[clang] Remove intrusive reference count from `DiagnosticOptions` (#139584)

The `DiagnosticOptions` class is currently intrusively
reference-counted, which makes reasoning about its lifetime very
difficult in some cases. For example, `CompilerInvocation` owns the
`DiagnosticOptions` instance (wrapped in `llvm::IntrusiveRefCntPtr`) and
only exposes an accessor returning `DiagnosticOptions &`. One would
think this gives `CompilerInvocation` exclusive ownership of the object,
but that's not the case:

```c++
void shareOwnership(CompilerInvocation &CI) {
  llvm::IntrusiveRefCntPtr<DiagnosticOptions> CoOwner = &CI.getDiagnosticOptions();
  // ...
}
```

This is a perfectly valid pattern that is being actually used in the
codebase.

I would like to ensure the ownership of `DiagnosticOptions` by
`CompilerInvocation` is guaranteed to be exclusive. This can be
leveraged for a copy-on-write optimization later on. This PR changes
usages of `DiagnosticOptions` across `clang`, `clang-tools-extra` and
`lldb` to not be intrusively reference-counted.
135 files changed
tree: f8b15171e92d056e9006bcbe36d534a9d73155d9
  1. .ci/
  2. .github/
  3. bolt/
  4. clang/
  5. clang-tools-extra/
  6. cmake/
  7. compiler-rt/
  8. cross-project-tests/
  9. flang/
  10. flang-rt/
  11. libc/
  12. libclc/
  13. libcxx/
  14. libcxxabi/
  15. libunwind/
  16. lld/
  17. lldb/
  18. llvm/
  19. llvm-libgcc/
  20. mlir/
  21. offload/
  22. openmp/
  23. polly/
  24. pstl/
  25. runtimes/
  26. third-party/
  27. utils/
  28. .clang-format
  29. .clang-format-ignore
  30. .clang-tidy
  31. .git-blame-ignore-revs
  32. .gitattributes
  33. .gitignore
  34. .mailmap
  35. CODE_OF_CONDUCT.md
  36. CONTRIBUTING.md
  37. LICENSE.TXT
  38. pyproject.toml
  39. README.md
  40. SECURITY.md
README.md

The LLVM Compiler Infrastructure

OpenSSF Scorecard OpenSSF Best Practices libc++

Welcome to the LLVM project!

This repository contains the source code for LLVM, a toolkit for the construction of highly optimized compilers, optimizers, and run-time environments.

The LLVM project has multiple components. The core of the project is itself called “LLVM”. This contains all of the tools, libraries, and header files needed to process intermediate representations and convert them into object files. Tools include an assembler, disassembler, bitcode analyzer, and bitcode optimizer.

C-like languages use the Clang frontend. This component compiles C, C++, Objective-C, and Objective-C++ code into LLVM bitcode -- and from there into object files, using LLVM.

Other components include: the libc++ C++ standard library, the LLD linker, and more.

Getting the Source Code and Building LLVM

Consult the Getting Started with LLVM page for information on building and running LLVM.

For information on how to contribute to the LLVM project, please take a look at the Contributing to LLVM guide.

Getting in touch

Join the LLVM Discourse forums, Discord chat, LLVM Office Hours or Regular sync-ups.

The LLVM project has adopted a code of conduct for participants to all modes of communication within the project.