| //===- X86InstrCompiler.td - Compiler Pseudos and Patterns -*- tablegen -*-===// |
| // |
| // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
| // See https://llvm.org/LICENSE.txt for license information. |
| // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
| // |
| //===----------------------------------------------------------------------===// |
| // |
| // This file describes the various pseudo instructions used by the compiler, |
| // as well as Pat patterns used during instruction selection. |
| // |
| //===----------------------------------------------------------------------===// |
| |
| //===----------------------------------------------------------------------===// |
| // Pattern Matching Support |
| |
| def GetLo32XForm : SDNodeXForm<imm, [{ |
| // Transformation function: get the low 32 bits. |
| return getI32Imm((uint32_t)N->getZExtValue(), SDLoc(N)); |
| }]>; |
| |
| |
| //===----------------------------------------------------------------------===// |
| // Random Pseudo Instructions. |
| |
| // PIC base construction. This expands to code that looks like this: |
| // call $next_inst |
| // popl %destreg" |
| let hasSideEffects = 0, isNotDuplicable = 1, Uses = [ESP, SSP], |
| SchedRW = [WriteJump] in |
| def MOVPC32r : Ii32<0xE8, Pseudo, (outs GR32:$reg), (ins i32imm:$label), |
| "", []>; |
| |
| // ADJCALLSTACKDOWN/UP implicitly use/def ESP because they may be expanded into |
| // a stack adjustment and the codegen must know that they may modify the stack |
| // pointer before prolog-epilog rewriting occurs. |
| // Pessimistically assume ADJCALLSTACKDOWN / ADJCALLSTACKUP will become |
| // sub / add which can clobber EFLAGS. |
| let Defs = [ESP, EFLAGS, SSP], Uses = [ESP, SSP], SchedRW = [WriteALU] in { |
| def ADJCALLSTACKDOWN32 : I<0, Pseudo, (outs), |
| (ins i32imm:$amt1, i32imm:$amt2, i32imm:$amt3), |
| "#ADJCALLSTACKDOWN", []>, Requires<[NotLP64]>; |
| def ADJCALLSTACKUP32 : I<0, Pseudo, (outs), (ins i32imm:$amt1, i32imm:$amt2), |
| "#ADJCALLSTACKUP", |
| [(X86callseq_end timm:$amt1, timm:$amt2)]>, |
| Requires<[NotLP64]>; |
| } |
| def : Pat<(X86callseq_start timm:$amt1, timm:$amt2), |
| (ADJCALLSTACKDOWN32 i32imm:$amt1, i32imm:$amt2, 0)>, Requires<[NotLP64]>; |
| |
| |
| // ADJCALLSTACKDOWN/UP implicitly use/def RSP because they may be expanded into |
| // a stack adjustment and the codegen must know that they may modify the stack |
| // pointer before prolog-epilog rewriting occurs. |
| // Pessimistically assume ADJCALLSTACKDOWN / ADJCALLSTACKUP will become |
| // sub / add which can clobber EFLAGS. |
| let Defs = [RSP, EFLAGS, SSP], Uses = [RSP, SSP], SchedRW = [WriteALU] in { |
| def ADJCALLSTACKDOWN64 : I<0, Pseudo, (outs), |
| (ins i32imm:$amt1, i32imm:$amt2, i32imm:$amt3), |
| "#ADJCALLSTACKDOWN", []>, Requires<[IsLP64]>; |
| def ADJCALLSTACKUP64 : I<0, Pseudo, (outs), (ins i32imm:$amt1, i32imm:$amt2), |
| "#ADJCALLSTACKUP", |
| [(X86callseq_end timm:$amt1, timm:$amt2)]>, |
| Requires<[IsLP64]>; |
| } |
| def : Pat<(X86callseq_start timm:$amt1, timm:$amt2), |
| (ADJCALLSTACKDOWN64 i32imm:$amt1, i32imm:$amt2, 0)>, Requires<[IsLP64]>; |
| |
| let SchedRW = [WriteSystem] in { |
| |
| // x86-64 va_start lowering magic. |
| let hasSideEffects = 1, mayStore = 1, Defs = [EFLAGS] in { |
| def VASTART_SAVE_XMM_REGS : I<0, Pseudo, |
| (outs), |
| (ins GR8:$al, i8mem:$regsavefi, variable_ops), |
| "#VASTART_SAVE_XMM_REGS $al, $regsavefi", |
| [(X86vastart_save_xmm_regs GR8:$al, addr:$regsavefi), |
| (implicit EFLAGS)]>; |
| } |
| |
| let usesCustomInserter = 1, Defs = [EFLAGS] in { |
| // The VAARG_64 and VAARG_X32 pseudo-instructions take the address of the |
| // va_list, and place the address of the next argument into a register. |
| let Defs = [EFLAGS] in { |
| def VAARG_64 : I<0, Pseudo, |
| (outs GR64:$dst), |
| (ins i8mem:$ap, i32imm:$size, i8imm:$mode, i32imm:$align), |
| "#VAARG_64 $dst, $ap, $size, $mode, $align", |
| [(set GR64:$dst, |
| (X86vaarg64 addr:$ap, timm:$size, timm:$mode, timm:$align)), |
| (implicit EFLAGS)]>, Requires<[In64BitMode, IsLP64]>; |
| def VAARG_X32 : I<0, Pseudo, |
| (outs GR32:$dst), |
| (ins i8mem:$ap, i32imm:$size, i8imm:$mode, i32imm:$align), |
| "#VAARG_X32 $dst, $ap, $size, $mode, $align", |
| [(set GR32:$dst, |
| (X86vaargx32 addr:$ap, timm:$size, timm:$mode, timm:$align)), |
| (implicit EFLAGS)]>, Requires<[In64BitMode, NotLP64]>; |
| } |
| |
| // When using segmented stacks these are lowered into instructions which first |
| // check if the current stacklet has enough free memory. If it does, memory is |
| // allocated by bumping the stack pointer. Otherwise memory is allocated from |
| // the heap. |
| |
| let Defs = [EAX, ESP, EFLAGS], Uses = [ESP] in |
| def SEG_ALLOCA_32 : I<0, Pseudo, (outs GR32:$dst), (ins GR32:$size), |
| "# variable sized alloca for segmented stacks", |
| [(set GR32:$dst, |
| (X86SegAlloca GR32:$size))]>, |
| Requires<[NotLP64]>; |
| |
| let Defs = [RAX, RSP, EFLAGS], Uses = [RSP] in |
| def SEG_ALLOCA_64 : I<0, Pseudo, (outs GR64:$dst), (ins GR64:$size), |
| "# variable sized alloca for segmented stacks", |
| [(set GR64:$dst, |
| (X86SegAlloca GR64:$size))]>, |
| Requires<[In64BitMode]>; |
| |
| // To protect against stack clash, dynamic allocation should perform a memory |
| // probe at each page. |
| |
| let Defs = [EAX, ESP, EFLAGS], Uses = [ESP] in |
| def PROBED_ALLOCA_32 : I<0, Pseudo, (outs GR32:$dst), (ins GR32:$size), |
| "# variable sized alloca with probing", |
| [(set GR32:$dst, |
| (X86ProbedAlloca GR32:$size))]>, |
| Requires<[NotLP64]>; |
| |
| let Defs = [RAX, RSP, EFLAGS], Uses = [RSP] in |
| def PROBED_ALLOCA_64 : I<0, Pseudo, (outs GR64:$dst), (ins GR64:$size), |
| "# variable sized alloca with probing", |
| [(set GR64:$dst, |
| (X86ProbedAlloca GR64:$size))]>, |
| Requires<[In64BitMode]>; |
| } |
| |
| let hasNoSchedulingInfo = 1 in |
| def STACKALLOC_W_PROBING : I<0, Pseudo, (outs), (ins i64imm:$stacksize), |
| "# fixed size alloca with probing", |
| []>; |
| |
| // Dynamic stack allocation yields a _chkstk or _alloca call for all Windows |
| // targets. These calls are needed to probe the stack when allocating more than |
| // 4k bytes in one go. Touching the stack at 4K increments is necessary to |
| // ensure that the guard pages used by the OS virtual memory manager are |
| // allocated in correct sequence. |
| // The main point of having separate instruction are extra unmodelled effects |
| // (compared to ordinary calls) like stack pointer change. |
| |
| let Defs = [EAX, ESP, EFLAGS], Uses = [ESP] in |
| def DYN_ALLOCA_32 : I<0, Pseudo, (outs), (ins GR32:$size), |
| "# dynamic stack allocation", |
| [(X86DynAlloca GR32:$size)]>, |
| Requires<[NotLP64]>; |
| |
| let Defs = [RAX, RSP, EFLAGS], Uses = [RSP] in |
| def DYN_ALLOCA_64 : I<0, Pseudo, (outs), (ins GR64:$size), |
| "# dynamic stack allocation", |
| [(X86DynAlloca GR64:$size)]>, |
| Requires<[In64BitMode]>; |
| } // SchedRW |
| |
| // These instructions XOR the frame pointer into a GPR. They are used in some |
| // stack protection schemes. These are post-RA pseudos because we only know the |
| // frame register after register allocation. |
| let Constraints = "$src = $dst", isMoveImm = 1, isPseudo = 1, Defs = [EFLAGS] in { |
| def XOR32_FP : I<0, Pseudo, (outs GR32:$dst), (ins GR32:$src), |
| "xorl\t$$FP, $src", []>, |
| Requires<[NotLP64]>, Sched<[WriteALU]>; |
| def XOR64_FP : I<0, Pseudo, (outs GR64:$dst), (ins GR64:$src), |
| "xorq\t$$FP $src", []>, |
| Requires<[In64BitMode]>, Sched<[WriteALU]>; |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // EH Pseudo Instructions |
| // |
| let SchedRW = [WriteSystem] in { |
| let isTerminator = 1, isReturn = 1, isBarrier = 1, |
| hasCtrlDep = 1, isCodeGenOnly = 1 in { |
| def EH_RETURN : I<0xC3, RawFrm, (outs), (ins GR32:$addr), |
| "ret\t#eh_return, addr: $addr", |
| [(X86ehret GR32:$addr)]>, Sched<[WriteJumpLd]>; |
| |
| } |
| |
| let isTerminator = 1, isReturn = 1, isBarrier = 1, |
| hasCtrlDep = 1, isCodeGenOnly = 1 in { |
| def EH_RETURN64 : I<0xC3, RawFrm, (outs), (ins GR64:$addr), |
| "ret\t#eh_return, addr: $addr", |
| [(X86ehret GR64:$addr)]>, Sched<[WriteJumpLd]>; |
| |
| } |
| |
| let isTerminator = 1, hasSideEffects = 1, isBarrier = 1, hasCtrlDep = 1, |
| isCodeGenOnly = 1, isReturn = 1, isEHScopeReturn = 1 in { |
| def CLEANUPRET : I<0, Pseudo, (outs), (ins), "# CLEANUPRET", [(cleanupret)]>; |
| |
| // CATCHRET needs a custom inserter for SEH. |
| let usesCustomInserter = 1 in |
| def CATCHRET : I<0, Pseudo, (outs), (ins brtarget32:$dst, brtarget32:$from), |
| "# CATCHRET", |
| [(catchret bb:$dst, bb:$from)]>; |
| } |
| |
| let hasSideEffects = 1, isBarrier = 1, isCodeGenOnly = 1, |
| usesCustomInserter = 1 in { |
| def EH_SjLj_SetJmp32 : I<0, Pseudo, (outs GR32:$dst), (ins i32mem:$buf), |
| "#EH_SJLJ_SETJMP32", |
| [(set GR32:$dst, (X86eh_sjlj_setjmp addr:$buf))]>, |
| Requires<[Not64BitMode]>; |
| def EH_SjLj_SetJmp64 : I<0, Pseudo, (outs GR32:$dst), (ins i64mem:$buf), |
| "#EH_SJLJ_SETJMP64", |
| [(set GR32:$dst, (X86eh_sjlj_setjmp addr:$buf))]>, |
| Requires<[In64BitMode]>; |
| let isTerminator = 1 in { |
| def EH_SjLj_LongJmp32 : I<0, Pseudo, (outs), (ins i32mem:$buf), |
| "#EH_SJLJ_LONGJMP32", |
| [(X86eh_sjlj_longjmp addr:$buf)]>, |
| Requires<[Not64BitMode]>; |
| def EH_SjLj_LongJmp64 : I<0, Pseudo, (outs), (ins i64mem:$buf), |
| "#EH_SJLJ_LONGJMP64", |
| [(X86eh_sjlj_longjmp addr:$buf)]>, |
| Requires<[In64BitMode]>; |
| } |
| } |
| |
| let isBranch = 1, isTerminator = 1, isCodeGenOnly = 1 in { |
| def EH_SjLj_Setup : I<0, Pseudo, (outs), (ins brtarget:$dst), |
| "#EH_SjLj_Setup\t$dst", []>; |
| } |
| } // SchedRW |
| |
| //===----------------------------------------------------------------------===// |
| // Pseudo instructions used by unwind info. |
| // |
| let isPseudo = 1, SchedRW = [WriteSystem] in { |
| def SEH_PushReg : I<0, Pseudo, (outs), (ins i32imm:$reg), |
| "#SEH_PushReg $reg", []>; |
| def SEH_SaveReg : I<0, Pseudo, (outs), (ins i32imm:$reg, i32imm:$dst), |
| "#SEH_SaveReg $reg, $dst", []>; |
| def SEH_SaveXMM : I<0, Pseudo, (outs), (ins i32imm:$reg, i32imm:$dst), |
| "#SEH_SaveXMM $reg, $dst", []>; |
| def SEH_StackAlloc : I<0, Pseudo, (outs), (ins i32imm:$size), |
| "#SEH_StackAlloc $size", []>; |
| def SEH_StackAlign : I<0, Pseudo, (outs), (ins i32imm:$align), |
| "#SEH_StackAlign $align", []>; |
| def SEH_SetFrame : I<0, Pseudo, (outs), (ins i32imm:$reg, i32imm:$offset), |
| "#SEH_SetFrame $reg, $offset", []>; |
| def SEH_PushFrame : I<0, Pseudo, (outs), (ins i1imm:$mode), |
| "#SEH_PushFrame $mode", []>; |
| def SEH_EndPrologue : I<0, Pseudo, (outs), (ins), |
| "#SEH_EndPrologue", []>; |
| def SEH_Epilogue : I<0, Pseudo, (outs), (ins), |
| "#SEH_Epilogue", []>; |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // Pseudo instructions used by address sanitizer. |
| //===----------------------------------------------------------------------===// |
| let |
| Defs = [R8, EFLAGS] in { |
| def ASAN_CHECK_MEMACCESS : PseudoI< |
| (outs), (ins GR64NoR8:$addr, i32imm:$accessinfo), |
| [(int_asan_check_memaccess GR64NoR8:$addr, (i32 timm:$accessinfo))]>, |
| Sched<[]>; |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // Pseudo instructions used by segmented stacks. |
| // |
| |
| // This is lowered into a RET instruction by MCInstLower. We need |
| // this so that we don't have to have a MachineBasicBlock which ends |
| // with a RET and also has successors. |
| let isPseudo = 1, SchedRW = [WriteJumpLd] in { |
| def MORESTACK_RET: I<0, Pseudo, (outs), (ins), "", []>; |
| |
| // This instruction is lowered to a RET followed by a MOV. The two |
| // instructions are not generated on a higher level since then the |
| // verifier sees a MachineBasicBlock ending with a non-terminator. |
| def MORESTACK_RET_RESTORE_R10 : I<0, Pseudo, (outs), (ins), "", []>; |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // Alias Instructions |
| //===----------------------------------------------------------------------===// |
| |
| // Alias instruction mapping movr0 to xor. |
| // FIXME: remove when we can teach regalloc that xor reg, reg is ok. |
| let Defs = [EFLAGS], isReMaterializable = 1, isAsCheapAsAMove = 1, |
| isPseudo = 1, isMoveImm = 1, AddedComplexity = 10 in |
| def MOV32r0 : I<0, Pseudo, (outs GR32:$dst), (ins), "", |
| [(set GR32:$dst, 0)]>, Sched<[WriteZero]>; |
| |
| // Other widths can also make use of the 32-bit xor, which may have a smaller |
| // encoding and avoid partial register updates. |
| let AddedComplexity = 10 in { |
| def : Pat<(i8 0), (EXTRACT_SUBREG (MOV32r0), sub_8bit)>; |
| def : Pat<(i16 0), (EXTRACT_SUBREG (MOV32r0), sub_16bit)>; |
| def : Pat<(i64 0), (SUBREG_TO_REG (i64 0), (MOV32r0), sub_32bit)>; |
| } |
| |
| let Predicates = [OptForSize, Not64BitMode], |
| AddedComplexity = 10 in { |
| let SchedRW = [WriteALU] in { |
| // Pseudo instructions for materializing 1 and -1 using XOR+INC/DEC, |
| // which only require 3 bytes compared to MOV32ri which requires 5. |
| let Defs = [EFLAGS], isReMaterializable = 1, isPseudo = 1 in { |
| def MOV32r1 : I<0, Pseudo, (outs GR32:$dst), (ins), "", |
| [(set GR32:$dst, 1)]>; |
| def MOV32r_1 : I<0, Pseudo, (outs GR32:$dst), (ins), "", |
| [(set GR32:$dst, -1)]>; |
| } |
| } // SchedRW |
| |
| // MOV16ri is 4 bytes, so the instructions above are smaller. |
| def : Pat<(i16 1), (EXTRACT_SUBREG (MOV32r1), sub_16bit)>; |
| def : Pat<(i16 -1), (EXTRACT_SUBREG (MOV32r_1), sub_16bit)>; |
| } |
| |
| let isReMaterializable = 1, isPseudo = 1, AddedComplexity = 5, |
| SchedRW = [WriteALU] in { |
| // AddedComplexity higher than MOV64ri but lower than MOV32r0 and MOV32r1. |
| def MOV32ImmSExti8 : I<0, Pseudo, (outs GR32:$dst), (ins i32i8imm:$src), "", |
| [(set GR32:$dst, i32immSExt8:$src)]>, |
| Requires<[OptForMinSize, NotWin64WithoutFP]>; |
| def MOV64ImmSExti8 : I<0, Pseudo, (outs GR64:$dst), (ins i64i8imm:$src), "", |
| [(set GR64:$dst, i64immSExt8:$src)]>, |
| Requires<[OptForMinSize, NotWin64WithoutFP]>; |
| } |
| |
| // Materialize i64 constant where top 32-bits are zero. This could theoretically |
| // use MOV32ri with a SUBREG_TO_REG to represent the zero-extension, however |
| // that would make it more difficult to rematerialize. |
| let AddedComplexity = 1, isReMaterializable = 1, isAsCheapAsAMove = 1, |
| isPseudo = 1, SchedRW = [WriteMove] in |
| def MOV32ri64 : I<0, Pseudo, (outs GR64:$dst), (ins i64i32imm:$src), "", |
| [(set GR64:$dst, i64immZExt32:$src)]>; |
| |
| // This 64-bit pseudo-move can also be used for labels in the x86-64 small code |
| // model. |
| def mov64imm32 : ComplexPattern<i64, 1, "selectMOV64Imm32", [X86Wrapper]>; |
| def : Pat<(i64 mov64imm32:$src), (MOV32ri64 mov64imm32:$src)>; |
| |
| // Use sbb to materialize carry bit. |
| let Uses = [EFLAGS], Defs = [EFLAGS], isPseudo = 1, SchedRW = [WriteADC], |
| hasSideEffects = 0 in { |
| // FIXME: These are pseudo ops that should be replaced with Pat<> patterns. |
| // However, Pat<> can't replicate the destination reg into the inputs of the |
| // result. |
| def SETB_C32r : I<0, Pseudo, (outs GR32:$dst), (ins), "", []>; |
| def SETB_C64r : I<0, Pseudo, (outs GR64:$dst), (ins), "", []>; |
| } // isCodeGenOnly |
| |
| //===----------------------------------------------------------------------===// |
| // String Pseudo Instructions |
| // |
| let SchedRW = [WriteMicrocoded] in { |
| let Defs = [ECX,EDI,ESI], Uses = [ECX,EDI,ESI], isCodeGenOnly = 1 in { |
| def REP_MOVSB_32 : I<0xA4, RawFrm, (outs), (ins), |
| "{rep;movsb (%esi), %es:(%edi)|rep movsb es:[edi], [esi]}", |
| [(X86rep_movs i8)]>, REP, AdSize32, |
| Requires<[NotLP64]>; |
| def REP_MOVSW_32 : I<0xA5, RawFrm, (outs), (ins), |
| "{rep;movsw (%esi), %es:(%edi)|rep movsw es:[edi], [esi]}", |
| [(X86rep_movs i16)]>, REP, AdSize32, OpSize16, |
| Requires<[NotLP64]>; |
| def REP_MOVSD_32 : I<0xA5, RawFrm, (outs), (ins), |
| "{rep;movsl (%esi), %es:(%edi)|rep movsd es:[edi], [esi]}", |
| [(X86rep_movs i32)]>, REP, AdSize32, OpSize32, |
| Requires<[NotLP64]>; |
| def REP_MOVSQ_32 : RI<0xA5, RawFrm, (outs), (ins), |
| "{rep;movsq (%esi), %es:(%edi)|rep movsq es:[edi], [esi]}", |
| [(X86rep_movs i64)]>, REP, AdSize32, |
| Requires<[NotLP64, In64BitMode]>; |
| } |
| |
| let Defs = [RCX,RDI,RSI], Uses = [RCX,RDI,RSI], isCodeGenOnly = 1 in { |
| def REP_MOVSB_64 : I<0xA4, RawFrm, (outs), (ins), |
| "{rep;movsb (%rsi), %es:(%rdi)|rep movsb es:[rdi], [rsi]}", |
| [(X86rep_movs i8)]>, REP, AdSize64, |
| Requires<[IsLP64]>; |
| def REP_MOVSW_64 : I<0xA5, RawFrm, (outs), (ins), |
| "{rep;movsw (%rsi), %es:(%rdi)|rep movsw es:[rdi], [rsi]}", |
| [(X86rep_movs i16)]>, REP, AdSize64, OpSize16, |
| Requires<[IsLP64]>; |
| def REP_MOVSD_64 : I<0xA5, RawFrm, (outs), (ins), |
| "{rep;movsl (%rsi), %es:(%rdi)|rep movsdi es:[rdi], [rsi]}", |
| [(X86rep_movs i32)]>, REP, AdSize64, OpSize32, |
| Requires<[IsLP64]>; |
| def REP_MOVSQ_64 : RI<0xA5, RawFrm, (outs), (ins), |
| "{rep;movsq (%rsi), %es:(%rdi)|rep movsq es:[rdi], [rsi]}", |
| [(X86rep_movs i64)]>, REP, AdSize64, |
| Requires<[IsLP64]>; |
| } |
| |
| // FIXME: Should use "(X86rep_stos AL)" as the pattern. |
| let Defs = [ECX,EDI], isCodeGenOnly = 1 in { |
| let Uses = [AL,ECX,EDI] in |
| def REP_STOSB_32 : I<0xAA, RawFrm, (outs), (ins), |
| "{rep;stosb %al, %es:(%edi)|rep stosb es:[edi], al}", |
| [(X86rep_stos i8)]>, REP, AdSize32, |
| Requires<[NotLP64]>; |
| let Uses = [AX,ECX,EDI] in |
| def REP_STOSW_32 : I<0xAB, RawFrm, (outs), (ins), |
| "{rep;stosw %ax, %es:(%edi)|rep stosw es:[edi], ax}", |
| [(X86rep_stos i16)]>, REP, AdSize32, OpSize16, |
| Requires<[NotLP64]>; |
| let Uses = [EAX,ECX,EDI] in |
| def REP_STOSD_32 : I<0xAB, RawFrm, (outs), (ins), |
| "{rep;stosl %eax, %es:(%edi)|rep stosd es:[edi], eax}", |
| [(X86rep_stos i32)]>, REP, AdSize32, OpSize32, |
| Requires<[NotLP64]>; |
| let Uses = [RAX,RCX,RDI] in |
| def REP_STOSQ_32 : RI<0xAB, RawFrm, (outs), (ins), |
| "{rep;stosq %rax, %es:(%edi)|rep stosq es:[edi], rax}", |
| [(X86rep_stos i64)]>, REP, AdSize32, |
| Requires<[NotLP64, In64BitMode]>; |
| } |
| |
| let Defs = [RCX,RDI], isCodeGenOnly = 1 in { |
| let Uses = [AL,RCX,RDI] in |
| def REP_STOSB_64 : I<0xAA, RawFrm, (outs), (ins), |
| "{rep;stosb %al, %es:(%rdi)|rep stosb es:[rdi], al}", |
| [(X86rep_stos i8)]>, REP, AdSize64, |
| Requires<[IsLP64]>; |
| let Uses = [AX,RCX,RDI] in |
| def REP_STOSW_64 : I<0xAB, RawFrm, (outs), (ins), |
| "{rep;stosw %ax, %es:(%rdi)|rep stosw es:[rdi], ax}", |
| [(X86rep_stos i16)]>, REP, AdSize64, OpSize16, |
| Requires<[IsLP64]>; |
| let Uses = [RAX,RCX,RDI] in |
| def REP_STOSD_64 : I<0xAB, RawFrm, (outs), (ins), |
| "{rep;stosl %eax, %es:(%rdi)|rep stosd es:[rdi], eax}", |
| [(X86rep_stos i32)]>, REP, AdSize64, OpSize32, |
| Requires<[IsLP64]>; |
| |
| let Uses = [RAX,RCX,RDI] in |
| def REP_STOSQ_64 : RI<0xAB, RawFrm, (outs), (ins), |
| "{rep;stosq %rax, %es:(%rdi)|rep stosq es:[rdi], rax}", |
| [(X86rep_stos i64)]>, REP, AdSize64, |
| Requires<[IsLP64]>; |
| } |
| } // SchedRW |
| |
| //===----------------------------------------------------------------------===// |
| // Thread Local Storage Instructions |
| // |
| let SchedRW = [WriteSystem] in { |
| |
| // ELF TLS Support |
| // All calls clobber the non-callee saved registers. ESP is marked as |
| // a use to prevent stack-pointer assignments that appear immediately |
| // before calls from potentially appearing dead. |
| let Defs = [EAX, ECX, EDX, FP0, FP1, FP2, FP3, FP4, FP5, FP6, FP7, |
| ST0, ST1, ST2, ST3, ST4, ST5, ST6, ST7, |
| MM0, MM1, MM2, MM3, MM4, MM5, MM6, MM7, |
| XMM0, XMM1, XMM2, XMM3, XMM4, XMM5, XMM6, XMM7, |
| XMM8, XMM9, XMM10, XMM11, XMM12, XMM13, XMM14, XMM15, EFLAGS, DF], |
| usesCustomInserter = 1, Uses = [ESP, SSP] in { |
| def TLS_addr32 : I<0, Pseudo, (outs), (ins i32mem:$sym), |
| "# TLS_addr32", |
| [(X86tlsaddr tls32addr:$sym)]>, |
| Requires<[Not64BitMode]>; |
| def TLS_base_addr32 : I<0, Pseudo, (outs), (ins i32mem:$sym), |
| "# TLS_base_addr32", |
| [(X86tlsbaseaddr tls32baseaddr:$sym)]>, |
| Requires<[Not64BitMode]>; |
| } |
| |
| // All calls clobber the non-callee saved registers. RSP is marked as |
| // a use to prevent stack-pointer assignments that appear immediately |
| // before calls from potentially appearing dead. |
| let Defs = [RAX, RCX, RDX, RSI, RDI, R8, R9, R10, R11, |
| FP0, FP1, FP2, FP3, FP4, FP5, FP6, FP7, |
| ST0, ST1, ST2, ST3, ST4, ST5, ST6, ST7, |
| MM0, MM1, MM2, MM3, MM4, MM5, MM6, MM7, |
| XMM0, XMM1, XMM2, XMM3, XMM4, XMM5, XMM6, XMM7, |
| XMM8, XMM9, XMM10, XMM11, XMM12, XMM13, XMM14, XMM15, EFLAGS, DF], |
| usesCustomInserter = 1, Uses = [RSP, SSP] in { |
| def TLS_addr64 : I<0, Pseudo, (outs), (ins i64mem:$sym), |
| "# TLS_addr64", |
| [(X86tlsaddr tls64addr:$sym)]>, |
| Requires<[In64BitMode, IsLP64]>; |
| def TLS_base_addr64 : I<0, Pseudo, (outs), (ins i64mem:$sym), |
| "# TLS_base_addr64", |
| [(X86tlsbaseaddr tls64baseaddr:$sym)]>, |
| Requires<[In64BitMode, IsLP64]>; |
| def TLS_addrX32 : I<0, Pseudo, (outs), (ins i32mem:$sym), |
| "# TLS_addrX32", |
| [(X86tlsaddr tls32addr:$sym)]>, |
| Requires<[In64BitMode, NotLP64]>; |
| def TLS_base_addrX32 : I<0, Pseudo, (outs), (ins i32mem:$sym), |
| "# TLS_base_addrX32", |
| [(X86tlsbaseaddr tls32baseaddr:$sym)]>, |
| Requires<[In64BitMode, NotLP64]>; |
| } |
| |
| // Darwin TLS Support |
| // For i386, the address of the thunk is passed on the stack, on return the |
| // address of the variable is in %eax. %ecx is trashed during the function |
| // call. All other registers are preserved. |
| let Defs = [EAX, ECX, EFLAGS, DF], |
| Uses = [ESP, SSP], |
| usesCustomInserter = 1 in |
| def TLSCall_32 : I<0, Pseudo, (outs), (ins i32mem:$sym), |
| "# TLSCall_32", |
| [(X86TLSCall addr:$sym)]>, |
| Requires<[Not64BitMode]>; |
| |
| // For x86_64, the address of the thunk is passed in %rdi, but the |
| // pseudo directly use the symbol, so do not add an implicit use of |
| // %rdi. The lowering will do the right thing with RDI. |
| // On return the address of the variable is in %rax. All other |
| // registers are preserved. |
| let Defs = [RAX, EFLAGS, DF], |
| Uses = [RSP, SSP], |
| usesCustomInserter = 1 in |
| def TLSCall_64 : I<0, Pseudo, (outs), (ins i64mem:$sym), |
| "# TLSCall_64", |
| [(X86TLSCall addr:$sym)]>, |
| Requires<[In64BitMode]>; |
| } // SchedRW |
| |
| //===----------------------------------------------------------------------===// |
| // Conditional Move Pseudo Instructions |
| |
| // CMOV* - Used to implement the SELECT DAG operation. Expanded after |
| // instruction selection into a branch sequence. |
| multiclass CMOVrr_PSEUDO<RegisterClass RC, ValueType VT> { |
| def CMOV#NAME : I<0, Pseudo, |
| (outs RC:$dst), (ins RC:$t, RC:$f, i8imm:$cond), |
| "#CMOV_"#NAME#" PSEUDO!", |
| [(set RC:$dst, (VT (X86cmov RC:$t, RC:$f, timm:$cond, |
| EFLAGS)))]>; |
| } |
| |
| let usesCustomInserter = 1, hasNoSchedulingInfo = 1, Uses = [EFLAGS] in { |
| // X86 doesn't have 8-bit conditional moves. Use a customInserter to |
| // emit control flow. An alternative to this is to mark i8 SELECT as Promote, |
| // however that requires promoting the operands, and can induce additional |
| // i8 register pressure. |
| defm _GR8 : CMOVrr_PSEUDO<GR8, i8>; |
| |
| let Predicates = [NoCMov] in { |
| defm _GR32 : CMOVrr_PSEUDO<GR32, i32>; |
| defm _GR16 : CMOVrr_PSEUDO<GR16, i16>; |
| } // Predicates = [NoCMov] |
| |
| // fcmov doesn't handle all possible EFLAGS, provide a fallback if there is no |
| // SSE1/SSE2. |
| let Predicates = [FPStackf32] in |
| defm _RFP32 : CMOVrr_PSEUDO<RFP32, f32>; |
| |
| let Predicates = [FPStackf64] in |
| defm _RFP64 : CMOVrr_PSEUDO<RFP64, f64>; |
| |
| defm _RFP80 : CMOVrr_PSEUDO<RFP80, f80>; |
| |
| let Predicates = [HasMMX] in |
| defm _VR64 : CMOVrr_PSEUDO<VR64, x86mmx>; |
| |
| defm _FR16X : CMOVrr_PSEUDO<FR16X, f16>; |
| let Predicates = [HasSSE1,NoAVX512] in |
| defm _FR32 : CMOVrr_PSEUDO<FR32, f32>; |
| let Predicates = [HasSSE2,NoAVX512] in |
| defm _FR64 : CMOVrr_PSEUDO<FR64, f64>; |
| let Predicates = [HasAVX512] in { |
| defm _FR32X : CMOVrr_PSEUDO<FR32X, f32>; |
| defm _FR64X : CMOVrr_PSEUDO<FR64X, f64>; |
| } |
| let Predicates = [NoVLX] in { |
| defm _VR128 : CMOVrr_PSEUDO<VR128, v2i64>; |
| defm _VR256 : CMOVrr_PSEUDO<VR256, v4i64>; |
| } |
| let Predicates = [HasVLX] in { |
| defm _VR128X : CMOVrr_PSEUDO<VR128X, v2i64>; |
| defm _VR256X : CMOVrr_PSEUDO<VR256X, v4i64>; |
| } |
| defm _VR512 : CMOVrr_PSEUDO<VR512, v8i64>; |
| defm _VK1 : CMOVrr_PSEUDO<VK1, v1i1>; |
| defm _VK2 : CMOVrr_PSEUDO<VK2, v2i1>; |
| defm _VK4 : CMOVrr_PSEUDO<VK4, v4i1>; |
| defm _VK8 : CMOVrr_PSEUDO<VK8, v8i1>; |
| defm _VK16 : CMOVrr_PSEUDO<VK16, v16i1>; |
| defm _VK32 : CMOVrr_PSEUDO<VK32, v32i1>; |
| defm _VK64 : CMOVrr_PSEUDO<VK64, v64i1>; |
| } // usesCustomInserter = 1, hasNoSchedulingInfo = 1, Uses = [EFLAGS] |
| |
| def : Pat<(f128 (X86cmov VR128:$t, VR128:$f, timm:$cond, EFLAGS)), |
| (CMOV_VR128 VR128:$t, VR128:$f, timm:$cond)>; |
| |
| let Predicates = [NoVLX] in { |
| def : Pat<(v16i8 (X86cmov VR128:$t, VR128:$f, timm:$cond, EFLAGS)), |
| (CMOV_VR128 VR128:$t, VR128:$f, timm:$cond)>; |
| def : Pat<(v8i16 (X86cmov VR128:$t, VR128:$f, timm:$cond, EFLAGS)), |
| (CMOV_VR128 VR128:$t, VR128:$f, timm:$cond)>; |
| def : Pat<(v4i32 (X86cmov VR128:$t, VR128:$f, timm:$cond, EFLAGS)), |
| (CMOV_VR128 VR128:$t, VR128:$f, timm:$cond)>; |
| def : Pat<(v4f32 (X86cmov VR128:$t, VR128:$f, timm:$cond, EFLAGS)), |
| (CMOV_VR128 VR128:$t, VR128:$f, timm:$cond)>; |
| def : Pat<(v2f64 (X86cmov VR128:$t, VR128:$f, timm:$cond, EFLAGS)), |
| (CMOV_VR128 VR128:$t, VR128:$f, timm:$cond)>; |
| |
| def : Pat<(v32i8 (X86cmov VR256:$t, VR256:$f, timm:$cond, EFLAGS)), |
| (CMOV_VR256 VR256:$t, VR256:$f, timm:$cond)>; |
| def : Pat<(v16i16 (X86cmov VR256:$t, VR256:$f, timm:$cond, EFLAGS)), |
| (CMOV_VR256 VR256:$t, VR256:$f, timm:$cond)>; |
| def : Pat<(v8i32 (X86cmov VR256:$t, VR256:$f, timm:$cond, EFLAGS)), |
| (CMOV_VR256 VR256:$t, VR256:$f, timm:$cond)>; |
| def : Pat<(v8f32 (X86cmov VR256:$t, VR256:$f, timm:$cond, EFLAGS)), |
| (CMOV_VR256 VR256:$t, VR256:$f, timm:$cond)>; |
| def : Pat<(v4f64 (X86cmov VR256:$t, VR256:$f, timm:$cond, EFLAGS)), |
| (CMOV_VR256 VR256:$t, VR256:$f, timm:$cond)>; |
| } |
| let Predicates = [HasVLX] in { |
| def : Pat<(v16i8 (X86cmov VR128X:$t, VR128X:$f, timm:$cond, EFLAGS)), |
| (CMOV_VR128X VR128X:$t, VR128X:$f, timm:$cond)>; |
| def : Pat<(v8i16 (X86cmov VR128X:$t, VR128X:$f, timm:$cond, EFLAGS)), |
| (CMOV_VR128X VR128X:$t, VR128X:$f, timm:$cond)>; |
| def : Pat<(v8f16 (X86cmov VR128X:$t, VR128X:$f, timm:$cond, EFLAGS)), |
| (CMOV_VR128X VR128X:$t, VR128X:$f, timm:$cond)>; |
| def : Pat<(v4i32 (X86cmov VR128X:$t, VR128X:$f, timm:$cond, EFLAGS)), |
| (CMOV_VR128X VR128X:$t, VR128X:$f, timm:$cond)>; |
| def : Pat<(v4f32 (X86cmov VR128X:$t, VR128X:$f, timm:$cond, EFLAGS)), |
| (CMOV_VR128X VR128X:$t, VR128X:$f, timm:$cond)>; |
| def : Pat<(v2f64 (X86cmov VR128X:$t, VR128X:$f, timm:$cond, EFLAGS)), |
| (CMOV_VR128X VR128X:$t, VR128X:$f, timm:$cond)>; |
| |
| def : Pat<(v32i8 (X86cmov VR256X:$t, VR256X:$f, timm:$cond, EFLAGS)), |
| (CMOV_VR256X VR256X:$t, VR256X:$f, timm:$cond)>; |
| def : Pat<(v16i16 (X86cmov VR256X:$t, VR256X:$f, timm:$cond, EFLAGS)), |
| (CMOV_VR256X VR256X:$t, VR256X:$f, timm:$cond)>; |
| def : Pat<(v16f16 (X86cmov VR256X:$t, VR256X:$f, timm:$cond, EFLAGS)), |
| (CMOV_VR256X VR256X:$t, VR256X:$f, timm:$cond)>; |
| def : Pat<(v8i32 (X86cmov VR256X:$t, VR256X:$f, timm:$cond, EFLAGS)), |
| (CMOV_VR256X VR256X:$t, VR256X:$f, timm:$cond)>; |
| def : Pat<(v8f32 (X86cmov VR256X:$t, VR256X:$f, timm:$cond, EFLAGS)), |
| (CMOV_VR256X VR256X:$t, VR256X:$f, timm:$cond)>; |
| def : Pat<(v4f64 (X86cmov VR256X:$t, VR256X:$f, timm:$cond, EFLAGS)), |
| (CMOV_VR256X VR256X:$t, VR256X:$f, timm:$cond)>; |
| } |
| |
| def : Pat<(v64i8 (X86cmov VR512:$t, VR512:$f, timm:$cond, EFLAGS)), |
| (CMOV_VR512 VR512:$t, VR512:$f, timm:$cond)>; |
| def : Pat<(v32i16 (X86cmov VR512:$t, VR512:$f, timm:$cond, EFLAGS)), |
| (CMOV_VR512 VR512:$t, VR512:$f, timm:$cond)>; |
| def : Pat<(v32f16 (X86cmov VR512:$t, VR512:$f, timm:$cond, EFLAGS)), |
| (CMOV_VR512 VR512:$t, VR512:$f, timm:$cond)>; |
| def : Pat<(v16i32 (X86cmov VR512:$t, VR512:$f, timm:$cond, EFLAGS)), |
| (CMOV_VR512 VR512:$t, VR512:$f, timm:$cond)>; |
| def : Pat<(v16f32 (X86cmov VR512:$t, VR512:$f, timm:$cond, EFLAGS)), |
| (CMOV_VR512 VR512:$t, VR512:$f, timm:$cond)>; |
| def : Pat<(v8f64 (X86cmov VR512:$t, VR512:$f, timm:$cond, EFLAGS)), |
| (CMOV_VR512 VR512:$t, VR512:$f, timm:$cond)>; |
| |
| //===----------------------------------------------------------------------===// |
| // Normal-Instructions-With-Lock-Prefix Pseudo Instructions |
| //===----------------------------------------------------------------------===// |
| |
| // FIXME: Use normal instructions and add lock prefix dynamically. |
| |
| // Memory barriers |
| |
| let isCodeGenOnly = 1, Defs = [EFLAGS] in |
| def OR32mi8Locked : Ii8<0x83, MRM1m, (outs), (ins i32mem:$dst, i32i8imm:$zero), |
| "or{l}\t{$zero, $dst|$dst, $zero}", []>, |
| Requires<[Not64BitMode]>, OpSize32, LOCK, |
| Sched<[WriteALURMW]>; |
| |
| let hasSideEffects = 1 in |
| def Int_MemBarrier : I<0, Pseudo, (outs), (ins), |
| "#MEMBARRIER", |
| [(X86MemBarrier)]>, Sched<[WriteLoad]>; |
| |
| // RegOpc corresponds to the mr version of the instruction |
| // ImmOpc corresponds to the mi version of the instruction |
| // ImmOpc8 corresponds to the mi8 version of the instruction |
| // ImmMod corresponds to the instruction format of the mi and mi8 versions |
| multiclass LOCK_ArithBinOp<bits<8> RegOpc, bits<8> ImmOpc, bits<8> ImmOpc8, |
| Format ImmMod, SDNode Op, string mnemonic> { |
| let Defs = [EFLAGS], mayLoad = 1, mayStore = 1, isCodeGenOnly = 1, |
| SchedRW = [WriteALURMW] in { |
| |
| def NAME#8mr : I<{RegOpc{7}, RegOpc{6}, RegOpc{5}, RegOpc{4}, |
| RegOpc{3}, RegOpc{2}, RegOpc{1}, 0 }, |
| MRMDestMem, (outs), (ins i8mem:$dst, GR8:$src2), |
| !strconcat(mnemonic, "{b}\t", |
| "{$src2, $dst|$dst, $src2}"), |
| [(set EFLAGS, (Op addr:$dst, GR8:$src2))]>, LOCK; |
| |
| def NAME#16mr : I<{RegOpc{7}, RegOpc{6}, RegOpc{5}, RegOpc{4}, |
| RegOpc{3}, RegOpc{2}, RegOpc{1}, 1 }, |
| MRMDestMem, (outs), (ins i16mem:$dst, GR16:$src2), |
| !strconcat(mnemonic, "{w}\t", |
| "{$src2, $dst|$dst, $src2}"), |
| [(set EFLAGS, (Op addr:$dst, GR16:$src2))]>, |
| OpSize16, LOCK; |
| |
| def NAME#32mr : I<{RegOpc{7}, RegOpc{6}, RegOpc{5}, RegOpc{4}, |
| RegOpc{3}, RegOpc{2}, RegOpc{1}, 1 }, |
| MRMDestMem, (outs), (ins i32mem:$dst, GR32:$src2), |
| !strconcat(mnemonic, "{l}\t", |
| "{$src2, $dst|$dst, $src2}"), |
| [(set EFLAGS, (Op addr:$dst, GR32:$src2))]>, |
| OpSize32, LOCK; |
| |
| def NAME#64mr : RI<{RegOpc{7}, RegOpc{6}, RegOpc{5}, RegOpc{4}, |
| RegOpc{3}, RegOpc{2}, RegOpc{1}, 1 }, |
| MRMDestMem, (outs), (ins i64mem:$dst, GR64:$src2), |
| !strconcat(mnemonic, "{q}\t", |
| "{$src2, $dst|$dst, $src2}"), |
| [(set EFLAGS, (Op addr:$dst, GR64:$src2))]>, LOCK; |
| |
| // NOTE: These are order specific, we want the mi8 forms to be listed |
| // first so that they are slightly preferred to the mi forms. |
| def NAME#16mi8 : Ii8<{ImmOpc8{7}, ImmOpc8{6}, ImmOpc8{5}, ImmOpc8{4}, |
| ImmOpc8{3}, ImmOpc8{2}, ImmOpc8{1}, 1 }, |
| ImmMod, (outs), (ins i16mem :$dst, i16i8imm :$src2), |
| !strconcat(mnemonic, "{w}\t", |
| "{$src2, $dst|$dst, $src2}"), |
| [(set EFLAGS, (Op addr:$dst, i16immSExt8:$src2))]>, |
| OpSize16, LOCK; |
| |
| def NAME#32mi8 : Ii8<{ImmOpc8{7}, ImmOpc8{6}, ImmOpc8{5}, ImmOpc8{4}, |
| ImmOpc8{3}, ImmOpc8{2}, ImmOpc8{1}, 1 }, |
| ImmMod, (outs), (ins i32mem :$dst, i32i8imm :$src2), |
| !strconcat(mnemonic, "{l}\t", |
| "{$src2, $dst|$dst, $src2}"), |
| [(set EFLAGS, (Op addr:$dst, i32immSExt8:$src2))]>, |
| OpSize32, LOCK; |
| |
| def NAME#64mi8 : RIi8<{ImmOpc8{7}, ImmOpc8{6}, ImmOpc8{5}, ImmOpc8{4}, |
| ImmOpc8{3}, ImmOpc8{2}, ImmOpc8{1}, 1 }, |
| ImmMod, (outs), (ins i64mem :$dst, i64i8imm :$src2), |
| !strconcat(mnemonic, "{q}\t", |
| "{$src2, $dst|$dst, $src2}"), |
| [(set EFLAGS, (Op addr:$dst, i64immSExt8:$src2))]>, |
| LOCK; |
| |
| def NAME#8mi : Ii8<{ImmOpc{7}, ImmOpc{6}, ImmOpc{5}, ImmOpc{4}, |
| ImmOpc{3}, ImmOpc{2}, ImmOpc{1}, 0 }, |
| ImmMod, (outs), (ins i8mem :$dst, i8imm :$src2), |
| !strconcat(mnemonic, "{b}\t", |
| "{$src2, $dst|$dst, $src2}"), |
| [(set EFLAGS, (Op addr:$dst, (i8 imm:$src2)))]>, LOCK; |
| |
| def NAME#16mi : Ii16<{ImmOpc{7}, ImmOpc{6}, ImmOpc{5}, ImmOpc{4}, |
| ImmOpc{3}, ImmOpc{2}, ImmOpc{1}, 1 }, |
| ImmMod, (outs), (ins i16mem :$dst, i16imm :$src2), |
| !strconcat(mnemonic, "{w}\t", |
| "{$src2, $dst|$dst, $src2}"), |
| [(set EFLAGS, (Op addr:$dst, (i16 imm:$src2)))]>, |
| OpSize16, LOCK; |
| |
| def NAME#32mi : Ii32<{ImmOpc{7}, ImmOpc{6}, ImmOpc{5}, ImmOpc{4}, |
| ImmOpc{3}, ImmOpc{2}, ImmOpc{1}, 1 }, |
| ImmMod, (outs), (ins i32mem :$dst, i32imm :$src2), |
| !strconcat(mnemonic, "{l}\t", |
| "{$src2, $dst|$dst, $src2}"), |
| [(set EFLAGS, (Op addr:$dst, (i32 imm:$src2)))]>, |
| OpSize32, LOCK; |
| |
| def NAME#64mi32 : RIi32S<{ImmOpc{7}, ImmOpc{6}, ImmOpc{5}, ImmOpc{4}, |
| ImmOpc{3}, ImmOpc{2}, ImmOpc{1}, 1 }, |
| ImmMod, (outs), (ins i64mem :$dst, i64i32imm :$src2), |
| !strconcat(mnemonic, "{q}\t", |
| "{$src2, $dst|$dst, $src2}"), |
| [(set EFLAGS, (Op addr:$dst, i64immSExt32:$src2))]>, |
| LOCK; |
| } |
| |
| } |
| |
| defm LOCK_ADD : LOCK_ArithBinOp<0x00, 0x80, 0x83, MRM0m, X86lock_add, "add">; |
| defm LOCK_SUB : LOCK_ArithBinOp<0x28, 0x80, 0x83, MRM5m, X86lock_sub, "sub">; |
| defm LOCK_OR : LOCK_ArithBinOp<0x08, 0x80, 0x83, MRM1m, X86lock_or , "or">; |
| defm LOCK_AND : LOCK_ArithBinOp<0x20, 0x80, 0x83, MRM4m, X86lock_and, "and">; |
| defm LOCK_XOR : LOCK_ArithBinOp<0x30, 0x80, 0x83, MRM6m, X86lock_xor, "xor">; |
| |
| def X86lock_add_nocf : PatFrag<(ops node:$lhs, node:$rhs), |
| (X86lock_add node:$lhs, node:$rhs), [{ |
| return hasNoCarryFlagUses(SDValue(N, 0)); |
| }]>; |
| |
| def X86lock_sub_nocf : PatFrag<(ops node:$lhs, node:$rhs), |
| (X86lock_sub node:$lhs, node:$rhs), [{ |
| return hasNoCarryFlagUses(SDValue(N, 0)); |
| }]>; |
| |
| let Predicates = [UseIncDec] in { |
| let Defs = [EFLAGS], mayLoad = 1, mayStore = 1, isCodeGenOnly = 1, |
| SchedRW = [WriteALURMW] in { |
| def LOCK_INC8m : I<0xFE, MRM0m, (outs), (ins i8mem :$dst), |
| "inc{b}\t$dst", |
| [(set EFLAGS, (X86lock_add_nocf addr:$dst, (i8 1)))]>, |
| LOCK; |
| def LOCK_INC16m : I<0xFF, MRM0m, (outs), (ins i16mem:$dst), |
| "inc{w}\t$dst", |
| [(set EFLAGS, (X86lock_add_nocf addr:$dst, (i16 1)))]>, |
| OpSize16, LOCK; |
| def LOCK_INC32m : I<0xFF, MRM0m, (outs), (ins i32mem:$dst), |
| "inc{l}\t$dst", |
| [(set EFLAGS, (X86lock_add_nocf addr:$dst, (i32 1)))]>, |
| OpSize32, LOCK; |
| def LOCK_INC64m : RI<0xFF, MRM0m, (outs), (ins i64mem:$dst), |
| "inc{q}\t$dst", |
| [(set EFLAGS, (X86lock_add_nocf addr:$dst, (i64 1)))]>, |
| LOCK; |
| |
| def LOCK_DEC8m : I<0xFE, MRM1m, (outs), (ins i8mem :$dst), |
| "dec{b}\t$dst", |
| [(set EFLAGS, (X86lock_sub_nocf addr:$dst, (i8 1)))]>, |
| LOCK; |
| def LOCK_DEC16m : I<0xFF, MRM1m, (outs), (ins i16mem:$dst), |
| "dec{w}\t$dst", |
| [(set EFLAGS, (X86lock_sub_nocf addr:$dst, (i16 1)))]>, |
| OpSize16, LOCK; |
| def LOCK_DEC32m : I<0xFF, MRM1m, (outs), (ins i32mem:$dst), |
| "dec{l}\t$dst", |
| [(set EFLAGS, (X86lock_sub_nocf addr:$dst, (i32 1)))]>, |
| OpSize32, LOCK; |
| def LOCK_DEC64m : RI<0xFF, MRM1m, (outs), (ins i64mem:$dst), |
| "dec{q}\t$dst", |
| [(set EFLAGS, (X86lock_sub_nocf addr:$dst, (i64 1)))]>, |
| LOCK; |
| } |
| |
| // Additional patterns for -1 constant. |
| def : Pat<(X86lock_add addr:$dst, (i8 -1)), (LOCK_DEC8m addr:$dst)>; |
| def : Pat<(X86lock_add addr:$dst, (i16 -1)), (LOCK_DEC16m addr:$dst)>; |
| def : Pat<(X86lock_add addr:$dst, (i32 -1)), (LOCK_DEC32m addr:$dst)>; |
| def : Pat<(X86lock_add addr:$dst, (i64 -1)), (LOCK_DEC64m addr:$dst)>; |
| def : Pat<(X86lock_sub addr:$dst, (i8 -1)), (LOCK_INC8m addr:$dst)>; |
| def : Pat<(X86lock_sub addr:$dst, (i16 -1)), (LOCK_INC16m addr:$dst)>; |
| def : Pat<(X86lock_sub addr:$dst, (i32 -1)), (LOCK_INC32m addr:$dst)>; |
| def : Pat<(X86lock_sub addr:$dst, (i64 -1)), (LOCK_INC64m addr:$dst)>; |
| } |
| |
| // Atomic compare and swap. |
| multiclass LCMPXCHG_BinOp<bits<8> Opc8, bits<8> Opc, Format Form, |
| string mnemonic, SDPatternOperator frag> { |
| let isCodeGenOnly = 1, SchedRW = [WriteCMPXCHGRMW] in { |
| let Defs = [AL, EFLAGS], Uses = [AL] in |
| def NAME#8 : I<Opc8, Form, (outs), (ins i8mem:$ptr, GR8:$swap), |
| !strconcat(mnemonic, "{b}\t{$swap, $ptr|$ptr, $swap}"), |
| [(frag addr:$ptr, GR8:$swap, 1)]>, TB, LOCK; |
| let Defs = [AX, EFLAGS], Uses = [AX] in |
| def NAME#16 : I<Opc, Form, (outs), (ins i16mem:$ptr, GR16:$swap), |
| !strconcat(mnemonic, "{w}\t{$swap, $ptr|$ptr, $swap}"), |
| [(frag addr:$ptr, GR16:$swap, 2)]>, TB, OpSize16, LOCK; |
| let Defs = [EAX, EFLAGS], Uses = [EAX] in |
| def NAME#32 : I<Opc, Form, (outs), (ins i32mem:$ptr, GR32:$swap), |
| !strconcat(mnemonic, "{l}\t{$swap, $ptr|$ptr, $swap}"), |
| [(frag addr:$ptr, GR32:$swap, 4)]>, TB, OpSize32, LOCK; |
| let Defs = [RAX, EFLAGS], Uses = [RAX] in |
| def NAME#64 : RI<Opc, Form, (outs), (ins i64mem:$ptr, GR64:$swap), |
| !strconcat(mnemonic, "{q}\t{$swap, $ptr|$ptr, $swap}"), |
| [(frag addr:$ptr, GR64:$swap, 8)]>, TB, LOCK; |
| } |
| } |
| |
| let Defs = [EAX, EDX, EFLAGS], Uses = [EAX, EBX, ECX, EDX], |
| Predicates = [HasCmpxchg8b], SchedRW = [WriteCMPXCHGRMW], |
| isCodeGenOnly = 1, usesCustomInserter = 1 in { |
| def LCMPXCHG8B : I<0xC7, MRM1m, (outs), (ins i64mem:$ptr), |
| "cmpxchg8b\t$ptr", |
| [(X86cas8 addr:$ptr)]>, TB, LOCK; |
| } |
| |
| let Defs = [RAX, RDX, EFLAGS], Uses = [RAX, RBX, RCX, RDX], |
| Predicates = [HasCmpxchg16b,In64BitMode], SchedRW = [WriteCMPXCHGRMW], |
| isCodeGenOnly = 1, mayLoad = 1, mayStore = 1, hasSideEffects = 0 in { |
| def LCMPXCHG16B : RI<0xC7, MRM1m, (outs), (ins i128mem:$ptr), |
| "cmpxchg16b\t$ptr", |
| []>, TB, LOCK; |
| } |
| |
| // This pseudo must be used when the frame uses RBX as |
| // the base pointer. Indeed, in such situation RBX is a reserved |
| // register and the register allocator will ignore any use/def of |
| // it. In other words, the register will not fix the clobbering of |
| // RBX that will happen when setting the arguments for the instrucion. |
| // |
| // Unlike the actual related instruction, we mark that this one |
| // defines RBX (instead of using RBX). |
| // The rationale is that we will define RBX during the expansion of |
| // the pseudo. The argument feeding RBX is rbx_input. |
| // |
| // The additional argument, $rbx_save, is a temporary register used to |
| // save the value of RBX across the actual instruction. |
| // |
| // To make sure the register assigned to $rbx_save does not interfere with |
| // the definition of the actual instruction, we use a definition $dst which |
| // is tied to $rbx_save. That way, the live-range of $rbx_save spans across |
| // the instruction and we are sure we will have a valid register to restore |
| // the value of RBX. |
| let Defs = [RAX, RDX, RBX, EFLAGS], Uses = [RAX, RCX, RDX], |
| Predicates = [HasCmpxchg16b,In64BitMode], SchedRW = [WriteCMPXCHGRMW], |
| isCodeGenOnly = 1, isPseudo = 1, |
| mayLoad = 1, mayStore = 1, hasSideEffects = 0, |
| Constraints = "$rbx_save = $dst" in { |
| def LCMPXCHG16B_SAVE_RBX : |
| I<0, Pseudo, (outs GR64:$dst), |
| (ins i128mem:$ptr, GR64:$rbx_input, GR64:$rbx_save), "", []>; |
| } |
| |
| // Pseudo instruction that doesn't read/write RBX. Will be turned into either |
| // LCMPXCHG16B_SAVE_RBX or LCMPXCHG16B via a custom inserter. |
| let Defs = [RAX, RDX, EFLAGS], Uses = [RAX, RCX, RDX], |
| Predicates = [HasCmpxchg16b,In64BitMode], SchedRW = [WriteCMPXCHGRMW], |
| isCodeGenOnly = 1, isPseudo = 1, |
| mayLoad = 1, mayStore = 1, hasSideEffects = 0, |
| usesCustomInserter = 1 in { |
| def LCMPXCHG16B_NO_RBX : |
| I<0, Pseudo, (outs), (ins i128mem:$ptr, GR64:$rbx_input), "", |
| [(X86cas16 addr:$ptr, GR64:$rbx_input)]>; |
| } |
| |
| // This pseudo must be used when the frame uses RBX/EBX as |
| // the base pointer. |
| // cf comment for LCMPXCHG16B_SAVE_RBX. |
| let Defs = [EBX], Uses = [ECX, EAX], |
| Predicates = [HasMWAITX], SchedRW = [WriteSystem], |
| isCodeGenOnly = 1, isPseudo = 1, Constraints = "$rbx_save = $dst" in { |
| def MWAITX_SAVE_RBX : |
| I<0, Pseudo, (outs GR64:$dst), |
| (ins GR32:$ebx_input, GR64:$rbx_save), |
| "mwaitx", |
| []>; |
| } |
| |
| // Pseudo mwaitx instruction to use for custom insertion. |
| let Predicates = [HasMWAITX], SchedRW = [WriteSystem], |
| isCodeGenOnly = 1, isPseudo = 1, |
| usesCustomInserter = 1 in { |
| def MWAITX : |
| I<0, Pseudo, (outs), (ins GR32:$ecx, GR32:$eax, GR32:$ebx), |
| "mwaitx", |
| [(int_x86_mwaitx GR32:$ecx, GR32:$eax, GR32:$ebx)]>; |
| } |
| |
| |
| defm LCMPXCHG : LCMPXCHG_BinOp<0xB0, 0xB1, MRMDestMem, "cmpxchg", X86cas>; |
| |
| // Atomic exchange and add |
| multiclass ATOMIC_RMW_BINOP<bits<8> opc8, bits<8> opc, string mnemonic, |
| string frag> { |
| let Constraints = "$val = $dst", Defs = [EFLAGS], mayLoad = 1, mayStore = 1, |
| isCodeGenOnly = 1, SchedRW = [WriteALURMW] in { |
| def NAME#8 : I<opc8, MRMSrcMem, (outs GR8:$dst), |
| (ins GR8:$val, i8mem:$ptr), |
| !strconcat(mnemonic, "{b}\t{$val, $ptr|$ptr, $val}"), |
| [(set GR8:$dst, |
| (!cast<PatFrag>(frag # "_8") addr:$ptr, GR8:$val))]>; |
| def NAME#16 : I<opc, MRMSrcMem, (outs GR16:$dst), |
| (ins GR16:$val, i16mem:$ptr), |
| !strconcat(mnemonic, "{w}\t{$val, $ptr|$ptr, $val}"), |
| [(set |
| GR16:$dst, |
| (!cast<PatFrag>(frag # "_16") addr:$ptr, GR16:$val))]>, |
| OpSize16; |
| def NAME#32 : I<opc, MRMSrcMem, (outs GR32:$dst), |
| (ins GR32:$val, i32mem:$ptr), |
| !strconcat(mnemonic, "{l}\t{$val, $ptr|$ptr, $val}"), |
| [(set |
| GR32:$dst, |
| (!cast<PatFrag>(frag # "_32") addr:$ptr, GR32:$val))]>, |
| OpSize32; |
| def NAME#64 : RI<opc, MRMSrcMem, (outs GR64:$dst), |
| (ins GR64:$val, i64mem:$ptr), |
| !strconcat(mnemonic, "{q}\t{$val, $ptr|$ptr, $val}"), |
| [(set |
| GR64:$dst, |
| (!cast<PatFrag>(frag # "_64") addr:$ptr, GR64:$val))]>; |
| } |
| } |
| |
| defm LXADD : ATOMIC_RMW_BINOP<0xc0, 0xc1, "xadd", "atomic_load_add">, TB, LOCK; |
| |
| /* The following multiclass tries to make sure that in code like |
| * x.store (immediate op x.load(acquire), release) |
| * and |
| * x.store (register op x.load(acquire), release) |
| * an operation directly on memory is generated instead of wasting a register. |
| * It is not automatic as atomic_store/load are only lowered to MOV instructions |
| * extremely late to prevent them from being accidentally reordered in the backend |
| * (see below the RELEASE_MOV* / ACQUIRE_MOV* pseudo-instructions) |
| */ |
| multiclass RELEASE_BINOP_MI<string Name, SDNode op> { |
| def : Pat<(atomic_store_8 addr:$dst, |
| (op (atomic_load_8 addr:$dst), (i8 imm:$src))), |
| (!cast<Instruction>(Name#"8mi") addr:$dst, imm:$src)>; |
| def : Pat<(atomic_store_16 addr:$dst, |
| (op (atomic_load_16 addr:$dst), (i16 imm:$src))), |
| (!cast<Instruction>(Name#"16mi") addr:$dst, imm:$src)>; |
| def : Pat<(atomic_store_32 addr:$dst, |
| (op (atomic_load_32 addr:$dst), (i32 imm:$src))), |
| (!cast<Instruction>(Name#"32mi") addr:$dst, imm:$src)>; |
| def : Pat<(atomic_store_64 addr:$dst, |
| (op (atomic_load_64 addr:$dst), (i64immSExt32:$src))), |
| (!cast<Instruction>(Name#"64mi32") addr:$dst, (i64immSExt32:$src))>; |
| |
| def : Pat<(atomic_store_8 addr:$dst, |
| (op (atomic_load_8 addr:$dst), (i8 GR8:$src))), |
| (!cast<Instruction>(Name#"8mr") addr:$dst, GR8:$src)>; |
| def : Pat<(atomic_store_16 addr:$dst, |
| (op (atomic_load_16 addr:$dst), (i16 GR16:$src))), |
| (!cast<Instruction>(Name#"16mr") addr:$dst, GR16:$src)>; |
| def : Pat<(atomic_store_32 addr:$dst, |
| (op (atomic_load_32 addr:$dst), (i32 GR32:$src))), |
| (!cast<Instruction>(Name#"32mr") addr:$dst, GR32:$src)>; |
| def : Pat<(atomic_store_64 addr:$dst, |
| (op (atomic_load_64 addr:$dst), (i64 GR64:$src))), |
| (!cast<Instruction>(Name#"64mr") addr:$dst, GR64:$src)>; |
| } |
| defm : RELEASE_BINOP_MI<"ADD", add>; |
| defm : RELEASE_BINOP_MI<"AND", and>; |
| defm : RELEASE_BINOP_MI<"OR", or>; |
| defm : RELEASE_BINOP_MI<"XOR", xor>; |
| defm : RELEASE_BINOP_MI<"SUB", sub>; |
| |
| // Atomic load + floating point patterns. |
| // FIXME: This could also handle SIMD operations with *ps and *pd instructions. |
| multiclass ATOMIC_LOAD_FP_BINOP_MI<string Name, SDNode op> { |
| def : Pat<(op FR32:$src1, (bitconvert (i32 (atomic_load_32 addr:$src2)))), |
| (!cast<Instruction>(Name#"SSrm") FR32:$src1, addr:$src2)>, |
| Requires<[UseSSE1]>; |
| def : Pat<(op FR32:$src1, (bitconvert (i32 (atomic_load_32 addr:$src2)))), |
| (!cast<Instruction>("V"#Name#"SSrm") FR32:$src1, addr:$src2)>, |
| Requires<[UseAVX]>; |
| def : Pat<(op FR32X:$src1, (bitconvert (i32 (atomic_load_32 addr:$src2)))), |
| (!cast<Instruction>("V"#Name#"SSZrm") FR32X:$src1, addr:$src2)>, |
| Requires<[HasAVX512]>; |
| |
| def : Pat<(op FR64:$src1, (bitconvert (i64 (atomic_load_64 addr:$src2)))), |
| (!cast<Instruction>(Name#"SDrm") FR64:$src1, addr:$src2)>, |
| Requires<[UseSSE1]>; |
| def : Pat<(op FR64:$src1, (bitconvert (i64 (atomic_load_64 addr:$src2)))), |
| (!cast<Instruction>("V"#Name#"SDrm") FR64:$src1, addr:$src2)>, |
| Requires<[UseAVX]>; |
| def : Pat<(op FR64X:$src1, (bitconvert (i64 (atomic_load_64 addr:$src2)))), |
| (!cast<Instruction>("V"#Name#"SDZrm") FR64X:$src1, addr:$src2)>, |
| Requires<[HasAVX512]>; |
| } |
| defm : ATOMIC_LOAD_FP_BINOP_MI<"ADD", fadd>; |
| // FIXME: Add fsub, fmul, fdiv, ... |
| |
| multiclass RELEASE_UNOP<string Name, dag dag8, dag dag16, dag dag32, |
| dag dag64> { |
| def : Pat<(atomic_store_8 addr:$dst, dag8), |
| (!cast<Instruction>(Name#8m) addr:$dst)>; |
| def : Pat<(atomic_store_16 addr:$dst, dag16), |
| (!cast<Instruction>(Name#16m) addr:$dst)>; |
| def : Pat<(atomic_store_32 addr:$dst, dag32), |
| (!cast<Instruction>(Name#32m) addr:$dst)>; |
| def : Pat<(atomic_store_64 addr:$dst, dag64), |
| (!cast<Instruction>(Name#64m) addr:$dst)>; |
| } |
| |
| let Predicates = [UseIncDec] in { |
| defm : RELEASE_UNOP<"INC", |
| (add (atomic_load_8 addr:$dst), (i8 1)), |
| (add (atomic_load_16 addr:$dst), (i16 1)), |
| (add (atomic_load_32 addr:$dst), (i32 1)), |
| (add (atomic_load_64 addr:$dst), (i64 1))>; |
| defm : RELEASE_UNOP<"DEC", |
| (add (atomic_load_8 addr:$dst), (i8 -1)), |
| (add (atomic_load_16 addr:$dst), (i16 -1)), |
| (add (atomic_load_32 addr:$dst), (i32 -1)), |
| (add (atomic_load_64 addr:$dst), (i64 -1))>; |
| } |
| |
| defm : RELEASE_UNOP<"NEG", |
| (ineg (i8 (atomic_load_8 addr:$dst))), |
| (ineg (i16 (atomic_load_16 addr:$dst))), |
| (ineg (i32 (atomic_load_32 addr:$dst))), |
| (ineg (i64 (atomic_load_64 addr:$dst)))>; |
| defm : RELEASE_UNOP<"NOT", |
| (not (i8 (atomic_load_8 addr:$dst))), |
| (not (i16 (atomic_load_16 addr:$dst))), |
| (not (i32 (atomic_load_32 addr:$dst))), |
| (not (i64 (atomic_load_64 addr:$dst)))>; |
| |
| def : Pat<(atomic_store_8 addr:$dst, (i8 imm:$src)), |
| (MOV8mi addr:$dst, imm:$src)>; |
| def : Pat<(atomic_store_16 addr:$dst, (i16 imm:$src)), |
| (MOV16mi addr:$dst, imm:$src)>; |
| def : Pat<(atomic_store_32 addr:$dst, (i32 imm:$src)), |
| (MOV32mi addr:$dst, imm:$src)>; |
| def : Pat<(atomic_store_64 addr:$dst, (i64immSExt32:$src)), |
| (MOV64mi32 addr:$dst, i64immSExt32:$src)>; |
| |
| def : Pat<(atomic_store_8 addr:$dst, GR8:$src), |
| (MOV8mr addr:$dst, GR8:$src)>; |
| def : Pat<(atomic_store_16 addr:$dst, GR16:$src), |
| (MOV16mr addr:$dst, GR16:$src)>; |
| def : Pat<(atomic_store_32 addr:$dst, GR32:$src), |
| (MOV32mr addr:$dst, GR32:$src)>; |
| def : Pat<(atomic_store_64 addr:$dst, GR64:$src), |
| (MOV64mr addr:$dst, GR64:$src)>; |
| |
| def : Pat<(i8 (atomic_load_8 addr:$src)), (MOV8rm addr:$src)>; |
| def : Pat<(i16 (atomic_load_16 addr:$src)), (MOV16rm addr:$src)>; |
| def : Pat<(i32 (atomic_load_32 addr:$src)), (MOV32rm addr:$src)>; |
| def : Pat<(i64 (atomic_load_64 addr:$src)), (MOV64rm addr:$src)>; |
| |
| // Floating point loads/stores. |
| def : Pat<(atomic_store_32 addr:$dst, (i32 (bitconvert (f32 FR32:$src)))), |
| (MOVSSmr addr:$dst, FR32:$src)>, Requires<[UseSSE1]>; |
| def : Pat<(atomic_store_32 addr:$dst, (i32 (bitconvert (f32 FR32:$src)))), |
| (VMOVSSmr addr:$dst, FR32:$src)>, Requires<[UseAVX]>; |
| def : Pat<(atomic_store_32 addr:$dst, (i32 (bitconvert (f32 FR32:$src)))), |
| (VMOVSSZmr addr:$dst, FR32:$src)>, Requires<[HasAVX512]>; |
| |
| def : Pat<(atomic_store_64 addr:$dst, (i64 (bitconvert (f64 FR64:$src)))), |
| (MOVSDmr addr:$dst, FR64:$src)>, Requires<[UseSSE2]>; |
| def : Pat<(atomic_store_64 addr:$dst, (i64 (bitconvert (f64 FR64:$src)))), |
| (VMOVSDmr addr:$dst, FR64:$src)>, Requires<[UseAVX]>; |
| def : Pat<(atomic_store_64 addr:$dst, (i64 (bitconvert (f64 FR64:$src)))), |
| (VMOVSDmr addr:$dst, FR64:$src)>, Requires<[HasAVX512]>; |
| |
| def : Pat<(f32 (bitconvert (i32 (atomic_load_32 addr:$src)))), |
| (MOVSSrm_alt addr:$src)>, Requires<[UseSSE1]>; |
| def : Pat<(f32 (bitconvert (i32 (atomic_load_32 addr:$src)))), |
| (VMOVSSrm_alt addr:$src)>, Requires<[UseAVX]>; |
| def : Pat<(f32 (bitconvert (i32 (atomic_load_32 addr:$src)))), |
| (VMOVSSZrm_alt addr:$src)>, Requires<[HasAVX512]>; |
| |
| def : Pat<(f64 (bitconvert (i64 (atomic_load_64 addr:$src)))), |
| (MOVSDrm_alt addr:$src)>, Requires<[UseSSE2]>; |
| def : Pat<(f64 (bitconvert (i64 (atomic_load_64 addr:$src)))), |
| (VMOVSDrm_alt addr:$src)>, Requires<[UseAVX]>; |
| def : Pat<(f64 (bitconvert (i64 (atomic_load_64 addr:$src)))), |
| (VMOVSDZrm_alt addr:$src)>, Requires<[HasAVX512]>; |
| |
| //===----------------------------------------------------------------------===// |
| // DAG Pattern Matching Rules |
| //===----------------------------------------------------------------------===// |
| |
| // Use AND/OR to store 0/-1 in memory when optimizing for minsize. This saves |
| // binary size compared to a regular MOV, but it introduces an unnecessary |
| // load, so is not suitable for regular or optsize functions. |
| let Predicates = [OptForMinSize] in { |
| def : Pat<(simple_store (i16 0), addr:$dst), (AND16mi8 addr:$dst, 0)>; |
| def : Pat<(simple_store (i32 0), addr:$dst), (AND32mi8 addr:$dst, 0)>; |
| def : Pat<(simple_store (i64 0), addr:$dst), (AND64mi8 addr:$dst, 0)>; |
| def : Pat<(simple_store (i16 -1), addr:$dst), (OR16mi8 addr:$dst, -1)>; |
| def : Pat<(simple_store (i32 -1), addr:$dst), (OR32mi8 addr:$dst, -1)>; |
| def : Pat<(simple_store (i64 -1), addr:$dst), (OR64mi8 addr:$dst, -1)>; |
| } |
| |
| // In kernel code model, we can get the address of a label |
| // into a register with 'movq'. FIXME: This is a hack, the 'imm' predicate of |
| // the MOV64ri32 should accept these. |
| def : Pat<(i64 (X86Wrapper tconstpool :$dst)), |
| (MOV64ri32 tconstpool :$dst)>, Requires<[KernelCode]>; |
| def : Pat<(i64 (X86Wrapper tjumptable :$dst)), |
| (MOV64ri32 tjumptable :$dst)>, Requires<[KernelCode]>; |
| def : Pat<(i64 (X86Wrapper tglobaladdr :$dst)), |
| (MOV64ri32 tglobaladdr :$dst)>, Requires<[KernelCode]>; |
| def : Pat<(i64 (X86Wrapper texternalsym:$dst)), |
| (MOV64ri32 texternalsym:$dst)>, Requires<[KernelCode]>; |
| def : Pat<(i64 (X86Wrapper mcsym:$dst)), |
| (MOV64ri32 mcsym:$dst)>, Requires<[KernelCode]>; |
| def : Pat<(i64 (X86Wrapper tblockaddress:$dst)), |
| (MOV64ri32 tblockaddress:$dst)>, Requires<[KernelCode]>; |
| |
| // If we have small model and -static mode, it is safe to store global addresses |
| // directly as immediates. FIXME: This is really a hack, the 'imm' predicate |
| // for MOV64mi32 should handle this sort of thing. |
| def : Pat<(store (i64 (X86Wrapper tconstpool:$src)), addr:$dst), |
| (MOV64mi32 addr:$dst, tconstpool:$src)>, |
| Requires<[NearData, IsNotPIC]>; |
| def : Pat<(store (i64 (X86Wrapper tjumptable:$src)), addr:$dst), |
| (MOV64mi32 addr:$dst, tjumptable:$src)>, |
| Requires<[NearData, IsNotPIC]>; |
| def : Pat<(store (i64 (X86Wrapper tglobaladdr:$src)), addr:$dst), |
| (MOV64mi32 addr:$dst, tglobaladdr:$src)>, |
| Requires<[NearData, IsNotPIC]>; |
| def : Pat<(store (i64 (X86Wrapper texternalsym:$src)), addr:$dst), |
| (MOV64mi32 addr:$dst, texternalsym:$src)>, |
| Requires<[NearData, IsNotPIC]>; |
| def : Pat<(store (i64 (X86Wrapper mcsym:$src)), addr:$dst), |
| (MOV64mi32 addr:$dst, mcsym:$src)>, |
| Requires<[NearData, IsNotPIC]>; |
| def : Pat<(store (i64 (X86Wrapper tblockaddress:$src)), addr:$dst), |
| (MOV64mi32 addr:$dst, tblockaddress:$src)>, |
| Requires<[NearData, IsNotPIC]>; |
| |
| def : Pat<(i32 (X86RecoverFrameAlloc mcsym:$dst)), (MOV32ri mcsym:$dst)>; |
| def : Pat<(i64 (X86RecoverFrameAlloc mcsym:$dst)), (MOV64ri mcsym:$dst)>; |
| |
| // Calls |
| |
| // tls has some funny stuff here... |
| // This corresponds to movabs $foo@tpoff, %rax |
| def : Pat<(i64 (X86Wrapper tglobaltlsaddr :$dst)), |
| (MOV64ri32 tglobaltlsaddr :$dst)>; |
| // This corresponds to add $foo@tpoff, %rax |
| def : Pat<(add GR64:$src1, (X86Wrapper tglobaltlsaddr :$dst)), |
| (ADD64ri32 GR64:$src1, tglobaltlsaddr :$dst)>; |
| |
| |
| // Direct PC relative function call for small code model. 32-bit displacement |
| // sign extended to 64-bit. |
| def : Pat<(X86call (i64 tglobaladdr:$dst)), |
| (CALL64pcrel32 tglobaladdr:$dst)>; |
| def : Pat<(X86call (i64 texternalsym:$dst)), |
| (CALL64pcrel32 texternalsym:$dst)>; |
| |
| def : Pat<(X86call_rvmarker (i64 tglobaladdr:$rvfunc), (i64 texternalsym:$dst)), |
| (CALL64pcrel32_RVMARKER tglobaladdr:$rvfunc, texternalsym:$dst)>; |
| def : Pat<(X86call_rvmarker (i64 tglobaladdr:$rvfunc), (i64 tglobaladdr:$dst)), |
| (CALL64pcrel32_RVMARKER tglobaladdr:$rvfunc, tglobaladdr:$dst)>; |
| |
| |
| // Tailcall stuff. The TCRETURN instructions execute after the epilog, so they |
| // can never use callee-saved registers. That is the purpose of the GR64_TC |
| // register classes. |
| // |
| // The only volatile register that is never used by the calling convention is |
| // %r11. This happens when calling a vararg function with 6 arguments. |
| // |
| // Match an X86tcret that uses less than 7 volatile registers. |
| def X86tcret_6regs : PatFrag<(ops node:$ptr, node:$off), |
| (X86tcret node:$ptr, node:$off), [{ |
| // X86tcret args: (*chain, ptr, imm, regs..., glue) |
| unsigned NumRegs = 0; |
| for (unsigned i = 3, e = N->getNumOperands(); i != e; ++i) |
| if (isa<RegisterSDNode>(N->getOperand(i)) && ++NumRegs > 6) |
| return false; |
| return true; |
| }]>; |
| |
| def : Pat<(X86tcret ptr_rc_tailcall:$dst, timm:$off), |
| (TCRETURNri ptr_rc_tailcall:$dst, timm:$off)>, |
| Requires<[Not64BitMode, NotUseIndirectThunkCalls]>; |
| |
| // FIXME: This is disabled for 32-bit PIC mode because the global base |
| // register which is part of the address mode may be assigned a |
| // callee-saved register. |
| def : Pat<(X86tcret (load addr:$dst), timm:$off), |
| (TCRETURNmi addr:$dst, timm:$off)>, |
| Requires<[Not64BitMode, IsNotPIC, NotUseIndirectThunkCalls]>; |
| |
| def : Pat<(X86tcret (i32 tglobaladdr:$dst), timm:$off), |
| (TCRETURNdi tglobaladdr:$dst, timm:$off)>, |
| Requires<[NotLP64]>; |
| |
| def : Pat<(X86tcret (i32 texternalsym:$dst), timm:$off), |
| (TCRETURNdi texternalsym:$dst, timm:$off)>, |
| Requires<[NotLP64]>; |
| |
| def : Pat<(X86tcret ptr_rc_tailcall:$dst, timm:$off), |
| (TCRETURNri64 ptr_rc_tailcall:$dst, timm:$off)>, |
| Requires<[In64BitMode, NotUseIndirectThunkCalls]>; |
| |
| // Don't fold loads into X86tcret requiring more than 6 regs. |
| // There wouldn't be enough scratch registers for base+index. |
| def : Pat<(X86tcret_6regs (load addr:$dst), timm:$off), |
| (TCRETURNmi64 addr:$dst, timm:$off)>, |
| Requires<[In64BitMode, NotUseIndirectThunkCalls]>; |
| |
| def : Pat<(X86tcret ptr_rc_tailcall:$dst, timm:$off), |
| (INDIRECT_THUNK_TCRETURN64 ptr_rc_tailcall:$dst, timm:$off)>, |
| Requires<[In64BitMode, UseIndirectThunkCalls]>; |
| |
| def : Pat<(X86tcret ptr_rc_tailcall:$dst, timm:$off), |
| (INDIRECT_THUNK_TCRETURN32 ptr_rc_tailcall:$dst, timm:$off)>, |
| Requires<[Not64BitMode, UseIndirectThunkCalls]>; |
| |
| def : Pat<(X86tcret (i64 tglobaladdr:$dst), timm:$off), |
| (TCRETURNdi64 tglobaladdr:$dst, timm:$off)>, |
| Requires<[IsLP64]>; |
| |
| def : Pat<(X86tcret (i64 texternalsym:$dst), timm:$off), |
| (TCRETURNdi64 texternalsym:$dst, timm:$off)>, |
| Requires<[IsLP64]>; |
| |
| // Normal calls, with various flavors of addresses. |
| def : Pat<(X86call (i32 tglobaladdr:$dst)), |
| (CALLpcrel32 tglobaladdr:$dst)>; |
| def : Pat<(X86call (i32 texternalsym:$dst)), |
| (CALLpcrel32 texternalsym:$dst)>; |
| def : Pat<(X86call (i32 imm:$dst)), |
| (CALLpcrel32 imm:$dst)>, Requires<[CallImmAddr]>; |
| |
| // Comparisons. |
| |
| // TEST R,R is smaller than CMP R,0 |
| def : Pat<(X86cmp GR8:$src1, 0), |
| (TEST8rr GR8:$src1, GR8:$src1)>; |
| def : Pat<(X86cmp GR16:$src1, 0), |
| (TEST16rr GR16:$src1, GR16:$src1)>; |
| def : Pat<(X86cmp GR32:$src1, 0), |
| (TEST32rr GR32:$src1, GR32:$src1)>; |
| def : Pat<(X86cmp GR64:$src1, 0), |
| (TEST64rr GR64:$src1, GR64:$src1)>; |
| |
| // zextload bool -> zextload byte |
| // i1 stored in one byte in zero-extended form. |
| // Upper bits cleanup should be executed before Store. |
| def : Pat<(zextloadi8i1 addr:$src), (MOV8rm addr:$src)>; |
| def : Pat<(zextloadi16i1 addr:$src), |
| (EXTRACT_SUBREG (MOVZX32rm8 addr:$src), sub_16bit)>; |
| def : Pat<(zextloadi32i1 addr:$src), (MOVZX32rm8 addr:$src)>; |
| def : Pat<(zextloadi64i1 addr:$src), |
| (SUBREG_TO_REG (i64 0), (MOVZX32rm8 addr:$src), sub_32bit)>; |
| |
| // extload bool -> extload byte |
| // When extloading from 16-bit and smaller memory locations into 64-bit |
| // registers, use zero-extending loads so that the entire 64-bit register is |
| // defined, avoiding partial-register updates. |
| |
| def : Pat<(extloadi8i1 addr:$src), (MOV8rm addr:$src)>; |
| def : Pat<(extloadi16i1 addr:$src), |
| (EXTRACT_SUBREG (MOVZX32rm8 addr:$src), sub_16bit)>; |
| def : Pat<(extloadi32i1 addr:$src), (MOVZX32rm8 addr:$src)>; |
| def : Pat<(extloadi16i8 addr:$src), |
| (EXTRACT_SUBREG (MOVZX32rm8 addr:$src), sub_16bit)>; |
| def : Pat<(extloadi32i8 addr:$src), (MOVZX32rm8 addr:$src)>; |
| def : Pat<(extloadi32i16 addr:$src), (MOVZX32rm16 addr:$src)>; |
| |
| // For other extloads, use subregs, since the high contents of the register are |
| // defined after an extload. |
| // NOTE: The extloadi64i32 pattern needs to be first as it will try to form |
| // 32-bit loads for 4 byte aligned i8/i16 loads. |
| def : Pat<(extloadi64i32 addr:$src), |
| (SUBREG_TO_REG (i64 0), (MOV32rm addr:$src), sub_32bit)>; |
| def : Pat<(extloadi64i1 addr:$src), |
| (SUBREG_TO_REG (i64 0), (MOVZX32rm8 addr:$src), sub_32bit)>; |
| def : Pat<(extloadi64i8 addr:$src), |
| (SUBREG_TO_REG (i64 0), (MOVZX32rm8 addr:$src), sub_32bit)>; |
| def : Pat<(extloadi64i16 addr:$src), |
| (SUBREG_TO_REG (i64 0), (MOVZX32rm16 addr:$src), sub_32bit)>; |
| |
| // anyext. Define these to do an explicit zero-extend to |
| // avoid partial-register updates. |
| def : Pat<(i16 (anyext GR8 :$src)), (EXTRACT_SUBREG |
| (MOVZX32rr8 GR8 :$src), sub_16bit)>; |
| def : Pat<(i32 (anyext GR8 :$src)), (MOVZX32rr8 GR8 :$src)>; |
| |
| // Except for i16 -> i32 since isel expect i16 ops to be promoted to i32. |
| def : Pat<(i32 (anyext GR16:$src)), |
| (INSERT_SUBREG (i32 (IMPLICIT_DEF)), GR16:$src, sub_16bit)>; |
| |
| def : Pat<(i64 (anyext GR8 :$src)), |
| (SUBREG_TO_REG (i64 0), (MOVZX32rr8 GR8 :$src), sub_32bit)>; |
| def : Pat<(i64 (anyext GR16:$src)), |
| (SUBREG_TO_REG (i64 0), (MOVZX32rr16 GR16 :$src), sub_32bit)>; |
| def : Pat<(i64 (anyext GR32:$src)), |
| (INSERT_SUBREG (i64 (IMPLICIT_DEF)), GR32:$src, sub_32bit)>; |
| |
| // If this is an anyext of the remainder of an 8-bit sdivrem, use a MOVSX |
| // instead of a MOVZX. The sdivrem lowering will emit emit a MOVSX to move |
| // %ah to the lower byte of a register. By using a MOVSX here we allow a |
| // post-isel peephole to merge the two MOVSX instructions into one. |
| def anyext_sdiv : PatFrag<(ops node:$lhs), (anyext node:$lhs),[{ |
| return (N->getOperand(0).getOpcode() == ISD::SDIVREM && |
| N->getOperand(0).getResNo() == 1); |
| }]>; |
| def : Pat<(i32 (anyext_sdiv GR8:$src)), (MOVSX32rr8 GR8:$src)>; |
| |
| // Any instruction that defines a 32-bit result leaves the high half of the |
| // register. Truncate can be lowered to EXTRACT_SUBREG. CopyFromReg may |
| // be copying from a truncate. AssertSext/AssertZext/AssertAlign aren't saying |
| // anything about the upper 32 bits, they're probably just qualifying a |
| // CopyFromReg. FREEZE may be coming from a a truncate. Any other 32-bit |
| // operation will zero-extend up to 64 bits. |
| def def32 : PatLeaf<(i32 GR32:$src), [{ |
| return N->getOpcode() != ISD::TRUNCATE && |
| N->getOpcode() != TargetOpcode::EXTRACT_SUBREG && |
| N->getOpcode() != ISD::CopyFromReg && |
| N->getOpcode() != ISD::AssertSext && |
| N->getOpcode() != ISD::AssertZext && |
| N->getOpcode() != ISD::AssertAlign && |
| N->getOpcode() != ISD::FREEZE; |
| }]>; |
| |
| // In the case of a 32-bit def that is known to implicitly zero-extend, |
| // we can use a SUBREG_TO_REG. |
| def : Pat<(i64 (zext def32:$src)), |
| (SUBREG_TO_REG (i64 0), GR32:$src, sub_32bit)>; |
| def : Pat<(i64 (and (anyext def32:$src), 0x00000000FFFFFFFF)), |
| (SUBREG_TO_REG (i64 0), GR32:$src, sub_32bit)>; |
| |
| //===----------------------------------------------------------------------===// |
| // Pattern match OR as ADD |
| //===----------------------------------------------------------------------===// |
| |
| // If safe, we prefer to pattern match OR as ADD at isel time. ADD can be |
| // 3-addressified into an LEA instruction to avoid copies. However, we also |
| // want to finally emit these instructions as an or at the end of the code |
| // generator to make the generated code easier to read. To do this, we select |
| // into "disjoint bits" pseudo ops. |
| |
| // Treat an 'or' node is as an 'add' if the or'ed bits are known to be zero. |
| def or_is_add : PatFrag<(ops node:$lhs, node:$rhs), (or node:$lhs, node:$rhs),[{ |
| if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N->getOperand(1))) |
| return CurDAG->MaskedValueIsZero(N->getOperand(0), CN->getAPIntValue()); |
| |
| KnownBits Known0 = CurDAG->computeKnownBits(N->getOperand(0), 0); |
| KnownBits Known1 = CurDAG->computeKnownBits(N->getOperand(1), 0); |
| return (~Known0.Zero & ~Known1.Zero) == 0; |
| }]>; |
| |
| |
| // (or x1, x2) -> (add x1, x2) if two operands are known not to share bits. |
| // Try this before the selecting to OR. |
| let SchedRW = [WriteALU] in { |
| |
| let isConvertibleToThreeAddress = 1, isPseudo = 1, |
| Constraints = "$src1 = $dst", Defs = [EFLAGS] in { |
| let isCommutable = 1 in { |
| def ADD8rr_DB : I<0, Pseudo, (outs GR8:$dst), (ins GR8:$src1, GR8:$src2), |
| "", // orb/addb REG, REG |
| [(set GR8:$dst, (or_is_add GR8:$src1, GR8:$src2))]>; |
| def ADD16rr_DB : I<0, Pseudo, (outs GR16:$dst), (ins GR16:$src1, GR16:$src2), |
| "", // orw/addw REG, REG |
| [(set GR16:$dst, (or_is_add GR16:$src1, GR16:$src2))]>; |
| def ADD32rr_DB : I<0, Pseudo, (outs GR32:$dst), (ins GR32:$src1, GR32:$src2), |
| "", // orl/addl REG, REG |
| [(set GR32:$dst, (or_is_add GR32:$src1, GR32:$src2))]>; |
| def ADD64rr_DB : I<0, Pseudo, (outs GR64:$dst), (ins GR64:$src1, GR64:$src2), |
| "", // orq/addq REG, REG |
| [(set GR64:$dst, (or_is_add GR64:$src1, GR64:$src2))]>; |
| } // isCommutable |
| |
| // NOTE: These are order specific, we want the ri8 forms to be listed |
| // first so that they are slightly preferred to the ri forms. |
| |
| def ADD8ri_DB : I<0, Pseudo, |
| (outs GR8:$dst), (ins GR8:$src1, i8imm:$src2), |
| "", // orb/addb REG, imm8 |
| [(set GR8:$dst, (or_is_add GR8:$src1, imm:$src2))]>; |
| def ADD16ri8_DB : I<0, Pseudo, |
| (outs GR16:$dst), (ins GR16:$src1, i16i8imm:$src2), |
| "", // orw/addw REG, imm8 |
| [(set GR16:$dst,(or_is_add GR16:$src1,i16immSExt8:$src2))]>; |
| def ADD16ri_DB : I<0, Pseudo, (outs GR16:$dst), (ins GR16:$src1, i16imm:$src2), |
| "", // orw/addw REG, imm |
| [(set GR16:$dst, (or_is_add GR16:$src1, imm:$src2))]>; |
| |
| def ADD32ri8_DB : I<0, Pseudo, |
| (outs GR32:$dst), (ins GR32:$src1, i32i8imm:$src2), |
| "", // orl/addl REG, imm8 |
| [(set GR32:$dst,(or_is_add GR32:$src1,i32immSExt8:$src2))]>; |
| def ADD32ri_DB : I<0, Pseudo, (outs GR32:$dst), (ins GR32:$src1, i32imm:$src2), |
| "", // orl/addl REG, imm |
| [(set GR32:$dst, (or_is_add GR32:$src1, imm:$src2))]>; |
| |
| |
| def ADD64ri8_DB : I<0, Pseudo, |
| (outs GR64:$dst), (ins GR64:$src1, i64i8imm:$src2), |
| "", // orq/addq REG, imm8 |
| [(set GR64:$dst, (or_is_add GR64:$src1, |
| i64immSExt8:$src2))]>; |
| def ADD64ri32_DB : I<0, Pseudo, |
| (outs GR64:$dst), (ins GR64:$src1, i64i32imm:$src2), |
| "", // orq/addq REG, imm |
| [(set GR64:$dst, (or_is_add GR64:$src1, |
| i64immSExt32:$src2))]>; |
| } |
| } // AddedComplexity, SchedRW |
| |
| //===----------------------------------------------------------------------===// |
| // Pattern match SUB as XOR |
| //===----------------------------------------------------------------------===// |
| |
| // An immediate in the LHS of a subtract can't be encoded in the instruction. |
| // If there is no possibility of a borrow we can use an XOR instead of a SUB |
| // to enable the immediate to be folded. |
| // TODO: Move this to a DAG combine? |
| |
| def sub_is_xor : PatFrag<(ops node:$lhs, node:$rhs), (sub node:$lhs, node:$rhs),[{ |
| if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N->getOperand(0))) { |
| KnownBits Known = CurDAG->computeKnownBits(N->getOperand(1)); |
| |
| // If all possible ones in the RHS are set in the LHS then there can't be |
| // a borrow and we can use xor. |
| return (~Known.Zero).isSubsetOf(CN->getAPIntValue()); |
| } |
| |
| return false; |
| }]>; |
| |
| let AddedComplexity = 5 in { |
| def : Pat<(sub_is_xor imm:$src2, GR8:$src1), |
| (XOR8ri GR8:$src1, imm:$src2)>; |
| def : Pat<(sub_is_xor i16immSExt8:$src2, GR16:$src1), |
| (XOR16ri8 GR16:$src1, i16immSExt8:$src2)>; |
| def : Pat<(sub_is_xor imm:$src2, GR16:$src1), |
| (XOR16ri GR16:$src1, imm:$src2)>; |
| def : Pat<(sub_is_xor i32immSExt8:$src2, GR32:$src1), |
| (XOR32ri8 GR32:$src1, i32immSExt8:$src2)>; |
| def : Pat<(sub_is_xor imm:$src2, GR32:$src1), |
| (XOR32ri GR32:$src1, imm:$src2)>; |
| def : Pat<(sub_is_xor i64immSExt8:$src2, GR64:$src1), |
| (XOR64ri8 GR64:$src1, i64immSExt8:$src2)>; |
| def : Pat<(sub_is_xor i64immSExt32:$src2, GR64:$src1), |
| (XOR64ri32 GR64:$src1, i64immSExt32:$src2)>; |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // Some peepholes |
| //===----------------------------------------------------------------------===// |
| |
| // Odd encoding trick: -128 fits into an 8-bit immediate field while |
| // +128 doesn't, so in this special case use a sub instead of an add. |
| def : Pat<(add GR16:$src1, 128), |
| (SUB16ri8 GR16:$src1, -128)>; |
| def : Pat<(store (add (loadi16 addr:$dst), 128), addr:$dst), |
| (SUB16mi8 addr:$dst, -128)>; |
| |
| def : Pat<(add GR32:$src1, 128), |
| (SUB32ri8 GR32:$src1, -128)>; |
| def : Pat<(store (add (loadi32 addr:$dst), 128), addr:$dst), |
| (SUB32mi8 addr:$dst, -128)>; |
| |
| def : Pat<(add GR64:$src1, 128), |
| (SUB64ri8 GR64:$src1, -128)>; |
| def : Pat<(store (add (loadi64 addr:$dst), 128), addr:$dst), |
| (SUB64mi8 addr:$dst, -128)>; |
| |
| def : Pat<(X86add_flag_nocf GR16:$src1, 128), |
| (SUB16ri8 GR16:$src1, -128)>; |
| def : Pat<(X86add_flag_nocf GR32:$src1, 128), |
| (SUB32ri8 GR32:$src1, -128)>; |
| def : Pat<(X86add_flag_nocf GR64:$src1, 128), |
| (SUB64ri8 GR64:$src1, -128)>; |
| |
| // The same trick applies for 32-bit immediate fields in 64-bit |
| // instructions. |
| def : Pat<(add GR64:$src1, 0x0000000080000000), |
| (SUB64ri32 GR64:$src1, 0xffffffff80000000)>; |
| def : Pat<(store (add (loadi64 addr:$dst), 0x0000000080000000), addr:$dst), |
| (SUB64mi32 addr:$dst, 0xffffffff80000000)>; |
| |
| def : Pat<(X86add_flag_nocf GR64:$src1, 0x0000000080000000), |
| (SUB64ri32 GR64:$src1, 0xffffffff80000000)>; |
| |
| // To avoid needing to materialize an immediate in a register, use a 32-bit and |
| // with implicit zero-extension instead of a 64-bit and if the immediate has at |
| // least 32 bits of leading zeros. If in addition the last 32 bits can be |
| // represented with a sign extension of a 8 bit constant, use that. |
| // This can also reduce instruction size by eliminating the need for the REX |
| // prefix. |
| |
| // AddedComplexity is needed to give priority over i64immSExt8 and i64immSExt32. |
| let AddedComplexity = 1 in { |
| def : Pat<(and GR64:$src, i64immZExt32SExt8:$imm), |
| (SUBREG_TO_REG |
| (i64 0), |
| (AND32ri8 |
| (EXTRACT_SUBREG GR64:$src, sub_32bit), |
| (i32 (GetLo32XForm imm:$imm))), |
| sub_32bit)>; |
| |
| def : Pat<(and GR64:$src, i64immZExt32:$imm), |
| (SUBREG_TO_REG |
| (i64 0), |
| (AND32ri |
| (EXTRACT_SUBREG GR64:$src, sub_32bit), |
| (i32 (GetLo32XForm imm:$imm))), |
| sub_32bit)>; |
| } // AddedComplexity = 1 |
| |
| |
| // AddedComplexity is needed due to the increased complexity on the |
| // i64immZExt32SExt8 and i64immZExt32 patterns above. Applying this to all |
| // the MOVZX patterns keeps thems together in DAGIsel tables. |
| let AddedComplexity = 1 in { |
| // r & (2^16-1) ==> movz |
| def : Pat<(and GR32:$src1, 0xffff), |
| (MOVZX32rr16 (EXTRACT_SUBREG GR32:$src1, sub_16bit))>; |
| // r & (2^8-1) ==> movz |
| def : Pat<(and GR32:$src1, 0xff), |
| (MOVZX32rr8 (EXTRACT_SUBREG GR32:$src1, sub_8bit))>; |
| // r & (2^8-1) ==> movz |
| def : Pat<(and GR16:$src1, 0xff), |
| (EXTRACT_SUBREG (MOVZX32rr8 (EXTRACT_SUBREG GR16:$src1, sub_8bit)), |
| sub_16bit)>; |
| |
| // r & (2^32-1) ==> movz |
| def : Pat<(and GR64:$src, 0x00000000FFFFFFFF), |
| (SUBREG_TO_REG (i64 0), |
| (MOV32rr (EXTRACT_SUBREG GR64:$src, sub_32bit)), |
| sub_32bit)>; |
| // r & (2^16-1) ==> movz |
| def : Pat<(and GR64:$src, 0xffff), |
| (SUBREG_TO_REG (i64 0), |
| (MOVZX32rr16 (i16 (EXTRACT_SUBREG GR64:$src, sub_16bit))), |
| sub_32bit)>; |
| // r & (2^8-1) ==> movz |
| def : Pat<(and GR64:$src, 0xff), |
| (SUBREG_TO_REG (i64 0), |
| (MOVZX32rr8 (i8 (EXTRACT_SUBREG GR64:$src, sub_8bit))), |
| sub_32bit)>; |
| } // AddedComplexity = 1 |
| |
| |
| // Try to use BTS/BTR/BTC for single bit operations on the upper 32-bits. |
| |
| def BTRXForm : SDNodeXForm<imm, [{ |
| // Transformation function: Find the lowest 0. |
| return getI64Imm((uint8_t)N->getAPIntValue().countTrailingOnes(), SDLoc(N)); |
| }]>; |
| |
| def BTCBTSXForm : SDNodeXForm<imm, [{ |
| // Transformation function: Find the lowest 1. |
| return getI64Imm((uint8_t)N->getAPIntValue().countTrailingZeros(), SDLoc(N)); |
| }]>; |
| |
| def BTRMask64 : ImmLeaf<i64, [{ |
| return !isUInt<32>(Imm) && !isInt<32>(Imm) && isPowerOf2_64(~Imm); |
| }]>; |
| |
| def BTCBTSMask64 : ImmLeaf<i64, [{ |
| return !isInt<32>(Imm) && isPowerOf2_64(Imm); |
| }]>; |
| |
| // For now only do this for optsize. |
| let AddedComplexity = 1, Predicates=[OptForSize] in { |
| def : Pat<(and GR64:$src1, BTRMask64:$mask), |
| (BTR64ri8 GR64:$src1, (BTRXForm imm:$mask))>; |
| def : Pat<(or GR64:$src1, BTCBTSMask64:$mask), |
| (BTS64ri8 GR64:$src1, (BTCBTSXForm imm:$mask))>; |
| def : Pat<(xor GR64:$src1, BTCBTSMask64:$mask), |
| (BTC64ri8 GR64:$src1, (BTCBTSXForm imm:$mask))>; |
| } |
| |
| |
| // sext_inreg patterns |
| def : Pat<(sext_inreg GR32:$src, i16), |
| (MOVSX32rr16 (EXTRACT_SUBREG GR32:$src, sub_16bit))>; |
| def : Pat<(sext_inreg GR32:$src, i8), |
| (MOVSX32rr8 (EXTRACT_SUBREG GR32:$src, sub_8bit))>; |
| |
| def : Pat<(sext_inreg GR16:$src, i8), |
| (EXTRACT_SUBREG (MOVSX32rr8 (EXTRACT_SUBREG GR16:$src, sub_8bit)), |
| sub_16bit)>; |
| |
| def : Pat<(sext_inreg GR64:$src, i32), |
| (MOVSX64rr32 (EXTRACT_SUBREG GR64:$src, sub_32bit))>; |
| def : Pat<(sext_inreg GR64:$src, i16), |
| (MOVSX64rr16 (EXTRACT_SUBREG GR64:$src, sub_16bit))>; |
| def : Pat<(sext_inreg GR64:$src, i8), |
| (MOVSX64rr8 (EXTRACT_SUBREG GR64:$src, sub_8bit))>; |
| |
| // sext, sext_load, zext, zext_load |
| def: Pat<(i16 (sext GR8:$src)), |
| (EXTRACT_SUBREG (MOVSX32rr8 GR8:$src), sub_16bit)>; |
| def: Pat<(sextloadi16i8 addr:$src), |
| (EXTRACT_SUBREG (MOVSX32rm8 addr:$src), sub_16bit)>; |
| def: Pat<(i16 (zext GR8:$src)), |
| (EXTRACT_SUBREG (MOVZX32rr8 GR8:$src), sub_16bit)>; |
| def: Pat<(zextloadi16i8 addr:$src), |
| (EXTRACT_SUBREG (MOVZX32rm8 addr:$src), sub_16bit)>; |
| |
| // trunc patterns |
| def : Pat<(i16 (trunc GR32:$src)), |
| (EXTRACT_SUBREG GR32:$src, sub_16bit)>; |
| def : Pat<(i8 (trunc GR32:$src)), |
| (EXTRACT_SUBREG (i32 (COPY_TO_REGCLASS GR32:$src, GR32_ABCD)), |
| sub_8bit)>, |
| Requires<[Not64BitMode]>; |
| def : Pat<(i8 (trunc GR16:$src)), |
| (EXTRACT_SUBREG (i16 (COPY_TO_REGCLASS GR16:$src, GR16_ABCD)), |
| sub_8bit)>, |
| Requires<[Not64BitMode]>; |
| def : Pat<(i32 (trunc GR64:$src)), |
| (EXTRACT_SUBREG GR64:$src, sub_32bit)>; |
| def : Pat<(i16 (trunc GR64:$src)), |
| (EXTRACT_SUBREG GR64:$src, sub_16bit)>; |
| def : Pat<(i8 (trunc GR64:$src)), |
| (EXTRACT_SUBREG GR64:$src, sub_8bit)>; |
| def : Pat<(i8 (trunc GR32:$src)), |
| (EXTRACT_SUBREG GR32:$src, sub_8bit)>, |
| Requires<[In64BitMode]>; |
| def : Pat<(i8 (trunc GR16:$src)), |
| (EXTRACT_SUBREG GR16:$src, sub_8bit)>, |
| Requires<[In64BitMode]>; |
| |
| def immff00_ffff : ImmLeaf<i32, [{ |
| return Imm >= 0xff00 && Imm <= 0xffff; |
| }]>; |
| |
| // h-register tricks |
| def : Pat<(i8 (trunc (srl_su GR16:$src, (i8 8)))), |
| (EXTRACT_SUBREG GR16:$src, sub_8bit_hi)>, |
| Requires<[Not64BitMode]>; |
| def : Pat<(i8 (trunc (srl_su (i32 (anyext GR16:$src)), (i8 8)))), |
| (EXTRACT_SUBREG GR16:$src, sub_8bit_hi)>, |
| Requires<[Not64BitMode]>; |
| def : Pat<(i8 (trunc (srl_su GR32:$src, (i8 8)))), |
| (EXTRACT_SUBREG GR32:$src, sub_8bit_hi)>, |
| Requires<[Not64BitMode]>; |
| def : Pat<(srl GR16:$src, (i8 8)), |
| (EXTRACT_SUBREG |
| (MOVZX32rr8_NOREX (EXTRACT_SUBREG GR16:$src, sub_8bit_hi)), |
| sub_16bit)>; |
| def : Pat<(i32 (zext (srl_su GR16:$src, (i8 8)))), |
| (MOVZX32rr8_NOREX (EXTRACT_SUBREG GR16:$src, sub_8bit_hi))>; |
| def : Pat<(i32 (anyext (srl_su GR16:$src, (i8 8)))), |
| (MOVZX32rr8_NOREX (EXTRACT_SUBREG GR16:$src, sub_8bit_hi))>; |
| def : Pat<(and (srl_su GR32:$src, (i8 8)), (i32 255)), |
| (MOVZX32rr8_NOREX (EXTRACT_SUBREG GR32:$src, sub_8bit_hi))>; |
| def : Pat<(srl (and_su GR32:$src, immff00_ffff), (i8 8)), |
| (MOVZX32rr8_NOREX (EXTRACT_SUBREG GR32:$src, sub_8bit_hi))>; |
| |
| // h-register tricks. |
| // For now, be conservative on x86-64 and use an h-register extract only if the |
| // value is immediately zero-extended or stored, which are somewhat common |
| // cases. This uses a bunch of code to prevent a register requiring a REX prefix |
| // from being allocated in the same instruction as the h register, as there's |
| // currently no way to describe this requirement to the register allocator. |
| |
| // h-register extract and zero-extend. |
| def : Pat<(and (srl_su GR64:$src, (i8 8)), (i64 255)), |
| (SUBREG_TO_REG |
| (i64 0), |
| (MOVZX32rr8_NOREX |
| (EXTRACT_SUBREG GR64:$src, sub_8bit_hi)), |
| sub_32bit)>; |
| def : Pat<(i64 (zext (srl_su GR16:$src, (i8 8)))), |
| (SUBREG_TO_REG |
| (i64 0), |
| (MOVZX32rr8_NOREX |
| (EXTRACT_SUBREG GR16:$src, sub_8bit_hi)), |
| sub_32bit)>; |
| def : Pat<(i64 (anyext (srl_su GR16:$src, (i8 8)))), |
| (SUBREG_TO_REG |
| (i64 0), |
| (MOVZX32rr8_NOREX |
| (EXTRACT_SUBREG GR16:$src, sub_8bit_hi)), |
| sub_32bit)>; |
| |
| // h-register extract and store. |
| def : Pat<(store (i8 (trunc_su (srl_su GR64:$src, (i8 8)))), addr:$dst), |
| (MOV8mr_NOREX |
| addr:$dst, |
| (EXTRACT_SUBREG GR64:$src, sub_8bit_hi))>; |
| def : Pat<(store (i8 (trunc_su (srl_su GR32:$src, (i8 8)))), addr:$dst), |
| (MOV8mr_NOREX |
| addr:$dst, |
| (EXTRACT_SUBREG GR32:$src, sub_8bit_hi))>, |
| Requires<[In64BitMode]>; |
| def : Pat<(store (i8 (trunc_su (srl_su GR16:$src, (i8 8)))), addr:$dst), |
| (MOV8mr_NOREX |
| addr:$dst, |
| (EXTRACT_SUBREG GR16:$src, sub_8bit_hi))>, |
| Requires<[In64BitMode]>; |
| |
| // Special pattern to catch the last step of __builtin_parity handling. Our |
| // goal is to use an xor of an h-register with the corresponding l-register. |
| // The above patterns would handle this on non 64-bit targets, but for 64-bit |
| // we need to be more careful. We're using a NOREX instruction here in case |
| // register allocation fails to keep the two registers together. So we need to |
| // make sure we can't accidentally mix R8-R15 with an h-register. |
| def : Pat<(X86xor_flag (i8 (trunc GR32:$src)), |
| (i8 (trunc (srl_su GR32:$src, (i8 8))))), |
| (XOR8rr_NOREX (EXTRACT_SUBREG GR32:$src, sub_8bit), |
| (EXTRACT_SUBREG GR32:$src, sub_8bit_hi))>; |
| |
| // (shl x, 1) ==> (add x, x) |
| // Note that if x is undef (immediate or otherwise), we could theoretically |
| // end up with the two uses of x getting different values, producing a result |
| // where the least significant bit is not 0. However, the probability of this |
| // happening is considered low enough that this is officially not a |
| // "real problem". |
| def : Pat<(shl GR8 :$src1, (i8 1)), (ADD8rr GR8 :$src1, GR8 :$src1)>; |
| def : Pat<(shl GR16:$src1, (i8 1)), (ADD16rr GR16:$src1, GR16:$src1)>; |
| def : Pat<(shl GR32:$src1, (i8 1)), (ADD32rr GR32:$src1, GR32:$src1)>; |
| def : Pat<(shl GR64:$src1, (i8 1)), (ADD64rr GR64:$src1, GR64:$src1)>; |
| |
| def shiftMask8 : PatFrag<(ops node:$lhs), (and node:$lhs, imm), [{ |
| return isUnneededShiftMask(N, 3); |
| }]>; |
| |
| def shiftMask16 : PatFrag<(ops node:$lhs), (and node:$lhs, imm), [{ |
| return isUnneededShiftMask(N, 4); |
| }]>; |
| |
| def shiftMask32 : PatFrag<(ops node:$lhs), (and node:$lhs, imm), [{ |
| return isUnneededShiftMask(N, 5); |
| }]>; |
| |
| def shiftMask64 : PatFrag<(ops node:$lhs), (and node:$lhs, imm), [{ |
| return isUnneededShiftMask(N, 6); |
| }]>; |
| |
| |
| // Shift amount is implicitly masked. |
| multiclass MaskedShiftAmountPats<SDNode frag, string name> { |
| // (shift x (and y, 31)) ==> (shift x, y) |
| def : Pat<(frag GR8:$src1, (shiftMask32 CL)), |
| (!cast<Instruction>(name # "8rCL") GR8:$src1)>; |
| def : Pat<(frag GR16:$src1, (shiftMask32 CL)), |
| (!cast<Instruction>(name # "16rCL") GR16:$src1)>; |
| def : Pat<(frag GR32:$src1, (shiftMask32 CL)), |
| (!cast<Instruction>(name # "32rCL") GR32:$src1)>; |
| def : Pat<(store (frag (loadi8 addr:$dst), (shiftMask32 CL)), addr:$dst), |
| (!cast<Instruction>(name # "8mCL") addr:$dst)>; |
| def : Pat<(store (frag (loadi16 addr:$dst), (shiftMask32 CL)), addr:$dst), |
| (!cast<Instruction>(name # "16mCL") addr:$dst)>; |
| def : Pat<(store (frag (loadi32 addr:$dst), (shiftMask32 CL)), addr:$dst), |
| (!cast<Instruction>(name # "32mCL") addr:$dst)>; |
| |
| // (shift x (and y, 63)) ==> (shift x, y) |
| def : Pat<(frag GR64:$src1, (shiftMask64 CL)), |
| (!cast<Instruction>(name # "64rCL") GR64:$src1)>; |
| def : Pat<(store (frag (loadi64 addr:$dst), (shiftMask64 CL)), addr:$dst), |
| (!cast<Instruction>(name # "64mCL") addr:$dst)>; |
| } |
| |
| defm : MaskedShiftAmountPats<shl, "SHL">; |
| defm : MaskedShiftAmountPats<srl, "SHR">; |
| defm : MaskedShiftAmountPats<sra, "SAR">; |
| |
| // ROL/ROR instructions allow a stronger mask optimization than shift for 8- and |
| // 16-bit. We can remove a mask of any (bitwidth - 1) on the rotation amount |
| // because over-rotating produces the same result. This is noted in the Intel |
| // docs with: "tempCOUNT <- (COUNT & COUNTMASK) MOD SIZE". Masking the rotation |
| // amount could affect EFLAGS results, but that does not matter because we are |
| // not tracking flags for these nodes. |
| multiclass MaskedRotateAmountPats<SDNode frag, string name> { |
| // (rot x (and y, BitWidth - 1)) ==> (rot x, y) |
| def : Pat<(frag GR8:$src1, (shiftMask8 CL)), |
| (!cast<Instruction>(name # "8rCL") GR8:$src1)>; |
| def : Pat<(frag GR16:$src1, (shiftMask16 CL)), |
| (!cast<Instruction>(name # "16rCL") GR16:$src1)>; |
| def : Pat<(frag GR32:$src1, (shiftMask32 CL)), |
| (!cast<Instruction>(name # "32rCL") GR32:$src1)>; |
| def : Pat<(store (frag (loadi8 addr:$dst), (shiftMask8 CL)), addr:$dst), |
| (!cast<Instruction>(name # "8mCL") addr:$dst)>; |
| def : Pat<(store (frag (loadi16 addr:$dst), (shiftMask16 CL)), addr:$dst), |
| (!cast<Instruction>(name # "16mCL") addr:$dst)>; |
| def : Pat<(store (frag (loadi32 addr:$dst), (shiftMask32 CL)), addr:$dst), |
| (!cast<Instruction>(name # "32mCL") addr:$dst)>; |
| |
| // (rot x (and y, 63)) ==> (rot x, y) |
| def : Pat<(frag GR64:$src1, (shiftMask64 CL)), |
| (!cast<Instruction>(name # "64rCL") GR64:$src1)>; |
| def : Pat<(store (frag (loadi64 addr:$dst), (shiftMask64 CL)), addr:$dst), |
| (!cast<Instruction>(name # "64mCL") addr:$dst)>; |
| } |
| |
| |
| defm : MaskedRotateAmountPats<rotl, "ROL">; |
| defm : MaskedRotateAmountPats<rotr, "ROR">; |
| |
| // Double "funnel" shift amount is implicitly masked. |
| // (fshl/fshr x (and y, 31)) ==> (fshl/fshr x, y) (NOTE: modulo32) |
| def : Pat<(X86fshl GR16:$src1, GR16:$src2, (shiftMask32 CL)), |
| (SHLD16rrCL GR16:$src1, GR16:$src2)>; |
| def : Pat<(X86fshr GR16:$src2, GR16:$src1, (shiftMask32 CL)), |
| (SHRD16rrCL GR16:$src1, GR16:$src2)>; |
| |
| // (fshl/fshr x (and y, 31)) ==> (fshl/fshr x, y) |
| def : Pat<(fshl GR32:$src1, GR32:$src2, (shiftMask32 CL)), |
| (SHLD32rrCL GR32:$src1, GR32:$src2)>; |
| def : Pat<(fshr GR32:$src2, GR32:$src1, (shiftMask32 CL)), |
| (SHRD32rrCL GR32:$src1, GR32:$src2)>; |
| |
| // (fshl/fshr x (and y, 63)) ==> (fshl/fshr x, y) |
| def : Pat<(fshl GR64:$src1, GR64:$src2, (shiftMask64 CL)), |
| (SHLD64rrCL GR64:$src1, GR64:$src2)>; |
| def : Pat<(fshr GR64:$src2, GR64:$src1, (shiftMask64 CL)), |
| (SHRD64rrCL GR64:$src1, GR64:$src2)>; |
| |
| let Predicates = [HasBMI2] in { |
| let AddedComplexity = 1 in { |
| def : Pat<(sra GR32:$src1, (shiftMask32 GR8:$src2)), |
| (SARX32rr GR32:$src1, |
| (INSERT_SUBREG |
| (i32 (IMPLICIT_DEF)), GR8:$src2, sub_8bit))>; |
| def : Pat<(sra GR64:$src1, (shiftMask64 GR8:$src2)), |
| (SARX64rr GR64:$src1, |
| (INSERT_SUBREG |
| (i64 (IMPLICIT_DEF)), GR8:$src2, sub_8bit))>; |
| |
| def : Pat<(srl GR32:$src1, (shiftMask32 GR8:$src2)), |
| (SHRX32rr GR32:$src1, |
| (INSERT_SUBREG |
| (i32 (IMPLICIT_DEF)), GR8:$src2, sub_8bit))>; |
| def : Pat<(srl GR64:$src1, (shiftMask64 GR8:$src2)), |
| (SHRX64rr GR64:$src1, |
| (INSERT_SUBREG |
| (i64 (IMPLICIT_DEF)), GR8:$src2, sub_8bit))>; |
| |
| def : Pat<(shl GR32:$src1, (shiftMask32 GR8:$src2)), |
| (SHLX32rr GR32:$src1, |
| (INSERT_SUBREG |
| (i32 (IMPLICIT_DEF)), GR8:$src2, sub_8bit))>; |
| def : Pat<(shl GR64:$src1, (shiftMask64 GR8:$src2)), |
| (SHLX64rr GR64:$src1, |
| (INSERT_SUBREG |
| (i64 (IMPLICIT_DEF)), GR8:$src2, sub_8bit))>; |
| } |
| |
| def : Pat<(sra (loadi32 addr:$src1), (shiftMask32 GR8:$src2)), |
| (SARX32rm addr:$src1, |
| (INSERT_SUBREG |
| (i32 (IMPLICIT_DEF)), GR8:$src2, sub_8bit))>; |
| def : Pat<(sra (loadi64 addr:$src1), (shiftMask64 GR8:$src2)), |
| (SARX64rm addr:$src1, |
| (INSERT_SUBREG |
| (i64 (IMPLICIT_DEF)), GR8:$src2, sub_8bit))>; |
| |
| def : Pat<(srl (loadi32 addr:$src1), (shiftMask32 GR8:$src2)), |
| (SHRX32rm addr:$src1, |
| (INSERT_SUBREG |
| (i32 (IMPLICIT_DEF)), GR8:$src2, sub_8bit))>; |
| def : Pat<(srl (loadi64 addr:$src1), (shiftMask64 GR8:$src2)), |
| (SHRX64rm addr:$src1, |
| (INSERT_SUBREG |
| (i64 (IMPLICIT_DEF)), GR8:$src2, sub_8bit))>; |
| |
| def : Pat<(shl (loadi32 addr:$src1), (shiftMask32 GR8:$src2)), |
| (SHLX32rm addr:$src1, |
| (INSERT_SUBREG |
| (i32 (IMPLICIT_DEF)), GR8:$src2, sub_8bit))>; |
| def : Pat<(shl (loadi64 addr:$src1), (shiftMask64 GR8:$src2)), |
| (SHLX64rm addr:$src1, |
| (INSERT_SUBREG |
| (i64 (IMPLICIT_DEF)), GR8:$src2, sub_8bit))>; |
| } |
| |
| // Use BTR/BTS/BTC for clearing/setting/toggling a bit in a variable location. |
| multiclass one_bit_patterns<RegisterClass RC, ValueType VT, Instruction BTR, |
| Instruction BTS, Instruction BTC, |
| PatFrag ShiftMask> { |
| def : Pat<(and RC:$src1, (rotl -2, GR8:$src2)), |
| (BTR RC:$src1, |
| (INSERT_SUBREG (VT (IMPLICIT_DEF)), GR8:$src2, sub_8bit))>; |
| def : Pat<(or RC:$src1, (shl 1, GR8:$src2)), |
| (BTS RC:$src1, |
| (INSERT_SUBREG (VT (IMPLICIT_DEF)), GR8:$src2, sub_8bit))>; |
| def : Pat<(xor RC:$src1, (shl 1, GR8:$src2)), |
| (BTC RC:$src1, |
| (INSERT_SUBREG (VT (IMPLICIT_DEF)), GR8:$src2, sub_8bit))>; |
| |
| // Similar to above, but removing unneeded masking of the shift amount. |
| def : Pat<(and RC:$src1, (rotl -2, (ShiftMask GR8:$src2))), |
| (BTR RC:$src1, |
| (INSERT_SUBREG (VT (IMPLICIT_DEF)), GR8:$src2, sub_8bit))>; |
| def : Pat<(or RC:$src1, (shl 1, (ShiftMask GR8:$src2))), |
| (BTS RC:$src1, |
| (INSERT_SUBREG (VT (IMPLICIT_DEF)), GR8:$src2, sub_8bit))>; |
| def : Pat<(xor RC:$src1, (shl 1, (ShiftMask GR8:$src2))), |
| (BTC RC:$src1, |
| (INSERT_SUBREG (VT (IMPLICIT_DEF)), GR8:$src2, sub_8bit))>; |
| } |
| |
| defm : one_bit_patterns<GR16, i16, BTR16rr, BTS16rr, BTC16rr, shiftMask16>; |
| defm : one_bit_patterns<GR32, i32, BTR32rr, BTS32rr, BTC32rr, shiftMask32>; |
| defm : one_bit_patterns<GR64, i64, BTR64rr, BTS64rr, BTC64rr, shiftMask64>; |
| |
| //===----------------------------------------------------------------------===// |
| // EFLAGS-defining Patterns |
| //===----------------------------------------------------------------------===// |
| |
| // add reg, reg |
| def : Pat<(add GR8 :$src1, GR8 :$src2), (ADD8rr GR8 :$src1, GR8 :$src2)>; |
| def : Pat<(add GR16:$src1, GR16:$src2), (ADD16rr GR16:$src1, GR16:$src2)>; |
| def : Pat<(add GR32:$src1, GR32:$src2), (ADD32rr GR32:$src1, GR32:$src2)>; |
| def : Pat<(add GR64:$src1, GR64:$src2), (ADD64rr GR64:$src1, GR64:$src2)>; |
| |
| // add reg, mem |
| def : Pat<(add GR8:$src1, (loadi8 addr:$src2)), |
| (ADD8rm GR8:$src1, addr:$src2)>; |
| def : Pat<(add GR16:$src1, (loadi16 addr:$src2)), |
| (ADD16rm GR16:$src1, addr:$src2)>; |
| def : Pat<(add GR32:$src1, (loadi32 addr:$src2)), |
| (ADD32rm GR32:$src1, addr:$src2)>; |
| def : Pat<(add GR64:$src1, (loadi64 addr:$src2)), |
| (ADD64rm GR64:$src1, addr:$src2)>; |
| |
| // add reg, imm |
| def : Pat<(add GR8 :$src1, imm:$src2), (ADD8ri GR8:$src1 , imm:$src2)>; |
| def : Pat<(add GR16:$src1, imm:$src2), (ADD16ri GR16:$src1, imm:$src2)>; |
| def : Pat<(add GR32:$src1, imm:$src2), (ADD32ri GR32:$src1, imm:$src2)>; |
| def : Pat<(add GR16:$src1, i16immSExt8:$src2), |
| (ADD16ri8 GR16:$src1, i16immSExt8:$src2)>; |
| def : Pat<(add GR32:$src1, i32immSExt8:$src2), |
| (ADD32ri8 GR32:$src1, i32immSExt8:$src2)>; |
| def : Pat<(add GR64:$src1, i64immSExt8:$src2), |
| (ADD64ri8 GR64:$src1, i64immSExt8:$src2)>; |
| def : Pat<(add GR64:$src1, i64immSExt32:$src2), |
| (ADD64ri32 GR64:$src1, i64immSExt32:$src2)>; |
| |
| // sub reg, reg |
| def : Pat<(sub GR8 :$src1, GR8 :$src2), (SUB8rr GR8 :$src1, GR8 :$src2)>; |
| def : Pat<(sub GR16:$src1, GR16:$src2), (SUB16rr GR16:$src1, GR16:$src2)>; |
| def : Pat<(sub GR32:$src1, GR32:$src2), (SUB32rr GR32:$src1, GR32:$src2)>; |
| def : Pat<(sub GR64:$src1, GR64:$src2), (SUB64rr GR64:$src1, GR64:$src2)>; |
| |
| // sub reg, mem |
| def : Pat<(sub GR8:$src1, (loadi8 addr:$src2)), |
| (SUB8rm GR8:$src1, addr:$src2)>; |
| def : Pat<(sub GR16:$src1, (loadi16 addr:$src2)), |
| (SUB16rm GR16:$src1, addr:$src2)>; |
| def : Pat<(sub GR32:$src1, (loadi32 addr:$src2)), |
| (SUB32rm GR32:$src1, addr:$src2)>; |
| def : Pat<(sub GR64:$src1, (loadi64 addr:$src2)), |
| (SUB64rm GR64:$src1, addr:$src2)>; |
| |
| // sub reg, imm |
| def : Pat<(sub GR8:$src1, imm:$src2), |
| (SUB8ri GR8:$src1, imm:$src2)>; |
| def : Pat<(sub GR16:$src1, imm:$src2), |
| (SUB16ri GR16:$src1, imm:$src2)>; |
| def : Pat<(sub GR32:$src1, imm:$src2), |
| (SUB32ri GR32:$src1, imm:$src2)>; |
| def : Pat<(sub GR16:$src1, i16immSExt8:$src2), |
| (SUB16ri8 GR16:$src1, i16immSExt8:$src2)>; |
| def : Pat<(sub GR32:$src1, i32immSExt8:$src2), |
| (SUB32ri8 GR32:$src1, i32immSExt8:$src2)>; |
| def : Pat<(sub GR64:$src1, i64immSExt8:$src2), |
| (SUB64ri8 GR64:$src1, i64immSExt8:$src2)>; |
| def : Pat<(sub GR64:$src1, i64immSExt32:$src2), |
| (SUB64ri32 GR64:$src1, i64immSExt32:$src2)>; |
| |
| // sub 0, reg |
| def : Pat<(X86sub_flag 0, GR8 :$src), (NEG8r GR8 :$src)>; |
| def : Pat<(X86sub_flag 0, GR16:$src), (NEG16r GR16:$src)>; |
| def : Pat<(X86sub_flag 0, GR32:$src), (NEG32r GR32:$src)>; |
| def : Pat<(X86sub_flag 0, GR64:$src), (NEG64r GR64:$src)>; |
| |
| // mul reg, reg |
| def : Pat<(mul GR16:$src1, GR16:$src2), |
| (IMUL16rr GR16:$src1, GR16:$src2)>; |
| def : Pat<(mul GR32:$src1, GR32:$src2), |
| (IMUL32rr GR32:$src1, GR32:$src2)>; |
| def : Pat<(mul GR64:$src1, GR64:$src2), |
| (IMUL64rr GR64:$src1, GR64:$src2)>; |
| |
| // mul reg, mem |
| def : Pat<(mul GR16:$src1, (loadi16 addr:$src2)), |
| (IMUL16rm GR16:$src1, addr:$src2)>; |
| def : Pat<(mul GR32:$src1, (loadi32 addr:$src2)), |
| (IMUL32rm GR32:$src1, addr:$src2)>; |
| def : Pat<(mul GR64:$src1, (loadi64 addr:$src2)), |
| (IMUL64rm GR64:$src1, addr:$src2)>; |
| |
| // mul reg, imm |
| def : Pat<(mul GR16:$src1, imm:$src2), |
| (IMUL16rri GR16:$src1, imm:$src2)>; |
| def : Pat<(mul GR32:$src1, imm:$src2), |
| (IMUL32rri GR32:$src1, imm:$src2)>; |
| def : Pat<(mul GR16:$src1, i16immSExt8:$src2), |
| (IMUL16rri8 GR16:$src1, i16immSExt8:$src2)>; |
| def : Pat<(mul GR32:$src1, i32immSExt8:$src2), |
| (IMUL32rri8 GR32:$src1, i32immSExt8:$src2)>; |
| def : Pat<(mul GR64:$src1, i64immSExt8:$src2), |
| (IMUL64rri8 GR64:$src1, i64immSExt8:$src2)>; |
| def : Pat<(mul GR64:$src1, i64immSExt32:$src2), |
| (IMUL64rri32 GR64:$src1, i64immSExt32:$src2)>; |
| |
| // reg = mul mem, imm |
| def : Pat<(mul (loadi16 addr:$src1), imm:$src2), |
| (IMUL16rmi addr:$src1, imm:$src2)>; |
| def : Pat<(mul (loadi32 addr:$src1), imm:$src2), |
| (IMUL32rmi addr:$src1, imm:$src2)>; |
| def : Pat<(mul (loadi16 addr:$src1), i16immSExt8:$src2), |
| (IMUL16rmi8 addr:$src1, i16immSExt8:$src2)>; |
| def : Pat<(mul (loadi32 addr:$src1), i32immSExt8:$src2), |
| (IMUL32rmi8 addr:$src1, i32immSExt8:$src2)>; |
| def : Pat<(mul (loadi64 addr:$src1), i64immSExt8:$src2), |
| (IMUL64rmi8 addr:$src1, i64immSExt8:$src2)>; |
| def : Pat<(mul (loadi64 addr:$src1), i64immSExt32:$src2), |
| (IMUL64rmi32 addr:$src1, i64immSExt32:$src2)>; |
| |
| // Increment/Decrement reg. |
| // Do not make INC/DEC if it is slow |
| let Predicates = [UseIncDec] in { |
| def : Pat<(add GR8:$src, 1), (INC8r GR8:$src)>; |
| def : Pat<(add GR16:$src, 1), (INC16r GR16:$src)>; |
| def : Pat<(add GR32:$src, 1), (INC32r GR32:$src)>; |
| def : Pat<(add GR64:$src, 1), (INC64r GR64:$src)>; |
| def : Pat<(add GR8:$src, -1), (DEC8r GR8:$src)>; |
| def : Pat<(add GR16:$src, -1), (DEC16r GR16:$src)>; |
| def : Pat<(add GR32:$src, -1), (DEC32r GR32:$src)>; |
| def : Pat<(add GR64:$src, -1), (DEC64r GR64:$src)>; |
| |
| def : Pat<(X86add_flag_nocf GR8:$src, -1), (DEC8r GR8:$src)>; |
| def : Pat<(X86add_flag_nocf GR16:$src, -1), (DEC16r GR16:$src)>; |
| def : Pat<(X86add_flag_nocf GR32:$src, -1), (DEC32r GR32:$src)>; |
| def : Pat<(X86add_flag_nocf GR64:$src, -1), (DEC64r GR64:$src)>; |
| def : Pat<(X86sub_flag_nocf GR8:$src, -1), (INC8r GR8:$src)>; |
| def : Pat<(X86sub_flag_nocf GR16:$src, -1), (INC16r GR16:$src)>; |
| def : Pat<(X86sub_flag_nocf GR32:$src, -1), (INC32r GR32:$src)>; |
| def : Pat<(X86sub_flag_nocf GR64:$src, -1), (INC64r GR64:$src)>; |
| } |
| |
| // or reg/reg. |
| def : Pat<(or GR8 :$src1, GR8 :$src2), (OR8rr GR8 :$src1, GR8 :$src2)>; |
| def : Pat<(or GR16:$src1, GR16:$src2), (OR16rr GR16:$src1, GR16:$src2)>; |
| def : Pat<(or GR32:$src1, GR32:$src2), (OR32rr GR32:$src1, GR32:$src2)>; |
| def : Pat<(or GR64:$src1, GR64:$src2), (OR64rr GR64:$src1, GR64:$src2)>; |
| |
| // or reg/mem |
| def : Pat<(or GR8:$src1, (loadi8 addr:$src2)), |
| (OR8rm GR8:$src1, addr:$src2)>; |
| def : Pat<(or GR16:$src1, (loadi16 addr:$src2)), |
| (OR16rm GR16:$src1, addr:$src2)>; |
| def : Pat<(or GR32:$src1, (loadi32 addr:$src2)), |
| (OR32rm GR32:$src1, addr:$src2)>; |
| def : Pat<(or GR64:$src1, (loadi64 addr:$src2)), |
| (OR64rm GR64:$src1, addr:$src2)>; |
| |
| // or reg/imm |
| def : Pat<(or GR8:$src1 , imm:$src2), (OR8ri GR8 :$src1, imm:$src2)>; |
| def : Pat<(or GR16:$src1, imm:$src2), (OR16ri GR16:$src1, imm:$src2)>; |
| def : Pat<(or GR32:$src1, imm:$src2), (OR32ri GR32:$src1, imm:$src2)>; |
| def : Pat<(or GR16:$src1, i16immSExt8:$src2), |
| (OR16ri8 GR16:$src1, i16immSExt8:$src2)>; |
| def : Pat<(or GR32:$src1, i32immSExt8:$src2), |
| (OR32ri8 GR32:$src1, i32immSExt8:$src2)>; |
| def : Pat<(or GR64:$src1, i64immSExt8:$src2), |
| (OR64ri8 GR64:$src1, i64immSExt8:$src2)>; |
| def : Pat<(or GR64:$src1, i64immSExt32:$src2), |
| (OR64ri32 GR64:$src1, i64immSExt32:$src2)>; |
| |
| // xor reg/reg |
| def : Pat<(xor GR8 :$src1, GR8 :$src2), (XOR8rr GR8 :$src1, GR8 :$src2)>; |
| def : Pat<(xor GR16:$src1, GR16:$src2), (XOR16rr GR16:$src1, GR16:$src2)>; |
| def : Pat<(xor GR32:$src1, GR32:$src2), (XOR32rr GR32:$src1, GR32:$src2)>; |
| def : Pat<(xor GR64:$src1, GR64:$src2), (XOR64rr GR64:$src1, GR64:$src2)>; |
| |
| // xor reg/mem |
| def : Pat<(xor GR8:$src1, (loadi8 addr:$src2)), |
| (XOR8rm GR8:$src1, addr:$src2)>; |
| def : Pat<(xor GR16:$src1, (loadi16 addr:$src2)), |
| (XOR16rm GR16:$src1, addr:$src2)>; |
| def : Pat<(xor GR32:$src1, (loadi32 addr:$src2)), |
| (XOR32rm GR32:$src1, addr:$src2)>; |
| def : Pat<(xor GR64:$src1, (loadi64 addr:$src2)), |
| (XOR64rm GR64:$src1, addr:$src2)>; |
| |
| // xor reg/imm |
| def : Pat<(xor GR8:$src1, imm:$src2), |
| (XOR8ri GR8:$src1, imm:$src2)>; |
| def : Pat<(xor GR16:$src1, imm:$src2), |
| (XOR16ri GR16:$src1, imm:$src2)>; |
| def : Pat<(xor GR32:$src1, imm:$src2), |
| (XOR32ri GR32:$src1, imm:$src2)>; |
| def : Pat<(xor GR16:$src1, i16immSExt8:$src2), |
| (XOR16ri8 GR16:$src1, i16immSExt8:$src2)>; |
| def : Pat<(xor GR32:$src1, i32immSExt8:$src2), |
| (XOR32ri8 GR32:$src1, i32immSExt8:$src2)>; |
| def : Pat<(xor GR64:$src1, i64immSExt8:$src2), |
| (XOR64ri8 GR64:$src1, i64immSExt8:$src2)>; |
| def : Pat<(xor GR64:$src1, i64immSExt32:$src2), |
| (XOR64ri32 GR64:$src1, i64immSExt32:$src2)>; |
| |
| // and reg/reg |
| def : Pat<(and GR8 :$src1, GR8 :$src2), (AND8rr GR8 :$src1, GR8 :$src2)>; |
| def : Pat<(and GR16:$src1, GR16:$src2), (AND16rr GR16:$src1, GR16:$src2)>; |
| def : Pat<(and GR32:$src1, GR32:$src2), (AND32rr GR32:$src1, GR32:$src2)>; |
| def : Pat<(and GR64:$src1, GR64:$src2), (AND64rr GR64:$src1, GR64:$src2)>; |
| |
| // and reg/mem |
| def : Pat<(and GR8:$src1, (loadi8 addr:$src2)), |
| (AND8rm GR8:$src1, addr:$src2)>; |
| def : Pat<(and GR16:$src1, (loadi16 addr:$src2)), |
| (AND16rm GR16:$src1, addr:$src2)>; |
| def : Pat<(and GR32:$src1, (loadi32 addr:$src2)), |
| (AND32rm GR32:$src1, addr:$src2)>; |
| def : Pat<(and GR64:$src1, (loadi64 addr:$src2)), |
| (AND64rm GR64:$src1, addr:$src2)>; |
| |
| // and reg/imm |
| def : Pat<(and GR8:$src1, imm:$src2), |
| (AND8ri GR8:$src1, imm:$src2)>; |
| def : Pat<(and GR16:$src1, imm:$src2), |
| (AND16ri GR16:$src1, imm:$src2)>; |
| def : Pat<(and GR32:$src1, imm:$src2), |
| (AND32ri GR32:$src1, imm:$src2)>; |
| def : Pat<(and GR16:$src1, i16immSExt8:$src2), |
| (AND16ri8 GR16:$src1, i16immSExt8:$src2)>; |
| def : Pat<(and GR32:$src1, i32immSExt8:$src2), |
| (AND32ri8 GR32:$src1, i32immSExt8:$src2)>; |
| def : Pat<(and GR64:$src1, i64immSExt8:$src2), |
| (AND64ri8 GR64:$src1, i64immSExt8:$src2)>; |
| def : Pat<(and GR64:$src1, i64immSExt32:$src2), |
| (AND64ri32 GR64:$src1, i64immSExt32:$src2)>; |
| |
| // Bit scan instruction patterns to match explicit zero-undef behavior. |
| def : Pat<(cttz_zero_undef GR16:$src), (BSF16rr GR16:$src)>; |
| def : Pat<(cttz_zero_undef GR32:$src), (BSF32rr GR32:$src)>; |
| def : Pat<(cttz_zero_undef GR64:$src), (BSF64rr GR64:$src)>; |
| def : Pat<(cttz_zero_undef (loadi16 addr:$src)), (BSF16rm addr:$src)>; |
| def : Pat<(cttz_zero_undef (loadi32 addr:$src)), (BSF32rm addr:$src)>; |
| def : Pat<(cttz_zero_undef (loadi64 addr:$src)), (BSF64rm addr:$src)>; |
| |
| // When HasMOVBE is enabled it is possible to get a non-legalized |
| // register-register 16 bit bswap. This maps it to a ROL instruction. |
| let Predicates = [HasMOVBE] in { |
| def : Pat<(bswap GR16:$src), (ROL16ri GR16:$src, (i8 8))>; |
| } |