blob: 7b965a1b0950282d2a757ec9632ec0f45e0b3f66 [file] [log] [blame]
// RUN: mlir-opt %s \
// RUN: --sparsification --sparse-tensor-conversion \
// RUN: --convert-vector-to-scf --convert-scf-to-std \
// RUN: --func-bufferize --tensor-constant-bufferize --tensor-bufferize \
// RUN: --std-bufferize --finalizing-bufferize --lower-affine \
// RUN: --convert-vector-to-llvm --convert-memref-to-llvm --convert-std-to-llvm --reconcile-unrealized-casts | \
// RUN: mlir-cpu-runner \
// RUN: -e entry -entry-point-result=void \
// RUN: -shared-libs=%mlir_integration_test_dir/libmlir_c_runner_utils%shlibext | \
// RUN: FileCheck %s
//
// Do the same run, but now with SIMDization as well. This should not change the outcome.
//
// RUN: mlir-opt %s \
// RUN: --sparsification="vectorization-strategy=2 vl=4" --sparse-tensor-conversion \
// RUN: --convert-vector-to-scf --convert-scf-to-std \
// RUN: --func-bufferize --tensor-constant-bufferize --tensor-bufferize \
// RUN: --std-bufferize --finalizing-bufferize --lower-affine \
// RUN: --convert-vector-to-llvm --convert-memref-to-llvm --convert-std-to-llvm --reconcile-unrealized-casts | \
// RUN: mlir-cpu-runner \
// RUN: -e entry -entry-point-result=void \
// RUN: -shared-libs=%mlir_integration_test_dir/libmlir_c_runner_utils%shlibext | \
// RUN: FileCheck %s
#CSR = #sparse_tensor.encoding<{ dimLevelType = [ "dense", "compressed" ] }>
#trait_scale = {
indexing_maps = [
affine_map<(i,j) -> (i,j)> // X (out)
],
iterator_types = ["parallel", "parallel"],
doc = "X(i,j) = X(i,j) * 2"
}
//
// Integration test that lowers a kernel annotated as sparse to actual sparse
// code, initializes a matching sparse storage scheme from a dense tensor,
// and runs the resulting code with the JIT compiler.
//
module {
//
// A kernel that scales a sparse matrix A by a factor of 2.0.
//
func @sparse_scale(%argx: tensor<8x8xf32, #CSR>
{linalg.inplaceable = true}) -> tensor<8x8xf32, #CSR> {
%c = arith.constant 2.0 : f32
%0 = linalg.generic #trait_scale
outs(%argx: tensor<8x8xf32, #CSR>) {
^bb(%x: f32):
%1 = arith.mulf %x, %c : f32
linalg.yield %1 : f32
} -> tensor<8x8xf32, #CSR>
return %0 : tensor<8x8xf32, #CSR>
}
//
// Main driver that converts a dense tensor into a sparse tensor
// and then calls the sparse scaling kernel with the sparse tensor
// as input argument.
//
func @entry() {
%c0 = arith.constant 0 : index
%f0 = arith.constant 0.0 : f32
// Initialize a dense tensor.
%0 = arith.constant dense<[
[1.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 1.0],
[0.0, 2.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0],
[0.0, 0.0, 3.0, 0.0, 0.0, 0.0, 0.0, 0.0],
[0.0, 0.0, 0.0, 4.0, 0.0, 0.0, 0.0, 0.0],
[0.0, 1.0, 0.0, 0.0, 5.0, 0.0, 0.0, 0.0],
[0.0, 1.0, 1.0, 0.0, 0.0, 6.0, 0.0, 0.0],
[0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 7.0, 1.0],
[0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 8.0]
]> : tensor<8x8xf32>
// Convert dense tensor to sparse tensor and call sparse kernel.
%1 = sparse_tensor.convert %0 : tensor<8x8xf32> to tensor<8x8xf32, #CSR>
%2 = call @sparse_scale(%1)
: (tensor<8x8xf32, #CSR>) -> tensor<8x8xf32, #CSR>
// Print the resulting compacted values for verification.
//
// CHECK: ( 2, 2, 2, 4, 6, 8, 2, 10, 2, 2, 12, 2, 14, 2, 2, 16 )
//
%m = sparse_tensor.values %2 : tensor<8x8xf32, #CSR> to memref<?xf32>
%v = vector.transfer_read %m[%c0], %f0: memref<?xf32>, vector<16xf32>
vector.print %v : vector<16xf32>
// Release the resources.
sparse_tensor.release %1 : tensor<8x8xf32, #CSR>
return
}
}