| //===----------------------------------------------------------------------===// |
| // |
| // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
| // See https://llvm.org/LICENSE.txt for license information. |
| // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
| // |
| //===----------------------------------------------------------------------===// |
| |
| #include "sincos_helpers.h" |
| #include <clc/clc.h> |
| #include <clc/integer/clc_clz.h> |
| #include <clc/integer/clc_mul_hi.h> |
| #include <clc/math/clc_fma.h> |
| #include <clc/math/clc_mad.h> |
| #include <clc/math/clc_trunc.h> |
| #include <clc/math/math.h> |
| #include <clc/math/tables.h> |
| #include <clc/shared/clc_max.h> |
| |
| #ifdef cl_khr_fp64 |
| |
| #pragma OPENCL EXTENSION cl_khr_fp64 : enable |
| |
| #define bytealign(src0, src1, src2) \ |
| ((uint)(((((long)(src0)) << 32) | (long)(src1)) >> (((src2) & 3) * 8))) |
| |
| // Reduction for medium sized arguments |
| _CLC_DEF void __clc_remainder_piby2_medium(double x, private double *r, |
| private double *rr, |
| private int *regn) { |
| // How many pi/2 is x a multiple of? |
| const double two_by_pi = 0x1.45f306dc9c883p-1; |
| double dnpi2 = __clc_trunc(__clc_fma(x, two_by_pi, 0.5)); |
| |
| const double piby2_h = -7074237752028440.0 / 0x1.0p+52; |
| const double piby2_m = -2483878800010755.0 / 0x1.0p+105; |
| const double piby2_t = -3956492004828932.0 / 0x1.0p+158; |
| |
| // Compute product of npi2 with 159 bits of 2/pi |
| double p_hh = piby2_h * dnpi2; |
| double p_ht = __clc_fma(piby2_h, dnpi2, -p_hh); |
| double p_mh = piby2_m * dnpi2; |
| double p_mt = __clc_fma(piby2_m, dnpi2, -p_mh); |
| double p_th = piby2_t * dnpi2; |
| double p_tt = __clc_fma(piby2_t, dnpi2, -p_th); |
| |
| // Reduce to 159 bits |
| double ph = p_hh; |
| double pm = p_ht + p_mh; |
| double t = p_mh - (pm - p_ht); |
| double pt = p_th + t + p_mt + p_tt; |
| t = ph + pm; |
| pm = pm - (t - ph); |
| ph = t; |
| t = pm + pt; |
| pt = pt - (t - pm); |
| pm = t; |
| |
| // Subtract from x |
| t = x + ph; |
| double qh = t + pm; |
| double qt = pm - (qh - t) + pt; |
| |
| *r = qh; |
| *rr = qt; |
| *regn = (int)(long)dnpi2 & 0x3; |
| } |
| |
| // Given positive argument x, reduce it to the range [-pi/4,pi/4] using |
| // extra precision, and return the result in r, rr. |
| // Return value "regn" tells how many lots of pi/2 were subtracted |
| // from x to put it in the range [-pi/4,pi/4], mod 4. |
| |
| _CLC_DEF void __clc_remainder_piby2_large(double x, private double *r, |
| private double *rr, |
| private int *regn) { |
| |
| long ux = as_long(x); |
| int e = (int)(ux >> 52) - 1023; |
| int i = __clc_max(23, (e >> 3) + 17); |
| int j = 150 - i; |
| int j16 = j & ~0xf; |
| double fract_temp; |
| |
| // The following extracts 192 consecutive bits of 2/pi aligned on an arbitrary |
| // byte boundary |
| uint4 q0 = USE_TABLE(pibits_tbl, j16); |
| uint4 q1 = USE_TABLE(pibits_tbl, (j16 + 16)); |
| uint4 q2 = USE_TABLE(pibits_tbl, (j16 + 32)); |
| |
| int k = (j >> 2) & 0x3; |
| int4 c = (int4)k == (int4)(0, 1, 2, 3); |
| |
| uint u0, u1, u2, u3, u4, u5, u6; |
| |
| u0 = c.s1 ? q0.s1 : q0.s0; |
| u0 = c.s2 ? q0.s2 : u0; |
| u0 = c.s3 ? q0.s3 : u0; |
| |
| u1 = c.s1 ? q0.s2 : q0.s1; |
| u1 = c.s2 ? q0.s3 : u1; |
| u1 = c.s3 ? q1.s0 : u1; |
| |
| u2 = c.s1 ? q0.s3 : q0.s2; |
| u2 = c.s2 ? q1.s0 : u2; |
| u2 = c.s3 ? q1.s1 : u2; |
| |
| u3 = c.s1 ? q1.s0 : q0.s3; |
| u3 = c.s2 ? q1.s1 : u3; |
| u3 = c.s3 ? q1.s2 : u3; |
| |
| u4 = c.s1 ? q1.s1 : q1.s0; |
| u4 = c.s2 ? q1.s2 : u4; |
| u4 = c.s3 ? q1.s3 : u4; |
| |
| u5 = c.s1 ? q1.s2 : q1.s1; |
| u5 = c.s2 ? q1.s3 : u5; |
| u5 = c.s3 ? q2.s0 : u5; |
| |
| u6 = c.s1 ? q1.s3 : q1.s2; |
| u6 = c.s2 ? q2.s0 : u6; |
| u6 = c.s3 ? q2.s1 : u6; |
| |
| uint v0 = bytealign(u1, u0, j); |
| uint v1 = bytealign(u2, u1, j); |
| uint v2 = bytealign(u3, u2, j); |
| uint v3 = bytealign(u4, u3, j); |
| uint v4 = bytealign(u5, u4, j); |
| uint v5 = bytealign(u6, u5, j); |
| |
| // Place those 192 bits in 4 48-bit doubles along with correct exponent |
| // If i > 1018 we would get subnormals so we scale p up and x down to get the |
| // same product |
| i = 2 + 8 * i; |
| x *= i > 1018 ? 0x1.0p-136 : 1.0; |
| i -= i > 1018 ? 136 : 0; |
| |
| uint ua = (uint)(1023 + 52 - i) << 20; |
| double a = as_double((uint2)(0, ua)); |
| double p0 = as_double((uint2)(v0, ua | (v1 & 0xffffU))) - a; |
| ua += 0x03000000U; |
| a = as_double((uint2)(0, ua)); |
| double p1 = as_double((uint2)((v2 << 16) | (v1 >> 16), ua | (v2 >> 16))) - a; |
| ua += 0x03000000U; |
| a = as_double((uint2)(0, ua)); |
| double p2 = as_double((uint2)(v3, ua | (v4 & 0xffffU))) - a; |
| ua += 0x03000000U; |
| a = as_double((uint2)(0, ua)); |
| double p3 = as_double((uint2)((v5 << 16) | (v4 >> 16), ua | (v5 >> 16))) - a; |
| |
| // Exact multiply |
| double f0h = p0 * x; |
| double f0l = __clc_fma(p0, x, -f0h); |
| double f1h = p1 * x; |
| double f1l = __clc_fma(p1, x, -f1h); |
| double f2h = p2 * x; |
| double f2l = __clc_fma(p2, x, -f2h); |
| double f3h = p3 * x; |
| double f3l = __clc_fma(p3, x, -f3h); |
| |
| // Accumulate product into 4 doubles |
| double s, t; |
| |
| double f3 = f3h + f2h; |
| t = f2h - (f3 - f3h); |
| s = f3l + t; |
| t = t - (s - f3l); |
| |
| double f2 = s + f1h; |
| t = f1h - (f2 - s) + t; |
| s = f2l + t; |
| t = t - (s - f2l); |
| |
| double f1 = s + f0h; |
| t = f0h - (f1 - s) + t; |
| s = f1l + t; |
| |
| double f0 = s + f0l; |
| |
| // Strip off unwanted large integer bits |
| f3 = 0x1.0p+10 * fract(f3 * 0x1.0p-10, &fract_temp); |
| f3 += f3 + f2 < 0.0 ? 0x1.0p+10 : 0.0; |
| |
| // Compute least significant integer bits |
| t = f3 + f2; |
| double di = t - fract(t, &fract_temp); |
| i = (float)di; |
| |
| // Shift out remaining integer part |
| f3 -= di; |
| s = f3 + f2; |
| t = f2 - (s - f3); |
| f3 = s; |
| f2 = t; |
| s = f2 + f1; |
| t = f1 - (s - f2); |
| f2 = s; |
| f1 = t; |
| f1 += f0; |
| |
| // Subtract 1 if fraction is >= 0.5, and update regn |
| int g = f3 >= 0.5; |
| i += g; |
| f3 -= (float)g; |
| |
| // Shift up bits |
| s = f3 + f2; |
| t = f2 - (s - f3); |
| f3 = s; |
| f2 = t + f1; |
| |
| // Multiply precise fraction by pi/2 to get radians |
| const double p2h = 7074237752028440.0 / 0x1.0p+52; |
| const double p2t = 4967757600021510.0 / 0x1.0p+106; |
| |
| double rhi = f3 * p2h; |
| double rlo = __clc_fma(f2, p2h, __clc_fma(f3, p2t, __clc_fma(f3, p2h, -rhi))); |
| |
| *r = rhi + rlo; |
| *rr = rlo - (*r - rhi); |
| *regn = i & 0x3; |
| } |
| |
| _CLC_DEF double2 __clc_sincos_piby4(double x, double xx) { |
| // Taylor series for sin(x) is x - x^3/3! + x^5/5! - x^7/7! ... |
| // = x * (1 - x^2/3! + x^4/5! - x^6/7! ... |
| // = x * f(w) |
| // where w = x*x and f(w) = (1 - w/3! + w^2/5! - w^3/7! ... |
| // We use a minimax approximation of (f(w) - 1) / w |
| // because this produces an expansion in even powers of x. |
| // If xx (the tail of x) is non-zero, we add a correction |
| // term g(x,xx) = (1-x*x/2)*xx to the result, where g(x,xx) |
| // is an approximation to cos(x)*sin(xx) valid because |
| // xx is tiny relative to x. |
| |
| // Taylor series for cos(x) is 1 - x^2/2! + x^4/4! - x^6/6! ... |
| // = f(w) |
| // where w = x*x and f(w) = (1 - w/2! + w^2/4! - w^3/6! ... |
| // We use a minimax approximation of (f(w) - 1 + w/2) / (w*w) |
| // because this produces an expansion in even powers of x. |
| // If xx (the tail of x) is non-zero, we subtract a correction |
| // term g(x,xx) = x*xx to the result, where g(x,xx) |
| // is an approximation to sin(x)*sin(xx) valid because |
| // xx is tiny relative to x. |
| |
| const double sc1 = -0.166666666666666646259241729; |
| const double sc2 = 0.833333333333095043065222816e-2; |
| const double sc3 = -0.19841269836761125688538679e-3; |
| const double sc4 = 0.275573161037288022676895908448e-5; |
| const double sc5 = -0.25051132068021699772257377197e-7; |
| const double sc6 = 0.159181443044859136852668200e-9; |
| |
| const double cc1 = 0.41666666666666665390037e-1; |
| const double cc2 = -0.13888888888887398280412e-2; |
| const double cc3 = 0.248015872987670414957399e-4; |
| const double cc4 = -0.275573172723441909470836e-6; |
| const double cc5 = 0.208761463822329611076335e-8; |
| const double cc6 = -0.113826398067944859590880e-10; |
| |
| double x2 = x * x; |
| double x3 = x2 * x; |
| double r = 0.5 * x2; |
| double t = 1.0 - r; |
| |
| double sp = __clc_fma( |
| __clc_fma(__clc_fma(__clc_fma(sc6, x2, sc5), x2, sc4), x2, sc3), x2, sc2); |
| |
| double cp = |
| t + |
| __clc_fma(__clc_fma(__clc_fma(__clc_fma(__clc_fma(__clc_fma(cc6, x2, cc5), |
| x2, cc4), |
| x2, cc3), |
| x2, cc2), |
| x2, cc1), |
| x2 * x2, __clc_fma(x, xx, (1.0 - t) - r)); |
| |
| double2 ret; |
| ret.lo = |
| x - __clc_fma(-x3, sc1, __clc_fma(__clc_fma(-x3, sp, 0.5 * xx), x2, -xx)); |
| ret.hi = cp; |
| |
| return ret; |
| } |
| |
| #endif |