blob: b9f4208c2a2eebce33642e3641f35c34a15f4004 [file] [log] [blame]
// RUN: mlir-opt %s \
// RUN: --sparsification --sparse-tensor-conversion \
// RUN: --linalg-bufferize --convert-linalg-to-loops \
// RUN: --convert-vector-to-scf --convert-scf-to-std \
// RUN: --func-bufferize --tensor-constant-bufferize --tensor-bufferize \
// RUN: --std-bufferize --finalizing-bufferize --lower-affine \
// RUN: --convert-vector-to-llvm --convert-memref-to-llvm --convert-math-to-llvm \
// RUN: --convert-std-to-llvm --reconcile-unrealized-casts | \
// RUN: mlir-cpu-runner \
// RUN: -e entry -entry-point-result=void \
// RUN: -shared-libs=%mlir_integration_test_dir/libmlir_c_runner_utils%shlibext | \
// RUN: FileCheck %s
#DCSR = #sparse_tensor.encoding<{dimLevelType = ["compressed", "compressed"]}>
//
// Traits for 2-d tensor (aka matrix) operations.
//
#trait_scale = {
indexing_maps = [
affine_map<(i,j) -> (i,j)>, // A (in)
affine_map<(i,j) -> (i,j)> // X (out)
],
iterator_types = ["parallel", "parallel"],
doc = "X(i,j) = A(i,j) * 2.0"
}
#trait_scale_inpl = {
indexing_maps = [
affine_map<(i,j) -> (i,j)> // X (out)
],
iterator_types = ["parallel", "parallel"],
doc = "X(i,j) *= 2.0"
}
#trait_op = {
indexing_maps = [
affine_map<(i,j) -> (i,j)>, // A (in)
affine_map<(i,j) -> (i,j)>, // B (in)
affine_map<(i,j) -> (i,j)> // X (out)
],
iterator_types = ["parallel", "parallel"],
doc = "X(i,j) = A(i,j) OP B(i,j)"
}
module {
// Scales a sparse matrix into a new sparse matrix.
func @matrix_scale(%arga: tensor<?x?xf64, #DCSR>) -> tensor<?x?xf64, #DCSR> {
%s = arith.constant 2.0 : f64
%c0 = arith.constant 0 : index
%c1 = arith.constant 1 : index
%d0 = tensor.dim %arga, %c0 : tensor<?x?xf64, #DCSR>
%d1 = tensor.dim %arga, %c1 : tensor<?x?xf64, #DCSR>
%xm = sparse_tensor.init [%d0, %d1] : tensor<?x?xf64, #DCSR>
%0 = linalg.generic #trait_scale
ins(%arga: tensor<?x?xf64, #DCSR>)
outs(%xm: tensor<?x?xf64, #DCSR>) {
^bb(%a: f64, %x: f64):
%1 = arith.mulf %a, %s : f64
linalg.yield %1 : f64
} -> tensor<?x?xf64, #DCSR>
return %0 : tensor<?x?xf64, #DCSR>
}
// Scales a sparse matrix in place.
func @matrix_scale_inplace(%argx: tensor<?x?xf64, #DCSR>
{linalg.inplaceable = true}) -> tensor<?x?xf64, #DCSR> {
%s = arith.constant 2.0 : f64
%0 = linalg.generic #trait_scale_inpl
outs(%argx: tensor<?x?xf64, #DCSR>) {
^bb(%x: f64):
%1 = arith.mulf %x, %s : f64
linalg.yield %1 : f64
} -> tensor<?x?xf64, #DCSR>
return %0 : tensor<?x?xf64, #DCSR>
}
// Adds two sparse matrices element-wise into a new sparse matrix.
func @matrix_add(%arga: tensor<?x?xf64, #DCSR>,
%argb: tensor<?x?xf64, #DCSR>) -> tensor<?x?xf64, #DCSR> {
%c0 = arith.constant 0 : index
%c1 = arith.constant 1 : index
%d0 = tensor.dim %arga, %c0 : tensor<?x?xf64, #DCSR>
%d1 = tensor.dim %arga, %c1 : tensor<?x?xf64, #DCSR>
%xv = sparse_tensor.init [%d0, %d1] : tensor<?x?xf64, #DCSR>
%0 = linalg.generic #trait_op
ins(%arga, %argb: tensor<?x?xf64, #DCSR>, tensor<?x?xf64, #DCSR>)
outs(%xv: tensor<?x?xf64, #DCSR>) {
^bb(%a: f64, %b: f64, %x: f64):
%1 = arith.addf %a, %b : f64
linalg.yield %1 : f64
} -> tensor<?x?xf64, #DCSR>
return %0 : tensor<?x?xf64, #DCSR>
}
// Multiplies two sparse matrices element-wise into a new sparse matrix.
func @matrix_mul(%arga: tensor<?x?xf64, #DCSR>,
%argb: tensor<?x?xf64, #DCSR>) -> tensor<?x?xf64, #DCSR> {
%c0 = arith.constant 0 : index
%c1 = arith.constant 1 : index
%d0 = tensor.dim %arga, %c0 : tensor<?x?xf64, #DCSR>
%d1 = tensor.dim %arga, %c1 : tensor<?x?xf64, #DCSR>
%xv = sparse_tensor.init [%d0, %d1] : tensor<?x?xf64, #DCSR>
%0 = linalg.generic #trait_op
ins(%arga, %argb: tensor<?x?xf64, #DCSR>, tensor<?x?xf64, #DCSR>)
outs(%xv: tensor<?x?xf64, #DCSR>) {
^bb(%a: f64, %b: f64, %x: f64):
%1 = arith.mulf %a, %b : f64
linalg.yield %1 : f64
} -> tensor<?x?xf64, #DCSR>
return %0 : tensor<?x?xf64, #DCSR>
}
// Dump a sparse matrix.
func @dump(%arg0: tensor<?x?xf64, #DCSR>) {
%d0 = arith.constant 0.0 : f64
%c0 = arith.constant 0 : index
%dm = sparse_tensor.convert %arg0 : tensor<?x?xf64, #DCSR> to tensor<?x?xf64>
%0 = bufferization.to_memref %dm : memref<?x?xf64>
%1 = vector.transfer_read %0[%c0, %c0], %d0: memref<?x?xf64>, vector<4x8xf64>
vector.print %1 : vector<4x8xf64>
memref.dealloc %0 : memref<?x?xf64>
return
}
// Driver method to call and verify matrix kernels.
func @entry() {
%c0 = arith.constant 0 : index
%d1 = arith.constant 1.1 : f64
// Setup sparse matrices.
%m1 = arith.constant sparse<
[ [0,0], [0,1], [1,7], [2,2], [2,4], [2,7], [3,0], [3,2], [3,3] ],
[ 1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0, 9.0 ]
> : tensor<4x8xf64>
%m2 = arith.constant sparse<
[ [0,0], [0,7], [1,0], [1,6], [2,1], [2,7] ],
[6.0, 5.0, 4.0, 3.0, 2.0, 1.0 ]
> : tensor<4x8xf64>
%sm1 = sparse_tensor.convert %m1 : tensor<4x8xf64> to tensor<?x?xf64, #DCSR>
%sm2 = sparse_tensor.convert %m2 : tensor<4x8xf64> to tensor<?x?xf64, #DCSR>
// Call sparse vector kernels.
%0 = call @matrix_scale(%sm1)
: (tensor<?x?xf64, #DCSR>) -> tensor<?x?xf64, #DCSR>
%1 = call @matrix_scale_inplace(%sm1)
: (tensor<?x?xf64, #DCSR>) -> tensor<?x?xf64, #DCSR>
%2 = call @matrix_add(%sm1, %sm2)
: (tensor<?x?xf64, #DCSR>, tensor<?x?xf64, #DCSR>) -> tensor<?x?xf64, #DCSR>
%3 = call @matrix_mul(%sm1, %sm2)
: (tensor<?x?xf64, #DCSR>, tensor<?x?xf64, #DCSR>) -> tensor<?x?xf64, #DCSR>
//
// Verify the results.
//
// CHECK: ( ( 2, 4, 0, 0, 0, 0, 0, 0 ), ( 0, 0, 0, 0, 0, 0, 0, 6 ), ( 0, 0, 8, 0, 10, 0, 0, 12 ), ( 14, 0, 16, 18, 0, 0, 0, 0 ) )
// CHECK-NEXT: ( ( 6, 0, 0, 0, 0, 0, 0, 5 ), ( 4, 0, 0, 0, 0, 0, 3, 0 ), ( 0, 2, 0, 0, 0, 0, 0, 1 ), ( 0, 0, 0, 0, 0, 0, 0, 0 ) )
// CHECK-NEXT: ( ( 2, 4, 0, 0, 0, 0, 0, 0 ), ( 0, 0, 0, 0, 0, 0, 0, 6 ), ( 0, 0, 8, 0, 10, 0, 0, 12 ), ( 14, 0, 16, 18, 0, 0, 0, 0 ) )
// CHECK-NEXT: ( ( 2, 4, 0, 0, 0, 0, 0, 0 ), ( 0, 0, 0, 0, 0, 0, 0, 6 ), ( 0, 0, 8, 0, 10, 0, 0, 12 ), ( 14, 0, 16, 18, 0, 0, 0, 0 ) )
// CHECK-NEXT: ( ( 8, 4, 0, 0, 0, 0, 0, 5 ), ( 4, 0, 0, 0, 0, 0, 3, 6 ), ( 0, 2, 8, 0, 10, 0, 0, 13 ), ( 14, 0, 16, 18, 0, 0, 0, 0 ) )
// CHECK-NEXT: ( ( 12, 0, 0, 0, 0, 0, 0, 0 ), ( 0, 0, 0, 0, 0, 0, 0, 0 ), ( 0, 0, 0, 0, 0, 0, 0, 12 ), ( 0, 0, 0, 0, 0, 0, 0, 0 ) )
//
call @dump(%sm1) : (tensor<?x?xf64, #DCSR>) -> ()
call @dump(%sm2) : (tensor<?x?xf64, #DCSR>) -> ()
call @dump(%0) : (tensor<?x?xf64, #DCSR>) -> ()
call @dump(%1) : (tensor<?x?xf64, #DCSR>) -> ()
call @dump(%2) : (tensor<?x?xf64, #DCSR>) -> ()
call @dump(%3) : (tensor<?x?xf64, #DCSR>) -> ()
// Release the resources.
sparse_tensor.release %sm1 : tensor<?x?xf64, #DCSR>
sparse_tensor.release %sm2 : tensor<?x?xf64, #DCSR>
sparse_tensor.release %0 : tensor<?x?xf64, #DCSR>
sparse_tensor.release %2 : tensor<?x?xf64, #DCSR>
sparse_tensor.release %3 : tensor<?x?xf64, #DCSR>
return
}
}