| ; NOTE: Assertions have been autogenerated by utils/update_test_checks.py |
| ; RUN: opt -S -instcombine < %s | FileCheck %s |
| |
| ; If we have an smin feeding a signed or equality icmp that shares an |
| ; operand with the smin, the compare should always be folded. |
| ; Test all 6 foldable predicates (eq,ne,sge,sgt,sle,slt) * 4 commutation |
| ; possibilities for each predicate. Note that folds to true/false or |
| ; folds to an existing instruction may be handled by InstSimplify. |
| |
| ; smin(X, Y) == X --> X <= Y |
| |
| define i1 @eq_smin1(i32 %x, i32 %y) { |
| ; CHECK-LABEL: @eq_smin1( |
| ; CHECK-NEXT: [[CMP2:%.*]] = icmp sle i32 [[X:%.*]], [[Y:%.*]] |
| ; CHECK-NEXT: ret i1 [[CMP2]] |
| ; |
| %cmp1 = icmp slt i32 %x, %y |
| %sel = select i1 %cmp1, i32 %x, i32 %y |
| %cmp2 = icmp eq i32 %sel, %x |
| ret i1 %cmp2 |
| } |
| |
| ; Commute min operands. |
| |
| define i1 @eq_smin2(i32 %x, i32 %y) { |
| ; CHECK-LABEL: @eq_smin2( |
| ; CHECK-NEXT: [[CMP2:%.*]] = icmp sle i32 [[X:%.*]], [[Y:%.*]] |
| ; CHECK-NEXT: ret i1 [[CMP2]] |
| ; |
| %cmp1 = icmp slt i32 %y, %x |
| %sel = select i1 %cmp1, i32 %y, i32 %x |
| %cmp2 = icmp eq i32 %sel, %x |
| ret i1 %cmp2 |
| } |
| |
| ; Disguise the icmp predicate by commuting the min op to the RHS. |
| |
| define i1 @eq_smin3(i32 %a, i32 %y) { |
| ; CHECK-LABEL: @eq_smin3( |
| ; CHECK-NEXT: [[X:%.*]] = add i32 [[A:%.*]], 3 |
| ; CHECK-NEXT: [[CMP2:%.*]] = icmp sle i32 [[X]], [[Y:%.*]] |
| ; CHECK-NEXT: ret i1 [[CMP2]] |
| ; |
| %x = add i32 %a, 3 ; thwart complexity-based canonicalization |
| %cmp1 = icmp slt i32 %x, %y |
| %sel = select i1 %cmp1, i32 %x, i32 %y |
| %cmp2 = icmp eq i32 %x, %sel |
| ret i1 %cmp2 |
| } |
| |
| ; Commute min operands. |
| |
| define i1 @eq_smin4(i32 %a, i32 %y) { |
| ; CHECK-LABEL: @eq_smin4( |
| ; CHECK-NEXT: [[X:%.*]] = add i32 [[A:%.*]], 3 |
| ; CHECK-NEXT: [[CMP2:%.*]] = icmp sle i32 [[X]], [[Y:%.*]] |
| ; CHECK-NEXT: ret i1 [[CMP2]] |
| ; |
| %x = add i32 %a, 3 ; thwart complexity-based canonicalization |
| %cmp1 = icmp slt i32 %y, %x |
| %sel = select i1 %cmp1, i32 %y, i32 %x |
| %cmp2 = icmp eq i32 %x, %sel |
| ret i1 %cmp2 |
| } |
| |
| ; smin(X, Y) >= X --> X <= Y |
| |
| define i1 @sge_smin1(i32 %x, i32 %y) { |
| ; CHECK-LABEL: @sge_smin1( |
| ; CHECK-NEXT: [[CMP2:%.*]] = icmp sle i32 [[X:%.*]], [[Y:%.*]] |
| ; CHECK-NEXT: ret i1 [[CMP2]] |
| ; |
| %cmp1 = icmp slt i32 %x, %y |
| %sel = select i1 %cmp1, i32 %x, i32 %y |
| %cmp2 = icmp sge i32 %sel, %x |
| ret i1 %cmp2 |
| } |
| |
| ; Commute min operands. |
| |
| define i1 @sge_smin2(i32 %x, i32 %y) { |
| ; CHECK-LABEL: @sge_smin2( |
| ; CHECK-NEXT: [[CMP2:%.*]] = icmp sle i32 [[X:%.*]], [[Y:%.*]] |
| ; CHECK-NEXT: ret i1 [[CMP2]] |
| ; |
| %cmp1 = icmp slt i32 %y, %x |
| %sel = select i1 %cmp1, i32 %y, i32 %x |
| %cmp2 = icmp sge i32 %sel, %x |
| ret i1 %cmp2 |
| } |
| |
| ; Disguise the icmp predicate by commuting the min op to the RHS. |
| |
| define i1 @sge_smin3(i32 %a, i32 %y) { |
| ; CHECK-LABEL: @sge_smin3( |
| ; CHECK-NEXT: [[X:%.*]] = add i32 [[A:%.*]], 3 |
| ; CHECK-NEXT: [[CMP2:%.*]] = icmp sle i32 [[X]], [[Y:%.*]] |
| ; CHECK-NEXT: ret i1 [[CMP2]] |
| ; |
| %x = add i32 %a, 3 ; thwart complexity-based canonicalization |
| %cmp1 = icmp slt i32 %x, %y |
| %sel = select i1 %cmp1, i32 %x, i32 %y |
| %cmp2 = icmp sle i32 %x, %sel |
| ret i1 %cmp2 |
| } |
| |
| ; Commute min operands. |
| |
| define i1 @sge_smin4(i32 %a, i32 %y) { |
| ; CHECK-LABEL: @sge_smin4( |
| ; CHECK-NEXT: [[X:%.*]] = add i32 [[A:%.*]], 3 |
| ; CHECK-NEXT: [[CMP2:%.*]] = icmp sle i32 [[X]], [[Y:%.*]] |
| ; CHECK-NEXT: ret i1 [[CMP2]] |
| ; |
| %x = add i32 %a, 3 ; thwart complexity-based canonicalization |
| %cmp1 = icmp slt i32 %y, %x |
| %sel = select i1 %cmp1, i32 %y, i32 %x |
| %cmp2 = icmp sle i32 %x, %sel |
| ret i1 %cmp2 |
| } |
| |
| ; smin(X, Y) != X --> X > Y |
| |
| define i1 @ne_smin1(i32 %x, i32 %y) { |
| ; CHECK-LABEL: @ne_smin1( |
| ; CHECK-NEXT: [[CMP2:%.*]] = icmp sgt i32 [[X:%.*]], [[Y:%.*]] |
| ; CHECK-NEXT: ret i1 [[CMP2]] |
| ; |
| %cmp1 = icmp slt i32 %x, %y |
| %sel = select i1 %cmp1, i32 %x, i32 %y |
| %cmp2 = icmp ne i32 %sel, %x |
| ret i1 %cmp2 |
| } |
| |
| ; Commute min operands. |
| |
| define i1 @ne_smin2(i32 %x, i32 %y) { |
| ; CHECK-LABEL: @ne_smin2( |
| ; CHECK-NEXT: [[CMP1:%.*]] = icmp slt i32 [[Y:%.*]], [[X:%.*]] |
| ; CHECK-NEXT: ret i1 [[CMP1]] |
| ; |
| %cmp1 = icmp slt i32 %y, %x |
| %sel = select i1 %cmp1, i32 %y, i32 %x |
| %cmp2 = icmp ne i32 %sel, %x |
| ret i1 %cmp2 |
| } |
| |
| ; Disguise the icmp predicate by commuting the min op to the RHS. |
| |
| define i1 @ne_smin3(i32 %a, i32 %y) { |
| ; CHECK-LABEL: @ne_smin3( |
| ; CHECK-NEXT: [[X:%.*]] = add i32 [[A:%.*]], 3 |
| ; CHECK-NEXT: [[CMP2:%.*]] = icmp sgt i32 [[X]], [[Y:%.*]] |
| ; CHECK-NEXT: ret i1 [[CMP2]] |
| ; |
| %x = add i32 %a, 3 ; thwart complexity-based canonicalization |
| %cmp1 = icmp slt i32 %x, %y |
| %sel = select i1 %cmp1, i32 %x, i32 %y |
| %cmp2 = icmp ne i32 %x, %sel |
| ret i1 %cmp2 |
| } |
| |
| ; Commute min operands. |
| |
| define i1 @ne_smin4(i32 %a, i32 %y) { |
| ; CHECK-LABEL: @ne_smin4( |
| ; CHECK-NEXT: [[X:%.*]] = add i32 [[A:%.*]], 3 |
| ; CHECK-NEXT: [[CMP1:%.*]] = icmp sgt i32 [[X]], [[Y:%.*]] |
| ; CHECK-NEXT: ret i1 [[CMP1]] |
| ; |
| %x = add i32 %a, 3 ; thwart complexity-based canonicalization |
| %cmp1 = icmp slt i32 %y, %x |
| %sel = select i1 %cmp1, i32 %y, i32 %x |
| %cmp2 = icmp ne i32 %x, %sel |
| ret i1 %cmp2 |
| } |
| |
| ; smin(X, Y) < X --> X > Y |
| |
| define i1 @slt_smin1(i32 %x, i32 %y) { |
| ; CHECK-LABEL: @slt_smin1( |
| ; CHECK-NEXT: [[CMP2:%.*]] = icmp sgt i32 [[X:%.*]], [[Y:%.*]] |
| ; CHECK-NEXT: ret i1 [[CMP2]] |
| ; |
| %cmp1 = icmp slt i32 %x, %y |
| %sel = select i1 %cmp1, i32 %x, i32 %y |
| %cmp2 = icmp slt i32 %sel, %x |
| ret i1 %cmp2 |
| } |
| |
| ; Commute min operands. |
| |
| define i1 @slt_smin2(i32 %x, i32 %y) { |
| ; CHECK-LABEL: @slt_smin2( |
| ; CHECK-NEXT: [[CMP1:%.*]] = icmp slt i32 [[Y:%.*]], [[X:%.*]] |
| ; CHECK-NEXT: ret i1 [[CMP1]] |
| ; |
| %cmp1 = icmp slt i32 %y, %x |
| %sel = select i1 %cmp1, i32 %y, i32 %x |
| %cmp2 = icmp slt i32 %sel, %x |
| ret i1 %cmp2 |
| } |
| |
| ; Disguise the icmp predicate by commuting the min op to the RHS. |
| |
| define i1 @slt_smin3(i32 %a, i32 %y) { |
| ; CHECK-LABEL: @slt_smin3( |
| ; CHECK-NEXT: [[X:%.*]] = add i32 [[A:%.*]], 3 |
| ; CHECK-NEXT: [[CMP2:%.*]] = icmp sgt i32 [[X]], [[Y:%.*]] |
| ; CHECK-NEXT: ret i1 [[CMP2]] |
| ; |
| %x = add i32 %a, 3 ; thwart complexity-based canonicalization |
| %cmp1 = icmp slt i32 %x, %y |
| %sel = select i1 %cmp1, i32 %x, i32 %y |
| %cmp2 = icmp sgt i32 %x, %sel |
| ret i1 %cmp2 |
| } |
| |
| ; Commute min operands. |
| |
| define i1 @slt_smin4(i32 %a, i32 %y) { |
| ; CHECK-LABEL: @slt_smin4( |
| ; CHECK-NEXT: [[X:%.*]] = add i32 [[A:%.*]], 3 |
| ; CHECK-NEXT: [[CMP1:%.*]] = icmp sgt i32 [[X]], [[Y:%.*]] |
| ; CHECK-NEXT: ret i1 [[CMP1]] |
| ; |
| %x = add i32 %a, 3 ; thwart complexity-based canonicalization |
| %cmp1 = icmp slt i32 %y, %x |
| %sel = select i1 %cmp1, i32 %y, i32 %x |
| %cmp2 = icmp sgt i32 %x, %sel |
| ret i1 %cmp2 |
| } |
| |
| ; smin(X, Y) <= X --> true |
| |
| define i1 @sle_smin1(i32 %x, i32 %y) { |
| ; CHECK-LABEL: @sle_smin1( |
| ; CHECK-NEXT: ret i1 true |
| ; |
| %cmp1 = icmp slt i32 %x, %y |
| %sel = select i1 %cmp1, i32 %x, i32 %y |
| %cmp2 = icmp sle i32 %sel, %x |
| ret i1 %cmp2 |
| } |
| |
| ; Commute min operands. |
| |
| define i1 @sle_smin2(i32 %x, i32 %y) { |
| ; CHECK-LABEL: @sle_smin2( |
| ; CHECK-NEXT: ret i1 true |
| ; |
| %cmp1 = icmp slt i32 %y, %x |
| %sel = select i1 %cmp1, i32 %y, i32 %x |
| %cmp2 = icmp sle i32 %sel, %x |
| ret i1 %cmp2 |
| } |
| |
| ; Disguise the icmp predicate by commuting the min op to the RHS. |
| |
| define i1 @sle_smin3(i32 %a, i32 %y) { |
| ; CHECK-LABEL: @sle_smin3( |
| ; CHECK-NEXT: ret i1 true |
| ; |
| %x = add i32 %a, 3 ; thwart complexity-based canonicalization |
| %cmp1 = icmp slt i32 %x, %y |
| %sel = select i1 %cmp1, i32 %x, i32 %y |
| %cmp2 = icmp sge i32 %x, %sel |
| ret i1 %cmp2 |
| } |
| |
| ; Commute min operands. |
| |
| define i1 @sle_smin4(i32 %a, i32 %y) { |
| ; CHECK-LABEL: @sle_smin4( |
| ; CHECK-NEXT: ret i1 true |
| ; |
| %x = add i32 %a, 3 ; thwart complexity-based canonicalization |
| %cmp1 = icmp slt i32 %y, %x |
| %sel = select i1 %cmp1, i32 %y, i32 %x |
| %cmp2 = icmp sge i32 %x, %sel |
| ret i1 %cmp2 |
| } |
| |
| ; smin(X, Y) > X --> false |
| |
| define i1 @sgt_smin1(i32 %x, i32 %y) { |
| ; CHECK-LABEL: @sgt_smin1( |
| ; CHECK-NEXT: ret i1 false |
| ; |
| %cmp1 = icmp slt i32 %x, %y |
| %sel = select i1 %cmp1, i32 %x, i32 %y |
| %cmp2 = icmp sgt i32 %sel, %x |
| ret i1 %cmp2 |
| } |
| |
| ; Commute min operands. |
| |
| define i1 @sgt_smin2(i32 %x, i32 %y) { |
| ; CHECK-LABEL: @sgt_smin2( |
| ; CHECK-NEXT: ret i1 false |
| ; |
| %cmp1 = icmp slt i32 %y, %x |
| %sel = select i1 %cmp1, i32 %y, i32 %x |
| %cmp2 = icmp sgt i32 %sel, %x |
| ret i1 %cmp2 |
| } |
| |
| ; Disguise the icmp predicate by commuting the min op to the RHS. |
| |
| define i1 @sgt_smin3(i32 %a, i32 %y) { |
| ; CHECK-LABEL: @sgt_smin3( |
| ; CHECK-NEXT: ret i1 false |
| ; |
| %x = add i32 %a, 3 ; thwart complexity-based canonicalization |
| %cmp1 = icmp slt i32 %x, %y |
| %sel = select i1 %cmp1, i32 %x, i32 %y |
| %cmp2 = icmp slt i32 %x, %sel |
| ret i1 %cmp2 |
| } |
| |
| ; Commute min operands. |
| |
| define i1 @sgt_smin4(i32 %a, i32 %y) { |
| ; CHECK-LABEL: @sgt_smin4( |
| ; CHECK-NEXT: ret i1 false |
| ; |
| %x = add i32 %a, 3 ; thwart complexity-based canonicalization |
| %cmp1 = icmp slt i32 %y, %x |
| %sel = select i1 %cmp1, i32 %y, i32 %x |
| %cmp2 = icmp slt i32 %x, %sel |
| ret i1 %cmp2 |
| } |
| |