Folding extract_strided_metadata input into reinterpret_cast (#134845)

We can always fold the input of a extract_strided_metadata operator to
the input of a reinterpret_cast operator, because they point to the same
memory. Note that the reinterpret_cast does not use the layout of its
input memref, only its base memory pointer which is the same as the base
pointer returned by the extract_strided_metadata operator and the base
pointer of the extract_strided_metadata memref input.

Operations like expand_shape, collapse_shape, and subview are lowered to
a pair of extract_strided_metadata and reinterpret_cast like this:
      
%base_buffer, %offset, %sizes:2, %strides:2 =
memref.extract_strided_metadata %input_memref :
memref<ID1x...xIDNxBaseType> -> memref<f32>, index, index, index, index,
index

%reinterpret_cast = memref.reinterpret_cast %base_buffer to offset:
[%o1], sizes: [%d1,...,%dN], strides: [%s1,...,%N] : memref<f32> to
memref<OD1x...xODNxBaseType >

In many cases the input of the extract_strided_metadata input can be
passed directly into the input of the reinterpret_cast operation like
this (see how %base_buffer is replaced by %input_memref in the
reinterpret_cast above and the input type is updated):

%base_buffer, %offset, %sizes:2, %strides:2 =
memref.extract_strided_metadata %input_memref :
memref<ID1x...xIDNxBaseType> -> memref<f32>, index, index, index, index,
index
%reinterpret_cast = memref.reinterpret_cast %input_memref to offset:
[%o1], sizes: [%d1,...,%dN], strides: [%s1,...,%N] :
memref<ID1x...xIDNxBaseType> to memref<OD1x...xODNxBaseType >

When dealing with static dimensions, the extract_strided_metatdata will
become deadcode and we end up only with a reinterpret_cast:

%reinterpret_cast = memref.reinterpret_cast %input_memref to offset:
[%o1], sizes: [%d1,...,%dN], strides: [%s1,...,%N] :
memref<ID1x...xIDNxBaseType> to memref<OD1x...xODNxBaseType >

Note that reinterpret_cast only reads the base memory pointer from the
input memref (%input_memref above), which is equivalent to the
%base_buffer returned by the extract_strided_metadata operation. Hence
it is legal always to use the extract_strided_metadata input memref
directly in the reinterpret_cast. Note that since this is a pointer,
this operation is legal even when the base pointer values are modified
between the operation pair.

@matthias-springer 
@joker-eph 
@sahas3
@Hanumanth04
@dixinzhou
@rafaelubalmw

---------

Co-authored-by: Ivan Garcia <igarcia@vdi-ah2ddp-178.dhcp.mathworks.com>
2 files changed
tree: 6edebc090bee7bc4856bc4d34f930cc56e3105c0
  1. .ci/
  2. .github/
  3. bolt/
  4. clang/
  5. clang-tools-extra/
  6. cmake/
  7. compiler-rt/
  8. cross-project-tests/
  9. flang/
  10. flang-rt/
  11. libc/
  12. libclc/
  13. libcxx/
  14. libcxxabi/
  15. libunwind/
  16. lld/
  17. lldb/
  18. llvm/
  19. llvm-libgcc/
  20. mlir/
  21. offload/
  22. openmp/
  23. polly/
  24. pstl/
  25. runtimes/
  26. third-party/
  27. utils/
  28. .clang-format
  29. .clang-tidy
  30. .git-blame-ignore-revs
  31. .gitattributes
  32. .gitignore
  33. .mailmap
  34. CODE_OF_CONDUCT.md
  35. CONTRIBUTING.md
  36. LICENSE.TXT
  37. pyproject.toml
  38. README.md
  39. SECURITY.md
README.md

The LLVM Compiler Infrastructure

OpenSSF Scorecard OpenSSF Best Practices libc++

Welcome to the LLVM project!

This repository contains the source code for LLVM, a toolkit for the construction of highly optimized compilers, optimizers, and run-time environments.

The LLVM project has multiple components. The core of the project is itself called “LLVM”. This contains all of the tools, libraries, and header files needed to process intermediate representations and convert them into object files. Tools include an assembler, disassembler, bitcode analyzer, and bitcode optimizer.

C-like languages use the Clang frontend. This component compiles C, C++, Objective-C, and Objective-C++ code into LLVM bitcode -- and from there into object files, using LLVM.

Other components include: the libc++ C++ standard library, the LLD linker, and more.

Getting the Source Code and Building LLVM

Consult the Getting Started with LLVM page for information on building and running LLVM.

For information on how to contribute to the LLVM project, please take a look at the Contributing to LLVM guide.

Getting in touch

Join the LLVM Discourse forums, Discord chat, LLVM Office Hours or Regular sync-ups.

The LLVM project has adopted a code of conduct for participants to all modes of communication within the project.