
| } |
| |
| void UncoveredArgHandler::Diagnose(Sema &S, bool IsFunctionCall, |
| const Expr *ArgExpr) { |
| assert(hasUncoveredArg() && DiagnosticExprs.size() > 0 && |
| "Invalid state"); |
| |
| if (!ArgExpr) |
| return; |
| |
| SourceLocation Loc = ArgExpr->getBeginLoc(); |
| |
| if (S.getSourceManager().isInSystemMacro(Loc)) |
| return; |
| |
| PartialDiagnostic PDiag = S.PDiag(diag::warn_printf_data_arg_not_used); |
| for (auto E : DiagnosticExprs) |
| PDiag << E->getSourceRange(); |
| |
| CheckFormatHandler::EmitFormatDiagnostic( |
| S, IsFunctionCall, DiagnosticExprs[0], |
| PDiag, Loc, /*IsStringLocation*/false, |
| DiagnosticExprs[0]->getSourceRange()); |
| } |
| |
| bool |
| CheckFormatHandler::HandleInvalidConversionSpecifier(unsigned argIndex, |
| SourceLocation Loc, |
| const char *startSpec, |
| unsigned specifierLen, |
| const char *csStart, |
| unsigned csLen) { |
| bool keepGoing = true; |
| if (argIndex < NumDataArgs) { |
| // Consider the argument coverered, even though the specifier doesn't |
| // make sense. |
| CoveredArgs.set(argIndex); |
| } |
| else { |
| // If argIndex exceeds the number of data arguments we |
| // don't issue a warning because that is just a cascade of warnings (and |
| // they may have intended '%%' anyway). We don't want to continue processing |
| // the format string after this point, however, as we will like just get |
| // gibberish when trying to match arguments. |
| keepGoing = false; |
| } |
| |
| StringRef Specifier(csStart, csLen); |
| |
| // If the specifier in non-printable, it could be the first byte of a UTF-8 |
| // sequence. In that case, print the UTF-8 code point. If not, print the byte |
| // hex value. |
| std::string CodePointStr; |
| if (!llvm::sys::locale::isPrint(*csStart)) { |
| llvm::UTF32 CodePoint; |
| const llvm::UTF8 **B = reinterpret_cast<const llvm::UTF8 **>(&csStart); |
| const llvm::UTF8 *E = |
| reinterpret_cast<const llvm::UTF8 *>(csStart + csLen); |
| llvm::ConversionResult Result = |
| llvm::convertUTF8Sequence(B, E, &CodePoint, llvm::strictConversion); |
| |
| if (Result != llvm::conversionOK) { |
| unsigned char FirstChar = *csStart; |
| CodePoint = (llvm::UTF32)FirstChar; |
| } |
| |
| llvm::raw_string_ostream OS(CodePointStr); |
| if (CodePoint < 256) |
| OS << "\\x" << llvm::format("%02x", CodePoint); |
| else if (CodePoint <= 0xFFFF) |
| OS << "\\u" << llvm::format("%04x", CodePoint); |
| else |
| OS << "\\U" << llvm::format("%08x", CodePoint); |
| OS.flush(); |
| Specifier = CodePointStr; |
| } |
| |
| EmitFormatDiagnostic( |
| S.PDiag(diag::warn_format_invalid_conversion) << Specifier, Loc, |
| /*IsStringLocation*/ true, getSpecifierRange(startSpec, specifierLen)); |
| |
| return keepGoing; |
| } |
| |
| void |
| CheckFormatHandler::HandlePositionalNonpositionalArgs(SourceLocation Loc, |
| const char *startSpec, |
| unsigned specifierLen) { |
| EmitFormatDiagnostic( |
| S.PDiag(diag::warn_format_mix_positional_nonpositional_args), |
| Loc, /*isStringLoc*/true, getSpecifierRange(startSpec, specifierLen)); |
| } |
| |
| bool |
| CheckFormatHandler::CheckNumArgs( |
| const analyze_format_string::FormatSpecifier &FS, |
| const analyze_format_string::ConversionSpecifier &CS, |
| const char *startSpecifier, unsigned specifierLen, unsigned argIndex) { |
| |
| if (argIndex >= NumDataArgs) { |
| PartialDiagnostic PDiag = FS.usesPositionalArg() |
| ? (S.PDiag(diag::warn_printf_positional_arg_exceeds_data_args) |
| << (argIndex+1) << NumDataArgs) |
| : S.PDiag(diag::warn_printf_insufficient_data_args); |
| EmitFormatDiagnostic( |
| PDiag, getLocationOfByte(CS.getStart()), /*IsStringLocation*/true, |
| getSpecifierRange(startSpecifier, specifierLen)); |
| |
| // Since more arguments than conversion tokens are given, by extension |
| // all arguments are covered, so mark this as so. |
| UncoveredArg.setAllCovered(); |
| return false; |
| } |
| return true; |
| } |
| |
| template<typename Range> |
| void CheckFormatHandler::EmitFormatDiagnostic(PartialDiagnostic PDiag, |
| SourceLocation Loc, |
| bool IsStringLocation, |
| Range StringRange, |
| ArrayRef<FixItHint> FixIt) { |
| EmitFormatDiagnostic(S, inFunctionCall, Args[FormatIdx], PDiag, |
| Loc, IsStringLocation, StringRange, FixIt); |
| } |
| |
| /// If the format string is not within the function call, emit a note |
| /// so that the function call and string are in diagnostic messages. |
| /// |
| /// \param InFunctionCall if true, the format string is within the function |
| /// call and only one diagnostic message will be produced. Otherwise, an |
| /// extra note will be emitted pointing to location of the format string. |
| /// |
| /// \param ArgumentExpr the expression that is passed as the format string |
| /// argument in the function call. Used for getting locations when two |
| /// diagnostics are emitted. |
| /// |
| /// \param PDiag the callee should already have provided any strings for the |
| /// diagnostic message. This function only adds locations and fixits |
| /// to diagnostics. |
| /// |
| /// \param Loc primary location for diagnostic. If two diagnostics are |
| /// required, one will be at Loc and a new SourceLocation will be created for |
| /// the other one. |
| /// |
| /// \param IsStringLocation if true, Loc points to the format string should be |
| /// used for the note. Otherwise, Loc points to the argument list and will |
| /// be used with PDiag. |
| /// |
| /// \param StringRange some or all of the string to highlight. This is |
| /// templated so it can accept either a CharSourceRange or a SourceRange. |
| /// |
| /// \param FixIt optional fix it hint for the format string. |
| template <typename Range> |
| void CheckFormatHandler::EmitFormatDiagnostic( |
| Sema &S, bool InFunctionCall, const Expr *ArgumentExpr, |
| const PartialDiagnostic &PDiag, SourceLocation Loc, bool IsStringLocation, |
| Range StringRange, ArrayRef<FixItHint> FixIt) { |
| if (InFunctionCall) { |
| const Sema::SemaDiagnosticBuilder &D = S.Diag(Loc, PDiag); |
| D << StringRange; |
| D << FixIt; |
| } else { |
| S.Diag(IsStringLocation ? ArgumentExpr->getExprLoc() : Loc, PDiag) |
| << ArgumentExpr->getSourceRange(); |
| |
| const Sema::SemaDiagnosticBuilder &Note = |
| S.Diag(IsStringLocation ? Loc : StringRange.getBegin(), |
| diag::note_format_string_defined); |
| |
| Note << StringRange; |
| Note << FixIt; |
| } |
| } |
| |
| //===--- CHECK: Printf format string checking ------------------------------===// |
| |
| namespace { |
| |
| class CheckPrintfHandler : public CheckFormatHandler { |
| public: |
| CheckPrintfHandler(Sema &s, const FormatStringLiteral *fexpr, |
| const Expr *origFormatExpr, |
| const Sema::FormatStringType type, unsigned firstDataArg, |
| unsigned numDataArgs, bool isObjC, const char *beg, |
| bool hasVAListArg, ArrayRef<const Expr *> Args, |
| unsigned formatIdx, bool inFunctionCall, |
| Sema::VariadicCallType CallType, |
| llvm::SmallBitVector &CheckedVarArgs, |
| UncoveredArgHandler &UncoveredArg) |
| : CheckFormatHandler(s, fexpr, origFormatExpr, type, firstDataArg, |
| numDataArgs, beg, hasVAListArg, Args, formatIdx, |
| inFunctionCall, CallType, CheckedVarArgs, |
| UncoveredArg) {} |
| |
| bool isObjCContext() const { return FSType == Sema::FST_NSString; } |
| |
| /// Returns true if '%@' specifiers are allowed in the format string. |
| bool allowsObjCArg() const { |
| return FSType == Sema::FST_NSString || FSType == Sema::FST_OSLog || |
| FSType == Sema::FST_OSTrace; |
| } |
| |
| bool HandleInvalidPrintfConversionSpecifier( |
| const analyze_printf::PrintfSpecifier &FS, |
| const char *startSpecifier, |
| unsigned specifierLen) override; |
| |
| void handleInvalidMaskType(StringRef MaskType) override; |
| |
| bool HandlePrintfSpecifier(const analyze_printf::PrintfSpecifier &FS, |
| const char *startSpecifier, |
| unsigned specifierLen) override; |
| bool checkFormatExpr(const analyze_printf::PrintfSpecifier &FS, |
| const char *StartSpecifier, |
| unsigned SpecifierLen, |
| const Expr *E); |
| |
| bool HandleAmount(const analyze_format_string::OptionalAmount &Amt, unsigned k, |
| const char *startSpecifier, unsigned specifierLen); |
| void HandleInvalidAmount(const analyze_printf::PrintfSpecifier &FS, |
| const analyze_printf::OptionalAmount &Amt, |
| unsigned type, |
| const char *startSpecifier, unsigned specifierLen); |
| void HandleFlag(const analyze_printf::PrintfSpecifier &FS, |
| const analyze_printf::OptionalFlag &flag, |
| const char *startSpecifier, unsigned specifierLen); |
| void HandleIgnoredFlag(const analyze_printf::PrintfSpecifier &FS, |
| const analyze_printf::OptionalFlag &ignoredFlag, |
| const analyze_printf::OptionalFlag &flag, |
| const char *startSpecifier, unsigned specifierLen); |
| bool checkForCStrMembers(const analyze_printf::ArgType &AT, |
| const Expr *E); |
| |
| void HandleEmptyObjCModifierFlag(const char *startFlag, |
| unsigned flagLen) override; |
| |
| void HandleInvalidObjCModifierFlag(const char *startFlag, |
| unsigned flagLen) override; |
| |
| void HandleObjCFlagsWithNonObjCConversion(const char *flagsStart, |
| const char *flagsEnd, |
| const char *conversionPosition) |
| override; |
| }; |
| |
| } // namespace |
| |
| bool CheckPrintfHandler::HandleInvalidPrintfConversionSpecifier( |
| const analyze_printf::PrintfSpecifier &FS, |
| const char *startSpecifier, |
| unsigned specifierLen) { |
| const analyze_printf::PrintfConversionSpecifier &CS = |
| FS.getConversionSpecifier(); |
| |
| return HandleInvalidConversionSpecifier(FS.getArgIndex(), |
| getLocationOfByte(CS.getStart()), |
| startSpecifier, specifierLen, |
| CS.getStart(), CS.getLength()); |
| } |
| |
| void CheckPrintfHandler::handleInvalidMaskType(StringRef MaskType) { |
| S.Diag(getLocationOfByte(MaskType.data()), diag::err_invalid_mask_type_size); |
| } |
| |
| bool CheckPrintfHandler::HandleAmount( |
| const analyze_format_string::OptionalAmount &Amt, |
| unsigned k, const char *startSpecifier, |
| unsigned specifierLen) { |
| if (Amt.hasDataArgument()) { |
| if (!HasVAListArg) { |
| unsigned argIndex = Amt.getArgIndex(); |
| if (argIndex >= NumDataArgs) { |
| EmitFormatDiagnostic(S.PDiag(diag::warn_printf_asterisk_missing_arg) |
| << k, |
| getLocationOfByte(Amt.getStart()), |
| /*IsStringLocation*/true, |
| getSpecifierRange(startSpecifier, specifierLen)); |
| // Don't do any more checking. We will just emit |
| // spurious errors. |
| return false; |
| } |
| |
| // Type check the data argument. It should be an 'int'. |
| // Although not in conformance with C99, we also allow the argument to be |
| // an 'unsigned int' as that is a reasonably safe case. GCC also |
| // doesn't emit a warning for that case. |
| CoveredArgs.set(argIndex); |
| const Expr *Arg = getDataArg(argIndex); |
| if (!Arg) |
| return false; |
| |
| QualType T = Arg->getType(); |
| |
| const analyze_printf::ArgType &AT = Amt.getArgType(S.Context); |
| assert(AT.isValid()); |
| |
| if (!AT.matchesType(S.Context, T)) { |
| EmitFormatDiagnostic(S.PDiag(diag::warn_printf_asterisk_wrong_type) |
| << k << AT.getRepresentativeTypeName(S.Context) |
| << T << Arg->getSourceRange(), |
| getLocationOfByte(Amt.getStart()), |
| /*IsStringLocation*/true, |
| getSpecifierRange(startSpecifier, specifierLen)); |
| // Don't do any more checking. We will just emit |
| // spurious errors. |
| return false; |
| } |
| } |
| } |
| return true; |
| } |
| |
| void CheckPrintfHandler::HandleInvalidAmount( |
| const analyze_printf::PrintfSpecifier &FS, |
| const analyze_printf::OptionalAmount &Amt, |
| unsigned type, |
| const char *startSpecifier, |
| unsigned specifierLen) { |
| const analyze_printf::PrintfConversionSpecifier &CS = |
| FS.getConversionSpecifier(); |
| |
| FixItHint fixit = |
| Amt.getHowSpecified() == analyze_printf::OptionalAmount::Constant |
| ? FixItHint::CreateRemoval(getSpecifierRange(Amt.getStart(), |
| Amt.getConstantLength())) |
| : FixItHint(); |
| |
| EmitFormatDiagnostic(S.PDiag(diag::warn_printf_nonsensical_optional_amount) |
| << type << CS.toString(), |
| getLocationOfByte(Amt.getStart()), |
| /*IsStringLocation*/true, |
| getSpecifierRange(startSpecifier, specifierLen), |
| fixit); |
| } |
| |
| void CheckPrintfHandler::HandleFlag(const analyze_printf::PrintfSpecifier &FS, |
| const analyze_printf::OptionalFlag &flag, |
| const char *startSpecifier, |
| unsigned specifierLen) { |
| // Warn about pointless flag with a fixit removal. |
| const analyze_printf::PrintfConversionSpecifier &CS = |
| FS.getConversionSpecifier(); |
| EmitFormatDiagnostic(S.PDiag(diag::warn_printf_nonsensical_flag) |
| << flag.toString() << CS.toString(), |
| getLocationOfByte(flag.getPosition()), |
| /*IsStringLocation*/true, |
| getSpecifierRange(startSpecifier, specifierLen), |
| FixItHint::CreateRemoval( |
| getSpecifierRange(flag.getPosition(), 1))); |
| } |
| |
| void CheckPrintfHandler::HandleIgnoredFlag( |
| const analyze_printf::PrintfSpecifier &FS, |
| const analyze_printf::OptionalFlag &ignoredFlag, |
| const analyze_printf::OptionalFlag &flag, |
| const char *startSpecifier, |
| unsigned specifierLen) { |
| // Warn about ignored flag with a fixit removal. |
| EmitFormatDiagnostic(S.PDiag(diag::warn_printf_ignored_flag) |
| << ignoredFlag.toString() << flag.toString(), |
| getLocationOfByte(ignoredFlag.getPosition()), |
| /*IsStringLocation*/true, |
| getSpecifierRange(startSpecifier, specifierLen), |
| FixItHint::CreateRemoval( |
| getSpecifierRange(ignoredFlag.getPosition(), 1))); |
| } |
| |
| void CheckPrintfHandler::HandleEmptyObjCModifierFlag(const char *startFlag, |
| unsigned flagLen) { |
| // Warn about an empty flag. |
| EmitFormatDiagnostic(S.PDiag(diag::warn_printf_empty_objc_flag), |
| getLocationOfByte(startFlag), |
| /*IsStringLocation*/true, |
| getSpecifierRange(startFlag, flagLen)); |
| } |
| |
| void CheckPrintfHandler::HandleInvalidObjCModifierFlag(const char *startFlag, |
| unsigned flagLen) { |
| // Warn about an invalid flag. |
| auto Range = getSpecifierRange(startFlag, flagLen); |
| StringRef flag(startFlag, flagLen); |
| EmitFormatDiagnostic(S.PDiag(diag::warn_printf_invalid_objc_flag) << flag, |
| getLocationOfByte(startFlag), |
| /*IsStringLocation*/true, |
| Range, FixItHint::CreateRemoval(Range)); |
| } |
| |
| void CheckPrintfHandler::HandleObjCFlagsWithNonObjCConversion( |
| const char *flagsStart, const char *flagsEnd, const char *conversionPosition) { |
| // Warn about using '[...]' without a '@' conversion. |
| auto Range = getSpecifierRange(flagsStart, flagsEnd - flagsStart + 1); |
| auto diag = diag::warn_printf_ObjCflags_without_ObjCConversion; |
| EmitFormatDiagnostic(S.PDiag(diag) << StringRef(conversionPosition, 1), |
| getLocationOfByte(conversionPosition), |
| /*IsStringLocation*/true, |
| Range, FixItHint::CreateRemoval(Range)); |
| } |
| |
| // Determines if the specified is a C++ class or struct containing |
| // a member with the specified name and kind (e.g. a CXXMethodDecl named |
| // "c_str()"). |
| template<typename MemberKind> |
| static llvm::SmallPtrSet<MemberKind*, 1> |
| CXXRecordMembersNamed(StringRef Name, Sema &S, QualType Ty) { |
| const RecordType *RT = Ty->getAs<RecordType>(); |
| llvm::SmallPtrSet<MemberKind*, 1> Results; |
| |
| if (!RT) |
| return Results; |
| const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(RT->getDecl()); |
| if (!RD || !RD->getDefinition()) |
| return Results; |
| |
| LookupResult R(S, &S.Context.Idents.get(Name), SourceLocation(), |
| Sema::LookupMemberName); |
| R.suppressDiagnostics(); |
| |
| // We just need to include all members of the right kind turned up by the |
| // filter, at this point. |
| if (S.LookupQualifiedName(R, RT->getDecl())) |
| for (LookupResult::iterator I = R.begin(), E = R.end(); I != E; ++I) { |
| NamedDecl *decl = (*I)->getUnderlyingDecl(); |
| if (MemberKind *FK = dyn_cast<MemberKind>(decl)) |
| Results.insert(FK); |
| } |
| return Results; |
| } |
| |
| /// Check if we could call '.c_str()' on an object. |
| /// |
| /// FIXME: This returns the wrong results in some cases (if cv-qualifiers don't |
| /// allow the call, or if it would be ambiguous). |
| bool Sema::hasCStrMethod(const Expr *E) { |
| using MethodSet = llvm::SmallPtrSet<CXXMethodDecl *, 1>; |
| |
| MethodSet Results = |
| CXXRecordMembersNamed<CXXMethodDecl>("c_str", *this, E->getType()); |
| for (MethodSet::iterator MI = Results.begin(), ME = Results.end(); |
| MI != ME; ++MI) |
| if ((*MI)->getMinRequiredArguments() == 0) |
| return true; |
| return false; |
| } |
| |
| // Check if a (w)string was passed when a (w)char* was needed, and offer a |
| // better diagnostic if so. AT is assumed to be valid. |
| // Returns true when a c_str() conversion method is found. |
| bool CheckPrintfHandler::checkForCStrMembers( |
| const analyze_printf::ArgType &AT, const Expr *E) { |
| using MethodSet = llvm::SmallPtrSet<CXXMethodDecl *, 1>; |
| |
| MethodSet Results = |
| CXXRecordMembersNamed<CXXMethodDecl>("c_str", S, E->getType()); |
| |
| for (MethodSet::iterator MI = Results.begin(), ME = Results.end(); |
| MI != ME; ++MI) { |
| const CXXMethodDecl *Method = *MI; |
| if (Method->getMinRequiredArguments() == 0 && |
| AT.matchesType(S.Context, Method->getReturnType())) { |
| // FIXME: Suggest parens if the expression needs them. |
| SourceLocation EndLoc = S.getLocForEndOfToken(E->getEndLoc()); |
| S.Diag(E->getBeginLoc(), diag::note_printf_c_str) |
| << "c_str()" << FixItHint::CreateInsertion(EndLoc, ".c_str()"); |
| return true; |
| } |
| } |
| |
| return false; |
| } |
| |
| bool |
| CheckPrintfHandler::HandlePrintfSpecifier(const analyze_printf::PrintfSpecifier |
| &FS, |
| const char *startSpecifier, |
| unsigned specifierLen) { |
| using namespace analyze_format_string; |
| using namespace analyze_printf; |
| |
| const PrintfConversionSpecifier &CS = FS.getConversionSpecifier(); |
| |
| if (FS.consumesDataArgument()) { |
| if (atFirstArg) { |
| atFirstArg = false; |
| usesPositionalArgs = FS.usesPositionalArg(); |
| } |
| else if (usesPositionalArgs != FS.usesPositionalArg()) { |
| HandlePositionalNonpositionalArgs(getLocationOfByte(CS.getStart()), |
| startSpecifier, specifierLen); |
| return false; |
| } |
| } |
| |
| // First check if the field width, precision, and conversion specifier |
| // have matching data arguments. |
| if (!HandleAmount(FS.getFieldWidth(), /* field width */ 0, |
| startSpecifier, specifierLen)) { |
| return false; |
| } |
| |
| if (!HandleAmount(FS.getPrecision(), /* precision */ 1, |
| startSpecifier, specifierLen)) { |
| return false; |
| } |
| |
| if (!CS.consumesDataArgument()) { |
| // FIXME: Technically specifying a precision or field width here |
| // makes no sense. Worth issuing a warning at some point. |
| return true; |
| } |
| |
| // Consume the argument. |
| unsigned argIndex = FS.getArgIndex(); |
| if (argIndex < NumDataArgs) { |
| // The check to see if the argIndex is valid will come later. |
| // We set the bit here because we may exit early from this |
| // function if we encounter some other error. |
| CoveredArgs.set(argIndex); |
| } |
| |
| // FreeBSD kernel extensions. |
| if (CS.getKind() == ConversionSpecifier::FreeBSDbArg || |
| CS.getKind() == ConversionSpecifier::FreeBSDDArg) { |
| // We need at least two arguments. |
| if (!CheckNumArgs(FS, CS, startSpecifier, specifierLen, argIndex + 1)) |
| return false; |
| |
| // Claim the second argument. |
| CoveredArgs.set(argIndex + 1); |
| |
| // Type check the first argument (int for %b, pointer for %D) |
| const Expr *Ex = getDataArg(argIndex); |
| const analyze_printf::ArgType &AT = |
| (CS.getKind() == ConversionSpecifier::FreeBSDbArg) ? |
| ArgType(S.Context.IntTy) : ArgType::CPointerTy; |
| if (AT.isValid() && !AT.matchesType(S.Context, Ex->getType())) |
| EmitFormatDiagnostic( |
| S.PDiag(diag::warn_format_conversion_argument_type_mismatch) |
| << AT.getRepresentativeTypeName(S.Context) << Ex->getType() |
| << false << Ex->getSourceRange(), |
| Ex->getBeginLoc(), /*IsStringLocation*/ false, |
| getSpecifierRange(startSpecifier, specifierLen)); |
| |
| // Type check the second argument (char * for both %b and %D) |
| Ex = getDataArg(argIndex + 1); |
| const analyze_printf::ArgType &AT2 = ArgType::CStrTy; |
| if (AT2.isValid() && !AT2.matchesType(S.Context, Ex->getType())) |
| EmitFormatDiagnostic( |
| S.PDiag(diag::warn_format_conversion_argument_type_mismatch) |
| << AT2.getRepresentativeTypeName(S.Context) << Ex->getType() |
| << false << Ex->getSourceRange(), |
| Ex->getBeginLoc(), /*IsStringLocation*/ false, |
| getSpecifierRange(startSpecifier, specifierLen)); |
| |
| return true; |
| } |
| |
| // Check for using an Objective-C specific conversion specifier |
| // in a non-ObjC literal. |
| if (!allowsObjCArg() && CS.isObjCArg()) { |
| return HandleInvalidPrintfConversionSpecifier(FS, startSpecifier, |
| specifierLen); |
| } |
| |
| // %P can only be used with os_log. |
| if (FSType != Sema::FST_OSLog && CS.getKind() == ConversionSpecifier::PArg) { |
| return HandleInvalidPrintfConversionSpecifier(FS, startSpecifier, |
| specifierLen); |
| } |
| |
| // %n is not allowed with os_log. |
| if (FSType == Sema::FST_OSLog && CS.getKind() == ConversionSpecifier::nArg) { |
| EmitFormatDiagnostic(S.PDiag(diag::warn_os_log_format_narg), |
| getLocationOfByte(CS.getStart()), |
| /*IsStringLocation*/ false, |
| getSpecifierRange(startSpecifier, specifierLen)); |
| |
| return true; |
| } |
| |
| // Only scalars are allowed for os_trace. |
| if (FSType == Sema::FST_OSTrace && |
| (CS.getKind() == ConversionSpecifier::PArg || |
| CS.getKind() == ConversionSpecifier::sArg || |
| CS.getKind() == ConversionSpecifier::ObjCObjArg)) { |
| return HandleInvalidPrintfConversionSpecifier(FS, startSpecifier, |
| specifierLen); |
| } |
| |
| // Check for use of public/private annotation outside of os_log(). |
| if (FSType != Sema::FST_OSLog) { |
| if (FS.isPublic().isSet()) { |
| EmitFormatDiagnostic(S.PDiag(diag::warn_format_invalid_annotation) |
| << "public", |
| getLocationOfByte(FS.isPublic().getPosition()), |
| /*IsStringLocation*/ false, |
| getSpecifierRange(startSpecifier, specifierLen)); |
| } |
| if (FS.isPrivate().isSet()) { |
| EmitFormatDiagnostic(S.PDiag(diag::warn_format_invalid_annotation) |
| << "private", |
| getLocationOfByte(FS.isPrivate().getPosition()), |
| /*IsStringLocation*/ false, |
| getSpecifierRange(startSpecifier, specifierLen)); |
| } |
| } |
| |
| // Check for invalid use of field width |
| if (!FS.hasValidFieldWidth()) { |
| HandleInvalidAmount(FS, FS.getFieldWidth(), /* field width */ 0, |
| startSpecifier, specifierLen); |
| } |
| |
| // Check for invalid use of precision |
| if (!FS.hasValidPrecision()) { |
| HandleInvalidAmount(FS, FS.getPrecision(), /* precision */ 1, |
| startSpecifier, specifierLen); |
| } |
| |
| // Precision is mandatory for %P specifier. |
| if (CS.getKind() == ConversionSpecifier::PArg && |
| FS.getPrecision().getHowSpecified() == OptionalAmount::NotSpecified) { |
| EmitFormatDiagnostic(S.PDiag(diag::warn_format_P_no_precision), |
| getLocationOfByte(startSpecifier), |
| /*IsStringLocation*/ false, |
| getSpecifierRange(startSpecifier, specifierLen)); |
| } |
| |
| // Check each flag does not conflict with any other component. |
| if (!FS.hasValidThousandsGroupingPrefix()) |
| HandleFlag(FS, FS.hasThousandsGrouping(), startSpecifier, specifierLen); |
| if (!FS.hasValidLeadingZeros()) |
| HandleFlag(FS, FS.hasLeadingZeros(), startSpecifier, specifierLen); |
| if (!FS.hasValidPlusPrefix()) |
| HandleFlag(FS, FS.hasPlusPrefix(), startSpecifier, specifierLen); |
| if (!FS.hasValidSpacePrefix()) |
| HandleFlag(FS, FS.hasSpacePrefix(), startSpecifier, specifierLen); |
| if (!FS.hasValidAlternativeForm()) |
| HandleFlag(FS, FS.hasAlternativeForm(), startSpecifier, specifierLen); |
| if (!FS.hasValidLeftJustified()) |
| HandleFlag(FS, FS.isLeftJustified(), startSpecifier, specifierLen); |
| |
| // Check that flags are not ignored by another flag |
| if (FS.hasSpacePrefix() && FS.hasPlusPrefix()) // ' ' ignored by '+' |
| HandleIgnoredFlag(FS, FS.hasSpacePrefix(), FS.hasPlusPrefix(), |
| startSpecifier, specifierLen); |
| if (FS.hasLeadingZeros() && FS.isLeftJustified()) // '0' ignored by '-' |
| HandleIgnoredFlag(FS, FS.hasLeadingZeros(), FS.isLeftJustified(), |
| startSpecifier, specifierLen); |
| |
| // Check the length modifier is valid with the given conversion specifier. |
| if (!FS.hasValidLengthModifier(S.getASTContext().getTargetInfo(), |
| S.getLangOpts())) |
| HandleInvalidLengthModifier(FS, CS, startSpecifier, specifierLen, |
| diag::warn_format_nonsensical_length); |
| else if (!FS.hasStandardLengthModifier()) |
| HandleNonStandardLengthModifier(FS, startSpecifier, specifierLen); |
| else if (!FS.hasStandardLengthConversionCombination()) |
| HandleInvalidLengthModifier(FS, CS, startSpecifier, specifierLen, |
| diag::warn_format_non_standard_conversion_spec); |
| |
| if (!FS.hasStandardConversionSpecifier(S.getLangOpts())) |
| HandleNonStandardConversionSpecifier(CS, startSpecifier, specifierLen); |
| |
| // The remaining checks depend on the data arguments. |
| if (HasVAListArg) |
| return true; |
| |
| if (!CheckNumArgs(FS, CS, startSpecifier, specifierLen, argIndex)) |
| return false; |
| |
| const Expr *Arg = getDataArg(argIndex); |
| if (!Arg) |
| return true; |
| |
| return checkFormatExpr(FS, startSpecifier, specifierLen, Arg); |
| } |
| |
| static bool requiresParensToAddCast(const Expr *E) { |
| // FIXME: We should have a general way to reason about operator |
| // precedence and whether parens are actually needed here. |
| // Take care of a few common cases where they aren't. |
| const Expr *Inside = E->IgnoreImpCasts(); |
| if (const PseudoObjectExpr *POE = dyn_cast<PseudoObjectExpr>(Inside)) |
| Inside = POE->getSyntacticForm()->IgnoreImpCasts(); |
| |
| switch (Inside->getStmtClass()) { |
| case Stmt::ArraySubscriptExprClass: |
| case Stmt::CallExprClass: |
| case Stmt::CharacterLiteralClass: |
| case Stmt::CXXBoolLiteralExprClass: |
| case Stmt::DeclRefExprClass: |
| case Stmt::FloatingLiteralClass: |
| case Stmt::IntegerLiteralClass: |
| case Stmt::MemberExprClass: |
| case Stmt::ObjCArrayLiteralClass: |
| case Stmt::ObjCBoolLiteralExprClass: |
| case Stmt::ObjCBoxedExprClass: |
| case Stmt::ObjCDictionaryLiteralClass: |
| case Stmt::ObjCEncodeExprClass: |
| case Stmt::ObjCIvarRefExprClass: |
| case Stmt::ObjCMessageExprClass: |
| case Stmt::ObjCPropertyRefExprClass: |
| case Stmt::ObjCStringLiteralClass: |
| case Stmt::ObjCSubscriptRefExprClass: |
| case Stmt::ParenExprClass: |
| case Stmt::StringLiteralClass: |
| case Stmt::UnaryOperatorClass: |
| return false; |
| default: |
| return true; |
| } |
| } |
| |
| static std::pair<QualType, StringRef> |
| shouldNotPrintDirectly(const ASTContext &Context, |
| QualType IntendedTy, |
| const Expr *E) { |
| // Use a 'while' to peel off layers of typedefs. |
| QualType TyTy = IntendedTy; |
| while (const TypedefType *UserTy = TyTy->getAs<TypedefType>()) { |
| StringRef Name = UserTy->getDecl()->getName(); |
| QualType CastTy = llvm::StringSwitch<QualType>(Name) |
| .Case("CFIndex", Context.getNSIntegerType()) |
| .Case("NSInteger", Context.getNSIntegerType()) |
| .Case("NSUInteger", Context.getNSUIntegerType()) |
| .Case("SInt32", Context.IntTy) |
| .Case("UInt32", Context.UnsignedIntTy) |
| .Default(QualType()); |
| |
| if (!CastTy.isNull()) |
| return std::make_pair(CastTy, Name); |
| |
| TyTy = UserTy->desugar(); |
| } |
| |
| // Strip parens if necessary. |
| if (const ParenExpr *PE = dyn_cast<ParenExpr>(E)) |
| return shouldNotPrintDirectly(Context, |
| PE->getSubExpr()->getType(), |
| PE->getSubExpr()); |
| |
| // If this is a conditional expression, then its result type is constructed |
| // via usual arithmetic conversions and thus there might be no necessary |
| // typedef sugar there. Recurse to operands to check for NSInteger & |
| // Co. usage condition. |
| if (const ConditionalOperator *CO = dyn_cast<ConditionalOperator>(E)) { |
| QualType TrueTy, FalseTy; |
| StringRef TrueName, FalseName; |
| |
| std::tie(TrueTy, TrueName) = |
| shouldNotPrintDirectly(Context, |
| CO->getTrueExpr()->getType(), |
| CO->getTrueExpr()); |
| std::tie(FalseTy, FalseName) = |
| shouldNotPrintDirectly(Context, |
| CO->getFalseExpr()->getType(), |
| CO->getFalseExpr()); |
| |
| if (TrueTy == FalseTy) |
| return std::make_pair(TrueTy, TrueName); |
| else if (TrueTy.isNull()) |
| return std::make_pair(FalseTy, FalseName); |
| else if (FalseTy.isNull()) |
| return std::make_pair(TrueTy, TrueName); |
| } |
| |
| return std::make_pair(QualType(), StringRef()); |
| } |
| |
| /// Return true if \p ICE is an implicit argument promotion of an arithmetic |
| /// type. Bit-field 'promotions' from a higher ranked type to a lower ranked |
| /// type do not count. |
| static bool |
| isArithmeticArgumentPromotion(Sema &S, const ImplicitCastExpr *ICE) { |
| QualType From = ICE->getSubExpr()->getType(); |
| QualType To = ICE->getType(); |
| // It's an integer promotion if the destination type is the promoted |
| // source type. |
| if (ICE->getCastKind() == CK_IntegralCast && |
| From->isPromotableIntegerType() && |
| S.Context.getPromotedIntegerType(From) == To) |
| return true; |
| // Look through vector types, since we do default argument promotion for |
| // those in OpenCL. |
| if (const auto *VecTy = From->getAs<ExtVectorType>()) |
| From = VecTy->getElementType(); |
| if (const auto *VecTy = To->getAs<ExtVectorType>()) |
| To = VecTy->getElementType(); |
| // It's a floating promotion if the source type is a lower rank. |
| return ICE->getCastKind() == CK_FloatingCast && |
| S.Context.getFloatingTypeOrder(From, To) < 0; |
| } |
| |
| bool |
| CheckPrintfHandler::checkFormatExpr(const analyze_printf::PrintfSpecifier &FS, |
| const char *StartSpecifier, |
| unsigned SpecifierLen, |
| const Expr *E) { |
| using namespace analyze_format_string; |
| using namespace analyze_printf; |
| |
| // Now type check the data expression that matches the |
| // format specifier. |
| const analyze_printf::ArgType &AT = FS.getArgType(S.Context, isObjCContext()); |
| if (!AT.isValid()) |
| return true; |
| |
| QualType ExprTy = E->getType(); |
| while (const TypeOfExprType *TET = dyn_cast<TypeOfExprType>(ExprTy)) { |
| ExprTy = TET->getUnderlyingExpr()->getType(); |
| } |
| |
| // Diagnose attempts to print a boolean value as a character. Unlike other |
| // -Wformat diagnostics, this is fine from a type perspective, but it still |
| // doesn't make sense. |
| if (FS.getConversionSpecifier().getKind() == ConversionSpecifier::cArg && |
| E->isKnownToHaveBooleanValue()) { |
| const CharSourceRange &CSR = |
| getSpecifierRange(StartSpecifier, SpecifierLen); |
| SmallString<4> FSString; |
| llvm::raw_svector_ostream os(FSString); |
| FS.toString(os); |
| EmitFormatDiagnostic(S.PDiag(diag::warn_format_bool_as_character) |
| << FSString, |
| E->getExprLoc(), false, CSR); |
| return true; |
| } |
| |
| analyze_printf::ArgType::MatchKind Match = AT.matchesType(S.Context, ExprTy); |
| if (Match == analyze_printf::ArgType::Match) |
| return true; |
| |
| // Look through argument promotions for our error message's reported type. |
| // This includes the integral and floating promotions, but excludes array |
| // and function pointer decay (seeing that an argument intended to be a |
| // string has type 'char [6]' is probably more confusing than 'char *') and |
| // certain bitfield promotions (bitfields can be 'demoted' to a lesser type). |
| if (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E)) { |
| if (isArithmeticArgumentPromotion(S, ICE)) { |
| E = ICE->getSubExpr(); |
| ExprTy = E->getType(); |
| |
| // Check if we didn't match because of an implicit cast from a 'char' |
| // or 'short' to an 'int'. This is done because printf is a varargs |
| // function. |
| if (ICE->getType() == S.Context.IntTy || |
| ICE->getType() == S.Context.UnsignedIntTy) { |
| // All further checking is done on the subexpression |
| const analyze_printf::ArgType::MatchKind ImplicitMatch = |
| AT.matchesType(S.Context, ExprTy); |
| if (ImplicitMatch == analyze_printf::ArgType::Match) |
| return true; |
| if (ImplicitMatch == ArgType::NoMatchPedantic || |
| ImplicitMatch == ArgType::NoMatchTypeConfusion) |
| Match = ImplicitMatch; |
| } |
| } |
| } else if (const CharacterLiteral *CL = dyn_cast<CharacterLiteral>(E)) { |
| // Special case for 'a', which has type 'int' in C. |
| // Note, however, that we do /not/ want to treat multibyte constants like |
| // 'MooV' as characters! This form is deprecated but still exists. In |
| // addition, don't treat expressions as of type 'char' if one byte length |
| // modifier is provided. |
| if (ExprTy == S.Context.IntTy && |
| FS.getLengthModifier().getKind() != LengthModifier::AsChar) |
| if (llvm::isUIntN(S.Context.getCharWidth(), CL->getValue())) |
| ExprTy = S.Context.CharTy; |
| } |
| |
| // Look through enums to their underlying type. |
| bool IsEnum = false; |
| if (auto EnumTy = ExprTy->getAs<EnumType>()) { |
| ExprTy = EnumTy->getDecl()->getIntegerType(); |
| IsEnum = true; |
| } |
| |
| // %C in an Objective-C context prints a unichar, not a wchar_t. |
| // If the argument is an integer of some kind, believe the %C and suggest |
| // a cast instead of changing the conversion specifier. |
| QualType IntendedTy = ExprTy; |
| if (isObjCContext() && |
| FS.getConversionSpecifier().getKind() == ConversionSpecifier::CArg) { |
| if (ExprTy->isIntegralOrUnscopedEnumerationType() && |
| !ExprTy->isCharType()) { |
| // 'unichar' is defined as a typedef of unsigned short, but we should |
| // prefer using the typedef if it is visible. |
| IntendedTy = S.Context.UnsignedShortTy; |
| |
| // While we are here, check if the value is an IntegerLiteral that happens |
| // to be within the valid range. |
| if (const IntegerLiteral *IL = dyn_cast<IntegerLiteral>(E)) { |
| const llvm::APInt &V = IL->getValue(); |
| if (V.getActiveBits() <= S.Context.getTypeSize(IntendedTy)) |
| return true; |
| } |
| |
| LookupResult Result(S, &S.Context.Idents.get("unichar"), E->getBeginLoc(), |
| Sema::LookupOrdinaryName); |
| if (S.LookupName(Result, S.getCurScope())) { |
| NamedDecl *ND = Result.getFoundDecl(); |
| if (TypedefNameDecl *TD = dyn_cast<TypedefNameDecl>(ND)) |
| if (TD->getUnderlyingType() == IntendedTy) |
| IntendedTy = S.Context.getTypedefType(TD); |
| } |
| } |
| } |
| |
| // Special-case some of Darwin's platform-independence types by suggesting |
| // casts to primitive types that are known to be large enough. |
| bool ShouldNotPrintDirectly = false; StringRef CastTyName; |
| if (S.Context.getTargetInfo().getTriple().isOSDarwin()) { |
| QualType CastTy; |
| std::tie(CastTy, CastTyName) = shouldNotPrintDirectly(S.Context, IntendedTy, E); |
| if (!CastTy.isNull()) { |
| // %zi/%zu and %td/%tu are OK to use for NSInteger/NSUInteger of type int |
| // (long in ASTContext). Only complain to pedants. |
| if ((CastTyName == "NSInteger" || CastTyName == "NSUInteger") && |
| (AT.isSizeT() || AT.isPtrdiffT()) && |
| AT.matchesType(S.Context, CastTy)) |
| Match = ArgType::NoMatchPedantic; |
| IntendedTy = CastTy; |
| ShouldNotPrintDirectly = true; |
| } |
| } |
| |
| // We may be able to offer a FixItHint if it is a supported type. |
| PrintfSpecifier fixedFS = FS; |
| bool Success = |
| fixedFS.fixType(IntendedTy, S.getLangOpts(), S.Context, isObjCContext()); |
| |
| if (Success) { |
| // Get the fix string from the fixed format specifier |
| SmallString<16> buf; |
| llvm::raw_svector_ostream os(buf); |
| fixedFS.toString(os); |
| |
| CharSourceRange SpecRange = getSpecifierRange(StartSpecifier, SpecifierLen); |
| |
| if (IntendedTy == ExprTy && !ShouldNotPrintDirectly) { |
| unsigned Diag; |
| switch (Match) { |
| case ArgType::Match: llvm_unreachable("expected non-matching"); |
| case ArgType::NoMatchPedantic: |
| Diag = diag::warn_format_conversion_argument_type_mismatch_pedantic; |
| break; |
| case ArgType::NoMatchTypeConfusion: |
| Diag = diag::warn_format_conversion_argument_type_mismatch_confusion; |
| break; |
| case ArgType::NoMatch: |
| Diag = diag::warn_format_conversion_argument_type_mismatch; |
| break; |
| } |
| |
| // In this case, the specifier is wrong and should be changed to match |
| // the argument. |
| EmitFormatDiagnostic(S.PDiag(Diag) |
| << AT.getRepresentativeTypeName(S.Context) |
| << IntendedTy << IsEnum << E->getSourceRange(), |
| E->getBeginLoc(), |
| /*IsStringLocation*/ false, SpecRange, |
| FixItHint::CreateReplacement(SpecRange, os.str())); |
| } else { |
| // The canonical type for formatting this value is different from the |
| // actual type of the expression. (This occurs, for example, with Darwin's |
| // NSInteger on 32-bit platforms, where it is typedef'd as 'int', but |
| // should be printed as 'long' for 64-bit compatibility.) |
| // Rather than emitting a normal format/argument mismatch, we want to |
| // add a cast to the recommended type (and correct the format string |
| // if necessary). |
| SmallString<16> CastBuf; |
| llvm::raw_svector_ostream CastFix(CastBuf); |
| CastFix << "("; |
| IntendedTy.print(CastFix, S.Context.getPrintingPolicy()); |
| CastFix << ")"; |
| |
| SmallVector<FixItHint,4> Hints; |
| if (!AT.matchesType(S.Context, IntendedTy) || ShouldNotPrintDirectly) |
| Hints.push_back(FixItHint::CreateReplacement(SpecRange, os.str())); |
| |
| if (const CStyleCastExpr *CCast = dyn_cast<CStyleCastExpr>(E)) { |
| // If there's already a cast present, just replace it. |
| SourceRange CastRange(CCast->getLParenLoc(), CCast->getRParenLoc()); |
| Hints.push_back(FixItHint::CreateReplacement(CastRange, CastFix.str())); |
| |
| } else if (!requiresParensToAddCast(E)) { |
| // If the expression has high enough precedence, |
| // just write the C-style cast. |
| Hints.push_back( |
| FixItHint::CreateInsertion(E->getBeginLoc(), CastFix.str())); |
| } else { |
| // Otherwise, add parens around the expression as well as the cast. |
| CastFix << "("; |
| Hints.push_back( |
| FixItHint::CreateInsertion(E->getBeginLoc(), CastFix.str())); |
| |
| SourceLocation After = S.getLocForEndOfToken(E->getEndLoc()); |
| Hints.push_back(FixItHint::CreateInsertion(After, ")")); |
| } |
| |
| if (ShouldNotPrintDirectly) { |
| // The expression has a type that should not be printed directly. |
| // We extract the name from the typedef because we don't want to show |
| // the underlying type in the diagnostic. |
| StringRef Name; |
| if (const TypedefType *TypedefTy = dyn_cast<TypedefType>(ExprTy)) |
| Name = TypedefTy->getDecl()->getName(); |
| else |
| Name = CastTyName; |
| unsigned Diag = Match == ArgType::NoMatchPedantic |
| ? diag::warn_format_argument_needs_cast_pedantic |
| : diag::warn_format_argument_needs_cast; |
| EmitFormatDiagnostic(S.PDiag(Diag) << Name << IntendedTy << IsEnum |
| << E->getSourceRange(), |
| E->getBeginLoc(), /*IsStringLocation=*/false, |
| SpecRange, Hints); |
| } else { |
| // In this case, the expression could be printed using a different |
| // specifier, but we've decided that the specifier is probably correct |
| // and we should cast instead. Just use the normal warning message. |
| EmitFormatDiagnostic( |
| S.PDiag(diag::warn_format_conversion_argument_type_mismatch) |
| << AT.getRepresentativeTypeName(S.Context) << ExprTy << IsEnum |
| << E->getSourceRange(), |
| E->getBeginLoc(), /*IsStringLocation*/ false, SpecRange, Hints); |
| } |
| } |
| } else { |
| const CharSourceRange &CSR = getSpecifierRange(StartSpecifier, |
| SpecifierLen); |
| // Since the warning for passing non-POD types to variadic functions |
| // was deferred until now, we emit a warning for non-POD |
| // arguments here. |
| switch (S.isValidVarArgType(ExprTy)) { |
| case Sema::VAK_Valid: |
| case Sema::VAK_ValidInCXX11: { |
| unsigned Diag; |
| switch (Match) { |
| case ArgType::Match: llvm_unreachable("expected non-matching"); |
| case ArgType::NoMatchPedantic: |
| Diag = diag::warn_format_conversion_argument_type_mismatch_pedantic; |
| break; |
| case ArgType::NoMatchTypeConfusion: |
| Diag = diag::warn_format_conversion_argument_type_mismatch_confusion; |
| break; |
| case ArgType::NoMatch: |
| Diag = diag::warn_format_conversion_argument_type_mismatch; |
| break; |
| } |
| |
| EmitFormatDiagnostic( |
| S.PDiag(Diag) << AT.getRepresentativeTypeName(S.Context) << ExprTy |
| << IsEnum << CSR << E->getSourceRange(), |
| E->getBeginLoc(), /*IsStringLocation*/ false, CSR); |
| break; |
| } |
| case Sema::VAK_Undefined: |
| case Sema::VAK_MSVCUndefined: |
| EmitFormatDiagnostic(S.PDiag(diag::warn_non_pod_vararg_with_format_string) |
| << S.getLangOpts().CPlusPlus11 << ExprTy |
| << CallType |
| << AT.getRepresentativeTypeName(S.Context) << CSR |
| << E->getSourceRange(), |
| E->getBeginLoc(), /*IsStringLocation*/ false, CSR); |
| checkForCStrMembers(AT, E); |
| break; |
| |
| case Sema::VAK_Invalid: |
| if (ExprTy->isObjCObjectType()) |
| EmitFormatDiagnostic( |
| S.PDiag(diag::err_cannot_pass_objc_interface_to_vararg_format) |
| << S.getLangOpts().CPlusPlus11 << ExprTy << CallType |
| << AT.getRepresentativeTypeName(S.Context) << CSR |
| << E->getSourceRange(), |
| E->getBeginLoc(), /*IsStringLocation*/ false, CSR); |
| else |
| // FIXME: If this is an initializer list, suggest removing the braces |
| // or inserting a cast to the target type. |
| S.Diag(E->getBeginLoc(), diag::err_cannot_pass_to_vararg_format) |
| << isa<InitListExpr>(E) << ExprTy << CallType |
| << AT.getRepresentativeTypeName(S.Context) << E->getSourceRange(); |
| break; |
| } |
| |
| assert(FirstDataArg + FS.getArgIndex() < CheckedVarArgs.size() && |
| "format string specifier index out of range"); |
| CheckedVarArgs[FirstDataArg + FS.getArgIndex()] = true; |
| } |
| |
| return true; |
| } |
| |
| //===--- CHECK: Scanf format string checking ------------------------------===// |
| |
| namespace { |
| |
| class CheckScanfHandler : public CheckFormatHandler { |
| public: |
| CheckScanfHandler(Sema &s, const FormatStringLiteral *fexpr, |
| const Expr *origFormatExpr, Sema::FormatStringType type, |
| unsigned firstDataArg, unsigned numDataArgs, |
| const char *beg, bool hasVAListArg, |
| ArrayRef<const Expr *> Args, unsigned formatIdx, |
| bool inFunctionCall, Sema::VariadicCallType CallType, |
| llvm::SmallBitVector &CheckedVarArgs, |
| UncoveredArgHandler &UncoveredArg) |
| : CheckFormatHandler(s, fexpr, origFormatExpr, type, firstDataArg, |
| numDataArgs, beg, hasVAListArg, Args, formatIdx, |
| inFunctionCall, CallType, CheckedVarArgs, |
| UncoveredArg) {} |
| |
| bool HandleScanfSpecifier(const analyze_scanf::ScanfSpecifier &FS, |
| const char *startSpecifier, |
| unsigned specifierLen) override; |
| |
| bool HandleInvalidScanfConversionSpecifier( |
| const analyze_scanf::ScanfSpecifier &FS, |
| const char *startSpecifier, |
| unsigned specifierLen) override; |
| |
| void HandleIncompleteScanList(const char *start, const char *end) override; |
| }; |
| |
| } // namespace |
| |
| void CheckScanfHandler::HandleIncompleteScanList(const char *start, |
| const char *end) { |
| EmitFormatDiagnostic(S.PDiag(diag::warn_scanf_scanlist_incomplete), |
| getLocationOfByte(end), /*IsStringLocation*/true, |
| getSpecifierRange(start, end - start)); |
| } |
| |
| bool CheckScanfHandler::HandleInvalidScanfConversionSpecifier( |
| const analyze_scanf::ScanfSpecifier &FS, |
| const char *startSpecifier, |
| unsigned specifierLen) { |
| const analyze_scanf::ScanfConversionSpecifier &CS = |
| FS.getConversionSpecifier(); |
| |
| return HandleInvalidConversionSpecifier(FS.getArgIndex(), |
| getLocationOfByte(CS.getStart()), |
| startSpecifier, specifierLen, |
| CS.getStart(), CS.getLength()); |
| } |
| |
| bool CheckScanfHandler::HandleScanfSpecifier( |
| const analyze_scanf::ScanfSpecifier &FS, |
| const char *startSpecifier, |
| unsigned specifierLen) { |
| using namespace analyze_scanf; |
| using namespace analyze_format_string; |
| |
| const ScanfConversionSpecifier &CS = FS.getConversionSpecifier(); |
| |
| // Handle case where '%' and '*' don't consume an argument. These shouldn't |
| // be used to decide if we are using positional arguments consistently. |
| if (FS.consumesDataArgument()) { |
| if (atFirstArg) { |
| atFirstArg = false; |
| usesPositionalArgs = FS.usesPositionalArg(); |
| } |
| else if (usesPositionalArgs != FS.usesPositionalArg()) { |
| HandlePositionalNonpositionalArgs(getLocationOfByte(CS.getStart()), |
| startSpecifier, specifierLen); |
| return false; |
| } |
| } |
| |
| // Check if the field with is non-zero. |
| const OptionalAmount &Amt = FS.getFieldWidth(); |
| if (Amt.getHowSpecified() == OptionalAmount::Constant) { |
| if (Amt.getConstantAmount() == 0) { |
| const CharSourceRange &R = getSpecifierRange(Amt.getStart(), |
| Amt.getConstantLength()); |
| EmitFormatDiagnostic(S.PDiag(diag::warn_scanf_nonzero_width), |
| getLocationOfByte(Amt.getStart()), |
| /*IsStringLocation*/true, R, |
| FixItHint::CreateRemoval(R)); |
| } |
| } |
| |
| if (!FS.consumesDataArgument()) { |
| // FIXME: Technically specifying a precision or field width here |
| // makes no sense. Worth issuing a warning at some point. |
| return true; |
| } |
| |
| // Consume the argument. |
| unsigned argIndex = FS.getArgIndex(); |
| if (argIndex < NumDataArgs) { |
| // The check to see if the argIndex is valid will come later. |
| // We set the bit here because we may exit early from this |
| // function if we encounter some other error. |
| CoveredArgs.set(argIndex); |
| } |
| |
| // Check the length modifier is valid with the given conversion specifier. |
| if (!FS.hasValidLengthModifier(S.getASTContext().getTargetInfo(), |
| S.getLangOpts())) |
| HandleInvalidLengthModifier(FS, CS, startSpecifier, specifierLen, |
| diag::warn_format_nonsensical_length); |
| else if (!FS.hasStandardLengthModifier()) |
| HandleNonStandardLengthModifier(FS, startSpecifier, specifierLen); |
| else if (!FS.hasStandardLengthConversionCombination()) |
| HandleInvalidLengthModifier(FS, CS, startSpecifier, specifierLen, |
| diag::warn_format_non_standard_conversion_spec); |
| |
| if (!FS.hasStandardConversionSpecifier(S.getLangOpts())) |
| HandleNonStandardConversionSpecifier(CS, startSpecifier, specifierLen); |
| |
| // The remaining checks depend on the data arguments. |
| if (HasVAListArg) |
| return true; |
| |
| if (!CheckNumArgs(FS, CS, startSpecifier, specifierLen, argIndex)) |
| return false; |
| |
| // Check that the argument type matches the format specifier. |
| const Expr *Ex = getDataArg(argIndex); |
| if (!Ex) |
| return true; |
| |
| const analyze_format_string::ArgType &AT = FS.getArgType(S.Context); |
| |
| if (!AT.isValid()) { |
| return true; |
| } |
| |
| analyze_format_string::ArgType::MatchKind Match = |
| AT.matchesType(S.Context, Ex->getType()); |
| bool Pedantic = Match == analyze_format_string::ArgType::NoMatchPedantic; |
| if (Match == analyze_format_string::ArgType::Match) |
| return true; |
| |
| ScanfSpecifier fixedFS = FS; |
| bool Success = fixedFS.fixType(Ex->getType(), Ex->IgnoreImpCasts()->getType(), |
| S.getLangOpts(), S.Context); |
| |
| unsigned Diag = |
| Pedantic ? diag::warn_format_conversion_argument_type_mismatch_pedantic |
| : diag::warn_format_conversion_argument_type_mismatch; |
| |
| if (Success) { |
| // Get the fix string from the fixed format specifier. |
| SmallString<128> buf; |
| llvm::raw_svector_ostream os(buf); |
| fixedFS.toString(os); |
| |
| EmitFormatDiagnostic( |
| S.PDiag(Diag) << AT.getRepresentativeTypeName(S.Context) |
| << Ex->getType() << false << Ex->getSourceRange(), |
| Ex->getBeginLoc(), |
| /*IsStringLocation*/ false, |
| getSpecifierRange(startSpecifier, specifierLen), |
| FixItHint::CreateReplacement( |
| getSpecifierRange(startSpecifier, specifierLen), os.str())); |
| } else { |
| EmitFormatDiagnostic(S.PDiag(Diag) |
| << AT.getRepresentativeTypeName(S.Context) |
| << Ex->getType() << false << Ex->getSourceRange(), |
| Ex->getBeginLoc(), |
| /*IsStringLocation*/ false, |
| getSpecifierRange(startSpecifier, specifierLen)); |
| } |
| |
| return true; |
| } |
| |
| static void CheckFormatString(Sema &S, const FormatStringLiteral *FExpr, |
| const Expr *OrigFormatExpr, |
| ArrayRef<const Expr *> Args, |
| bool HasVAListArg, unsigned format_idx, |
| unsigned firstDataArg, |
| Sema::FormatStringType Type, |
| bool inFunctionCall, |
| Sema::VariadicCallType CallType, |
| llvm::SmallBitVector &CheckedVarArgs, |
| UncoveredArgHandler &UncoveredArg, |
| bool IgnoreStringsWithoutSpecifiers) { |
| // CHECK: is the format string a wide literal? |
| if (!FExpr->isAscii() && !FExpr->isUTF8()) { |
| CheckFormatHandler::EmitFormatDiagnostic( |
| S, inFunctionCall, Args[format_idx], |
| S.PDiag(diag::warn_format_string_is_wide_literal), FExpr->getBeginLoc(), |
| /*IsStringLocation*/ true, OrigFormatExpr->getSourceRange()); |
| return; |
| } |
| |
| // Str - The format string. NOTE: this is NOT null-terminated! |
| StringRef StrRef = FExpr->getString(); |
| const char *Str = StrRef.data(); |
| // Account for cases where the string literal is truncated in a declaration. |
| const ConstantArrayType *T = |
| S.Context.getAsConstantArrayType(FExpr->getType()); |
| assert(T && "String literal not of constant array type!"); |
| size_t TypeSize = T->getSize().getZExtValue(); |
| size_t StrLen = std::min(std::max(TypeSize, size_t(1)) - 1, StrRef.size()); |
| const unsigned numDataArgs = Args.size() - firstDataArg; |
| |
| if (IgnoreStringsWithoutSpecifiers && |
| !analyze_format_string::parseFormatStringHasFormattingSpecifiers( |
| Str, Str + StrLen, S.getLangOpts(), S.Context.getTargetInfo())) |
| return; |
| |
| // Emit a warning if the string literal is truncated and does not contain an |
| // embedded null character. |
| if (TypeSize <= StrRef.size() && !StrRef.substr(0, TypeSize).contains('\0')) { |
| CheckFormatHandler::EmitFormatDiagnostic( |
| S, inFunctionCall, Args[format_idx], |
| S.PDiag(diag::warn_printf_format_string_not_null_terminated), |
| FExpr->getBeginLoc(), |
| /*IsStringLocation=*/true, OrigFormatExpr->getSourceRange()); |
| return; |
| } |
| |
| // CHECK: empty format string? |
| if (StrLen == 0 && numDataArgs > 0) { |
| CheckFormatHandler::EmitFormatDiagnostic( |
| S, inFunctionCall, Args[format_idx], |
| S.PDiag(diag::warn_empty_format_string), FExpr->getBeginLoc(), |
| /*IsStringLocation*/ true, OrigFormatExpr->getSourceRange()); |
| return; |
| } |
| |
| if (Type == Sema::FST_Printf || Type == Sema::FST_NSString || |
| Type == Sema::FST_FreeBSDKPrintf || Type == Sema::FST_OSLog || |
| Type == Sema::FST_OSTrace) { |
| CheckPrintfHandler H( |
| S, FExpr, OrigFormatExpr, Type, firstDataArg, numDataArgs, |
| (Type == Sema::FST_NSString || Type == Sema::FST_OSTrace), Str, |
| HasVAListArg, Args, format_idx, inFunctionCall, CallType, |
| CheckedVarArgs, UncoveredArg); |
| |
| if (!analyze_format_string::ParsePrintfString(H, Str, Str + StrLen, |
| S.getLangOpts(), |
| S.Context.getTargetInfo(), |
| Type == Sema::FST_FreeBSDKPrintf)) |
| H.DoneProcessing(); |
| } else if (Type == Sema::FST_Scanf) { |
| CheckScanfHandler H(S, FExpr, OrigFormatExpr, Type, firstDataArg, |
| numDataArgs, Str, HasVAListArg, Args, format_idx, |
| inFunctionCall, CallType, CheckedVarArgs, UncoveredArg); |
| |
| if (!analyze_format_string::ParseScanfString(H, Str, Str + StrLen, |
| S.getLangOpts(), |
| S.Context.getTargetInfo())) |
| H.DoneProcessing(); |
| } // TODO: handle other formats |
| } |
| |
| bool Sema::FormatStringHasSArg(const StringLiteral *FExpr) { |
| // Str - The format string. NOTE: this is NOT null-terminated! |
| StringRef StrRef = FExpr->getString(); |
| const char *Str = StrRef.data(); |
| // Account for cases where the string literal is truncated in a declaration. |
| const ConstantArrayType *T = Context.getAsConstantArrayType(FExpr->getType()); |
| assert(T && "String literal not of constant array type!"); |
| size_t TypeSize = T->getSize().getZExtValue(); |
| size_t StrLen = std::min(std::max(TypeSize, size_t(1)) - 1, StrRef.size()); |
| return analyze_format_string::ParseFormatStringHasSArg(Str, Str + StrLen, |
| getLangOpts(), |
| Context.getTargetInfo()); |
| } |
| |
| //===--- CHECK: Warn on use of wrong absolute value function. -------------===// |
| |
| // Returns the related absolute value function that is larger, of 0 if one |
| // does not exist. |
| static unsigned getLargerAbsoluteValueFunction(unsigned AbsFunction) { |
| switch (AbsFunction) { |
| default: |
| return 0; |
| |
| case Builtin::BI__builtin_abs: |
| return Builtin::BI__builtin_labs; |
| case Builtin::BI__builtin_labs: |
| return Builtin::BI__builtin_llabs; |
| case Builtin::BI__builtin_llabs: |
| return 0; |
| |
| case Builtin::BI__builtin_fabsf: |
| return Builtin::BI__builtin_fabs; |
| case Builtin::BI__builtin_fabs: |
| return Builtin::BI__builtin_fabsl; |
| case Builtin::BI__builtin_fabsl: |
| return 0; |
| |
| case Builtin::BI__builtin_cabsf: |
| return Builtin::BI__builtin_cabs; |
| case Builtin::BI__builtin_cabs: |
| return Builtin::BI__builtin_cabsl; |
| case Builtin::BI__builtin_cabsl: |
| return 0; |
| |
| case Builtin::BIabs: |
| return Builtin::BIlabs; |
| case Builtin::BIlabs: |
| return Builtin::BIllabs; |
| case Builtin::BIllabs: |
| return 0; |
| |
| case Builtin::BIfabsf: |
| return Builtin::BIfabs; |
| case Builtin::BIfabs: |
| return Builtin::BIfabsl; |
| case Builtin::BIfabsl: |
| return 0; |
| |
| case Builtin::BIcabsf: |
| return Builtin::BIcabs; |
| case Builtin::BIcabs: |
| return Builtin::BIcabsl; |
| case Builtin::BIcabsl: |
| return 0; |
| } |
| } |
| |
| // Returns the argument type of the absolute value function. |
| static QualType getAbsoluteValueArgumentType(ASTContext &Context, |
| unsigned AbsType) { |
| if (AbsType == 0) |
| return QualType(); |
| |
| ASTContext::GetBuiltinTypeError Error = ASTContext::GE_None; |
| QualType BuiltinType = Context.GetBuiltinType(AbsType, Error); |
| if (Error != ASTContext::GE_None) |
| return QualType(); |
| |
| const FunctionProtoType *FT = BuiltinType->getAs<FunctionProtoType>(); |
| if (!FT) |
| return QualType(); |
| |
| if (FT->getNumParams() != 1) |
| return QualType(); |
| |
| return FT->getParamType(0); |
| } |
| |
| // Returns the best absolute value function, or zero, based on type and |
| // current absolute value function. |
| static unsigned getBestAbsFunction(ASTContext &Context, QualType ArgType, |
| unsigned AbsFunctionKind) { |
| unsigned BestKind = 0; |
| uint64_t ArgSize = Context.getTypeSize(ArgType); |
| for (unsigned Kind = AbsFunctionKind; Kind != 0; |
| Kind = getLargerAbsoluteValueFunction(Kind)) { |
| QualType ParamType = getAbsoluteValueArgumentType(Context, Kind); |
| if (Context.getTypeSize(ParamType) >= ArgSize) { |
| if (BestKind == 0) |
| BestKind = Kind; |
| else if (Context.hasSameType(ParamType, ArgType)) { |
| BestKind = Kind; |
| break; |
| } |
| } |
| } |
| return BestKind; |
| } |
| |
| enum AbsoluteValueKind { |
| AVK_Integer, |
| AVK_Floating, |
| AVK_Complex |
| }; |
| |
| static AbsoluteValueKind getAbsoluteValueKind(QualType T) { |
| if (T->isIntegralOrEnumerationType()) |
| return AVK_Integer; |
| if (T->isRealFloatingType()) |
| return AVK_Floating; |
| if (T->isAnyComplexType()) |
| return AVK_Complex; |
| |
| llvm_unreachable("Type not integer, floating, or complex"); |
| } |
| |
| // Changes the absolute value function to a different type. Preserves whether |
| // the function is a builtin. |
| static unsigned changeAbsFunction(unsigned AbsKind, |
| AbsoluteValueKind ValueKind) { |
| switch (ValueKind) { |
| case AVK_Integer: |
| switch (AbsKind) { |
| default: |
| return 0; |
| case Builtin::BI__builtin_fabsf: |
| case Builtin::BI__builtin_fabs: |
| case Builtin::BI__builtin_fabsl: |
| case Builtin::BI__builtin_cabsf: |
| case Builtin::BI__builtin_cabs: |
| case Builtin::BI__builtin_cabsl: |
| return Builtin::BI__builtin_abs; |
| case Builtin::BIfabsf: |
| case Builtin::BIfabs: |
| case Builtin::BIfabsl: |
| case Builtin::BIcabsf: |
| case Builtin::BIcabs: |
| case Builtin::BIcabsl: |
| return Builtin::BIabs; |
| } |
| case AVK_Floating: |
| switch (AbsKind) { |
| default: |
| return 0; |
| case Builtin::BI__builtin_abs: |
| case Builtin::BI__builtin_labs: |
| case Builtin::BI__builtin_llabs: |
| case Builtin::BI__builtin_cabsf: |
| case Builtin::BI__builtin_cabs: |
| case Builtin::BI__builtin_cabsl: |
| return Builtin::BI__builtin_fabsf; |
| case Builtin::BIabs: |
| case Builtin::BIlabs: |
| case Builtin::BIllabs: |
| case Builtin::BIcabsf: |
| case Builtin::BIcabs: |
| case Builtin::BIcabsl: |
| return Builtin::BIfabsf; |
| } |
| case AVK_Complex: |
| switch (AbsKind) { |
| default: |
| return 0; |
| case Builtin::BI__builtin_abs: |
| case Builtin::BI__builtin_labs: |
| case Builtin::BI__builtin_llabs: |
| case Builtin::BI__builtin_fabsf: |
| case Builtin::BI__builtin_fabs: |
| case Builtin::BI__builtin_fabsl: |
| return Builtin::BI__builtin_cabsf; |
| case Builtin::BIabs: |
| case Builtin::BIlabs: |
| case Builtin::BIllabs: |
| case Builtin::BIfabsf: |
| case Builtin::BIfabs: |
| case Builtin::BIfabsl: |
| return Builtin::BIcabsf; |
| } |
| } |
| llvm_unreachable("Unable to convert function"); |
| } |
| |
| static unsigned getAbsoluteValueFunctionKind(const FunctionDecl *FDecl) { |
| const IdentifierInfo *FnInfo = FDecl->getIdentifier(); |
| if (!FnInfo) |
| return 0; |
| |
| switch (FDecl->getBuiltinID()) { |
| default: |
| return 0; |
| case Builtin::BI__builtin_abs: |
| case Builtin::BI__builtin_fabs: |
| case Builtin::BI__builtin_fabsf: |
| case Builtin::BI__builtin_fabsl: |
| case Builtin::BI__builtin_labs: |
| case Builtin::BI__builtin_llabs: |
| case Builtin::BI__builtin_cabs: |
| case Builtin::BI__builtin_cabsf: |
| case Builtin::BI__builtin_cabsl: |
| case Builtin::BIabs: |
| case Builtin::BIlabs: |
| case Builtin::BIllabs: |
| case Builtin::BIfabs: |
| case Builtin::BIfabsf: |
| case Builtin::BIfabsl: |
| case Builtin::BIcabs: |
| case Builtin::BIcabsf: |
| case Builtin::BIcabsl: |
| return FDecl->getBuiltinID(); |
| } |
| llvm_unreachable("Unknown Builtin type"); |
| } |
| |
| // If the replacement is valid, emit a note with replacement function. |
| // Additionally, suggest including the proper header if not already included. |
| static void emitReplacement(Sema &S, SourceLocation Loc, SourceRange Range, |
| unsigned AbsKind, QualType ArgType) { |
| bool EmitHeaderHint = true; |
| const char *HeaderName = nullptr; |
| const char *FunctionName = nullptr; |
| if (S.getLangOpts().CPlusPlus && !ArgType->isAnyComplexType()) { |
| FunctionName = "std::abs"; |
| if (ArgType->isIntegralOrEnumerationType()) { |
| HeaderName = "cstdlib"; |
| } else if (ArgType->isRealFloatingType()) { |
| HeaderName = "cmath"; |
| } else { |
| llvm_unreachable("Invalid Type"); |
| } |
| |
| // Lookup all std::abs |
| if (NamespaceDecl *Std = S.getStdNamespace()) { |
| LookupResult R(S, &S.Context.Idents.get("abs"), Loc, Sema::LookupAnyName); |
| R.suppressDiagnostics(); |
| S.LookupQualifiedName(R, Std); |
| |
| for (const auto *I : R) { |
| const FunctionDecl *FDecl = nullptr; |
| if (const UsingShadowDecl *UsingD = dyn_cast<UsingShadowDecl>(I)) { |
| FDecl = dyn_cast<FunctionDecl>(UsingD->getTargetDecl()); |
| } else { |
| FDecl = dyn_cast<FunctionDecl>(I); |
| } |
| if (!FDecl) |
| continue; |
| |
| // Found std::abs(), check that they are the right ones. |
| if (FDecl->getNumParams() != 1) |
| continue; |
| |
| // Check that the parameter type can handle the argument. |
| QualType ParamType = FDecl->getParamDecl(0)->getType(); |
| if (getAbsoluteValueKind(ArgType) == getAbsoluteValueKind(ParamType) && |
| S.Context.getTypeSize(ArgType) <= |
| S.Context.getTypeSize(ParamType)) { |
| // Found a function, don't need the header hint. |
| EmitHeaderHint = false; |
| break; |
| } |
| } |
| } |
| } else { |
| FunctionName = S.Context.BuiltinInfo.getName(AbsKind); |
| HeaderName = S.Context.BuiltinInfo.getHeaderName(AbsKind); |
| |
| if (HeaderName) { |
| DeclarationName DN(&S.Context.Idents.get(FunctionName)); |
| LookupResult R(S, DN, Loc, Sema::LookupAnyName); |
| R.suppressDiagnostics(); |
| S.LookupName(R, S.getCurScope()); |
| |
| if (R.isSingleResult()) { |
| FunctionDecl *FD = dyn_cast<FunctionDecl>(R.getFoundDecl()); |
| if (FD && FD->getBuiltinID() == AbsKind) { |
| EmitHeaderHint = false; |
| } else { |
| return; |
| } |
| } else if (!R.empty()) { |
| return; |
| } |
| } |
| } |
| |
| S.Diag(Loc, diag::note_replace_abs_function) |
| << FunctionName << FixItHint::CreateReplacement(Range, FunctionName); |
| |
| if (!HeaderName) |
| return; |
| |
| if (!EmitHeaderHint) |
| return; |
| |
| S.Diag(Loc, diag::note_include_header_or_declare) << HeaderName |
| << FunctionName; |
| } |
| |
| template <std::size_t StrLen> |
| static bool IsStdFunction(const FunctionDecl *FDecl, |
| const char (&Str)[StrLen]) { |
| if (!FDecl) |
| return false; |
| if (!FDecl->getIdentifier() || !FDecl->getIdentifier()->isStr(Str)) |
| return false; |
| if (!FDecl->isInStdNamespace()) |
| return false; |
| |
| return true; |
| } |
| |
| // Warn when using the wrong abs() function. |
| void Sema::CheckAbsoluteValueFunction(const CallExpr *Call, |
| const FunctionDecl *FDecl) { |
| if (Call->getNumArgs() != 1) |
| return; |
| |
| unsigned AbsKind = getAbsoluteValueFunctionKind(FDecl); |
| bool IsStdAbs = IsStdFunction(FDecl, "abs"); |
| if (AbsKind == 0 && !IsStdAbs) |
| return; |
| |
| QualType ArgType = Call->getArg(0)->IgnoreParenImpCasts()->getType(); |
| QualType ParamType = Call->getArg(0)->getType(); |
| |
| // Unsigned types cannot be negative. Suggest removing the absolute value |
| // function call. |
| if (ArgType->isUnsignedIntegerType()) { |
| const char *FunctionName = |
| IsStdAbs ? "std::abs" : Context.BuiltinInfo.getName(AbsKind); |
| Diag(Call->getExprLoc(), diag::warn_unsigned_abs) << ArgType << ParamType; |
| Diag(Call->getExprLoc(), diag::note_remove_abs) |
| << FunctionName |
| << FixItHint::CreateRemoval(Call->getCallee()->getSourceRange()); |
| return; |
| } |
| |
| // Taking the absolute value of a pointer is very suspicious, they probably |
| // wanted to index into an array, dereference a pointer, call a function, etc. |
| if (ArgType->isPointerType() || ArgType->canDecayToPointerType()) { |
| unsigned DiagType = 0; |
| if (ArgType->isFunctionType()) |
| DiagType = 1; |
| else if (ArgType->isArrayType()) |
| DiagType = 2; |
| |
| Diag(Call->getExprLoc(), diag::warn_pointer_abs) << DiagType << ArgType; |
| return; |
| } |
| |
| // std::abs has overloads which prevent most of the absolute value problems |
| // from occurring. |
| if (IsStdAbs) |
| return; |
| |
| AbsoluteValueKind ArgValueKind = getAbsoluteValueKind(ArgType); |
| AbsoluteValueKind ParamValueKind = getAbsoluteValueKind(ParamType); |
| |
| // The argument and parameter are the same kind. Check if they are the right |
| // size. |
| if (ArgValueKind == ParamValueKind) { |
| if (Context.getTypeSize(ArgType) <= Context.getTypeSize(ParamType)) |
| return; |
| |
| unsigned NewAbsKind = getBestAbsFunction(Context, ArgType, AbsKind); |
| Diag(Call->getExprLoc(), diag::warn_abs_too_small) |
| << FDecl << ArgType << ParamType; |
| |
| if (NewAbsKind == 0) |
| return; |
| |
| emitReplacement(*this, Call->getExprLoc(), |
| Call->getCallee()->getSourceRange(), NewAbsKind, ArgType); |
| return; |
| } |
| |
| // ArgValueKind != ParamValueKind |
| // The wrong type of absolute value function was used. Attempt to find the |
| // proper one. |
| unsigned NewAbsKind = changeAbsFunction(AbsKind, ArgValueKind); |
| NewAbsKind = getBestAbsFunction(Context, ArgType, NewAbsKind); |
| if (NewAbsKind == 0) |
| return; |
| |
| Diag(Call->getExprLoc(), diag::warn_wrong_absolute_value_type) |
| << FDecl << ParamValueKind << ArgValueKind; |
| |
| emitReplacement(*this, Call->getExprLoc(), |
| Call->getCallee()->getSourceRange(), NewAbsKind, ArgType); |
| } |
| |
| //===--- CHECK: Warn on use of std::max and unsigned zero. r---------------===// |
| void Sema::CheckMaxUnsignedZero(const CallExpr *Call, |
| const FunctionDecl *FDecl) { |
| if (!Call || !FDecl) return; |
| |
| // Ignore template specializations and macros. |
| if (inTemplateInstantiation()) return; |
| if (Call->getExprLoc().isMacroID()) return; |
| |
| // Only care about the one template argument, two function parameter std::max |
| if (Call->getNumArgs() != 2) return; |
| if (!IsStdFunction(FDecl, "max")) return; |
| const auto * ArgList = FDecl->getTemplateSpecializationArgs(); |
| if (!ArgList) return; |
| if (ArgList->size() != 1) return; |
| |
| // Check that template type argument is unsigned integer. |
| const auto& TA = ArgList->get(0); |
| if (TA.getKind() != TemplateArgument::Type) return; |
| QualType ArgType = TA.getAsType(); |
| if (!ArgType->isUnsignedIntegerType()) return; |
| |
| // See if either argument is a literal zero. |
| auto IsLiteralZeroArg = [](const Expr* E) -> bool { |
| const auto *MTE = dyn_cast<MaterializeTemporaryExpr>(E); |
| if (!MTE) return false; |
| const auto *Num = dyn_cast<IntegerLiteral>(MTE->getSubExpr()); |
| if (!Num) return false; |
| if (Num->getValue() != 0) return false; |
| return true; |
| }; |
| |
| const Expr *FirstArg = Call->getArg(0); |
| const Expr *SecondArg = Call->getArg(1); |
| const bool IsFirstArgZero = IsLiteralZeroArg(FirstArg); |
| const bool IsSecondArgZero = IsLiteralZeroArg(SecondArg); |
| |
| // Only warn when exactly one argument is zero. |
| if (IsFirstArgZero == IsSecondArgZero) return; |
| |
| SourceRange FirstRange = FirstArg->getSourceRange(); |
| SourceRange SecondRange = SecondArg->getSourceRange(); |
| |
| SourceRange ZeroRange = IsFirstArgZero ? FirstRange : SecondRange; |
| |
| Diag(Call->getExprLoc(), diag::warn_max_unsigned_zero) |
| << IsFirstArgZero << Call->getCallee()->getSourceRange() << ZeroRange; |
| |
| // Deduce what parts to remove so that "std::max(0u, foo)" becomes "(foo)". |
| SourceRange RemovalRange; |
| if (IsFirstArgZero) { |
| RemovalRange = SourceRange(FirstRange.getBegin(), |
| SecondRange.getBegin().getLocWithOffset(-1)); |
| } else { |
| RemovalRange = SourceRange(getLocForEndOfToken(FirstRange.getEnd()), |
| SecondRange.getEnd()); |
| } |
| |
| Diag(Call->getExprLoc(), diag::note_remove_max_call) |
| << FixItHint::CreateRemoval(Call->getCallee()->getSourceRange()) |
| << FixItHint::CreateRemoval(RemovalRange); |
| } |
| |
| //===--- CHECK: Standard memory functions ---------------------------------===// |
| |
| /// Takes the expression passed to the size_t parameter of functions |
| /// such as memcmp, strncat, etc and warns if it's a comparison. |
| /// |
| /// This is to catch typos like `if (memcmp(&a, &b, sizeof(a) > 0))`. |
| static bool CheckMemorySizeofForComparison(Sema &S, const Expr *E, |
| IdentifierInfo *FnName, |
| SourceLocation FnLoc, |
| SourceLocation RParenLoc) { |
| const BinaryOperator *Size = dyn_cast<BinaryOperator>(E); |
| if (!Size) |
| return false; |
| |
| // if E is binop and op is <=>, >, <, >=, <=, ==, &&, ||: |
| if (!Size->isComparisonOp() && !Size->isLogicalOp()) |
| return false; |
| |
| SourceRange SizeRange = Size->getSourceRange(); |
| S.Diag(Size->getOperatorLoc(), diag::warn_memsize_comparison) |
| << SizeRange << FnName; |
| S.Diag(FnLoc, diag::note_memsize_comparison_paren) |
| << FnName |
| << FixItHint::CreateInsertion( |
| S.getLocForEndOfToken(Size->getLHS()->getEndLoc()), ")") |
| << FixItHint::CreateRemoval(RParenLoc); |
| S.Diag(SizeRange.getBegin(), diag::note_memsize_comparison_cast_silence) |
| << FixItHint::CreateInsertion(SizeRange.getBegin(), "(size_t)(") |
| << FixItHint::CreateInsertion(S.getLocForEndOfToken(SizeRange.getEnd()), |
| ")"); |
| |
| return true; |
| } |
| |
| /// Determine whether the given type is or contains a dynamic class type |
| /// (e.g., whether it has a vtable). |
| static const CXXRecordDecl *getContainedDynamicClass(QualType T, |
| bool &IsContained) { |
| // Look through array types while ignoring qualifiers. |
| const Type *Ty = T->getBaseElementTypeUnsafe(); |
| IsContained = false; |
| |
| const CXXRecordDecl *RD = Ty->getAsCXXRecordDecl(); |
| RD = RD ? RD->getDefinition() : nullptr; |
| if (!RD || RD->isInvalidDecl()) |
| return nullptr; |
| |
| if (RD->isDynamicClass()) |
| return RD; |
| |
| // Check all the fields. If any bases were dynamic, the class is dynamic. |
| // It's impossible for a class to transitively contain itself by value, so |
| // infinite recursion is impossible. |
| for (auto *FD : RD->fields()) { |
| bool SubContained; |
| if (const CXXRecordDecl *ContainedRD = |
| getContainedDynamicClass(FD->getType(), SubContained)) { |
| IsContained = true; |
| return ContainedRD; |
| } |
| } |
| |
| return nullptr; |
| } |
| |
| static const UnaryExprOrTypeTraitExpr *getAsSizeOfExpr(const Expr *E) { |
| if (const auto *Unary = dyn_cast<UnaryExprOrTypeTraitExpr>(E)) |
| if (Unary->getKind() == UETT_SizeOf) |
| return Unary; |
| return nullptr; |
| } |
| |
| /// If E is a sizeof expression, returns its argument expression, |
| /// otherwise returns NULL. |
| static const Expr *getSizeOfExprArg(const Expr *E) { |
| if (const UnaryExprOrTypeTraitExpr *SizeOf = getAsSizeOfExpr(E)) |
| if (!SizeOf->isArgumentType()) |
| return SizeOf->getArgumentExpr()->IgnoreParenImpCasts(); |
| return nullptr; |
| } |
| |
| /// If E is a sizeof expression, returns its argument type. |
| static QualType getSizeOfArgType(const Expr *E) { |
| if (const UnaryExprOrTypeTraitExpr *SizeOf = getAsSizeOfExpr(E)) |
| return SizeOf->getTypeOfArgument(); |
| return QualType(); |
| } |
| |
| namespace { |
| |
| struct SearchNonTrivialToInitializeField |
| : DefaultInitializedTypeVisitor<SearchNonTrivialToInitializeField> { |
| using Super = |
| DefaultInitializedTypeVisitor<SearchNonTrivialToInitializeField>; |
| |
| SearchNonTrivialToInitializeField(const Expr *E, Sema &S) : E(E), S(S) {} |
| |
| void visitWithKind(QualType::PrimitiveDefaultInitializeKind PDIK, QualType FT, |
| SourceLocation SL) { |
| if (const auto *AT = asDerived().getContext().getAsArrayType(FT)) { |
| asDerived().visitArray(PDIK, AT, SL); |
| return; |
| } |
| |
| Super::visitWithKind(PDIK, FT, SL); |
| } |
| |
| void visitARCStrong(QualType FT, SourceLocation SL) { |
| S.DiagRuntimeBehavior(SL, E, S.PDiag(diag::note_nontrivial_field) << 1); |
| } |
| void visitARCWeak(QualType FT, SourceLocation SL) { |
| S.DiagRuntimeBehavior(SL, E, S.PDiag(diag::note_nontrivial_field) << 1); |
| } |
| void visitStruct(QualType FT, SourceLocation SL) { |
| for (const FieldDecl *FD : FT->castAs<RecordType>()->getDecl()->fields()) |
| visit(FD->getType(), FD->getLocation()); |
| } |
| void visitArray(QualType::PrimitiveDefaultInitializeKind PDIK, |
| const ArrayType *AT, SourceLocation SL) { |
| visit(getContext().getBaseElementType(AT), SL); |
| } |
| void visitTrivial(QualType FT, SourceLocation SL) {} |
| |
| static void diag(QualType RT, const Expr *E, Sema &S) { |
| SearchNonTrivialToInitializeField(E, S).visitStruct(RT, SourceLocation()); |
| } |
| |
| ASTContext &getContext() { return S.getASTContext(); } |
| |
| const Expr *E; |
| Sema &S; |
| }; |
| |
| struct SearchNonTrivialToCopyField |
| : CopiedTypeVisitor<SearchNonTrivialToCopyField, false> { |
| using Super = CopiedTypeVisitor<SearchNonTrivialToCopyField, false>; |
| |
| SearchNonTrivialToCopyField(const Expr *E, Sema &S) : E(E), S(S) {} |
| |
| void visitWithKind(QualType::PrimitiveCopyKind PCK, QualType FT, |
| SourceLocation SL) { |
| if (const auto *AT = asDerived().getContext().getAsArrayType(FT)) { |
| asDerived().visitArray(PCK, AT, SL); |
| return; |
| } |
| |
| Super::visitWithKind(PCK, FT, SL); |
| } |
| |
| void visitARCStrong(QualType FT, SourceLocation SL) { |
| S.DiagRuntimeBehavior(SL, E, S.PDiag(diag::note_nontrivial_field) << 0); |
| } |
| void visitARCWeak(QualType FT, SourceLocation SL) { |
| S.DiagRuntimeBehavior(SL, E, S.PDiag(diag::note_nontrivial_field) << 0); |
| } |
| void visitStruct(QualType FT, SourceLocation SL) { |
| for (const FieldDecl *FD : FT->castAs<RecordType>()->getDecl()->fields()) |
| visit(FD->getType(), FD->getLocation()); |
| } |
| void visitArray(QualType::PrimitiveCopyKind PCK, const ArrayType *AT, |
| SourceLocation SL) { |
| visit(getContext().getBaseElementType(AT), SL); |
| } |
| void preVisit(QualType::PrimitiveCopyKind PCK, QualType FT, |
| SourceLocation SL) {} |
| void visitTrivial(QualType FT, SourceLocation SL) {} |
| void visitVolatileTrivial(QualType FT, SourceLocation SL) {} |
| |
| static void diag(QualType RT, const Expr *E, Sema &S) { |
| SearchNonTrivialToCopyField(E, S).visitStruct(RT, SourceLocation()); |
| } |
| |
| ASTContext &getContext() { return S.getASTContext(); } |
| |
| const Expr *E; |
| Sema &S; |
| }; |
| |
| } |
| |
| /// Detect if \c SizeofExpr is likely to calculate the sizeof an object. |
| static bool doesExprLikelyComputeSize(const Expr *SizeofExpr) { |
| SizeofExpr = SizeofExpr->IgnoreParenImpCasts(); |
| |
| if (const auto *BO = dyn_cast<BinaryOperator>(SizeofExpr)) { |
| if (BO->getOpcode() != BO_Mul && BO->getOpcode() != BO_Add) |
| return false; |
| |
| return doesExprLikelyComputeSize(BO->getLHS()) || |
| doesExprLikelyComputeSize(BO->getRHS()); |
| } |
| |
| return getAsSizeOfExpr(SizeofExpr) != nullptr; |
| } |
| |
| /// Check if the ArgLoc originated from a macro passed to the call at CallLoc. |
| /// |
| /// \code |
| /// #define MACRO 0 |
| /// foo(MACRO); |
| /// foo(0); |
| /// \endcode |
| /// |
| /// This should return true for the first call to foo, but not for the second |
| /// (regardless of whether foo is a macro or function). |
| static bool isArgumentExpandedFromMacro(SourceManager &SM, |
| SourceLocation CallLoc, |
| SourceLocation ArgLoc) { |
| if (!CallLoc.isMacroID()) |
| return SM.getFileID(CallLoc) != SM.getFileID(ArgLoc); |
| |
| return SM.getFileID(SM.getImmediateMacroCallerLoc(CallLoc)) != |
| SM.getFileID(SM.getImmediateMacroCallerLoc(ArgLoc)); |
| } |
| |
| /// Diagnose cases like 'memset(buf, sizeof(buf), 0)', which should have the |
| /// last two arguments transposed. |
| static void CheckMemaccessSize(Sema &S, unsigned BId, const CallExpr *Call) { |
| if (BId != Builtin::BImemset && BId != Builtin::BIbzero) |
| return; |
| |
| const Expr *SizeArg = |
| Call->getArg(BId == Builtin::BImemset ? 2 : 1)->IgnoreImpCasts(); |
| |
| auto isLiteralZero = [](const Expr *E) { |
| return isa<IntegerLiteral>(E) && cast<IntegerLiteral>(E)->getValue() == 0; |
| }; |
| |
| // If we're memsetting or bzeroing 0 bytes, then this is likely an error. |
| SourceLocation CallLoc = Call->getRParenLoc(); |
| SourceManager &SM = S.getSourceManager(); |
| if (isLiteralZero(SizeArg) && |
| !isArgumentExpandedFromMacro(SM, CallLoc, SizeArg->getExprLoc())) { |
| |
| SourceLocation DiagLoc = SizeArg->getExprLoc(); |
| |
| // Some platforms #define bzero to __builtin_memset. See if this is the |
| // case, and if so, emit a better diagnostic. |
| if (BId == Builtin::BIbzero || |
| (CallLoc.isMacroID() && Lexer::getImmediateMacroName( |
| CallLoc, SM, S.getLangOpts()) == "bzero")) { |
| S.Diag(DiagLoc, diag::warn_suspicious_bzero_size); |
| S.Diag(DiagLoc, diag::note_suspicious_bzero_size_silence); |
| } else if (!isLiteralZero(Call->getArg(1)->IgnoreImpCasts())) { |
| S.Diag(DiagLoc, diag::warn_suspicious_sizeof_memset) << 0; |
| S.Diag(DiagLoc, diag::note_suspicious_sizeof_memset_silence) << 0; |
| } |
| return; |
| } |
| |
| // If the second argument to a memset is a sizeof expression and the third |
| // isn't, this is also likely an error. This should catch |
| // 'memset(buf, sizeof(buf), 0xff)'. |
| if (BId == Builtin::BImemset && |
| doesExprLikelyComputeSize(Call->getArg(1)) && |
| !doesExprLikelyComputeSize(Call->getArg(2))) { |
| SourceLocation DiagLoc = Call->getArg(1)->getExprLoc(); |
| S.Diag(DiagLoc, diag::warn_suspicious_sizeof_memset) << 1; |
| S.Diag(DiagLoc, diag::note_suspicious_sizeof_memset_silence) << 1; |
| return; |
| } |
| } |
| |
| /// Check for dangerous or invalid arguments to memset(). |
| /// |
| /// This issues warnings on known problematic, dangerous or unspecified |
| /// arguments to the standard 'memset', 'memcpy', 'memmove', and 'memcmp' |
| /// function calls. |
| /// |
| /// \param Call The call expression to diagnose. |
| void Sema::CheckMemaccessArguments(const CallExpr *Call, |
| unsigned BId, |
| IdentifierInfo *FnName) { |
| assert(BId != 0); |
| |
| // It is possible to have a non-standard definition of memset. Validate |
| // we have enough arguments, and if not, abort further checking. |
| unsigned ExpectedNumArgs = |
| (BId == Builtin::BIstrndup || BId == Builtin::BIbzero ? 2 : 3); |
| if (Call->getNumArgs() < ExpectedNumArgs) |
| return; |
| |
| unsigned LastArg = (BId == Builtin::BImemset || BId == Builtin::BIbzero || |
| BId == Builtin::BIstrndup ? 1 : 2); |
| unsigned LenArg = |
| (BId == Builtin::BIbzero || BId == Builtin::BIstrndup ? 1 : 2); |
| const Expr *LenExpr = Call->getArg(LenArg)->IgnoreParenImpCasts(); |
| |
| if (CheckMemorySizeofForComparison(*this, LenExpr, FnName, |
| Call->getBeginLoc(), Call->getRParenLoc())) |
| return; |
| |
| // Catch cases like 'memset(buf, sizeof(buf), 0)'. |
| CheckMemaccessSize(*this, BId, Call); |
| |
| // We have special checking when the length is a sizeof expression. |
| QualType SizeOfArgTy = getSizeOfArgType(LenExpr); |
| const Expr *SizeOfArg = getSizeOfExprArg(LenExpr); |
| llvm::FoldingSetNodeID SizeOfArgID; |
| |
| // Although widely used, 'bzero' is not a standard function. Be more strict |
| // with the argument types before allowing diagnostics and only allow the |
| // form bzero(ptr, sizeof(...)). |
| QualType FirstArgTy = Call->getArg(0)->IgnoreParenImpCasts()->getType(); |
| if (BId == Builtin::BIbzero && !FirstArgTy->getAs<PointerType>()) |
| return; |
| |
| for (unsigned ArgIdx = 0; ArgIdx != LastArg; ++ArgIdx) { |
| const Expr *Dest = Call->getArg(ArgIdx)->IgnoreParenImpCasts(); |
| SourceRange ArgRange = Call->getArg(ArgIdx)->getSourceRange(); |
| |
| QualType DestTy = Dest->getType(); |
| QualType PointeeTy; |
| if (const PointerType *DestPtrTy = DestTy->getAs<PointerType>()) { |
| PointeeTy = DestPtrTy->getPointeeType(); |
| |
| // Never warn about void type pointers. This can be used to suppress |
| // false positives. |
| if (PointeeTy->isVoidType()) |
| continue; |
| |
| // Catch "memset(p, 0, sizeof(p))" -- needs to be sizeof(*p). Do this by |
| // actually comparing the expressions for equality. Because computing the |
| // expression IDs can be expensive, we only do this if the diagnostic is |
| // enabled. |
| if (SizeOfArg && |
| !Diags.isIgnored(diag::warn_sizeof_pointer_expr_memaccess, |
| SizeOfArg->getExprLoc())) { |
| // We only compute IDs for expressions if the warning is enabled, and |
| // cache the sizeof arg's ID. |
| if (SizeOfArgID == llvm::FoldingSetNodeID()) |
| SizeOfArg->Profile(SizeOfArgID, Context, true); |
| llvm::FoldingSetNodeID DestID; |
| Dest->Profile(DestID, Context, true); |
| if (DestID == SizeOfArgID) { |
| // TODO: For strncpy() and friends, this could suggest sizeof(dst) |
| // over sizeof(src) as well. |
| unsigned ActionIdx = 0; // Default is to suggest dereferencing. |
| StringRef ReadableName = FnName->getName(); |
| |
| if (const UnaryOperator *UnaryOp = dyn_cast<UnaryOperator>(Dest)) |
| if (UnaryOp->getOpcode() == UO_AddrOf) |
| ActionIdx = 1; // If its an address-of operator, just remove it. |
| if (!PointeeTy->isIncompleteType() && |
| (Context.getTypeSize(PointeeTy) == Context.getCharWidth())) |
| ActionIdx = 2; // If the pointee's size is sizeof(char), |
| // suggest an explicit length. |
| |
| // If the function is defined as a builtin macro, do not show macro |
| // expansion. |
| SourceLocation SL = SizeOfArg->getExprLoc(); |
| SourceRange DSR = Dest->getSourceRange(); |
| SourceRange SSR = SizeOfArg->getSourceRange(); |
| SourceManager &SM = getSourceManager(); |
| |
| if (SM.isMacroArgExpansion(SL)) { |
| ReadableName = Lexer::getImmediateMacroName(SL, SM, LangOpts); |
| SL = SM.getSpellingLoc(SL); |
| DSR = SourceRange(SM.getSpellingLoc(DSR.getBegin()), |
| SM.getSpellingLoc(DSR.getEnd())); |
| SSR = SourceRange(SM.getSpellingLoc(SSR.getBegin()), |
| SM.getSpellingLoc(SSR.getEnd())); |
| } |
| |
| DiagRuntimeBehavior(SL, SizeOfArg, |
| PDiag(diag::warn_sizeof_pointer_expr_memaccess) |
| << ReadableName |
| << PointeeTy |
| << DestTy |
| << DSR |
| << SSR); |
| DiagRuntimeBehavior(SL, SizeOfArg, |
| PDiag(diag::warn_sizeof_pointer_expr_memaccess_note) |
| << ActionIdx |
| << SSR); |
| |
| break; |
| } |
| } |
| |
| // Also check for cases where the sizeof argument is the exact same |
| // type as the memory argument, and where it points to a user-defined |
| // record type. |
| if (SizeOfArgTy != QualType()) { |
| if (PointeeTy->isRecordType() && |
| Context.typesAreCompatible(SizeOfArgTy, DestTy)) { |
| DiagRuntimeBehavior(LenExpr->getExprLoc(), Dest, |
| PDiag(diag::warn_sizeof_pointer_type_memaccess) |
| << FnName << SizeOfArgTy << ArgIdx |
| << PointeeTy << Dest->getSourceRange() |
| << LenExpr->getSourceRange()); |
| break; |
| } |
| } |
| } else if (DestTy->isArrayType()) { |
| PointeeTy = DestTy; |
| } |
| |
| if (PointeeTy == QualType()) |
| continue; |
| |
| // Always complain about dynamic classes. |
| bool IsContained; |
| if (const CXXRecordDecl *ContainedRD = |
| getContainedDynamicClass(PointeeTy, IsContained)) { |
| |
| unsigned OperationType = 0; |
| const bool IsCmp = BId == Builtin::BImemcmp || BId == Builtin::BIbcmp; |
| // "overwritten" if we're warning about the destination for any call |
| // but memcmp; otherwise a verb appropriate to the call. |
| if (ArgIdx != 0 || IsCmp) { |
| if (BId == Builtin::BImemcpy) |
| OperationType = 1; |
| else if(BId == Builtin::BImemmove) |
| OperationType = 2; |
| else if (IsCmp) |
| OperationType = 3; |
| } |
| |
| DiagRuntimeBehavior(Dest->getExprLoc(), Dest, |
| PDiag(diag::warn_dyn_class_memaccess) |
| << (IsCmp ? ArgIdx + 2 : ArgIdx) << FnName |
| << IsContained << ContainedRD << OperationType |
| << Call->getCallee()->getSourceRange()); |
| } else if (PointeeTy.hasNonTrivialObjCLifetime() && |
| BId != Builtin::BImemset) |
| DiagRuntimeBehavior( |
| Dest->getExprLoc(), Dest, |
| PDiag(diag::warn_arc_object_memaccess) |
| << ArgIdx << FnName << PointeeTy |
| << Call->getCallee()->getSourceRange()); |
| else if (const auto *RT = PointeeTy->getAs<RecordType>()) { |
| if ((BId == Builtin::BImemset || BId == Builtin::BIbzero) && |
| RT->getDecl()->isNonTrivialToPrimitiveDefaultInitialize()) { |
| DiagRuntimeBehavior(Dest->getExprLoc(), Dest, |
| PDiag(diag::warn_cstruct_memaccess) |
| << ArgIdx << FnName << PointeeTy << 0); |
| SearchNonTrivialToInitializeField::diag(PointeeTy, Dest, *this); |
| } else if ((BId == Builtin::BImemcpy || BId == Builtin::BImemmove) && |
| RT->getDecl()->isNonTrivialToPrimitiveCopy()) { |
| DiagRuntimeBehavior(Dest->getExprLoc(), Dest, |
| PDiag(diag::warn_cstruct_memaccess) |
| << ArgIdx << FnName << PointeeTy << 1); |
| SearchNonTrivialToCopyField::diag(PointeeTy, Dest, *this); |
| } else { |
| continue; |
| } |
| } else |
| continue; |
| |
| DiagRuntimeBehavior( |
| Dest->getExprLoc(), Dest, |
| PDiag(diag::note_bad_memaccess_silence) |
| << FixItHint::CreateInsertion(ArgRange.getBegin(), "(void*)")); |
| break; |
| } |
| } |
| |
| // A little helper routine: ignore addition and subtraction of integer literals. |
| // This intentionally does not ignore all integer constant expressions because |
| // we don't want to remove sizeof(). |
| static const Expr *ignoreLiteralAdditions(const Expr *Ex, ASTContext &Ctx) { |
| Ex = Ex->IgnoreParenCasts(); |
| |
| while (true) { |
| const BinaryOperator * BO = dyn_cast<BinaryOperator>(Ex); |
| if (!BO || !BO->isAdditiveOp()) |
| break; |
| |
| const Expr *RHS = BO->getRHS()->IgnoreParenCasts(); |
| const Expr *LHS = BO->getLHS()->IgnoreParenCasts(); |
| |
| if (isa<IntegerLiteral>(RHS)) |
| Ex = LHS; |
| else if (isa<IntegerLiteral>(LHS)) |
| Ex = RHS; |
| else |
| break; |
| } |
| |
| return Ex; |
| } |
| |
| static bool isConstantSizeArrayWithMoreThanOneElement(QualType Ty, |
| ASTContext &Context) { |
| // Only handle constant-sized or VLAs, but not flexible members. |
| if (const ConstantArrayType *CAT = Context.getAsConstantArrayType(Ty)) { |
| // Only issue the FIXIT for arrays of size > 1. |
| if (CAT->getSize().getSExtValue() <= 1) |
| return false; |
| } else if (!Ty->isVariableArrayType()) { |
| return false; |
| } |
| return true; |
| } |
| |
| // Warn if the user has made the 'size' argument to strlcpy or strlcat |
| // be the size of the source, instead of the destination. |
| void Sema::CheckStrlcpycatArguments(const CallExpr *Call, |
| IdentifierInfo *FnName) { |
| |
| // Don't crash if the user has the wrong number of arguments |
| unsigned NumArgs = Call->getNumArgs(); |
| if ((NumArgs != 3) && (NumArgs != 4)) |
| return; |
| |
| const Expr *SrcArg = ignoreLiteralAdditions(Call->getArg(1), Context); |
| const Expr *SizeArg = ignoreLiteralAdditions(Call->getArg(2), Context); |
| const Expr *CompareWithSrc = nullptr; |
| |
| if (CheckMemorySizeofForComparison(*this, SizeArg, FnName, |
| Call->getBeginLoc(), Call->getRParenLoc())) |
| return; |
| |
| // Look for 'strlcpy(dst, x, sizeof(x))' |
| if (const Expr *Ex = getSizeOfExprArg(SizeArg)) |
| CompareWithSrc = Ex; |
| else { |
| // Look for 'strlcpy(dst, x, strlen(x))' |
| if (const CallExpr *SizeCall = dyn_cast<CallExpr>(SizeArg)) { |
| if (SizeCall->getBuiltinCallee() == Builtin::BIstrlen && |
| SizeCall->getNumArgs() == 1) |
| CompareWithSrc = ignoreLiteralAdditions(SizeCall->getArg(0), Context); |
| } |
| } |
| |
| if (!CompareWithSrc) |
| return; |
| |
| // Determine if the argument to sizeof/strlen is equal to the source |
| // argument. In principle there's all kinds of things you could do |
| // here, for instance creating an == expression and evaluating it with |
| // EvaluateAsBooleanCondition, but this uses a more direct technique: |
| const DeclRefExpr *SrcArgDRE = dyn_cast<DeclRefExpr>(SrcArg); |
| if (!SrcArgDRE) |
| return; |
| |
| const DeclRefExpr *CompareWithSrcDRE = dyn_cast<DeclRefExpr>(CompareWithSrc); |
| if (!CompareWithSrcDRE || |
| SrcArgDRE->getDecl() != CompareWithSrcDRE->getDecl()) |
| return; |
| |
| const Expr *OriginalSizeArg = Call->getArg(2); |
| Diag(CompareWithSrcDRE->getBeginLoc(), diag::warn_strlcpycat_wrong_size) |
| << OriginalSizeArg->getSourceRange() << FnName; |
| |
| // Output a FIXIT hint if the destination is an array (rather than a |
| // pointer to an array). This could be enhanced to handle some |
| // pointers if we know the actual size, like if DstArg is 'array+2' |
| // we could say 'sizeof(array)-2'. |
| const Expr *DstArg = Call->getArg(0)->IgnoreParenImpCasts(); |
| if (!isConstantSizeArrayWithMoreThanOneElement(DstArg->getType(), Context)) |
| return; |
| |
| SmallString<128> sizeString; |
| llvm::raw_svector_ostream OS(sizeString); |
| OS << "sizeof("; |
| DstArg->printPretty(OS, nullptr, getPrintingPolicy()); |
| OS << ")"; |
| |
| Diag(OriginalSizeArg->getBeginLoc(), diag::note_strlcpycat_wrong_size) |
| << FixItHint::CreateReplacement(OriginalSizeArg->getSourceRange(), |
| OS.str()); |
| } |
| |
| /// Check if two expressions refer to the same declaration. |
| static bool referToTheSameDecl(const Expr *E1, const Expr *E2) { |
| if (const DeclRefExpr *D1 = dyn_cast_or_null<DeclRefExpr>(E1)) |
| if (const DeclRefExpr *D2 = dyn_cast_or_null<DeclRefExpr>(E2)) |
| return D1->getDecl() == D2->getDecl(); |
| return false; |
| } |
| |
| static const Expr *getStrlenExprArg(const Expr *E) { |
| if (const CallExpr *CE = dyn_cast<CallExpr>(E)) { |
| const FunctionDecl *FD = CE->getDirectCallee(); |
| if (!FD || FD->getMemoryFunctionKind() != Builtin::BIstrlen) |
| return nullptr; |
| return CE->getArg(0)->IgnoreParenCasts(); |
| } |
| return nullptr; |
| } |
| |
| // Warn on anti-patterns as the 'size' argument to strncat. |
| // The correct size argument should look like following: |
| // strncat(dst, src, sizeof(dst) - strlen(dest) - 1); |
| void Sema::CheckStrncatArguments(const CallExpr *CE, |
| IdentifierInfo *FnName) { |
| // Don't crash if the user has the wrong number of arguments. |
| if (CE->getNumArgs() < 3) |
| return; |
| const Expr *DstArg = CE->getArg(0)->IgnoreParenCasts(); |
| const Expr *SrcArg = CE->getArg(1)->IgnoreParenCasts(); |
| const Expr *LenArg = CE->getArg(2)->IgnoreParenCasts(); |
| |
| if (CheckMemorySizeofForComparison(*this, LenArg, FnName, CE->getBeginLoc(), |
| CE->getRParenLoc())) |
| return; |
| |
| // Identify common expressions, which are wrongly used as the size argument |
| // to strncat and may lead to buffer overflows. |
| unsigned PatternType = 0; |
| if (const Expr *SizeOfArg = getSizeOfExprArg(LenArg)) { |
| // - sizeof(dst) |
| if (referToTheSameDecl(SizeOfArg, DstArg)) |
| PatternType = 1; |
| // - sizeof(src) |
| else if (referToTheSameDecl(SizeOfArg, SrcArg)) |
| PatternType = 2; |
| } else if (const BinaryOperator *BE = dyn_cast<BinaryOperator>(LenArg)) { |
| if (BE->getOpcode() == BO_Sub) { |
| const Expr *L = BE->getLHS()->IgnoreParenCasts(); |
| const Expr *R = BE->getRHS()->IgnoreParenCasts(); |
| // - sizeof(dst) - strlen(dst) |
| if (referToTheSameDecl(DstArg, getSizeOfExprArg(L)) && |
| referToTheSameDecl(DstArg, getStrlenExprArg(R))) |
| PatternType = 1; |
| // - sizeof(src) - (anything) |
| else if (referToTheSameDecl(SrcArg, getSizeOfExprArg(L))) |
| PatternType = 2; |
| } |
| } |
| |
| if (PatternType == 0) |
| return; |
| |
| // Generate the diagnostic. |
| SourceLocation SL = LenArg->getBeginLoc(); |
| SourceRange SR = LenArg->getSourceRange(); |
| SourceManager &SM = getSourceManager(); |
| |
| // If the function is defined as a builtin macro, do not show macro expansion. |
| if (SM.isMacroArgExpansion(SL)) { |
| SL = SM.getSpellingLoc(SL); |
| SR = SourceRange(SM.getSpellingLoc(SR.getBegin()), |
| SM.getSpellingLoc(SR.getEnd())); |
| } |
| |
| // Check if the destination is an array (rather than a pointer to an array). |
| QualType DstTy = DstArg->getType(); |
| bool isKnownSizeArray = isConstantSizeArrayWithMoreThanOneElement(DstTy, |
| Context); |
| if (!isKnownSizeArray) { |
| if (PatternType == 1) |
| Diag(SL, diag::warn_strncat_wrong_size) << SR; |
| else |
| Diag(SL, diag::warn_strncat_src_size) << SR; |
| return; |
| } |
| |
| if (PatternType == 1) |
| Diag(SL, diag::warn_strncat_large_size) << SR; |
| else |
| Diag(SL, diag::warn_strncat_src_size) << SR; |
| |
| SmallString<128> sizeString; |
| llvm::raw_svector_ostream OS(sizeString); |
| OS << "sizeof("; |
| DstArg->printPretty(OS, nullptr, getPrintingPolicy()); |
| OS << ") - "; |
| OS << "strlen("; |
| DstArg->printPretty(OS, nullptr, getPrintingPolicy()); |
| OS << ") - 1"; |
| |
| Diag(SL, diag::note_strncat_wrong_size) |
| << FixItHint::CreateReplacement(SR, OS.str()); |
| } |
| |
| namespace { |
| void CheckFreeArgumentsOnLvalue(Sema &S, const std::string &CalleeName, |
| const UnaryOperator *UnaryExpr, const Decl *D) { |
| if (isa<FieldDecl, FunctionDecl, VarDecl>(D)) { |
| S.Diag(UnaryExpr->getBeginLoc(), diag::warn_free_nonheap_object) |
| << CalleeName << 0 /*object: */ << cast<NamedDecl>(D); |
| return; |
| } |
| } |
| |
| void CheckFreeArgumentsAddressof(Sema &S, const std::string &CalleeName, |
| const UnaryOperator *UnaryExpr) { |
| if (const auto *Lvalue = dyn_cast<DeclRefExpr>(UnaryExpr->getSubExpr())) { |
| const Decl *D = Lvalue->getDecl(); |
| if (isa<DeclaratorDecl>(D)) |
| if (!dyn_cast<DeclaratorDecl>(D)->getType()->isReferenceType()) |
| return CheckFreeArgumentsOnLvalue(S, CalleeName, UnaryExpr, D); |
| } |
| |
| if (const auto *Lvalue = dyn_cast<MemberExpr>(UnaryExpr->getSubExpr())) |
| return CheckFreeArgumentsOnLvalue(S, CalleeName, UnaryExpr, |
| Lvalue->getMemberDecl()); |
| } |
| |
| void CheckFreeArgumentsPlus(Sema &S, const std::string &CalleeName, |
| const UnaryOperator *UnaryExpr) { |
| const auto *Lambda = dyn_cast<LambdaExpr>( |
| UnaryExpr->getSubExpr()->IgnoreImplicitAsWritten()->IgnoreParens()); |
| if (!Lambda) |
| return; |
| |
| S.Diag(Lambda->getBeginLoc(), diag::warn_free_nonheap_object) |
| << CalleeName << 2 /*object: lambda expression*/; |
| } |
| |
| void CheckFreeArgumentsStackArray(Sema &S, const std::string &CalleeName, |
| const DeclRefExpr *Lvalue) { |
| const auto *Var = dyn_cast<VarDecl>(Lvalue->getDecl()); |
| if (Var == nullptr) |
| return; |
| |
| S.Diag(Lvalue->getBeginLoc(), diag::warn_free_nonheap_object) |
| << CalleeName << 0 /*object: */ << Var; |
| } |
| |
| void CheckFreeArgumentsCast(Sema &S, const std::string &CalleeName, |
| const CastExpr *Cast) { |
| SmallString<128> SizeString; |
| llvm::raw_svector_ostream OS(SizeString); |
| |
| clang::CastKind Kind = Cast->getCastKind(); |
| if (Kind == clang::CK_BitCast && |
| !Cast->getSubExpr()->getType()->isFunctionPointerType()) |
| return; |
| if (Kind == clang::CK_IntegralToPointer && |
| !isa<IntegerLiteral>( |
| Cast->getSubExpr()->IgnoreParenImpCasts()->IgnoreParens())) |
| return; |
| |
| switch (Cast->getCastKind()) { |
| case clang::CK_BitCast: |
| case clang::CK_IntegralToPointer: |
| case clang::CK_FunctionToPointerDecay: |
| OS << '\''; |
| Cast->printPretty(OS, nullptr, S.getPrintingPolicy()); |
| OS << '\''; |
| break; |
| default: |
| return; |
| } |
| |
| S.Diag(Cast->getBeginLoc(), diag::warn_free_nonheap_object) |
| << CalleeName << 0 /*object: */ << OS.str(); |
| } |
| } // namespace |
| |
| /// Alerts the user that they are attempting to free a non-malloc'd object. |
| void Sema::CheckFreeArguments(const CallExpr *E) { |
| const std::string CalleeName = |
| dyn_cast<FunctionDecl>(E->getCalleeDecl())->getQualifiedNameAsString(); |
| |
| { // Prefer something that doesn't involve a cast to make things simpler. |
| const Expr *Arg = E->getArg(0)->IgnoreParenCasts(); |
| if (const auto *UnaryExpr = dyn_cast<UnaryOperator>(Arg)) |
| switch (UnaryExpr->getOpcode()) { |
| case UnaryOperator::Opcode::UO_AddrOf: |
| return CheckFreeArgumentsAddressof(*this, CalleeName, UnaryExpr); |
| case UnaryOperator::Opcode::UO_Plus: |
| return CheckFreeArgumentsPlus(*this, CalleeName, UnaryExpr); |
| default: |
| break; |
| } |
| |
| if (const auto *Lvalue = dyn_cast<DeclRefExpr>(Arg)) |
| if (Lvalue->getType()->isArrayType()) |
| return CheckFreeArgumentsStackArray(*this, CalleeName, Lvalue); |
| |
| if (const auto *Label = dyn_cast<AddrLabelExpr>(Arg)) { |
| Diag(Label->getBeginLoc(), diag::warn_free_nonheap_object) |
| << CalleeName << 0 /*object: */ << Label->getLabel()->getIdentifier(); |
| return; |
| } |
| |
| if (isa<BlockExpr>(Arg)) { |
| Diag(Arg->getBeginLoc(), diag::warn_free_nonheap_object) |
| << CalleeName << 1 /*object: block*/; |
| return; |
| } |
| } |
| // Maybe the cast was important, check after the other cases. |
| if (const auto *Cast = dyn_cast<CastExpr>(E->getArg(0))) |
| return CheckFreeArgumentsCast(*this, CalleeName, Cast); |
| } |
| |
| void |
| Sema::CheckReturnValExpr(Expr *RetValExp, QualType lhsType, |
| SourceLocation ReturnLoc, |
| bool isObjCMethod, |
| const AttrVec *Attrs, |
| const FunctionDecl *FD) { |
| // Check if the return value is null but should not be. |
| if (((Attrs && hasSpecificAttr<ReturnsNonNullAttr>(*Attrs)) || |
| (!isObjCMethod && isNonNullType(Context, lhsType))) && |
| CheckNonNullExpr(*this, RetValExp)) |
| Diag(ReturnLoc, diag::warn_null_ret) |
| << (isObjCMethod ? 1 : 0) << RetValExp->getSourceRange(); |
| |
| // C++11 [basic.stc.dynamic.allocation]p4: |
| // If an allocation function declared with a non-throwing |
| // exception-specification fails to allocate storage, it shall return |
| // a null pointer. Any other allocation function that fails to allocate |
| // storage shall indicate failure only by throwing an exception [...] |
| if (FD) { |
| OverloadedOperatorKind Op = FD->getOverloadedOperator(); |
| if (Op == OO_New || Op == OO_Array_New) { |
| const FunctionProtoType *Proto |
| = FD->getType()->castAs<FunctionProtoType>(); |
| if (!Proto->isNothrow(/*ResultIfDependent*/true) && |
| CheckNonNullExpr(*this, RetValExp)) |
| Diag(ReturnLoc, diag::warn_operator_new_returns_null) |
| << FD << getLangOpts().CPlusPlus11; |
| } |
| } |
| |
| // PPC MMA non-pointer types are not allowed as return type. Checking the type |
| // here prevent the user from using a PPC MMA type as trailing return type. |
| if (Context.getTargetInfo().getTriple().isPPC64()) |
| CheckPPCMMAType(RetValExp->getType(), ReturnLoc); |
| } |
| |
| //===--- CHECK: Floating-Point comparisons (-Wfloat-equal) ---------------===// |
| |
| /// Check for comparisons of floating point operands using != and ==. |
| /// Issue a warning if these are no self-comparisons, as they are not likely |
| /// to do what the programmer intended. |
| void Sema::CheckFloatComparison(SourceLocation Loc, Expr* LHS, Expr *RHS) { |
| Expr* LeftExprSansParen = LHS->IgnoreParenImpCasts(); |
| Expr* RightExprSansParen = RHS->IgnoreParenImpCasts(); |
| |
| // Special case: check for x == x (which is OK). |
| // Do not emit warnings for such cases. |
| if (DeclRefExpr* DRL = dyn_cast<DeclRefExpr>(LeftExprSansParen)) |
| if (DeclRefExpr* DRR = dyn_cast<DeclRefExpr>(RightExprSansParen)) |
| if (DRL->getDecl() == DRR->getDecl()) |
| return; |
| |
| // Special case: check for comparisons against literals that can be exactly |
| // represented by APFloat. In such cases, do not emit a warning. This |
| // is a heuristic: often comparison against such literals are used to |
| // detect if a value in a variable has not changed. This clearly can |
| // lead to false negatives. |
| if (FloatingLiteral* FLL = dyn_cast<FloatingLiteral>(LeftExprSansParen)) { |
| if (FLL->isExact()) |
| return; |
| } else |
| if (FloatingLiteral* FLR = dyn_cast<FloatingLiteral>(RightExprSansParen)) |
| if (FLR->isExact()) |
| return; |
| |
| // Check for comparisons with builtin types. |
| if (CallExpr* CL = dyn_cast<CallExpr>(LeftExprSansParen)) |
| if (CL->getBuiltinCallee()) |
| return; |
| |
| if (CallExpr* CR = dyn_cast<CallExpr>(RightExprSansParen)) |
| if (CR->getBuiltinCallee()) |
| return; |
| |
| // Emit the diagnostic. |
| Diag(Loc, diag::warn_floatingpoint_eq) |
| << LHS->getSourceRange() << RHS->getSourceRange(); |
| } |
| |
| //===--- CHECK: Integer mixed-sign comparisons (-Wsign-compare) --------===// |
| //===--- CHECK: Lossy implicit conversions (-Wconversion) --------------===// |
| |
| namespace { |
| |
| /// Structure recording the 'active' range of an integer-valued |
| /// expression. |
| struct IntRange { |
| /// The number of bits active in the int. Note that this includes exactly one |
| /// sign bit if !NonNegative. |
| unsigned Width; |
| |
| /// True if the int is known not to have negative values. If so, all leading |
| /// bits before Width are known zero, otherwise they are known to be the |
| /// same as the MSB within Width. |
| bool NonNegative; |
| |
| IntRange(unsigned Width, bool NonNegative) |
| : Width(Width), NonNegative(NonNegative) {} |
| |
| /// Number of bits excluding the sign bit. |
| unsigned valueBits() const { |
| return NonNegative ? Width : Width - 1; |
| } |
| |
| /// Returns the range of the bool type. |
| static IntRange forBoolType() { |
| return IntRange(1, true); |
| } |
| |
| /// Returns the range of an opaque value of the given integral type. |
| static IntRange forValueOfType(ASTContext &C, QualType T) { |
| return forValueOfCanonicalType(C, |
| T->getCanonicalTypeInternal().getTypePtr()); |
| } |
| |
| /// Returns the range of an opaque value of a canonical integral type. |
| static IntRange forValueOfCanonicalType(ASTContext &C, const Type *T) { |
| assert(T->isCanonicalUnqualified()); |
| |
| if (const VectorType *VT = dyn_cast<VectorType>(T)) |
| T = VT->getElementType().getTypePtr(); |
| if (const ComplexType *CT = dyn_cast<ComplexType>(T)) |
| T = CT->getElementType().getTypePtr(); |
| if (const AtomicType *AT = dyn_cast<AtomicType>(T)) |
| T = AT->getValueType().getTypePtr(); |
| |
| if (!C.getLangOpts().CPlusPlus) { |
| // For enum types in C code, use the underlying datatype. |
| if (const EnumType *ET = dyn_cast<EnumType>(T)) |
| T = ET->getDecl()->getIntegerType().getDesugaredType(C).getTypePtr(); |
| } else if (const EnumType *ET = dyn_cast<EnumType>(T)) { |
| // For enum types in C++, use the known bit width of the enumerators. |
| EnumDecl *Enum = ET->getDecl(); |
| // In C++11, enums can have a fixed underlying type. Use this type to |
| // compute the range. |
| if (Enum->isFixed()) { |
| return IntRange(C.getIntWidth(QualType(T, 0)), |
| !ET->isSignedIntegerOrEnumerationType()); |
| } |
| |
| unsigned NumPositive = Enum->getNumPositiveBits(); |
| unsigned NumNegative = Enum->getNumNegativeBits(); |
| |
| if (NumNegative == 0) |
| return IntRange(NumPositive, true/*NonNegative*/); |
| else |
| return IntRange(std::max(NumPositive + 1, NumNegative), |
| false/*NonNegative*/); |
| } |
| |
| if (const auto *EIT = dyn_cast<ExtIntType>(T)) |
| return IntRange(EIT->getNumBits(), EIT->isUnsigned()); |
| |
| const BuiltinType *BT = cast<BuiltinType>(T); |
| assert(BT->isInteger()); |
| |
| return IntRange(C.getIntWidth(QualType(T, 0)), BT->isUnsignedInteger()); |
| } |
| |
| /// Returns the "target" range of a canonical integral type, i.e. |
| /// the range of values expressible in the type. |
| /// |
| /// This matches forValueOfCanonicalType except that enums have the |
| /// full range of their type, not the range of their enumerators. |
| static IntRange forTargetOfCanonicalType(ASTContext &C, const Type *T) { |
| assert(T->isCanonicalUnqualified()); |
| |
| if (const VectorType *VT = dyn_cast<VectorType>(T)) |
| T = VT->getElementType().getTypePtr(); |
| if (const ComplexType *CT = dyn_cast<ComplexType>(T)) |
| T = CT->getElementType().getTypePtr(); |
| if (const AtomicType *AT = dyn_cast<AtomicType>(T)) |
| T = AT->getValueType().getTypePtr(); |
| if (const EnumType *ET = dyn_cast<EnumType>(T)) |
| T = C.getCanonicalType(ET->getDecl()->getIntegerType()).getTypePtr(); |
| |
| if (const auto *EIT = dyn_cast<ExtIntType>(T)) |
| return IntRange(EIT->getNumBits(), EIT->isUnsigned()); |
| |
| const BuiltinType *BT = cast<BuiltinType>(T); |
| assert(BT->isInteger()); |
| |
| return IntRange(C.getIntWidth(QualType(T, 0)), BT->isUnsignedInteger()); |
| } |
| |
| /// Returns the supremum of two ranges: i.e. their conservative merge. |
| static IntRange join(IntRange L, IntRange R) { |
| bool Unsigned = L.NonNegative && R.NonNegative; |
| return IntRange(std::max(L.valueBits(), R.valueBits()) + !Unsigned, |
| L.NonNegative && R.NonNegative); |
| } |
| |
| /// Return the range of a bitwise-AND of the two ranges. |
| static IntRange bit_and(IntRange L, IntRange R) { |
| unsigned Bits = std::max(L.Width, R.Width); |
| bool NonNegative = false; |
| if (L.NonNegative) { |
| Bits = std::min(Bits, L.Width); |
| NonNegative = true; |
| } |
| if (R.NonNegative) { |
| Bits = std::min(Bits, R.Width); |
| NonNegative = true; |
| } |
| return IntRange(Bits, NonNegative); |
| } |
| |
| /// Return the range of a sum of the two ranges. |
| static IntRange sum(IntRange L, IntRange R) { |
| bool Unsigned = L.NonNegative && R.NonNegative; |
| return IntRange(std::max(L.valueBits(), R.valueBits()) + 1 + !Unsigned, |
| Unsigned); |
| } |
| |
| /// Return the range of a difference of the two ranges. |
| static IntRange difference(IntRange L, IntRange R) { |
| // We need a 1-bit-wider range if: |
| // 1) LHS can be negative: least value can be reduced. |
| // 2) RHS can be negative: greatest value can be increased. |
| bool CanWiden = !L.NonNegative || !R.NonNegative; |
| bool Unsigned = L.NonNegative && R.Width == 0; |
| return IntRange(std::max(L.valueBits(), R.valueBits()) + CanWiden + |
| !Unsigned, |
| Unsigned); |
| } |
| |
| /// Return the range of a product of the two ranges. |
| static IntRange product(IntRange L, IntRange R) { |
| // If both LHS and RHS can be negative, we can form |
| // -2^L * -2^R = 2^(L + R) |
| // which requires L + R + 1 value bits to represent. |
| bool CanWiden = !L.NonNegative && !R.NonNegative; |
| bool Unsigned = L.NonNegative && R.NonNegative; |
| return IntRange(L.valueBits() + R.valueBits() + CanWiden + !Unsigned, |
| Unsigned); |
| } |
| |
| /// Return the range of a remainder operation between the two ranges. |
| static IntRange rem(IntRange L, IntRange R) { |
| // The result of a remainder can't be larger than the result of |
| // either side. The sign of the result is the sign of the LHS. |
| bool Unsigned = L.NonNegative; |
| return IntRange(std::min(L.valueBits(), R.valueBits()) + !Unsigned, |
| Unsigned); |
| } |
| }; |
| |
| } // namespace |
| |
| static IntRange GetValueRange(ASTContext &C, llvm::APSInt &value, |
| unsigned MaxWidth) { |
| if (value.isSigned() && value.isNegative()) |
| return IntRange(value.getMinSignedBits(), false); |
| |
| if (value.getBitWidth() > MaxWidth) |
| value = value.trunc(MaxWidth); |
| |
| // isNonNegative() just checks the sign bit without considering |
| // signedness. |
| return IntRange(value.getActiveBits(), true); |
| } |
| |
| static IntRange GetValueRange(ASTContext &C, APValue &result, QualType Ty, |
| unsigned MaxWidth) { |
| if (result.isInt()) |
| return GetValueRange(C, result.getInt(), MaxWidth); |
| |
| if (result.isVector()) { |
| IntRange R = GetValueRange(C, result.getVectorElt(0), Ty, MaxWidth); |
| for (unsigned i = 1, e = result.getVectorLength(); i != e; ++i) { |
| IntRange El = GetValueRange(C, result.getVectorElt(i), Ty, MaxWidth); |
| R = IntRange::join(R, El); |
| } |
| return R; |
| } |
| |
| if (result.isComplexInt()) { |
| IntRange R = GetValueRange(C, result.getComplexIntReal(), MaxWidth); |
| IntRange I = GetValueRange(C, result.getComplexIntImag(), MaxWidth); |
| return IntRange::join(R, I); |
| } |
| |
| // This can happen with lossless casts to intptr_t of "based" lvalues. |
| // Assume it might use arbitrary bits. |
| // FIXME: The only reason we need to pass the type in here is to get |
| // the sign right on this one case. It would be nice if APValue |
| // preserved this. |
| assert(result.isLValue() || result.isAddrLabelDiff()); |
| return IntRange(MaxWidth, Ty->isUnsignedIntegerOrEnumerationType()); |
| } |
| |
| static QualType GetExprType(const Expr *E) { |
| QualType Ty = E->getType(); |
| if (const AtomicType *AtomicRHS = Ty->getAs<AtomicType>()) |
| Ty = AtomicRHS->getValueType(); |
| return Ty; |
| } |
| |
| /// Pseudo-evaluate the given integer expression, estimating the |
| /// range of values it might take. |
| /// |
| /// \param MaxWidth The width to which the value will be truncated. |
| /// \param Approximate If \c true, return a likely range for the result: in |
| /// particular, assume that arithmetic on narrower types doesn't leave |
| /// those types. If \c false, return a range including all possible |
| /// result values. |
| static IntRange GetExprRange(ASTContext &C, const Expr *E, unsigned MaxWidth, |
| bool InConstantContext, bool Approximate) { |
| E = E->IgnoreParens(); |
| |
| // Try a full evaluation first. |
| Expr::EvalResult result; |
| if (E->EvaluateAsRValue(result, C, InConstantContext)) |
| return GetValueRange(C, result.Val, GetExprType(E), MaxWidth); |
| |
| // I think we only want to look through implicit casts here; if the |
| // user has an explicit widening cast, we should treat the value as |
| // being of the new, wider type. |
| if (const auto *CE = dyn_cast<ImplicitCastExpr>(E)) { |
| if (CE->getCastKind() == CK_NoOp || CE->getCastKind() == CK_LValueToRValue) |
| return GetExprRange(C, CE->getSubExpr(), MaxWidth, InConstantContext, |
| Approximate); |
| |
| IntRange OutputTypeRange = IntRange::forValueOfType(C, GetExprType(CE)); |
| |
| bool isIntegerCast = CE->getCastKind() == CK_IntegralCast || |
| CE->getCastKind() == CK_BooleanToSignedIntegral; |
| |
| // Assume that non-integer casts can span the full range of the type. |
| if (!isIntegerCast) |
| return OutputTypeRange; |
| |
| IntRange SubRange = GetExprRange(C, CE->getSubExpr(), |
| std::min(MaxWidth, OutputTypeRange.Width), |
| InConstantContext, Approximate); |
| |
| // Bail out if the subexpr's range is as wide as the cast type. |
| if (SubRange.Width >= OutputTypeRange.Width) |
| return OutputTypeRange; |
| |
| // Otherwise, we take the smaller width, and we're non-negative if |
| // either the output type or the subexpr is. |
| return IntRange(SubRange.Width, |
| SubRange.NonNegative || OutputTypeRange.NonNegative); |
| } |
| |
| if (const auto *CO = dyn_cast<ConditionalOperator>(E)) { |
| // If we can fold the condition, just take that operand. |
| bool CondResult; |
| if (CO->getCond()->EvaluateAsBooleanCondition(CondResult, C)) |
| return GetExprRange(C, |
| CondResult ? CO->getTrueExpr() : CO->getFalseExpr(), |
| MaxWidth, InConstantContext, Approximate); |
| |
| // Otherwise, conservatively merge. |
| // GetExprRange requires an integer expression, but a throw expression |
| // results in a void type. |
| Expr *E = CO->getTrueExpr(); |
| IntRange L = E->getType()->isVoidType() |
| ? IntRange{0, true} |
| : GetExprRange(C, E, MaxWidth, InConstantContext, Approximate); |
| E = CO->getFalseExpr(); |
| IntRange R = E->getType()->isVoidType() |
| ? IntRange{0, true} |
| : GetExprRange(C, E, MaxWidth, InConstantContext, Approximate); |
| return IntRange::join(L, R); |
| } |
| |
| if (const auto *BO = dyn_cast<BinaryOperator>(E)) { |
| IntRange (*Combine)(IntRange, IntRange) = IntRange::join; |
| |
| switch (BO->getOpcode()) { |
| case BO_Cmp: |
| llvm_unreachable("builtin <=> should have class type"); |
| |
| // Boolean-valued operations are single-bit and positive. |
| case BO_LAnd: |
| case BO_LOr: |
| case BO_LT: |
| case BO_GT: |
| case BO_LE: |
| case BO_GE: |
| case BO_EQ: |
| case BO_NE: |
| return IntRange::forBoolType(); |
| |
| // The type of the assignments is the type of the LHS, so the RHS |
| // is not necessarily the same type. |
| case BO_MulAssign: |
| case BO_DivAssign: |
| case BO_RemAssign: |
| case BO_AddAssign: |
| case BO_SubAssign: |
| case BO_XorAssign: |
| case BO_OrAssign: |
| // TODO: bitfields? |
| return IntRange::forValueOfType(C, GetExprType(E)); |
| |
| // Simple assignments just pass through the RHS, which will have |
| // been coerced to the LHS type. |
| case BO_Assign: |
| // TODO: bitfields? |
| return GetExprRange(C, BO->getRHS(), MaxWidth, InConstantContext, |
| Approximate); |
| |
| // Operations with opaque sources are black-listed. |
| case BO_PtrMemD: |
| case BO_PtrMemI: |
| return IntRange::forValueOfType(C, GetExprType(E)); |
| |
| // Bitwise-and uses the *infinum* of the two source ranges. |
| case BO_And: |
| case BO_AndAssign: |
| Combine = IntRange::bit_and; |
| break; |
| |
| // Left shift gets black-listed based on a judgement call. |
| case BO_Shl: |
| // ...except that we want to treat '1 << (blah)' as logically |
| // positive. It's an important idiom. |
| if (IntegerLiteral *I |
| = dyn_cast<IntegerLiteral>(BO->getLHS()->IgnoreParenCasts())) { |
| if (I->getValue() == 1) { |
| IntRange R = IntRange::forValueOfType(C, GetExprType(E)); |
| return IntRange(R.Width, /*NonNegative*/ true); |
| } |
| } |
| LLVM_FALLTHROUGH; |
| |
| case BO_ShlAssign: |
| return IntRange::forValueOfType(C, GetExprType(E)); |
| |
| // Right shift by a constant can narrow its left argument. |
| case BO_Shr: |
| case BO_ShrAssign: { |
| IntRange L = GetExprRange(C, BO->getLHS(), MaxWidth, InConstantContext, |
| Approximate); |
| |
| // If the shift amount is a positive constant, drop the width by |
| // that much. |
| if (Optional<llvm::APSInt> shift = |
| BO->getRHS()->getIntegerConstantExpr(C)) { |
| if (shift->isNonNegative()) { |
| unsigned zext = shift->getZExtValue(); |
| if (zext >= L.Width) |
| L.Width = (L.NonNegative ? 0 : 1); |
| else |
| L.Width -= zext; |
| } |
| } |
| |
| return L; |
| } |
| |
| // Comma acts as its right operand. |
| case BO_Comma: |
| return GetExprRange(C, BO->getRHS(), MaxWidth, InConstantContext, |
| Approximate); |
| |
| case BO_Add: |
| if (!Approximate) |
| Combine = IntRange::sum; |
| break; |
| |
| case BO_Sub: |
| if (BO->getLHS()->getType()->isPointerType()) |
| return IntRange::forValueOfType(C, GetExprType(E)); |
| if (!Approximate) |
| Combine = IntRange::difference; |
| break; |
| |
| case BO_Mul: |
| if (!Approximate) |
| Combine = IntRange::product; |
| break; |
| |
| // The width of a division result is mostly determined by the size |
| // of the LHS. |
| case BO_Div: { |
| // Don't 'pre-truncate' the operands. |
| unsigned opWidth = C.getIntWidth(GetExprType(E)); |
| IntRange L = GetExprRange(C, BO->getLHS(), opWidth, InConstantContext, |
| Approximate); |
| |
| // If the divisor is constant, use that. |
| if (Optional<llvm::APSInt> divisor = |
| BO->getRHS()->getIntegerConstantExpr(C)) { |
| unsigned log2 = divisor->logBase2(); // floor(log_2(divisor)) |
| if (log2 >= L.Width) |
| L.Width = (L.NonNegative ? 0 : 1); |
| else |
| L.Width = std::min(L.Width - log2, MaxWidth); |
| return L; |
| } |
| |
| // Otherwise, just use the LHS's width. |
| // FIXME: This is wrong if the LHS could be its minimal value and the RHS |
| // could be -1. |
| IntRange R = GetExprRange(C, BO->getRHS(), opWidth, InConstantContext, |
| Approximate); |
| return IntRange(L.Width, L.NonNegative && R.NonNegative); |
| } |
| |
| case BO_Rem: |
| Combine = IntRange::rem; |
| break; |
| |
| // The default behavior is okay for these. |
| case BO_Xor: |
| case BO_Or: |
| break; |
| } |
| |
| // Combine the two ranges, but limit the result to the type in which we |
| // performed the computation. |
| QualType T = GetExprType(E); |
| unsigned opWidth = C.getIntWidth(T); |
| IntRange L = |
| GetExprRange(C, BO->getLHS(), opWidth, InConstantContext, Approximate); |
| IntRange R = |
| GetExprRange(C, BO->getRHS(), opWidth, InConstantContext, Approximate); |
| IntRange C = Combine(L, R); |
| C.NonNegative |= T->isUnsignedIntegerOrEnumerationType(); |
| C.Width = std::min(C.Width, MaxWidth); |
| return C; |
| } |
| |
| if (const auto *UO = dyn_cast<UnaryOperator>(E)) { |
| switch (UO->getOpcode()) { |
| // Boolean-valued operations are white-listed. |
| case UO_LNot: |
| return IntRange::forBoolType(); |
| |
| // Operations with opaque sources are black-listed. |
| case UO_Deref: |
| case UO_AddrOf: // should be impossible |
| return IntRange::forValueOfType(C, GetExprType(E)); |
| |
| default: |
| return GetExprRange(C, UO->getSubExpr(), MaxWidth, InConstantContext, |
| Approximate); |
| } |
| } |
| |
| if (const auto *OVE = dyn_cast<OpaqueValueExpr>(E)) |
| return GetExprRange(C, OVE->getSourceExpr(), MaxWidth, InConstantContext, |
| Approximate); |
| |
| if (const auto *BitField = E->getSourceBitField()) |
| return IntRange(BitField->getBitWidthValue(C), |
| BitField->getType()->isUnsignedIntegerOrEnumerationType()); |
| |
| return IntRange::forValueOfType(C, GetExprType(E)); |
| } |
| |
| static IntRange GetExprRange(ASTContext &C, const Expr *E, |
| bool InConstantContext, bool Approximate) { |
| return GetExprRange(C, E, C.getIntWidth(GetExprType(E)), InConstantContext, |
| Approximate); |
| } |
| |
| /// Checks whether the given value, which currently has the given |
| /// source semantics, has the same value when coerced through the |
| /// target semantics. |
| static bool IsSameFloatAfterCast(const llvm::APFloat &value, |
| const llvm::fltSemantics &Src, |
| const llvm::fltSemantics &Tgt) { |
| llvm::APFloat truncated = value; |
| |
| bool ignored; |
| truncated.convert(Src, llvm::APFloat::rmNearestTiesToEven, &ignored); |
| truncated.convert(Tgt, llvm::APFloat::rmNearestTiesToEven, &ignored); |
| |
| return truncated.bitwiseIsEqual(value); |
| } |
| |
| /// Checks whether the given value, which currently has the given |
| /// source semantics, has the same value when coerced through the |
| /// target semantics. |
| /// |
| /// The value might be a vector of floats (or a complex number). |
| static bool IsSameFloatAfterCast(const APValue &value, |
| const llvm::fltSemantics &Src, |
| const llvm::fltSemantics &Tgt) { |
| if (value.isFloat()) |
| return IsSameFloatAfterCast(value.getFloat(), Src, Tgt); |
| |
| if (value.isVector()) { |
| for (unsigned i = 0, e = value.getVectorLength(); i != e; ++i) |
| if (!IsSameFloatAfterCast(value.getVectorElt(i), Src, Tgt)) |
| return false; |
| return true; |
| } |
| |
| assert(value.isComplexFloat()); |
| return (IsSameFloatAfterCast(value.getComplexFloatReal(), Src, Tgt) && |
| IsSameFloatAfterCast(value.getComplexFloatImag(), Src, Tgt)); |
| } |
| |
| static void AnalyzeImplicitConversions(Sema &S, Expr *E, SourceLocation CC, |
| bool IsListInit = false); |
| |
| static bool IsEnumConstOrFromMacro(Sema &S, Expr *E) { |
| // Suppress cases where we are comparing against an enum constant. |
| if (const DeclRefExpr *DR = |
| dyn_cast<DeclRefExpr>(E->IgnoreParenImpCasts())) |
| if (isa<EnumConstantDecl>(DR->getDecl())) |
| return true; |
| |
| // Suppress cases where the value is expanded from a macro, unless that macro |
| // is how a language represents a boolean literal. This is the case in both C |
| // and Objective-C. |
| SourceLocation BeginLoc = E->getBeginLoc(); |
| if (BeginLoc.isMacroID()) { |
| StringRef MacroName = Lexer::getImmediateMacroName( |
| BeginLoc, S.getSourceManager(), S.getLangOpts()); |
| return MacroName != "YES" && MacroName != "NO" && |
| MacroName != "true" && MacroName != "false"; |
| } |
| |
| return false; |
| } |
| |
| static bool isKnownToHaveUnsignedValue(Expr *E) { |
| return E->getType()->isIntegerType() && |
| (!E->getType()->isSignedIntegerType() || |
| !E->IgnoreParenImpCasts()->getType()->isSignedIntegerType()); |
| } |
| |
| namespace { |
| /// The promoted range of values of a type. In general this has the |
| /// following structure: |
| /// |
| /// |-----------| . . . |-----------| |
| /// ^ ^ ^ ^ |
| /// Min HoleMin HoleMax Max |
| /// |
| /// ... where there is only a hole if a signed type is promoted to unsigned |
| /// (in which case Min and Max are the smallest and largest representable |
| /// values). |
| struct PromotedRange { |
| // Min, or HoleMax if there is a hole. |
| llvm::APSInt PromotedMin; |
| // Max, or HoleMin if there is a hole. |
| llvm::APSInt PromotedMax; |
| |
| PromotedRange(IntRange R, unsigned BitWidth, bool Unsigned) { |
| if (R.Width == 0) |
| PromotedMin = PromotedMax = llvm::APSInt(BitWidth, Unsigned); |
| else if (R.Width >= BitWidth && !Unsigned) { |
| // Promotion made the type *narrower*. This happens when promoting |
| // a < 32-bit unsigned / <= 32-bit signed bit-field to 'signed int'. |
| // Treat all values of 'signed int' as being in range for now. |
| PromotedMin = llvm::APSInt::getMinValue(BitWidth, Unsigned); |
| PromotedMax = llvm::APSInt::getMaxValue(BitWidth, Unsigned); |
| } else { |
| PromotedMin = llvm::APSInt::getMinValue(R.Width, R.NonNegative) |
| .extOrTrunc(BitWidth); |
| PromotedMin.setIsUnsigned(Unsigned); |
| |
| PromotedMax = llvm::APSInt::getMaxValue(R.Width, R.NonNegative) |
| .extOrTrunc(BitWidth); |
| PromotedMax.setIsUnsigned(Unsigned); |
| } |
| } |
| |
| // Determine whether this range is contiguous (has no hole). |
| bool isContiguous() const { return PromotedMin <= PromotedMax; } |
| |
| // Where a constant value is within the range. |
| enum ComparisonResult { |
| LT = 0x1, |
| LE = 0x2, |
| GT = 0x4, |
| GE = 0x8, |
| EQ = 0x10, |
| NE = 0x20, |
| InRangeFlag = 0x40, |
| |
| Less = LE | LT | NE, |
| Min = LE | InRangeFlag, |
| InRange = InRangeFlag, |
| Max = GE | InRangeFlag, |
| Greater = GE | GT | NE, |
| |
| OnlyValue = LE | GE | EQ | InRangeFlag, |
| InHole = NE |
| }; |
| |
| ComparisonResult compare(const llvm::APSInt &Value) const { |
| assert(Value.getBitWidth() == PromotedMin.getBitWidth() && |
| Value.isUnsigned() == PromotedMin.isUnsigned()); |
| if (!isContiguous()) { |
| assert(Value.isUnsigned() && "discontiguous range for signed compare"); |
| if (Value.isMinValue()) return Min; |
| if (Value.isMaxValue()) return Max; |
| if (Value >= PromotedMin) return InRange; |
| if (Value <= PromotedMax) return InRange; |
| return InHole; |
| } |
| |
| switch (llvm::APSInt::compareValues(Value, PromotedMin)) { |
| case -1: return Less; |
| case 0: return PromotedMin == PromotedMax ? OnlyValue : Min; |
| case 1: |
| switch (llvm::APSInt::compareValues(Value, PromotedMax)) { |
| case -1: return InRange; |
| case 0: return Max; |
| case 1: return Greater; |
| } |
| } |
| |
| llvm_unreachable("impossible compare result"); |
| } |
| |
| static llvm::Optional<StringRef> |
| constantValue(BinaryOperatorKind Op, ComparisonResult R, bool ConstantOnRHS) { |
| if (Op == BO_Cmp) { |
| ComparisonResult LTFlag = LT, GTFlag = GT; |
| if (ConstantOnRHS) std::swap(LTFlag, GTFlag); |
| |
| if (R & EQ) return StringRef("'std::strong_ordering::equal'"); |
| if (R & LTFlag) return StringRef("'std::strong_ordering::less'"); |
| if (R & GTFlag) return StringRef("'std::strong_ordering::greater'"); |
| return llvm::None; |
| } |
| |
| ComparisonResult TrueFlag, FalseFlag; |
| if (Op == BO_EQ) { |
| TrueFlag = EQ; |
| FalseFlag = NE; |
| } else if (Op == BO_NE) { |
| TrueFlag = NE; |
| FalseFlag = EQ; |
| } else { |
| if ((Op == BO_LT || Op == BO_GE) ^ ConstantOnRHS) { |
| TrueFlag = LT; |
| FalseFlag = GE; |
| } else { |
| TrueFlag = GT; |
| FalseFlag = LE; |
| } |
| if (Op == BO_GE || Op == BO_LE) |
| std::swap(TrueFlag, FalseFlag); |
| } |
| if (R & TrueFlag) |
| return StringRef("true"); |
| if (R & FalseFlag) |
| return StringRef("false"); |
| return llvm::None; |
| } |
| }; |
| } |
| |
| static bool HasEnumType(Expr *E) { |
| // Strip off implicit integral promotions. |
| while (ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E)) { |
| if (ICE->getCastKind() != CK_IntegralCast && |
| ICE->getCastKind() != CK_NoOp) |
| break; |
| E = ICE->getSubExpr(); |
| } |
| |
| return E->getType()->isEnumeralType(); |
| } |
| |
| static int classifyConstantValue(Expr *Constant) { |
| // The values of this enumeration are used in the diagnostics |
| // diag::warn_out_of_range_compare and diag::warn_tautological_bool_compare. |
| enum ConstantValueKind { |
| Miscellaneous = 0, |
| LiteralTrue, |
| LiteralFalse |
| }; |
| if (auto *BL = dyn_cast<CXXBoolLiteralExpr>(Constant)) |
| return BL->getValue() ? ConstantValueKind::LiteralTrue |
| : ConstantValueKind::LiteralFalse; |
| return ConstantValueKind::Miscellaneous; |
| } |
| |
| static bool CheckTautologicalComparison(Sema &S, BinaryOperator *E, |
| Expr *Constant, Expr *Other, |
| const llvm::APSInt &Value, |
| bool RhsConstant) { |
| if (S.inTemplateInstantiation()) |
| return false; |
| |
| Expr *OriginalOther = Other; |
| |
| Constant = Constant->IgnoreParenImpCasts(); |
| Other = Other->IgnoreParenImpCasts(); |
| |
| // Suppress warnings on tautological comparisons between values of the same |
| // enumeration type. There are only two ways we could warn on this: |
| // - If the constant is outside the range of representable values of |
| // the enumeration. In such a case, we should warn about the cast |
| // to enumeration type, not about the comparison. |
| // - If the constant is the maximum / minimum in-range value. For an |
| // enumeratin type, such comparisons can be meaningful and useful. |
| if (Constant->getType()->isEnumeralType() && |
| S.Context.hasSameUnqualifiedType(Constant->getType(), Other->getType())) |
| return false; |
| |
| IntRange OtherValueRange = GetExprRange( |
| S.Context, Other, S.isConstantEvaluated(), /*Approximate*/ false); |
| |
| QualType OtherT = Other->getType(); |
| if (const auto *AT = OtherT->getAs<AtomicType>()) |
| OtherT = AT->getValueType(); |
| IntRange OtherTypeRange = IntRange::forValueOfType(S.Context, OtherT); |
| |
| // Special case for ObjC BOOL on targets where its a typedef for a signed char |
| // (Namely, macOS). FIXME: IntRange::forValueOfType should do this. |
| bool IsObjCSignedCharBool = S.getLangOpts().ObjC && |
| S.NSAPIObj->isObjCBOOLType(OtherT) && |
| OtherT->isSpecificBuiltinType(BuiltinType::SChar); |
| |
| // Whether we're treating Other as being a bool because of the form of |
| // expression despite it having another type (typically 'int' in C). |
| bool OtherIsBooleanDespiteType = |
| !OtherT->isBooleanType() && Other->isKnownToHaveBooleanValue(); |
| if (OtherIsBooleanDespiteType || IsObjCSignedCharBool) |
| OtherTypeRange = OtherValueRange = IntRange::forBoolType(); |
| |
| // Check if all values in the range of possible values of this expression |
| // lead to the same comparison outcome. |
| PromotedRange OtherPromotedValueRange(OtherValueRange, Value.getBitWidth(), |
| Value.isUnsigned()); |
| auto Cmp = OtherPromotedValueRange.compare(Value); |
| auto Result = PromotedRange::constantValue(E->getOpcode(), Cmp, RhsConstant); |
| if (!Result) |
| return false; |
| |
| // Also consider the range determined by the type alone. This allows us to |
| // classify the warning under the proper diagnostic group. |
| bool TautologicalTypeCompare = false; |
| { |
| PromotedRange OtherPromotedTypeRange(OtherTypeRange, Value.getBitWidth(), |
| Value.isUnsigned()); |
| auto TypeCmp = OtherPromotedTypeRange.compare(Value); |
| if (auto TypeResult = PromotedRange::constantValue(E->getOpcode(), TypeCmp, |
| RhsConstant)) { |
| TautologicalTypeCompare = true; |
| Cmp = TypeCmp; |
| Result = TypeResult; |
| } |
| } |
| |
| // Don't warn if the non-constant operand actually always evaluates to the |
| // same value. |
| if (!TautologicalTypeCompare && OtherValueRange.Width == 0) |
| return false; |
| |
| // Suppress the diagnostic for an in-range comparison if the constant comes |
| // from a macro or enumerator. We don't want to diagnose |
| // |
| // some_long_value <= INT_MAX |
| // |
| // when sizeof(int) == sizeof(long). |
| bool InRange = Cmp & PromotedRange::InRangeFlag; |
| if (InRange && IsEnumConstOrFromMacro(S, Constant)) |
| return false; |
| |
| // A comparison of an unsigned bit-field against 0 is really a type problem, |
| // even though at the type level the bit-field might promote to 'signed int'. |
| if (Other->refersToBitField() && InRange && Value == 0 && |
| Other->getType()->isUnsignedIntegerOrEnumerationType()) |
| TautologicalTypeCompare = true; |
| |
| // If this is a comparison to an enum constant, include that |
| // constant in the diagnostic. |
| const EnumConstantDecl *ED = nullptr; |
| if (const DeclRefExpr *DR = dyn_cast<DeclRefExpr>(Constant)) |
| ED = dyn_cast<EnumConstantDecl>(DR->getDecl()); |
| |
| // Should be enough for uint128 (39 decimal digits) |
| SmallString<64> PrettySourceValue; |
| llvm::raw_svector_ostream OS(PrettySourceValue); |
| if (ED) { |
| OS << '\'' << *ED << "' (" << Value << ")"; |
| } else if (auto *BL = dyn_cast<ObjCBoolLiteralExpr>( |
| Constant->IgnoreParenImpCasts())) { |
| OS << (BL->getValue() ? "YES" : "NO"); |
| } else { |
| OS << Value; |
| } |
| |
| if (!TautologicalTypeCompare) { |
| S.Diag(E->getOperatorLoc(), diag::warn_tautological_compare_value_range) |
| << RhsConstant << OtherValueRange.Width << OtherValueRange.NonNegative |
| << E->getOpcodeStr() << OS.str() << *Result |
| << E->getLHS()->getSourceRange() << E->getRHS()->getSourceRange(); |
| return true; |
| } |
| |
| if (IsObjCSignedCharBool) { |
| S.DiagRuntimeBehavior(E->getOperatorLoc(), E, |
| S.PDiag(diag::warn_tautological_compare_objc_bool) |
| << OS.str() << *Result); |
| return true; |
| } |
| |
| // FIXME: We use a somewhat different formatting for the in-range cases and |
| // cases involving boolean values for historical reasons. We should pick a |
| // consistent way of presenting these diagnostics. |
| if (!InRange || Other->isKnownToHaveBooleanValue()) { |
| |
| S.DiagRuntimeBehavior( |
| E->getOperatorLoc(), E, |
| S.PDiag(!InRange ? diag::warn_out_of_range_compare |
| : diag::warn_tautological_bool_compare) |
| << OS.str() << classifyConstantValue(Constant) << OtherT |
| << OtherIsBooleanDespiteType << *Result |
| << E->getLHS()->getSourceRange() << E->getRHS()->getSourceRange()); |
| } else { |
| bool IsCharTy = OtherT.withoutLocalFastQualifiers() == S.Context.CharTy; |
| unsigned Diag = |
| (isKnownToHaveUnsignedValue(OriginalOther) && Value == 0) |
| ? (HasEnumType(OriginalOther) |
| ? diag::warn_unsigned_enum_always_true_comparison |
| : IsCharTy ? diag::warn_unsigned_char_always_true_comparison |
| : diag::warn_unsigned_always_true_comparison) |
| : diag::warn_tautological_constant_compare; |
| |
| S.Diag(E->getOperatorLoc(), Diag) |
| << RhsConstant << OtherT << E->getOpcodeStr() << OS.str() << *Result |
| << E->getLHS()->getSourceRange() << E->getRHS()->getSourceRange(); |
| } |
| |
| return true; |
| } |
| |
| /// Analyze the operands of the given comparison. Implements the |
| /// fallback case from AnalyzeComparison. |
| static void AnalyzeImpConvsInComparison(Sema &S, BinaryOperator *E) { |
| AnalyzeImplicitConversions(S, E->getLHS(), E->getOperatorLoc()); |
| AnalyzeImplicitConversions(S, E->getRHS(), E->getOperatorLoc()); |
| } |
| |
| /// Implements -Wsign-compare. |
| /// |
| /// \param E the binary operator to check for warnings |
| static void AnalyzeComparison(Sema &S, BinaryOperator *E) { |
| // The type the comparison is being performed in. |
| QualType T = E->getLHS()->getType(); |
| |
| // Only analyze comparison operators where both sides have been converted to |
| // the same type. |
| if (!S.Context.hasSameUnqualifiedType(T, E->getRHS()->getType())) |
| return AnalyzeImpConvsInComparison(S, E); |
| |
| // Don't analyze value-dependent comparisons directly. |
| if (E->isValueDependent()) |
| return AnalyzeImpConvsInComparison(S, E); |
| |
| Expr *LHS = E->getLHS(); |
| Expr *RHS = E->getRHS(); |
| |
| if (T->isIntegralType(S.Context)) { |
| Optional<llvm::APSInt> RHSValue = RHS->getIntegerConstantExpr(S.Context); |
| Optional<llvm::APSInt> LHSValue = LHS->getIntegerConstantExpr(S.Context); |
| |
| // We don't care about expressions whose result is a constant. |
| if (RHSValue && LHSValue) |
| return AnalyzeImpConvsInComparison(S, E); |
| |
| // We only care about expressions where just one side is literal |
| if ((bool)RHSValue ^ (bool)LHSValue) { |
| // Is the constant on the RHS or LHS? |
| const bool RhsConstant = (bool)RHSValue; |
| Expr *Const = RhsConstant ? RHS : LHS; |
| Expr *Other = RhsConstant ? LHS : RHS; |
| const llvm::APSInt &Value = RhsConstant ? *RHSValue : *LHSValue; |
| |
| // Check whether an integer constant comparison results in a value |
| // of 'true' or 'false'. |
| if (CheckTautologicalComparison(S, E, Const, Other, Value, RhsConstant)) |
| return AnalyzeImpConvsInComparison(S, E); |
| } |
| } |
| |
| if (!T->hasUnsignedIntegerRepresentation()) { |
| // We don't do anything special if this isn't an unsigned integral |
| // comparison: we're only interested in integral comparisons, and |
| // signed comparisons only happen in cases we don't care to warn about. |
| return AnalyzeImpConvsInComparison(S, E); |
| } |
| |
| LHS = LHS->IgnoreParenImpCasts(); |
| RHS = RHS->IgnoreParenImpCasts(); |
| |
| if (!S.getLangOpts().CPlusPlus) { |
| // Avoid warning about comparison of integers with different signs when |
| // RHS/LHS has a `typeof(E)` type whose sign is different from the sign of |
| // the type of `E`. |
| if (const auto *TET = dyn_cast<TypeOfExprType>(LHS->getType())) |
| LHS = TET->getUnderlyingExpr()->IgnoreParenImpCasts(); |
| if (const auto *TET = dyn_cast<TypeOfExprType>(RHS->getType())) |
| RHS = TET->getUnderlyingExpr()->IgnoreParenImpCasts(); |
| } |
| |
| // Check to see if one of the (unmodified) operands is of different |
| // signedness. |
| Expr *signedOperand, *unsignedOperand; |
| if (LHS->getType()->hasSignedIntegerRepresentation()) { |
| assert(!RHS->getType()->hasSignedIntegerRepresentation() && |
| "unsigned comparison between two signed integer expressions?"); |
| signedOperand = LHS; |
| unsignedOperand = RHS; |
| } else if (RHS->getType()->hasSignedIntegerRepresentation()) { |
| signedOperand = RHS; |
| unsignedOperand = LHS; |
| } else { |
| return AnalyzeImpConvsInComparison(S, E); |
| } |
| |
| // Otherwise, calculate the effective range of the signed operand. |
| IntRange signedRange = GetExprRange( |
| S.Context, signedOperand, S.isConstantEvaluated(), /*Approximate*/ true); |
| |
| // Go ahead and analyze implicit conversions in the operands. Note |
| // that we skip the implicit conversions on both sides. |
| AnalyzeImplicitConversions(S, LHS, E->getOperatorLoc()); |
| AnalyzeImplicitConversions(S, RHS, E->getOperatorLoc()); |
| |
| // If the signed range is non-negative, -Wsign-compare won't fire. |
| if (signedRange.NonNegative) |
| return; |
| |
| // For (in)equality comparisons, if the unsigned operand is a |
| // constant which cannot collide with a overflowed signed operand, |
| // then reinterpreting the signed operand as unsigned will not |
| // change the result of the comparison. |
| if (E->isEqualityOp()) { |
| unsigned comparisonWidth = S.Context.getIntWidth(T); |
| IntRange unsignedRange = |
| GetExprRange(S.Context, unsignedOperand, S.isConstantEvaluated(), |
| /*Approximate*/ true); |
| |
| // We should never be unable to prove that the unsigned operand is |
| // non-negative. |
| assert(unsignedRange.NonNegative && "unsigned range includes negative?"); |
| |
| if (unsignedRange.Width < comparisonWidth) |
| return; |
| } |
| |
| S.DiagRuntimeBehavior(E->getOperatorLoc(), E, |
| S.PDiag(diag::warn_mixed_sign_comparison) |
| << LHS->getType() << RHS->getType() |
| << LHS->getSourceRange() << RHS->getSourceRange()); |
| } |
| |
| /// Analyzes an attempt to assign the given value to a bitfield. |
| /// |
| /// Returns true if there was something fishy about the attempt. |
| static bool AnalyzeBitFieldAssignment(Sema &S, FieldDecl *Bitfield, Expr *Init, |
| SourceLocation InitLoc) { |
| assert(Bitfield->isBitField()); |
| if (Bitfield->isInvalidDecl()) |
| return false; |
| |
| // White-list bool bitfields. |
| QualType BitfieldType = Bitfield->getType(); |
| if (BitfieldType->isBooleanType()) |
| return false; |
| |
| if (BitfieldType->isEnumeralType()) { |
| EnumDecl *BitfieldEnumDecl = BitfieldType->castAs<EnumType>()->getDecl(); |
| // If the underlying enum type was not explicitly specified as an unsigned |
| // type and the enum contain only positive values, MSVC++ will cause an |
| // inconsistency by storing this as a signed type. |
| if (S.getLangOpts().CPlusPlus11 && |
| !BitfieldEnumDecl->getIntegerTypeSourceInfo() && |
| BitfieldEnumDecl->getNumPositiveBits() > 0 && |
| BitfieldEnumDecl->getNumNegativeBits() == 0) { |
| S.Diag(InitLoc, diag::warn_no_underlying_type_specified_for_enum_bitfield) |
| << BitfieldEnumDecl; |
| } |
| } |
| |
| if (Bitfield->getType()->isBooleanType()) |
| return false; |
| |
| // Ignore value- or type-dependent expressions. |
| if (Bitfield->getBitWidth()->isValueDependent() || |
| Bitfield->getBitWidth()->isTypeDependent() || |
| Init->isValueDependent() || |
| Init->isTypeDependent()) |
| return false; |
| |
| Expr *OriginalInit = Init->IgnoreParenImpCasts(); |
| unsigned FieldWidth = Bitfield->getBitWidthValue(S.Context); |
| |
| Expr::EvalResult Result; |
| if (!OriginalInit->EvaluateAsInt(Result, S.Context, |
| Expr::SE_AllowSideEffects)) { |
| // The RHS is not constant. If the RHS has an enum type, make sure the |
| // bitfield is wide enough to hold all the values of the enum without |
| // truncation. |
| if (const auto *EnumTy = OriginalInit->getType()->getAs<EnumType>()) { |
| EnumDecl *ED = EnumTy->getDecl(); |
| bool SignedBitfield = BitfieldType->isSignedIntegerType(); |
| |
| // Enum types are implicitly signed on Windows, so check if there are any |
| // negative enumerators to see if the enum was intended to be signed or |
| // not. |
| bool SignedEnum = ED->getNumNegativeBits() > 0; |
| |
| // Check for surprising sign changes when assigning enum values to a |
| // bitfield of different signedness. If the bitfield is signed and we |
| // have exactly the right number of bits to store this unsigned enum, |
| // suggest changing the enum to an unsigned type. This typically happens |
| // on Windows where unfixed enums always use an underlying type of 'int'. |
| unsigned DiagID = 0; |
| if (SignedEnum && !SignedBitfield) { |
| DiagID = diag::warn_unsigned_bitfield_assigned_signed_enum; |
| } else if (SignedBitfield && !SignedEnum && |
| ED->getNumPositiveBits() == FieldWidth) { |
| DiagID = diag::warn_signed_bitfield_enum_conversion; |
| } |
| |
| if (DiagID) { |
| S.Diag(InitLoc, DiagID) << Bitfield << ED; |
| TypeSourceInfo *TSI = Bitfield->getTypeSourceInfo(); |
| SourceRange TypeRange = |
| TSI ? TSI->getTypeLoc().getSourceRange() : SourceRange(); |
| S.Diag(Bitfield->getTypeSpecStartLoc(), diag::note_change_bitfield_sign) |
| << SignedEnum << TypeRange; |
| } |
| |
| // Compute the required bitwidth. If the enum has negative values, we need |
| // one more bit than the normal number of positive bits to represent the |
| // sign bit. |
| unsigned BitsNeeded = SignedEnum ? std::max(ED->getNumPositiveBits() + 1, |
| ED->getNumNegativeBits()) |
| : ED->getNumPositiveBits(); |
| |
| // Check the bitwidth. |
| if (BitsNeeded > FieldWidth) { |
| Expr *WidthExpr = Bitfield->getBitWidth(); |
| S.Diag(InitLoc, diag::warn_bitfield_too_small_for_enum) |
| << Bitfield << ED; |
| S.Diag(WidthExpr->getExprLoc(), diag::note_widen_bitfield) |
| << BitsNeeded << ED << WidthExpr->getSourceRange(); |
| } |
| } |
| |
| return false; |
| } |
| |
| llvm::APSInt Value = Result.Val.getInt(); |
| |
| unsigned OriginalWidth = Value.getBitWidth(); |
| |
| if (!Value.isSigned() || Value.isNegative()) |
| if (UnaryOperator *UO = dyn_cast<UnaryOperator>(OriginalInit)) |
| if (UO->getOpcode() == UO_Minus || UO->getOpcode() == UO_Not) |
| OriginalWidth = Value.getMinSignedBits(); |
| |
| if (OriginalWidth <= FieldWidth) |
| return false; |
| |
| // Compute the value which the bitfield will contain. |
| llvm::APSInt TruncatedValue = Value.trunc(FieldWidth); |
| TruncatedValue.setIsSigned(BitfieldType->isSignedIntegerType()); |
| |
| // Check whether the stored value is equal to the original value. |
| TruncatedValue = TruncatedValue.extend(OriginalWidth); |
| if (llvm::APSInt::isSameValue(Value, TruncatedValue)) |
| return false; |
| |
| // Special-case bitfields of width 1: booleans are naturally 0/1, and |
| // therefore don't strictly fit into a signed bitfield of width 1. |
| if (FieldWidth == 1 && Value == 1) |
| return false; |
| |
| std::string PrettyValue = toString(Value, 10); |
| std::string PrettyTrunc = toString(TruncatedValue, 10); |
| |
| S.Diag(InitLoc, diag::warn_impcast_bitfield_precision_constant) |
| << PrettyValue << PrettyTrunc << OriginalInit->getType() |
| << Init->getSourceRange(); |
| |
| return true; |
| } |
| |
| /// Analyze the given simple or compound assignment for warning-worthy |
| /// operations. |
| static void AnalyzeAssignment(Sema &S, BinaryOperator *E) { |
| // Just recurse on the LHS. |
| AnalyzeImplicitConversions(S, E->getLHS(), E->getOperatorLoc()); |
| |
| // We want to recurse on the RHS as normal unless we're assigning to |
| // a bitfield. |
| if (FieldDecl *Bitfield = E->getLHS()->getSourceBitField()) { |
| if (AnalyzeBitFieldAssignment(S, Bitfield, E->getRHS(), |
| E->getOperatorLoc())) { |
| // Recurse, ignoring any implicit conversions on the RHS. |
| return AnalyzeImplicitConversions(S, E->getRHS()->IgnoreParenImpCasts(), |
| E->getOperatorLoc()); |
| } |
| } |
| |
| AnalyzeImplicitConversions(S, E->getRHS(), E->getOperatorLoc()); |
| |
| // Diagnose implicitly sequentially-consistent atomic assignment. |
| if (E->getLHS()->getType()->isAtomicType()) |
| S.Diag(E->getRHS()->getBeginLoc(), diag::warn_atomic_implicit_seq_cst); |
| } |
| |
| /// Diagnose an implicit cast; purely a helper for CheckImplicitConversion. |
| static void DiagnoseImpCast(Sema &S, Expr *E, QualType SourceType, QualType T, |
| SourceLocation CContext, unsigned diag, |
| bool pruneControlFlow = false) { |
| if (pruneControlFlow) { |
| S.DiagRuntimeBehavior(E->getExprLoc(), E, |
| S.PDiag(diag) |
| << SourceType << T << E->getSourceRange() |
| << SourceRange(CContext)); |
| return; |
| } |
| S.Diag(E->getExprLoc(), diag) |
| << SourceType << T << E->getSourceRange() << SourceRange(CContext); |
| } |
| |
| /// Diagnose an implicit cast; purely a helper for CheckImplicitConversion. |
| static void DiagnoseImpCast(Sema &S, Expr *E, QualType T, |
| SourceLocation CContext, |
| unsigned diag, bool pruneControlFlow = false) { |
| DiagnoseImpCast(S, E, E->getType(), T, CContext, diag, pruneControlFlow); |
| } |
| |
| static bool isObjCSignedCharBool(Sema &S, QualType Ty) { |
| return Ty->isSpecificBuiltinType(BuiltinType::SChar) && |
| S.getLangOpts().ObjC && S.NSAPIObj->isObjCBOOLType(Ty); |
| } |
| |
| static void adornObjCBoolConversionDiagWithTernaryFixit( |
| Sema &S, Expr *SourceExpr, const Sema::SemaDiagnosticBuilder &Builder) { |
| Expr *Ignored = SourceExpr->IgnoreImplicit(); |
| if (const auto *OVE = dyn_cast<OpaqueValueExpr>(Ignored)) |
| Ignored = OVE->getSourceExpr(); |
| bool NeedsParens = isa<AbstractConditionalOperator>(Ignored) || |
| isa<BinaryOperator>(Ignored) || |
| isa<CXXOperatorCallExpr>(Ignored); |
| SourceLocation EndLoc = S.getLocForEndOfToken(SourceExpr->getEndLoc()); |
| if (NeedsParens) |
| Builder << FixItHint::CreateInsertion(SourceExpr->getBeginLoc(), "(") |
| << FixItHint::CreateInsertion(EndLoc, ")"); |
| Builder << FixItHint::CreateInsertion(EndLoc, " ? YES : NO"); |
| } |
| |
| /// Diagnose an implicit cast from a floating point value to an integer value. |
| static void DiagnoseFloatingImpCast(Sema &S, Expr *E, QualType T, |
| SourceLocation CContext) { |
| const bool IsBool = T->isSpecificBuiltinType(BuiltinType::Bool); |
| const bool PruneWarnings = S.inTemplateInstantiation(); |
| |
| Expr *InnerE = E->IgnoreParenImpCasts(); |
| // We also want to warn on, e.g., "int i = -1.234" |
| if (UnaryOperator *UOp = dyn_cast<UnaryOperator>(InnerE)) |
| if (UOp->getOpcode() == UO_Minus || UOp->getOpcode() == UO_Plus) |
| InnerE = UOp->getSubExpr()->IgnoreParenImpCasts(); |
| |
| const bool IsLiteral = |
| isa<FloatingLiteral>(E) || isa<FloatingLiteral>(InnerE); |
| |
| llvm::APFloat Value(0.0); |
| bool IsConstant = |
| E->EvaluateAsFloat(Value, S.Context, Expr::SE_AllowSideEffects); |
| if (!IsConstant) { |
| if (isObjCSignedCharBool(S, T)) { |
| return adornObjCBoolConversionDiagWithTernaryFixit( |
| S, E, |
| S.Diag(CContext, diag::warn_impcast_float_to_objc_signed_char_bool) |
| << E->getType()); |
| } |
| |
| return DiagnoseImpCast(S, E, T, CContext, |
| diag::warn_impcast_float_integer, PruneWarnings); |
| } |
| |
| bool isExact = false; |
| |
| llvm::APSInt IntegerValue(S.Context.getIntWidth(T), |
| T->hasUnsignedIntegerRepresentation()); |
| llvm::APFloat::opStatus Result = Value.convertToInteger( |
| IntegerValue, llvm::APFloat::rmTowardZero, &isExact); |
| |
| // FIXME: Force the precision of the source value down so we don't print |
| // digits which are usually useless (we don't really care here if we |
| // truncate a digit by accident in edge cases). Ideally, APFloat::toString |
| // would automatically print the shortest representation, but it's a bit |
| // tricky to implement. |
| SmallString<16> PrettySourceValue; |
| unsigned precision = llvm::APFloat::semanticsPrecision(Value.getSemantics()); |
| precision = (precision * 59 + 195) / 196; |
| Value.toString(PrettySourceValue, precision); |
| |
| if (isObjCSignedCharBool(S, T) && IntegerValue != 0 && IntegerValue != 1) { |
| return adornObjCBoolConversionDiagWithTernaryFixit( |
| S, E, |
| S.Diag(CContext, diag::warn_impcast_constant_value_to_objc_bool) |
| << PrettySourceValue); |
| } |
| |
| if (Result == llvm::APFloat::opOK && isExact) { |
| if (IsLiteral) return; |
| return DiagnoseImpCast(S, E, T, CContext, diag::warn_impcast_float_integer, |
| PruneWarnings); |
| } |
| |
| // Conversion of a floating-point value to a non-bool integer where the |
| // integral part cannot be represented by the integer type is undefined. |
| if (!IsBool && Result == llvm::APFloat::opInvalidOp) |
| return DiagnoseImpCast( |
| S, E, T, CContext, |
| IsLiteral ? diag::warn_impcast_literal_float_to_integer_out_of_range |
| : diag::warn_impcast_float_to_integer_out_of_range, |
| PruneWarnings); |
| |
| unsigned DiagID = 0; |
| if (IsLiteral) { |
| // Warn on floating point literal to integer. |
| DiagID = diag::warn_impcast_literal_float_to_integer; |
| } else if (IntegerValue == 0) { |
| if (Value.isZero()) { // Skip -0.0 to 0 conversion. |
| return DiagnoseImpCast(S, E, T, CContext, |
| diag::warn_impcast_float_integer, PruneWarnings); |
| } |
| // Warn on non-zero to zero conversion. |
| DiagID = diag::warn_impcast_float_to_integer_zero; |
| } else { |
| if (IntegerValue.isUnsigned()) { |
| if (!IntegerValue.isMaxValue()) { |
| return DiagnoseImpCast(S, E, T, CContext, |
| diag::warn_impcast_float_integer, PruneWarnings); |
| } |
| } else { // IntegerValue.isSigned() |
| if (!IntegerValue.isMaxSignedValue() && |
| !IntegerValue.isMinSignedValue()) { |
| return DiagnoseImpCast(S, E, T, CContext, |
| diag::warn_impcast_float_integer, PruneWarnings); |
| } |
| } |
| // Warn on evaluatable floating point expression to integer conversion. |
| DiagID = diag::warn_impcast_float_to_integer; |
| } |
| |
| SmallString<16> PrettyTargetValue; |
| if (IsBool) |
| PrettyTargetValue = Value.isZero() ? "false" : "true"; |
| else |
| IntegerValue.toString(PrettyTargetValue); |
| |
| if (PruneWarnings) { |
| S.DiagRuntimeBehavior(E->getExprLoc(), E, |
| S.PDiag(DiagID) |
| << E->getType() << T.getUnqualifiedType() |
| << PrettySourceValue << PrettyTargetValue |
| << E->getSourceRange() << SourceRange(CContext)); |
| } else { |
| S.Diag(E->getExprLoc(), DiagID) |
| << E->getType() << T.getUnqualifiedType() << PrettySourceValue |
| << PrettyTargetValue << E->getSourceRange() << SourceRange(CContext); |
| } |
| } |
| |
| /// Analyze the given compound assignment for the possible losing of |
| /// floating-point precision. |
| static void AnalyzeCompoundAssignment(Sema &S, BinaryOperator *E) { |
| assert(isa<CompoundAssignOperator>(E) && |
| "Must be compound assignment operation"); |
| // Recurse on the LHS and RHS in here |
| AnalyzeImplicitConversions(S, E->getLHS(), E->getOperatorLoc()); |
| AnalyzeImplicitConversions(S, E->getRHS(), E->getOperatorLoc()); |
| |
| if (E->getLHS()->getType()->isAtomicType()) |
| S.Diag(E->getOperatorLoc(), diag::warn_atomic_implicit_seq_cst); |
| |
| // Now check the outermost expression |
| const auto *ResultBT = E->getLHS()->getType()->getAs<BuiltinType>(); |
| const auto *RBT = cast<CompoundAssignOperator>(E) |
| ->getComputationResultType() |
| ->getAs<BuiltinType>(); |
| |
| // The below checks assume source is floating point. |
| if (!ResultBT || !RBT || !RBT->isFloatingPoint()) return; |
| |
| // If source is floating point but target is an integer. |
| if (ResultBT->isInteger()) |
| return DiagnoseImpCast(S, E, E->getRHS()->getType(), E->getLHS()->getType(), |
| E->getExprLoc(), diag::warn_impcast_float_integer); |
| |
| if (!ResultBT->isFloatingPoint()) |
| return; |
| |
| // If both source and target are floating points, warn about losing precision. |
| int Order = S.getASTContext().getFloatingTypeSemanticOrder( |
| QualType(ResultBT, 0), QualType(RBT, 0)); |
| if (Order < 0 && !S.SourceMgr.isInSystemMacro(E->getOperatorLoc())) |
| // warn about dropping FP rank. |
| DiagnoseImpCast(S, E->getRHS(), E->getLHS()->getType(), E->getOperatorLoc(), |
| diag::warn_impcast_float_result_precision); |
| } |
| |
| static std::string PrettyPrintInRange(const llvm::APSInt &Value, |
| IntRange Range) { |
| if (!Range.Width) return "0"; |
| |
| llvm::APSInt ValueInRange = Value; |
| ValueInRange.setIsSigned(!Range.NonNegative); |
| ValueInRange = ValueInRange.trunc(Range.Width); |
| return toString(ValueInRange, 10); |
| } |
| |
| static bool IsImplicitBoolFloatConversion(Sema &S, Expr *Ex, bool ToBool) { |
| if (!isa<ImplicitCastExpr>(Ex)) |
| return false; |
| |
| Expr *InnerE = Ex->IgnoreParenImpCasts(); |
| const Type *Target = S.Context.getCanonicalType(Ex->getType()).getTypePtr(); |
| const Type *Source = |
| S.Context.getCanonicalType(InnerE->getType()).getTypePtr(); |
| if (Target->isDependentType()) |
| return false; |
| |
| const BuiltinType *FloatCandidateBT = |
| dyn_cast<BuiltinType>(ToBool ? Source : Target); |
| const Type *BoolCandidateType = ToBool ? Target : Source; |
| |
| return (BoolCandidateType->isSpecificBuiltinType(BuiltinType::Bool) && |
| FloatCandidateBT && (FloatCandidateBT->isFloatingPoint())); |
| } |
| |
| static void CheckImplicitArgumentConversions(Sema &S, CallExpr *TheCall, |
| SourceLocation CC) { |
| unsigned NumArgs = TheCall->getNumArgs(); |
| for (unsigned i = 0; i < NumArgs; ++i) { |
| Expr *CurrA = TheCall->getArg(i); |
| if (!IsImplicitBoolFloatConversion(S, CurrA, true)) |
| continue; |
| |
| bool IsSwapped = ((i > 0) && |
| IsImplicitBoolFloatConversion(S, TheCall->getArg(i - 1), false)); |
| IsSwapped |= ((i < (NumArgs - 1)) && |
| IsImplicitBoolFloatConversion(S, TheCall->getArg(i + 1), false)); |
| if (IsSwapped) { |
| // Warn on this floating-point to bool conversion. |
| DiagnoseImpCast(S, CurrA->IgnoreParenImpCasts(), |
| CurrA->getType(), CC, |
| diag::warn_impcast_floating_point_to_bool); |
| } |
| } |
| } |
| |
| static void DiagnoseNullConversion(Sema &S, Expr *E, QualType T, |
| SourceLocation CC) { |
| if (S.Diags.isIgnored(diag::warn_impcast_null_pointer_to_integer, |
| E->getExprLoc())) |
| return; |
| |
| // Don't warn on functions which have return type nullptr_t. |
| if (isa<CallExpr>(E)) |
| return; |
| |
| // Check for NULL (GNUNull) or nullptr (CXX11_nullptr). |
| const Expr::NullPointerConstantKind NullKind = |
| E->isNullPointerConstant(S.Context, Expr::NPC_ValueDependentIsNotNull); |
| if (NullKind != Expr::NPCK_GNUNull && NullKind != Expr::NPCK_CXX11_nullptr) |
| return; |
| |
| // Return if target type is a safe conversion. |
| if (T->isAnyPointerType() || T->isBlockPointerType() || |
| T->isMemberPointerType() || !T->isScalarType() || T->isNullPtrType()) |
| return; |
| |
| SourceLocation Loc = E->getSourceRange().getBegin(); |
| |
| // Venture through the macro stacks to get to the source of macro arguments. |
| // The new location is a better location than the complete location that was |
| // passed in. |
| Loc = S.SourceMgr.getTopMacroCallerLoc(Loc); |
| CC = S.SourceMgr.getTopMacroCallerLoc(CC); |
| |
| // __null is usually wrapped in a macro. Go up a macro if that is the case. |
| if (NullKind == Expr::NPCK_GNUNull && Loc.isMacroID()) { |
| StringRef MacroName = Lexer::getImmediateMacroNameForDiagnostics( |
| Loc, S.SourceMgr, S.getLangOpts()); |
| if (MacroName == "NULL") |
| Loc = S.SourceMgr.getImmediateExpansionRange(Loc).getBegin(); |
| } |
| |
| // Only warn if the null and context location are in the same macro expansion. |
| if (S.SourceMgr.getFileID(Loc) != S.SourceMgr.getFileID(CC)) |
| return; |
| |
| S.Diag(Loc, diag::warn_impcast_null_pointer_to_integer) |
| << (NullKind == Expr::NPCK_CXX11_nullptr) << T << SourceRange(CC) |
| << FixItHint::CreateReplacement(Loc, |
| S.getFixItZeroLiteralForType(T, Loc)); |
| } |
| |
| static void checkObjCArrayLiteral(Sema &S, QualType TargetType, |
| ObjCArrayLiteral *ArrayLiteral); |
| |
| static void |
| checkObjCDictionaryLiteral(Sema &S, QualType TargetType, |
| ObjCDictionaryLiteral *DictionaryLiteral); |
| |
| /// Check a single element within a collection literal against the |
| /// target element type. |
| static void checkObjCCollectionLiteralElement(Sema &S, |
| QualType TargetElementType, |
| Expr *Element, |
| unsigned ElementKind) { |
| // Skip a bitcast to 'id' or qualified 'id'. |
| if (auto ICE = dyn_cast<ImplicitCastExpr>(Element)) { |
| if (ICE->getCastKind() == CK_BitCast && |
| ICE->getSubExpr()->getType()->getAs<ObjCObjectPointerType>()) |
| Element = ICE->getSubExpr(); |
| } |
| |
| QualType ElementType = Element->getType(); |
| ExprResult ElementResult(Element); |
| if (ElementType->getAs<ObjCObjectPointerType>() && |
| S.CheckSingleAssignmentConstraints(TargetElementType, |
| ElementResult, |
| false, false) |
| != Sema::Compatible) { |
| S.Diag(Element->getBeginLoc(), diag::warn_objc_collection_literal_element) |
| << ElementType << ElementKind << TargetElementType |
| << Element->getSourceRange(); |
| } |
| |
| if (auto ArrayLiteral = dyn_cast<ObjCArrayLiteral>(Element)) |
| checkObjCArrayLiteral(S, TargetElementType, ArrayLiteral); |
| else if (auto DictionaryLiteral = dyn_cast<ObjCDictionaryLiteral>(Element)) |
| checkObjCDictionaryLiteral(S, TargetElementType, DictionaryLiteral); |
| } |
| |
| /// Check an Objective-C array literal being converted to the given |
| /// target type. |
| static void checkObjCArrayLiteral(Sema &S, QualType TargetType, |
| ObjCArrayLiteral *ArrayLiteral) { |
| if (!S.NSArrayDecl) |
| return; |
| |
| const auto *TargetObjCPtr = TargetType->getAs<ObjCObjectPointerType>(); |
| if (!TargetObjCPtr) |
| return; |
| |
| if (TargetObjCPtr->isUnspecialized() || |
| TargetObjCPtr->getInterfaceDecl()->getCanonicalDecl() |
| != S.NSArrayDecl->getCanonicalDecl()) |
| return; |
| |
| auto TypeArgs = TargetObjCPtr->getTypeArgs(); |
| if (TypeArgs.size() != 1) |
| return; |
| |
| QualType TargetElementType = TypeArgs[0]; |
| for (unsigned I = 0, N = ArrayLiteral->getNumElements(); I != N; ++I) { |
| checkObjCCollectionLiteralElement(S, TargetElementType, |
| ArrayLiteral->getElement(I), |
| 0); |
| } |
| } |
| |
| /// Check an Objective-C dictionary literal being converted to the given |
| /// target type. |
| static void |
| checkObjCDictionaryLiteral(Sema &S, QualType TargetType, |
| ObjCDictionaryLiteral *DictionaryLiteral) { |
| if (!S.NSDictionaryDecl) |
| return; |
| |
| const auto *TargetObjCPtr = TargetType->getAs<ObjCObjectPointerType>(); |
| if (!TargetObjCPtr) |
| return; |
| |
| if (TargetObjCPtr->isUnspecialized() || |
| TargetObjCPtr->getInterfaceDecl()->getCanonicalDecl() |
| != S.NSDictionaryDecl->getCanonicalDecl()) |
| return; |
| |
| auto TypeArgs = TargetObjCPtr->getTypeArgs(); |
| if (TypeArgs.size() != 2) |
| return; |
| |
| QualType TargetKeyType = TypeArgs[0]; |
| QualType TargetObjectType = TypeArgs[1]; |
| for (unsigned I = 0, N = DictionaryLiteral->getNumElements(); I != N; ++I) { |
| auto Element = DictionaryLiteral->getKeyValueElement(I); |
| checkObjCCollectionLiteralElement(S, TargetKeyType, Element.Key, 1); |
| checkObjCCollectionLiteralElement(S, TargetObjectType, Element.Value, 2); |
| } |
| } |
| |
| // Helper function to filter out cases for constant width constant conversion. |
| // Don't warn on char array initialization or for non-decimal values. |
| static bool isSameWidthConstantConversion(Sema &S, Expr *E, QualType T, |
| SourceLocation CC) { |
| // If initializing from a constant, and the constant starts with '0', |
| // then it is a binary, octal, or hexadecimal. Allow these constants |
| // to fill all the bits, even if there is a sign change. |
| if (auto *IntLit = dyn_cast<IntegerLiteral>(E->IgnoreParenImpCasts())) { |
| const char FirstLiteralCharacter = |
| S.getSourceManager().getCharacterData(IntLit->getBeginLoc())[0]; |
| if (FirstLiteralCharacter == '0') |
| return false; |
| } |
| |
| // If the CC location points to a '{', and the type is char, then assume |
| // assume it is an array initialization. |
| if (CC.isValid() && T->isCharType()) { |
| const char FirstContextCharacter = |
| S.getSourceManager().getCharacterData(CC)[0]; |
| if (FirstContextCharacter == '{') |
| return false; |
| } |
| |
| return true; |
| } |
| |
| static const IntegerLiteral *getIntegerLiteral(Expr *E) { |
| const auto *IL = dyn_cast<IntegerLiteral>(E); |
| if (!IL) { |
| if (auto *UO = dyn_cast<UnaryOperator>(E)) { |
| if (UO->getOpcode() == UO_Minus) |
| return dyn_cast<IntegerLiteral>(UO->getSubExpr()); |
| } |
| } |
| |
| return IL; |
| } |
| |
| static void DiagnoseIntInBoolContext(Sema &S, Expr *E) { |
| E = E->IgnoreParenImpCasts(); |
| SourceLocation ExprLoc = E->getExprLoc(); |
| |
| if (const auto *BO = dyn_cast<BinaryOperator>(E)) { |
| BinaryOperator::Opcode Opc = BO->getOpcode(); |
| Expr::EvalResult Result; |
| // Do not diagnose unsigned shifts. |
| if (Opc == BO_Shl) { |
| const auto *LHS = getIntegerLiteral(BO->getLHS()); |
| const auto *RHS = getIntegerLiteral(BO->getRHS()); |
| if (LHS && LHS->getValue() == 0) |
| S.Diag(ExprLoc, diag::warn_left_shift_always) << 0; |
| else if (!E->isValueDependent() && LHS && RHS && |
| RHS->getValue().isNonNegative() && |
| E->EvaluateAsInt(Result, S.Context, Expr::SE_AllowSideEffects)) |
| S.Diag(ExprLoc, diag::warn_left_shift_always) |
| << (Result.Val.getInt() != 0); |
| else if (E->getType()->isSignedIntegerType()) |
| S.Diag(ExprLoc, diag::warn_left_shift_in_bool_context) << E; |
| } |
| } |
| |
| if (const auto *CO = dyn_cast<ConditionalOperator>(E)) { |
| const auto *LHS = getIntegerLiteral(CO->getTrueExpr()); |
| const auto *RHS = getIntegerLiteral(CO->getFalseExpr()); |
| if (!LHS || !RHS) |
| return; |
| if ((LHS->getValue() == 0 || LHS->getValue() == 1) && |
| (RHS->getValue() == 0 || RHS->getValue() == 1)) |
| // Do not diagnose common idioms. |
| return; |
| if (LHS->getValue() != 0 && RHS->getValue() != 0) |
| S.Diag(ExprLoc, diag::warn_integer_constants_in_conditional_always_true); |
| } |
| } |
| |
| static void CheckImplicitConversion(Sema &S, Expr *E, QualType T, |
| SourceLocation CC, |
| bool *ICContext = nullptr, |
| bool IsListInit = false) { |
| if (E->isTypeDependent() || E->isValueDependent()) return; |
| |
| const Type *Source = S.Context.getCanonicalType(E->getType()).getTypePtr(); |
| const Type *Target = S.Context.getCanonicalType(T).getTypePtr(); |
| if (Source == Target) return; |
| if (Target->isDependentType()) return; |
| |
| // If the conversion context location is invalid don't complain. We also |
| // don't want to emit a warning if the issue occurs from the expansion of |
| // a system macro. The problem is that 'getSpellingLoc()' is slow, so we |
| // delay this check as long as possible. Once we detect we are in that |
| // scenario, we just return. |
| if (CC.isInvalid()) |
| return; |
| |
| if (Source->isAtomicType()) |
| S.Diag(E->getExprLoc(), diag::warn_atomic_implicit_seq_cst); |
| |
| // Diagnose implicit casts to bool. |
| if (Target->isSpecificBuiltinType(BuiltinType::Bool)) { |
| if (isa<StringLiteral>(E)) |
| // Warn on string literal to bool. Checks for string literals in logical |
| // and expressions, for instance, assert(0 && "error here"), are |
| // prevented by a check in AnalyzeImplicitConversions(). |
| return DiagnoseImpCast(S, E, T, CC, |
| diag::warn_impcast_string_literal_to_bool); |
| if (isa<ObjCStringLiteral>(E) || isa<ObjCArrayLiteral>(E) || |
| isa<ObjCDictionaryLiteral>(E) || isa<ObjCBoxedExpr>(E)) { |
| // This covers the literal expressions that evaluate to Objective-C |
| // objects. |
| return DiagnoseImpCast(S, E, T, CC, |
| diag::warn_impcast_objective_c_literal_to_bool); |
| } |
| if (Source->isPointerType() || Source->canDecayToPointerType()) { |
| // Warn on pointer to bool conversion that is always true. |
| S.DiagnoseAlwaysNonNullPointer(E, Expr::NPCK_NotNull, /*IsEqual*/ false, |
| SourceRange(CC)); |
| } |
| } |
| |
| // If the we're converting a constant to an ObjC BOOL on a platform where BOOL |
| // is a typedef for signed char (macOS), then that constant value has to be 1 |
| // or 0. |
| if (isObjCSignedCharBool(S, T) && Source->isIntegralType(S.Context)) { |
| Expr::EvalResult Result; |
| if (E->EvaluateAsInt(Result, S.getASTContext(), |
| Expr::SE_AllowSideEffects)) { |
| if (Result.Val.getInt() != 1 && Result.Val.getInt() != 0) { |
| adornObjCBoolConversionDiagWithTernaryFixit( |
| S, E, |
| S.Diag(CC, diag::warn_impcast_constant_value_to_objc_bool) |
| << toString(Result.Val.getInt(), 10)); |
| } |
| return; |
| } |
| } |
| |
| // Check implicit casts from Objective-C collection literals to specialized |
| // collection types, e.g., NSArray<NSString *> *. |
| if (auto *ArrayLiteral = dyn_cast<ObjCArrayLiteral>(E)) |
| checkObjCArrayLiteral(S, QualType(Target, 0), ArrayLiteral); |
| else if (auto *DictionaryLiteral = dyn_cast<ObjCDictionaryLiteral>(E)) |
| checkObjCDictionaryLiteral(S, QualType(Target, 0), DictionaryLiteral); |
| |
| // Strip vector types. |
| if (isa<VectorType>(Source)) { |
| if (Target->isVLSTBuiltinType() && |
| (S.Context.areCompatibleSveTypes(QualType(Target, 0), |
| QualType(Source, 0)) || |
| S.Context.areLaxCompatibleSveTypes(QualType(Target, 0), |
| QualType(Source, 0)))) |
| return; |
| |
| if (!isa<VectorType>(Target)) { |
| if (S.SourceMgr.isInSystemMacro(CC)) |
| return; |
| return DiagnoseImpCast(S, E, T, CC, diag::warn_impcast_vector_scalar); |
| } |
| |
| // If the vector cast is cast between two vectors of the same size, it is |
| // a bitcast, not a conversion. |
| if (S.Context.getTypeSize(Source) == S.Context.getTypeSize(Target)) |
| return; |
| |
| Source = cast<VectorType>(Source)->getElementType(). |