blob: d3c33d6e6bc796d42b28fdcfc37e942f9a21483f [file] [log] [blame]
//===- bolt/Profile/BoltAddressTranslation.cpp ----------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
#include "bolt/Profile/BoltAddressTranslation.h"
#include "bolt/Core/BinaryFunction.h"
#include "llvm/Support/Errc.h"
#include "llvm/Support/Error.h"
#include "llvm/Support/LEB128.h"
#define DEBUG_TYPE "bolt-bat"
namespace llvm {
namespace bolt {
const char *BoltAddressTranslation::SECTION_NAME = ".note.bolt_bat";
void BoltAddressTranslation::writeEntriesForBB(MapTy &Map,
const BinaryBasicBlock &BB,
uint64_t FuncAddress) {
const uint64_t BBOutputOffset =
BB.getOutputAddressRange().first - FuncAddress;
const uint32_t BBInputOffset = BB.getInputOffset();
// Every output BB must track back to an input BB for profile collection
// in bolted binaries. If we are missing an offset, it means this block was
// created by a pass. We will skip writing any entries for it, and this means
// any traffic happening in this block will map to the previous block in the
// layout. This covers the case where an input basic block is split into two,
// and the second one lacks any offset.
if (BBInputOffset == BinaryBasicBlock::INVALID_OFFSET)
return;
LLVM_DEBUG(dbgs() << "BB " << BB.getName() << "\n");
LLVM_DEBUG(dbgs() << " Key: " << Twine::utohexstr(BBOutputOffset)
<< " Val: " << Twine::utohexstr(BBInputOffset) << "\n");
// In case of conflicts (same Key mapping to different Vals), the last
// update takes precedence. Of course it is not ideal to have conflicts and
// those happen when we have an empty BB that either contained only
// NOPs or a jump to the next block (successor). Either way, the successor
// and this deleted block will both share the same output address (the same
// key), and we need to map back. We choose here to privilege the successor by
// allowing it to overwrite the previously inserted key in the map.
Map[BBOutputOffset] = BBInputOffset << 1;
const auto &IOAddressMap =
BB.getFunction()->getBinaryContext().getIOAddressMap();
for (const auto &[InputOffset, Sym] : BB.getLocSyms()) {
const auto InputAddress = BB.getFunction()->getAddress() + InputOffset;
const auto OutputAddress = IOAddressMap.lookup(InputAddress);
assert(OutputAddress && "Unknown instruction address");
const auto OutputOffset = *OutputAddress - FuncAddress;
// Is this the first instruction in the BB? No need to duplicate the entry.
if (OutputOffset == BBOutputOffset)
continue;
LLVM_DEBUG(dbgs() << " Key: " << Twine::utohexstr(OutputOffset) << " Val: "
<< Twine::utohexstr(InputOffset) << " (branch)\n");
Map.insert(std::pair<uint32_t, uint32_t>(OutputOffset,
(InputOffset << 1) | BRANCHENTRY));
}
}
void BoltAddressTranslation::write(const BinaryContext &BC, raw_ostream &OS) {
LLVM_DEBUG(dbgs() << "BOLT-DEBUG: Writing BOLT Address Translation Tables\n");
for (auto &BFI : BC.getBinaryFunctions()) {
const BinaryFunction &Function = BFI.second;
// We don't need a translation table if the body of the function hasn't
// changed
if (Function.isIgnored() || (!BC.HasRelocations && !Function.isSimple()))
continue;
LLVM_DEBUG(dbgs() << "Function name: " << Function.getPrintName() << "\n");
LLVM_DEBUG(dbgs() << " Address reference: 0x"
<< Twine::utohexstr(Function.getOutputAddress()) << "\n");
MapTy Map;
for (const BinaryBasicBlock *const BB :
Function.getLayout().getMainFragment())
writeEntriesForBB(Map, *BB, Function.getOutputAddress());
Maps.emplace(Function.getOutputAddress(), std::move(Map));
if (!Function.isSplit())
continue;
// Split maps
LLVM_DEBUG(dbgs() << " Cold part\n");
for (const FunctionFragment &FF :
Function.getLayout().getSplitFragments()) {
Map.clear();
for (const BinaryBasicBlock *const BB : FF)
writeEntriesForBB(Map, *BB, FF.getAddress());
Maps.emplace(FF.getAddress(), std::move(Map));
ColdPartSource.emplace(FF.getAddress(), Function.getOutputAddress());
}
}
// Output addresses are delta-encoded
uint64_t PrevAddress = 0;
writeMaps</*Cold=*/false>(Maps, PrevAddress, OS);
writeMaps</*Cold=*/true>(Maps, PrevAddress, OS);
outs() << "BOLT-INFO: Wrote " << Maps.size() << " BAT maps\n";
}
template <bool Cold>
void BoltAddressTranslation::writeMaps(std::map<uint64_t, MapTy> &Maps,
uint64_t &PrevAddress, raw_ostream &OS) {
const uint32_t NumFuncs =
llvm::count_if(llvm::make_first_range(Maps), [&](const uint64_t Address) {
return Cold == ColdPartSource.count(Address);
});
encodeULEB128(NumFuncs, OS);
LLVM_DEBUG(dbgs() << "Writing " << NumFuncs << (Cold ? " cold" : "")
<< " functions for BAT.\n");
size_t PrevIndex = 0;
for (auto &MapEntry : Maps) {
const uint64_t Address = MapEntry.first;
// Only process cold fragments in cold mode, and vice versa.
if (Cold != ColdPartSource.count(Address))
continue;
MapTy &Map = MapEntry.second;
const uint32_t NumEntries = Map.size();
LLVM_DEBUG(dbgs() << "Writing " << NumEntries << " entries for 0x"
<< Twine::utohexstr(Address) << ".\n");
encodeULEB128(Address - PrevAddress, OS);
PrevAddress = Address;
if (Cold) {
size_t HotIndex =
std::distance(ColdPartSource.begin(), ColdPartSource.find(Address));
encodeULEB128(HotIndex - PrevIndex, OS);
PrevIndex = HotIndex;
}
encodeULEB128(NumEntries, OS);
uint64_t InOffset = 0;
// Output and Input addresses and delta-encoded
for (std::pair<const uint32_t, uint32_t> &KeyVal : Map) {
const uint64_t OutputAddress = KeyVal.first + Address;
encodeULEB128(OutputAddress - PrevAddress, OS);
PrevAddress = OutputAddress;
encodeSLEB128(KeyVal.second - InOffset, OS);
InOffset = KeyVal.second;
}
}
}
std::error_code BoltAddressTranslation::parse(StringRef Buf) {
DataExtractor DE = DataExtractor(Buf, true, 8);
uint64_t Offset = 0;
if (Buf.size() < 12)
return make_error_code(llvm::errc::io_error);
const uint32_t NameSz = DE.getU32(&Offset);
const uint32_t DescSz = DE.getU32(&Offset);
const uint32_t Type = DE.getU32(&Offset);
if (Type != BinarySection::NT_BOLT_BAT ||
Buf.size() + Offset < alignTo(NameSz, 4) + DescSz)
return make_error_code(llvm::errc::io_error);
StringRef Name = Buf.slice(Offset, Offset + NameSz);
Offset = alignTo(Offset + NameSz, 4);
if (Name.substr(0, 4) != "BOLT")
return make_error_code(llvm::errc::io_error);
Error Err(Error::success());
std::vector<uint64_t> HotFuncs;
uint64_t PrevAddress = 0;
parseMaps</*Cold=*/false>(HotFuncs, PrevAddress, DE, Offset, Err);
parseMaps</*Cold=*/true>(HotFuncs, PrevAddress, DE, Offset, Err);
outs() << "BOLT-INFO: Parsed " << Maps.size() << " BAT entries\n";
return errorToErrorCode(std::move(Err));
}
template <bool Cold>
void BoltAddressTranslation::parseMaps(std::vector<uint64_t> &HotFuncs,
uint64_t &PrevAddress, DataExtractor &DE,
uint64_t &Offset, Error &Err) {
const uint32_t NumFunctions = DE.getULEB128(&Offset, &Err);
LLVM_DEBUG(dbgs() << "Parsing " << NumFunctions << (Cold ? " cold" : "")
<< " functions\n");
size_t HotIndex = 0;
for (uint32_t I = 0; I < NumFunctions; ++I) {
const uint64_t Address = PrevAddress + DE.getULEB128(&Offset, &Err);
PrevAddress = Address;
if (Cold) {
HotIndex += DE.getULEB128(&Offset, &Err);
ColdPartSource.emplace(Address, HotFuncs[HotIndex]);
} else {
HotFuncs.push_back(Address);
}
const uint32_t NumEntries = DE.getULEB128(&Offset, &Err);
MapTy Map;
LLVM_DEBUG(dbgs() << "Parsing " << NumEntries << " entries for 0x"
<< Twine::utohexstr(Address) << "\n");
uint64_t InputOffset = 0;
for (uint32_t J = 0; J < NumEntries; ++J) {
const uint64_t OutputDelta = DE.getULEB128(&Offset, &Err);
const uint64_t OutputAddress = PrevAddress + OutputDelta;
const uint64_t OutputOffset = OutputAddress - Address;
PrevAddress = OutputAddress;
const int64_t InputDelta = DE.getSLEB128(&Offset, &Err);
InputOffset += InputDelta;
Map.insert(std::pair<uint32_t, uint32_t>(OutputOffset, InputOffset));
LLVM_DEBUG(
dbgs() << formatv("{0:x} -> {1:x} ({2}/{3}b -> {4}/{5}b), {6:x}\n",
OutputOffset, InputOffset, OutputDelta,
encodeULEB128(OutputDelta, nulls()), InputDelta,
encodeSLEB128(InputDelta, nulls()), OutputAddress));
}
Maps.insert(std::pair<uint64_t, MapTy>(Address, Map));
}
}
void BoltAddressTranslation::dump(raw_ostream &OS) {
const size_t NumTables = Maps.size();
OS << "BAT tables for " << NumTables << " functions:\n";
for (const auto &MapEntry : Maps) {
OS << "Function Address: 0x" << Twine::utohexstr(MapEntry.first) << "\n";
OS << "BB mappings:\n";
for (const auto &Entry : MapEntry.second) {
const bool IsBranch = Entry.second & BRANCHENTRY;
const uint32_t Val = Entry.second >> 1; // dropping BRANCHENTRY bit
OS << "0x" << Twine::utohexstr(Entry.first) << " -> "
<< "0x" << Twine::utohexstr(Val);
if (IsBranch)
OS << " (branch)";
OS << "\n";
}
OS << "\n";
}
const size_t NumColdParts = ColdPartSource.size();
if (!NumColdParts)
return;
OS << NumColdParts << " cold mappings:\n";
for (const auto &Entry : ColdPartSource) {
OS << "0x" << Twine::utohexstr(Entry.first) << " -> "
<< Twine::utohexstr(Entry.second) << "\n";
}
OS << "\n";
}
uint64_t BoltAddressTranslation::translate(uint64_t FuncAddress,
uint64_t Offset,
bool IsBranchSrc) const {
auto Iter = Maps.find(FuncAddress);
if (Iter == Maps.end())
return Offset;
const MapTy &Map = Iter->second;
auto KeyVal = Map.upper_bound(Offset);
if (KeyVal == Map.begin())
return Offset;
--KeyVal;
const uint32_t Val = KeyVal->second >> 1; // dropping BRANCHENTRY bit
// Branch source addresses are translated to the first instruction of the
// source BB to avoid accounting for modifications BOLT may have made in the
// BB regarding deletion/addition of instructions.
if (IsBranchSrc)
return Val;
return Offset - KeyVal->first + Val;
}
std::optional<BoltAddressTranslation::FallthroughListTy>
BoltAddressTranslation::getFallthroughsInTrace(uint64_t FuncAddress,
uint64_t From,
uint64_t To) const {
SmallVector<std::pair<uint64_t, uint64_t>, 16> Res;
// Filter out trivial case
if (From >= To)
return Res;
From -= FuncAddress;
To -= FuncAddress;
auto Iter = Maps.find(FuncAddress);
if (Iter == Maps.end())
return std::nullopt;
const MapTy &Map = Iter->second;
auto FromIter = Map.upper_bound(From);
if (FromIter == Map.begin())
return Res;
// Skip instruction entries, to create fallthroughs we are only interested in
// BB boundaries
do {
if (FromIter == Map.begin())
return Res;
--FromIter;
} while (FromIter->second & BRANCHENTRY);
auto ToIter = Map.upper_bound(To);
if (ToIter == Map.begin())
return Res;
--ToIter;
if (FromIter->first >= ToIter->first)
return Res;
for (auto Iter = FromIter; Iter != ToIter;) {
const uint32_t Src = Iter->first;
if (Iter->second & BRANCHENTRY) {
++Iter;
continue;
}
++Iter;
while (Iter->second & BRANCHENTRY && Iter != ToIter)
++Iter;
if (Iter->second & BRANCHENTRY)
break;
Res.emplace_back(Src, Iter->first);
}
return Res;
}
uint64_t BoltAddressTranslation::fetchParentAddress(uint64_t Address) const {
auto Iter = ColdPartSource.find(Address);
if (Iter == ColdPartSource.end())
return 0;
return Iter->second;
}
bool BoltAddressTranslation::enabledFor(
llvm::object::ELFObjectFileBase *InputFile) const {
for (const SectionRef &Section : InputFile->sections()) {
Expected<StringRef> SectionNameOrErr = Section.getName();
if (Error E = SectionNameOrErr.takeError())
continue;
if (SectionNameOrErr.get() == SECTION_NAME)
return true;
}
return false;
}
} // namespace bolt
} // namespace llvm