blob: 75a500f39d20a3caa48358db5ce33b063e8d487d [file] [log] [blame]
//===------- Mapping.cpp - OpenMP device runtime mapping helpers -- C++ -*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
//
//===----------------------------------------------------------------------===//
#include "Mapping.h"
#include "Interface.h"
#include "State.h"
#include "Types.h"
#include "Utils.h"
#pragma omp declare target
#include "llvm/Frontend/OpenMP/OMPGridValues.h"
using namespace _OMP;
namespace _OMP {
namespace impl {
/// AMDGCN Implementation
///
///{
#pragma omp begin declare variant match(device = {arch(amdgcn)})
constexpr const llvm::omp::GV &getGridValue() {
return llvm::omp::getAMDGPUGridValues<__AMDGCN_WAVEFRONT_SIZE>();
}
uint32_t getGridDim(uint32_t n, uint16_t d) {
uint32_t q = n / d;
return q + (n > q * d);
}
uint32_t getWorkgroupDim(uint32_t group_id, uint32_t grid_size,
uint16_t group_size) {
uint32_t r = grid_size - group_id * group_size;
return (r < group_size) ? r : group_size;
}
uint32_t getNumHardwareThreadsInBlock() {
return getWorkgroupDim(__builtin_amdgcn_workgroup_id_x(),
__builtin_amdgcn_grid_size_x(),
__builtin_amdgcn_workgroup_size_x());
}
LaneMaskTy activemask() { return __builtin_amdgcn_read_exec(); }
LaneMaskTy lanemaskLT() {
uint32_t Lane = mapping::getThreadIdInWarp();
int64_t Ballot = mapping::activemask();
uint64_t Mask = ((uint64_t)1 << Lane) - (uint64_t)1;
return Mask & Ballot;
}
LaneMaskTy lanemaskGT() {
uint32_t Lane = mapping::getThreadIdInWarp();
if (Lane == (mapping::getWarpSize() - 1))
return 0;
int64_t Ballot = mapping::activemask();
uint64_t Mask = (~((uint64_t)0)) << (Lane + 1);
return Mask & Ballot;
}
uint32_t getThreadIdInWarp() {
return __builtin_amdgcn_mbcnt_hi(~0u, __builtin_amdgcn_mbcnt_lo(~0u, 0u));
}
uint32_t getThreadIdInBlock() { return __builtin_amdgcn_workitem_id_x(); }
uint32_t getKernelSize() { return __builtin_amdgcn_grid_size_x(); }
uint32_t getBlockId() { return __builtin_amdgcn_workgroup_id_x(); }
uint32_t getNumberOfBlocks() {
return getGridDim(__builtin_amdgcn_grid_size_x(),
__builtin_amdgcn_workgroup_size_x());
}
uint32_t getWarpId() {
return impl::getThreadIdInBlock() / mapping::getWarpSize();
}
uint32_t getNumberOfWarpsInBlock() {
return mapping::getBlockSize() / mapping::getWarpSize();
}
#pragma omp end declare variant
///}
/// NVPTX Implementation
///
///{
#pragma omp begin declare variant match( \
device = {arch(nvptx, nvptx64)}, implementation = {extension(match_any)})
uint32_t getNumHardwareThreadsInBlock() {
return __nvvm_read_ptx_sreg_ntid_x();
}
constexpr const llvm::omp::GV &getGridValue() {
return llvm::omp::NVPTXGridValues;
}
LaneMaskTy activemask() {
unsigned int Mask;
asm("activemask.b32 %0;" : "=r"(Mask));
return Mask;
}
LaneMaskTy lanemaskLT() {
__kmpc_impl_lanemask_t Res;
asm("mov.u32 %0, %%lanemask_lt;" : "=r"(Res));
return Res;
}
LaneMaskTy lanemaskGT() {
__kmpc_impl_lanemask_t Res;
asm("mov.u32 %0, %%lanemask_gt;" : "=r"(Res));
return Res;
}
uint32_t getThreadIdInBlock() { return __nvvm_read_ptx_sreg_tid_x(); }
uint32_t getThreadIdInWarp() {
return impl::getThreadIdInBlock() & (mapping::getWarpSize() - 1);
}
uint32_t getKernelSize() {
return __nvvm_read_ptx_sreg_nctaid_x() *
mapping::getNumberOfProcessorElements();
}
uint32_t getBlockId() { return __nvvm_read_ptx_sreg_ctaid_x(); }
uint32_t getNumberOfBlocks() { return __nvvm_read_ptx_sreg_nctaid_x(); }
uint32_t getWarpId() {
return impl::getThreadIdInBlock() / mapping::getWarpSize();
}
uint32_t getNumberOfWarpsInBlock() {
return (mapping::getBlockSize() + mapping::getWarpSize() - 1) /
mapping::getWarpSize();
}
#pragma omp end declare variant
///}
uint32_t getWarpSize() { return getGridValue().GV_Warp_Size; }
} // namespace impl
} // namespace _OMP
/// We have to be deliberate about the distinction of `mapping::` and `impl::`
/// below to avoid repeating assumptions or including irrelevant ones.
///{
static bool isInLastWarp() {
uint32_t MainTId = (mapping::getNumberOfProcessorElements() - 1) &
~(mapping::getWarpSize() - 1);
return mapping::getThreadIdInBlock() == MainTId;
}
bool mapping::isMainThreadInGenericMode(bool IsSPMD) {
if (IsSPMD || icv::Level)
return false;
// Check if this is the last warp in the block.
return isInLastWarp();
}
bool mapping::isMainThreadInGenericMode() {
return mapping::isMainThreadInGenericMode(mapping::isSPMDMode());
}
bool mapping::isInitialThreadInLevel0(bool IsSPMD) {
if (IsSPMD)
return mapping::getThreadIdInBlock() == 0;
return isInLastWarp();
}
bool mapping::isLeaderInWarp() {
__kmpc_impl_lanemask_t Active = mapping::activemask();
__kmpc_impl_lanemask_t LaneMaskLT = mapping::lanemaskLT();
return utils::popc(Active & LaneMaskLT) == 0;
}
LaneMaskTy mapping::activemask() { return impl::activemask(); }
LaneMaskTy mapping::lanemaskLT() { return impl::lanemaskLT(); }
LaneMaskTy mapping::lanemaskGT() { return impl::lanemaskGT(); }
uint32_t mapping::getThreadIdInWarp() {
uint32_t ThreadIdInWarp = impl::getThreadIdInWarp();
ASSERT(ThreadIdInWarp < impl::getWarpSize());
return ThreadIdInWarp;
}
uint32_t mapping::getThreadIdInBlock() {
uint32_t ThreadIdInBlock = impl::getThreadIdInBlock();
ASSERT(ThreadIdInBlock < impl::getNumHardwareThreadsInBlock());
return ThreadIdInBlock;
}
uint32_t mapping::getWarpSize() { return impl::getWarpSize(); }
uint32_t mapping::getBlockSize() {
uint32_t BlockSize = mapping::getNumberOfProcessorElements() -
(!mapping::isSPMDMode() * impl::getWarpSize());
return BlockSize;
}
uint32_t mapping::getKernelSize() { return impl::getKernelSize(); }
uint32_t mapping::getWarpId() {
uint32_t WarpID = impl::getWarpId();
ASSERT(WarpID < impl::getNumberOfWarpsInBlock());
return WarpID;
}
uint32_t mapping::getBlockId() {
uint32_t BlockId = impl::getBlockId();
ASSERT(BlockId < impl::getNumberOfBlocks());
return BlockId;
}
uint32_t mapping::getNumberOfWarpsInBlock() {
uint32_t NumberOfWarpsInBlocks = impl::getNumberOfWarpsInBlock();
ASSERT(impl::getWarpId() < NumberOfWarpsInBlocks);
return NumberOfWarpsInBlocks;
}
uint32_t mapping::getNumberOfBlocks() {
uint32_t NumberOfBlocks = impl::getNumberOfBlocks();
ASSERT(impl::getBlockId() < NumberOfBlocks);
return NumberOfBlocks;
}
uint32_t mapping::getNumberOfProcessorElements() {
uint32_t NumberOfProcessorElements = impl::getNumHardwareThreadsInBlock();
ASSERT(impl::getThreadIdInBlock() < NumberOfProcessorElements);
return NumberOfProcessorElements;
}
///}
/// Execution mode
///
///{
static int SHARED(IsSPMDMode);
void mapping::init(bool IsSPMD) {
if (mapping::isInitialThreadInLevel0(IsSPMD))
IsSPMDMode = IsSPMD;
}
bool mapping::isSPMDMode() { return IsSPMDMode; }
bool mapping::isGenericMode() { return !isSPMDMode(); }
///}
extern "C" {
__attribute__((noinline)) uint32_t __kmpc_get_hardware_thread_id_in_block() {
FunctionTracingRAII();
return mapping::getThreadIdInBlock();
}
__attribute__((noinline)) uint32_t __kmpc_get_hardware_num_threads_in_block() {
FunctionTracingRAII();
return impl::getNumHardwareThreadsInBlock();
}
__attribute__((noinline)) uint32_t __kmpc_get_warp_size() {
FunctionTracingRAII();
return impl::getWarpSize();
}
}
#pragma omp end declare target