| //===-- WebAssemblyRegStackify.cpp - Register Stackification --------------===// |
| // |
| // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
| // See https://llvm.org/LICENSE.txt for license information. |
| // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
| // |
| //===----------------------------------------------------------------------===// |
| /// |
| /// \file |
| /// This file implements a register stacking pass. |
| /// |
| /// This pass reorders instructions to put register uses and defs in an order |
| /// such that they form single-use expression trees. Registers fitting this form |
| /// are then marked as "stackified", meaning references to them are replaced by |
| /// "push" and "pop" from the value stack. |
| /// |
| /// This is primarily a code size optimization, since temporary values on the |
| /// value stack don't need to be named. |
| /// |
| //===----------------------------------------------------------------------===// |
| |
| #include "MCTargetDesc/WebAssemblyMCTargetDesc.h" // for WebAssembly::ARGUMENT_* |
| #include "Utils/WebAssemblyUtilities.h" |
| #include "WebAssembly.h" |
| #include "WebAssemblyDebugValueManager.h" |
| #include "WebAssemblyMachineFunctionInfo.h" |
| #include "WebAssemblySubtarget.h" |
| #include "llvm/ADT/SmallPtrSet.h" |
| #include "llvm/Analysis/AliasAnalysis.h" |
| #include "llvm/CodeGen/LiveIntervals.h" |
| #include "llvm/CodeGen/MachineBlockFrequencyInfo.h" |
| #include "llvm/CodeGen/MachineDominators.h" |
| #include "llvm/CodeGen/MachineInstrBuilder.h" |
| #include "llvm/CodeGen/MachineModuleInfoImpls.h" |
| #include "llvm/CodeGen/MachineRegisterInfo.h" |
| #include "llvm/CodeGen/Passes.h" |
| #include "llvm/Support/Debug.h" |
| #include "llvm/Support/raw_ostream.h" |
| #include <iterator> |
| using namespace llvm; |
| |
| #define DEBUG_TYPE "wasm-reg-stackify" |
| |
| namespace { |
| class WebAssemblyRegStackify final : public MachineFunctionPass { |
| StringRef getPassName() const override { |
| return "WebAssembly Register Stackify"; |
| } |
| |
| void getAnalysisUsage(AnalysisUsage &AU) const override { |
| AU.setPreservesCFG(); |
| AU.addRequired<AAResultsWrapperPass>(); |
| AU.addRequired<MachineDominatorTree>(); |
| AU.addRequired<LiveIntervals>(); |
| AU.addPreserved<MachineBlockFrequencyInfo>(); |
| AU.addPreserved<SlotIndexes>(); |
| AU.addPreserved<LiveIntervals>(); |
| AU.addPreservedID(LiveVariablesID); |
| AU.addPreserved<MachineDominatorTree>(); |
| MachineFunctionPass::getAnalysisUsage(AU); |
| } |
| |
| bool runOnMachineFunction(MachineFunction &MF) override; |
| |
| public: |
| static char ID; // Pass identification, replacement for typeid |
| WebAssemblyRegStackify() : MachineFunctionPass(ID) {} |
| }; |
| } // end anonymous namespace |
| |
| char WebAssemblyRegStackify::ID = 0; |
| INITIALIZE_PASS(WebAssemblyRegStackify, DEBUG_TYPE, |
| "Reorder instructions to use the WebAssembly value stack", |
| false, false) |
| |
| FunctionPass *llvm::createWebAssemblyRegStackify() { |
| return new WebAssemblyRegStackify(); |
| } |
| |
| // Decorate the given instruction with implicit operands that enforce the |
| // expression stack ordering constraints for an instruction which is on |
| // the expression stack. |
| static void imposeStackOrdering(MachineInstr *MI) { |
| // Write the opaque VALUE_STACK register. |
| if (!MI->definesRegister(WebAssembly::VALUE_STACK)) |
| MI->addOperand(MachineOperand::CreateReg(WebAssembly::VALUE_STACK, |
| /*isDef=*/true, |
| /*isImp=*/true)); |
| |
| // Also read the opaque VALUE_STACK register. |
| if (!MI->readsRegister(WebAssembly::VALUE_STACK)) |
| MI->addOperand(MachineOperand::CreateReg(WebAssembly::VALUE_STACK, |
| /*isDef=*/false, |
| /*isImp=*/true)); |
| } |
| |
| // Convert an IMPLICIT_DEF instruction into an instruction which defines |
| // a constant zero value. |
| static void convertImplicitDefToConstZero(MachineInstr *MI, |
| MachineRegisterInfo &MRI, |
| const TargetInstrInfo *TII, |
| MachineFunction &MF, |
| LiveIntervals &LIS) { |
| assert(MI->getOpcode() == TargetOpcode::IMPLICIT_DEF); |
| |
| const auto *RegClass = MRI.getRegClass(MI->getOperand(0).getReg()); |
| if (RegClass == &WebAssembly::I32RegClass) { |
| MI->setDesc(TII->get(WebAssembly::CONST_I32)); |
| MI->addOperand(MachineOperand::CreateImm(0)); |
| } else if (RegClass == &WebAssembly::I64RegClass) { |
| MI->setDesc(TII->get(WebAssembly::CONST_I64)); |
| MI->addOperand(MachineOperand::CreateImm(0)); |
| } else if (RegClass == &WebAssembly::F32RegClass) { |
| MI->setDesc(TII->get(WebAssembly::CONST_F32)); |
| auto *Val = cast<ConstantFP>(Constant::getNullValue( |
| Type::getFloatTy(MF.getFunction().getContext()))); |
| MI->addOperand(MachineOperand::CreateFPImm(Val)); |
| } else if (RegClass == &WebAssembly::F64RegClass) { |
| MI->setDesc(TII->get(WebAssembly::CONST_F64)); |
| auto *Val = cast<ConstantFP>(Constant::getNullValue( |
| Type::getDoubleTy(MF.getFunction().getContext()))); |
| MI->addOperand(MachineOperand::CreateFPImm(Val)); |
| } else if (RegClass == &WebAssembly::V128RegClass) { |
| MI->setDesc(TII->get(WebAssembly::CONST_V128_I64x2)); |
| MI->addOperand(MachineOperand::CreateImm(0)); |
| MI->addOperand(MachineOperand::CreateImm(0)); |
| } else { |
| llvm_unreachable("Unexpected reg class"); |
| } |
| } |
| |
| // Determine whether a call to the callee referenced by |
| // MI->getOperand(CalleeOpNo) reads memory, writes memory, and/or has side |
| // effects. |
| static void queryCallee(const MachineInstr &MI, bool &Read, bool &Write, |
| bool &Effects, bool &StackPointer) { |
| // All calls can use the stack pointer. |
| StackPointer = true; |
| |
| const MachineOperand &MO = WebAssembly::getCalleeOp(MI); |
| if (MO.isGlobal()) { |
| const Constant *GV = MO.getGlobal(); |
| if (const auto *GA = dyn_cast<GlobalAlias>(GV)) |
| if (!GA->isInterposable()) |
| GV = GA->getAliasee(); |
| |
| if (const auto *F = dyn_cast<Function>(GV)) { |
| if (!F->doesNotThrow()) |
| Effects = true; |
| if (F->doesNotAccessMemory()) |
| return; |
| if (F->onlyReadsMemory()) { |
| Read = true; |
| return; |
| } |
| } |
| } |
| |
| // Assume the worst. |
| Write = true; |
| Read = true; |
| Effects = true; |
| } |
| |
| // Determine whether MI reads memory, writes memory, has side effects, |
| // and/or uses the stack pointer value. |
| static void query(const MachineInstr &MI, AliasAnalysis &AA, bool &Read, |
| bool &Write, bool &Effects, bool &StackPointer) { |
| assert(!MI.isTerminator()); |
| |
| if (MI.isDebugInstr() || MI.isPosition()) |
| return; |
| |
| // Check for loads. |
| if (MI.mayLoad() && !MI.isDereferenceableInvariantLoad(&AA)) |
| Read = true; |
| |
| // Check for stores. |
| if (MI.mayStore()) { |
| Write = true; |
| } else if (MI.hasOrderedMemoryRef()) { |
| switch (MI.getOpcode()) { |
| case WebAssembly::DIV_S_I32: |
| case WebAssembly::DIV_S_I64: |
| case WebAssembly::REM_S_I32: |
| case WebAssembly::REM_S_I64: |
| case WebAssembly::DIV_U_I32: |
| case WebAssembly::DIV_U_I64: |
| case WebAssembly::REM_U_I32: |
| case WebAssembly::REM_U_I64: |
| case WebAssembly::I32_TRUNC_S_F32: |
| case WebAssembly::I64_TRUNC_S_F32: |
| case WebAssembly::I32_TRUNC_S_F64: |
| case WebAssembly::I64_TRUNC_S_F64: |
| case WebAssembly::I32_TRUNC_U_F32: |
| case WebAssembly::I64_TRUNC_U_F32: |
| case WebAssembly::I32_TRUNC_U_F64: |
| case WebAssembly::I64_TRUNC_U_F64: |
| // These instruction have hasUnmodeledSideEffects() returning true |
| // because they trap on overflow and invalid so they can't be arbitrarily |
| // moved, however hasOrderedMemoryRef() interprets this plus their lack |
| // of memoperands as having a potential unknown memory reference. |
| break; |
| default: |
| // Record volatile accesses, unless it's a call, as calls are handled |
| // specially below. |
| if (!MI.isCall()) { |
| Write = true; |
| Effects = true; |
| } |
| break; |
| } |
| } |
| |
| // Check for side effects. |
| if (MI.hasUnmodeledSideEffects()) { |
| switch (MI.getOpcode()) { |
| case WebAssembly::DIV_S_I32: |
| case WebAssembly::DIV_S_I64: |
| case WebAssembly::REM_S_I32: |
| case WebAssembly::REM_S_I64: |
| case WebAssembly::DIV_U_I32: |
| case WebAssembly::DIV_U_I64: |
| case WebAssembly::REM_U_I32: |
| case WebAssembly::REM_U_I64: |
| case WebAssembly::I32_TRUNC_S_F32: |
| case WebAssembly::I64_TRUNC_S_F32: |
| case WebAssembly::I32_TRUNC_S_F64: |
| case WebAssembly::I64_TRUNC_S_F64: |
| case WebAssembly::I32_TRUNC_U_F32: |
| case WebAssembly::I64_TRUNC_U_F32: |
| case WebAssembly::I32_TRUNC_U_F64: |
| case WebAssembly::I64_TRUNC_U_F64: |
| // These instructions have hasUnmodeledSideEffects() returning true |
| // because they trap on overflow and invalid so they can't be arbitrarily |
| // moved, however in the specific case of register stackifying, it is safe |
| // to move them because overflow and invalid are Undefined Behavior. |
| break; |
| default: |
| Effects = true; |
| break; |
| } |
| } |
| |
| // Check for writes to __stack_pointer global. |
| if ((MI.getOpcode() == WebAssembly::GLOBAL_SET_I32 || |
| MI.getOpcode() == WebAssembly::GLOBAL_SET_I64) && |
| strcmp(MI.getOperand(0).getSymbolName(), "__stack_pointer") == 0) |
| StackPointer = true; |
| |
| // Analyze calls. |
| if (MI.isCall()) { |
| queryCallee(MI, Read, Write, Effects, StackPointer); |
| } |
| } |
| |
| // Test whether Def is safe and profitable to rematerialize. |
| static bool shouldRematerialize(const MachineInstr &Def, AliasAnalysis &AA, |
| const WebAssemblyInstrInfo *TII) { |
| return Def.isAsCheapAsAMove() && TII->isTriviallyReMaterializable(Def, &AA); |
| } |
| |
| // Identify the definition for this register at this point. This is a |
| // generalization of MachineRegisterInfo::getUniqueVRegDef that uses |
| // LiveIntervals to handle complex cases. |
| static MachineInstr *getVRegDef(unsigned Reg, const MachineInstr *Insert, |
| const MachineRegisterInfo &MRI, |
| const LiveIntervals &LIS) { |
| // Most registers are in SSA form here so we try a quick MRI query first. |
| if (MachineInstr *Def = MRI.getUniqueVRegDef(Reg)) |
| return Def; |
| |
| // MRI doesn't know what the Def is. Try asking LIS. |
| if (const VNInfo *ValNo = LIS.getInterval(Reg).getVNInfoBefore( |
| LIS.getInstructionIndex(*Insert))) |
| return LIS.getInstructionFromIndex(ValNo->def); |
| |
| return nullptr; |
| } |
| |
| // Test whether Reg, as defined at Def, has exactly one use. This is a |
| // generalization of MachineRegisterInfo::hasOneUse that uses LiveIntervals |
| // to handle complex cases. |
| static bool hasOneUse(unsigned Reg, MachineInstr *Def, MachineRegisterInfo &MRI, |
| MachineDominatorTree &MDT, LiveIntervals &LIS) { |
| // Most registers are in SSA form here so we try a quick MRI query first. |
| if (MRI.hasOneUse(Reg)) |
| return true; |
| |
| bool HasOne = false; |
| const LiveInterval &LI = LIS.getInterval(Reg); |
| const VNInfo *DefVNI = |
| LI.getVNInfoAt(LIS.getInstructionIndex(*Def).getRegSlot()); |
| assert(DefVNI); |
| for (auto &I : MRI.use_nodbg_operands(Reg)) { |
| const auto &Result = LI.Query(LIS.getInstructionIndex(*I.getParent())); |
| if (Result.valueIn() == DefVNI) { |
| if (!Result.isKill()) |
| return false; |
| if (HasOne) |
| return false; |
| HasOne = true; |
| } |
| } |
| return HasOne; |
| } |
| |
| // Test whether it's safe to move Def to just before Insert. |
| // TODO: Compute memory dependencies in a way that doesn't require always |
| // walking the block. |
| // TODO: Compute memory dependencies in a way that uses AliasAnalysis to be |
| // more precise. |
| static bool isSafeToMove(const MachineOperand *Def, const MachineOperand *Use, |
| const MachineInstr *Insert, AliasAnalysis &AA, |
| const WebAssemblyFunctionInfo &MFI, |
| const MachineRegisterInfo &MRI) { |
| const MachineInstr *DefI = Def->getParent(); |
| const MachineInstr *UseI = Use->getParent(); |
| assert(DefI->getParent() == Insert->getParent()); |
| assert(UseI->getParent() == Insert->getParent()); |
| |
| // The first def of a multivalue instruction can be stackified by moving, |
| // since the later defs can always be placed into locals if necessary. Later |
| // defs can only be stackified if all previous defs are already stackified |
| // since ExplicitLocals will not know how to place a def in a local if a |
| // subsequent def is stackified. But only one def can be stackified by moving |
| // the instruction, so it must be the first one. |
| // |
| // TODO: This could be loosened to be the first *live* def, but care would |
| // have to be taken to ensure the drops of the initial dead defs can be |
| // placed. This would require checking that no previous defs are used in the |
| // same instruction as subsequent defs. |
| if (Def != DefI->defs().begin()) |
| return false; |
| |
| // If any subsequent def is used prior to the current value by the same |
| // instruction in which the current value is used, we cannot |
| // stackify. Stackifying in this case would require that def moving below the |
| // current def in the stack, which cannot be achieved, even with locals. |
| for (const auto &SubsequentDef : drop_begin(DefI->defs())) { |
| for (const auto &PriorUse : UseI->uses()) { |
| if (&PriorUse == Use) |
| break; |
| if (PriorUse.isReg() && SubsequentDef.getReg() == PriorUse.getReg()) |
| return false; |
| } |
| } |
| |
| // If moving is a semantic nop, it is always allowed |
| const MachineBasicBlock *MBB = DefI->getParent(); |
| auto NextI = std::next(MachineBasicBlock::const_iterator(DefI)); |
| for (auto E = MBB->end(); NextI != E && NextI->isDebugInstr(); ++NextI) |
| ; |
| if (NextI == Insert) |
| return true; |
| |
| // 'catch' and 'catch_all' should be the first instruction of a BB and cannot |
| // move. |
| if (WebAssembly::isCatch(DefI->getOpcode())) |
| return false; |
| |
| // Check for register dependencies. |
| SmallVector<unsigned, 4> MutableRegisters; |
| for (const MachineOperand &MO : DefI->operands()) { |
| if (!MO.isReg() || MO.isUndef()) |
| continue; |
| Register Reg = MO.getReg(); |
| |
| // If the register is dead here and at Insert, ignore it. |
| if (MO.isDead() && Insert->definesRegister(Reg) && |
| !Insert->readsRegister(Reg)) |
| continue; |
| |
| if (Register::isPhysicalRegister(Reg)) { |
| // Ignore ARGUMENTS; it's just used to keep the ARGUMENT_* instructions |
| // from moving down, and we've already checked for that. |
| if (Reg == WebAssembly::ARGUMENTS) |
| continue; |
| // If the physical register is never modified, ignore it. |
| if (!MRI.isPhysRegModified(Reg)) |
| continue; |
| // Otherwise, it's a physical register with unknown liveness. |
| return false; |
| } |
| |
| // If one of the operands isn't in SSA form, it has different values at |
| // different times, and we need to make sure we don't move our use across |
| // a different def. |
| if (!MO.isDef() && !MRI.hasOneDef(Reg)) |
| MutableRegisters.push_back(Reg); |
| } |
| |
| bool Read = false, Write = false, Effects = false, StackPointer = false; |
| query(*DefI, AA, Read, Write, Effects, StackPointer); |
| |
| // If the instruction does not access memory and has no side effects, it has |
| // no additional dependencies. |
| bool HasMutableRegisters = !MutableRegisters.empty(); |
| if (!Read && !Write && !Effects && !StackPointer && !HasMutableRegisters) |
| return true; |
| |
| // Scan through the intervening instructions between DefI and Insert. |
| MachineBasicBlock::const_iterator D(DefI), I(Insert); |
| for (--I; I != D; --I) { |
| bool InterveningRead = false; |
| bool InterveningWrite = false; |
| bool InterveningEffects = false; |
| bool InterveningStackPointer = false; |
| query(*I, AA, InterveningRead, InterveningWrite, InterveningEffects, |
| InterveningStackPointer); |
| if (Effects && InterveningEffects) |
| return false; |
| if (Read && InterveningWrite) |
| return false; |
| if (Write && (InterveningRead || InterveningWrite)) |
| return false; |
| if (StackPointer && InterveningStackPointer) |
| return false; |
| |
| for (unsigned Reg : MutableRegisters) |
| for (const MachineOperand &MO : I->operands()) |
| if (MO.isReg() && MO.isDef() && MO.getReg() == Reg) |
| return false; |
| } |
| |
| return true; |
| } |
| |
| /// Test whether OneUse, a use of Reg, dominates all of Reg's other uses. |
| static bool oneUseDominatesOtherUses(unsigned Reg, const MachineOperand &OneUse, |
| const MachineBasicBlock &MBB, |
| const MachineRegisterInfo &MRI, |
| const MachineDominatorTree &MDT, |
| LiveIntervals &LIS, |
| WebAssemblyFunctionInfo &MFI) { |
| const LiveInterval &LI = LIS.getInterval(Reg); |
| |
| const MachineInstr *OneUseInst = OneUse.getParent(); |
| VNInfo *OneUseVNI = LI.getVNInfoBefore(LIS.getInstructionIndex(*OneUseInst)); |
| |
| for (const MachineOperand &Use : MRI.use_nodbg_operands(Reg)) { |
| if (&Use == &OneUse) |
| continue; |
| |
| const MachineInstr *UseInst = Use.getParent(); |
| VNInfo *UseVNI = LI.getVNInfoBefore(LIS.getInstructionIndex(*UseInst)); |
| |
| if (UseVNI != OneUseVNI) |
| continue; |
| |
| if (UseInst == OneUseInst) { |
| // Another use in the same instruction. We need to ensure that the one |
| // selected use happens "before" it. |
| if (&OneUse > &Use) |
| return false; |
| } else { |
| // Test that the use is dominated by the one selected use. |
| while (!MDT.dominates(OneUseInst, UseInst)) { |
| // Actually, dominating is over-conservative. Test that the use would |
| // happen after the one selected use in the stack evaluation order. |
| // |
| // This is needed as a consequence of using implicit local.gets for |
| // uses and implicit local.sets for defs. |
| if (UseInst->getDesc().getNumDefs() == 0) |
| return false; |
| const MachineOperand &MO = UseInst->getOperand(0); |
| if (!MO.isReg()) |
| return false; |
| Register DefReg = MO.getReg(); |
| if (!Register::isVirtualRegister(DefReg) || |
| !MFI.isVRegStackified(DefReg)) |
| return false; |
| assert(MRI.hasOneNonDBGUse(DefReg)); |
| const MachineOperand &NewUse = *MRI.use_nodbg_begin(DefReg); |
| const MachineInstr *NewUseInst = NewUse.getParent(); |
| if (NewUseInst == OneUseInst) { |
| if (&OneUse > &NewUse) |
| return false; |
| break; |
| } |
| UseInst = NewUseInst; |
| } |
| } |
| } |
| return true; |
| } |
| |
| /// Get the appropriate tee opcode for the given register class. |
| static unsigned getTeeOpcode(const TargetRegisterClass *RC) { |
| if (RC == &WebAssembly::I32RegClass) |
| return WebAssembly::TEE_I32; |
| if (RC == &WebAssembly::I64RegClass) |
| return WebAssembly::TEE_I64; |
| if (RC == &WebAssembly::F32RegClass) |
| return WebAssembly::TEE_F32; |
| if (RC == &WebAssembly::F64RegClass) |
| return WebAssembly::TEE_F64; |
| if (RC == &WebAssembly::V128RegClass) |
| return WebAssembly::TEE_V128; |
| if (RC == &WebAssembly::EXTERNREFRegClass) |
| return WebAssembly::TEE_EXTERNREF; |
| if (RC == &WebAssembly::FUNCREFRegClass) |
| return WebAssembly::TEE_FUNCREF; |
| llvm_unreachable("Unexpected register class"); |
| } |
| |
| // Shrink LI to its uses, cleaning up LI. |
| static void shrinkToUses(LiveInterval &LI, LiveIntervals &LIS) { |
| if (LIS.shrinkToUses(&LI)) { |
| SmallVector<LiveInterval *, 4> SplitLIs; |
| LIS.splitSeparateComponents(LI, SplitLIs); |
| } |
| } |
| |
| /// A single-use def in the same block with no intervening memory or register |
| /// dependencies; move the def down and nest it with the current instruction. |
| static MachineInstr *moveForSingleUse(unsigned Reg, MachineOperand &Op, |
| MachineInstr *Def, MachineBasicBlock &MBB, |
| MachineInstr *Insert, LiveIntervals &LIS, |
| WebAssemblyFunctionInfo &MFI, |
| MachineRegisterInfo &MRI) { |
| LLVM_DEBUG(dbgs() << "Move for single use: "; Def->dump()); |
| |
| WebAssemblyDebugValueManager DefDIs(Def); |
| MBB.splice(Insert, &MBB, Def); |
| DefDIs.move(Insert); |
| LIS.handleMove(*Def); |
| |
| if (MRI.hasOneDef(Reg) && MRI.hasOneUse(Reg)) { |
| // No one else is using this register for anything so we can just stackify |
| // it in place. |
| MFI.stackifyVReg(MRI, Reg); |
| } else { |
| // The register may have unrelated uses or defs; create a new register for |
| // just our one def and use so that we can stackify it. |
| Register NewReg = MRI.createVirtualRegister(MRI.getRegClass(Reg)); |
| Def->getOperand(0).setReg(NewReg); |
| Op.setReg(NewReg); |
| |
| // Tell LiveIntervals about the new register. |
| LIS.createAndComputeVirtRegInterval(NewReg); |
| |
| // Tell LiveIntervals about the changes to the old register. |
| LiveInterval &LI = LIS.getInterval(Reg); |
| LI.removeSegment(LIS.getInstructionIndex(*Def).getRegSlot(), |
| LIS.getInstructionIndex(*Op.getParent()).getRegSlot(), |
| /*RemoveDeadValNo=*/true); |
| |
| MFI.stackifyVReg(MRI, NewReg); |
| |
| DefDIs.updateReg(NewReg); |
| |
| LLVM_DEBUG(dbgs() << " - Replaced register: "; Def->dump()); |
| } |
| |
| imposeStackOrdering(Def); |
| return Def; |
| } |
| |
| /// A trivially cloneable instruction; clone it and nest the new copy with the |
| /// current instruction. |
| static MachineInstr *rematerializeCheapDef( |
| unsigned Reg, MachineOperand &Op, MachineInstr &Def, MachineBasicBlock &MBB, |
| MachineBasicBlock::instr_iterator Insert, LiveIntervals &LIS, |
| WebAssemblyFunctionInfo &MFI, MachineRegisterInfo &MRI, |
| const WebAssemblyInstrInfo *TII, const WebAssemblyRegisterInfo *TRI) { |
| LLVM_DEBUG(dbgs() << "Rematerializing cheap def: "; Def.dump()); |
| LLVM_DEBUG(dbgs() << " - for use in "; Op.getParent()->dump()); |
| |
| WebAssemblyDebugValueManager DefDIs(&Def); |
| |
| Register NewReg = MRI.createVirtualRegister(MRI.getRegClass(Reg)); |
| TII->reMaterialize(MBB, Insert, NewReg, 0, Def, *TRI); |
| Op.setReg(NewReg); |
| MachineInstr *Clone = &*std::prev(Insert); |
| LIS.InsertMachineInstrInMaps(*Clone); |
| LIS.createAndComputeVirtRegInterval(NewReg); |
| MFI.stackifyVReg(MRI, NewReg); |
| imposeStackOrdering(Clone); |
| |
| LLVM_DEBUG(dbgs() << " - Cloned to "; Clone->dump()); |
| |
| // Shrink the interval. |
| bool IsDead = MRI.use_empty(Reg); |
| if (!IsDead) { |
| LiveInterval &LI = LIS.getInterval(Reg); |
| shrinkToUses(LI, LIS); |
| IsDead = !LI.liveAt(LIS.getInstructionIndex(Def).getDeadSlot()); |
| } |
| |
| // If that was the last use of the original, delete the original. |
| // Move or clone corresponding DBG_VALUEs to the 'Insert' location. |
| if (IsDead) { |
| LLVM_DEBUG(dbgs() << " - Deleting original\n"); |
| SlotIndex Idx = LIS.getInstructionIndex(Def).getRegSlot(); |
| LIS.removePhysRegDefAt(MCRegister::from(WebAssembly::ARGUMENTS), Idx); |
| LIS.removeInterval(Reg); |
| LIS.RemoveMachineInstrFromMaps(Def); |
| Def.eraseFromParent(); |
| |
| DefDIs.move(&*Insert); |
| DefDIs.updateReg(NewReg); |
| } else { |
| DefDIs.clone(&*Insert, NewReg); |
| } |
| |
| return Clone; |
| } |
| |
| /// A multiple-use def in the same block with no intervening memory or register |
| /// dependencies; move the def down, nest it with the current instruction, and |
| /// insert a tee to satisfy the rest of the uses. As an illustration, rewrite |
| /// this: |
| /// |
| /// Reg = INST ... // Def |
| /// INST ..., Reg, ... // Insert |
| /// INST ..., Reg, ... |
| /// INST ..., Reg, ... |
| /// |
| /// to this: |
| /// |
| /// DefReg = INST ... // Def (to become the new Insert) |
| /// TeeReg, Reg = TEE_... DefReg |
| /// INST ..., TeeReg, ... // Insert |
| /// INST ..., Reg, ... |
| /// INST ..., Reg, ... |
| /// |
| /// with DefReg and TeeReg stackified. This eliminates a local.get from the |
| /// resulting code. |
| static MachineInstr *moveAndTeeForMultiUse( |
| unsigned Reg, MachineOperand &Op, MachineInstr *Def, MachineBasicBlock &MBB, |
| MachineInstr *Insert, LiveIntervals &LIS, WebAssemblyFunctionInfo &MFI, |
| MachineRegisterInfo &MRI, const WebAssemblyInstrInfo *TII) { |
| LLVM_DEBUG(dbgs() << "Move and tee for multi-use:"; Def->dump()); |
| |
| WebAssemblyDebugValueManager DefDIs(Def); |
| |
| // Move Def into place. |
| MBB.splice(Insert, &MBB, Def); |
| LIS.handleMove(*Def); |
| |
| // Create the Tee and attach the registers. |
| const auto *RegClass = MRI.getRegClass(Reg); |
| Register TeeReg = MRI.createVirtualRegister(RegClass); |
| Register DefReg = MRI.createVirtualRegister(RegClass); |
| MachineOperand &DefMO = Def->getOperand(0); |
| MachineInstr *Tee = BuildMI(MBB, Insert, Insert->getDebugLoc(), |
| TII->get(getTeeOpcode(RegClass)), TeeReg) |
| .addReg(Reg, RegState::Define) |
| .addReg(DefReg, getUndefRegState(DefMO.isDead())); |
| Op.setReg(TeeReg); |
| DefMO.setReg(DefReg); |
| SlotIndex TeeIdx = LIS.InsertMachineInstrInMaps(*Tee).getRegSlot(); |
| SlotIndex DefIdx = LIS.getInstructionIndex(*Def).getRegSlot(); |
| |
| DefDIs.move(Insert); |
| |
| // Tell LiveIntervals we moved the original vreg def from Def to Tee. |
| LiveInterval &LI = LIS.getInterval(Reg); |
| LiveInterval::iterator I = LI.FindSegmentContaining(DefIdx); |
| VNInfo *ValNo = LI.getVNInfoAt(DefIdx); |
| I->start = TeeIdx; |
| ValNo->def = TeeIdx; |
| shrinkToUses(LI, LIS); |
| |
| // Finish stackifying the new regs. |
| LIS.createAndComputeVirtRegInterval(TeeReg); |
| LIS.createAndComputeVirtRegInterval(DefReg); |
| MFI.stackifyVReg(MRI, DefReg); |
| MFI.stackifyVReg(MRI, TeeReg); |
| imposeStackOrdering(Def); |
| imposeStackOrdering(Tee); |
| |
| DefDIs.clone(Tee, DefReg); |
| DefDIs.clone(Insert, TeeReg); |
| |
| LLVM_DEBUG(dbgs() << " - Replaced register: "; Def->dump()); |
| LLVM_DEBUG(dbgs() << " - Tee instruction: "; Tee->dump()); |
| return Def; |
| } |
| |
| namespace { |
| /// A stack for walking the tree of instructions being built, visiting the |
| /// MachineOperands in DFS order. |
| class TreeWalkerState { |
| using mop_iterator = MachineInstr::mop_iterator; |
| using mop_reverse_iterator = std::reverse_iterator<mop_iterator>; |
| using RangeTy = iterator_range<mop_reverse_iterator>; |
| SmallVector<RangeTy, 4> Worklist; |
| |
| public: |
| explicit TreeWalkerState(MachineInstr *Insert) { |
| const iterator_range<mop_iterator> &Range = Insert->explicit_uses(); |
| if (!Range.empty()) |
| Worklist.push_back(reverse(Range)); |
| } |
| |
| bool done() const { return Worklist.empty(); } |
| |
| MachineOperand &pop() { |
| RangeTy &Range = Worklist.back(); |
| MachineOperand &Op = *Range.begin(); |
| Range = drop_begin(Range); |
| if (Range.empty()) |
| Worklist.pop_back(); |
| assert((Worklist.empty() || !Worklist.back().empty()) && |
| "Empty ranges shouldn't remain in the worklist"); |
| return Op; |
| } |
| |
| /// Push Instr's operands onto the stack to be visited. |
| void pushOperands(MachineInstr *Instr) { |
| const iterator_range<mop_iterator> &Range(Instr->explicit_uses()); |
| if (!Range.empty()) |
| Worklist.push_back(reverse(Range)); |
| } |
| |
| /// Some of Instr's operands are on the top of the stack; remove them and |
| /// re-insert them starting from the beginning (because we've commuted them). |
| void resetTopOperands(MachineInstr *Instr) { |
| assert(hasRemainingOperands(Instr) && |
| "Reseting operands should only be done when the instruction has " |
| "an operand still on the stack"); |
| Worklist.back() = reverse(Instr->explicit_uses()); |
| } |
| |
| /// Test whether Instr has operands remaining to be visited at the top of |
| /// the stack. |
| bool hasRemainingOperands(const MachineInstr *Instr) const { |
| if (Worklist.empty()) |
| return false; |
| const RangeTy &Range = Worklist.back(); |
| return !Range.empty() && Range.begin()->getParent() == Instr; |
| } |
| |
| /// Test whether the given register is present on the stack, indicating an |
| /// operand in the tree that we haven't visited yet. Moving a definition of |
| /// Reg to a point in the tree after that would change its value. |
| /// |
| /// This is needed as a consequence of using implicit local.gets for |
| /// uses and implicit local.sets for defs. |
| bool isOnStack(unsigned Reg) const { |
| for (const RangeTy &Range : Worklist) |
| for (const MachineOperand &MO : Range) |
| if (MO.isReg() && MO.getReg() == Reg) |
| return true; |
| return false; |
| } |
| }; |
| |
| /// State to keep track of whether commuting is in flight or whether it's been |
| /// tried for the current instruction and didn't work. |
| class CommutingState { |
| /// There are effectively three states: the initial state where we haven't |
| /// started commuting anything and we don't know anything yet, the tentative |
| /// state where we've commuted the operands of the current instruction and are |
| /// revisiting it, and the declined state where we've reverted the operands |
| /// back to their original order and will no longer commute it further. |
| bool TentativelyCommuting = false; |
| bool Declined = false; |
| |
| /// During the tentative state, these hold the operand indices of the commuted |
| /// operands. |
| unsigned Operand0, Operand1; |
| |
| public: |
| /// Stackification for an operand was not successful due to ordering |
| /// constraints. If possible, and if we haven't already tried it and declined |
| /// it, commute Insert's operands and prepare to revisit it. |
| void maybeCommute(MachineInstr *Insert, TreeWalkerState &TreeWalker, |
| const WebAssemblyInstrInfo *TII) { |
| if (TentativelyCommuting) { |
| assert(!Declined && |
| "Don't decline commuting until you've finished trying it"); |
| // Commuting didn't help. Revert it. |
| TII->commuteInstruction(*Insert, /*NewMI=*/false, Operand0, Operand1); |
| TentativelyCommuting = false; |
| Declined = true; |
| } else if (!Declined && TreeWalker.hasRemainingOperands(Insert)) { |
| Operand0 = TargetInstrInfo::CommuteAnyOperandIndex; |
| Operand1 = TargetInstrInfo::CommuteAnyOperandIndex; |
| if (TII->findCommutedOpIndices(*Insert, Operand0, Operand1)) { |
| // Tentatively commute the operands and try again. |
| TII->commuteInstruction(*Insert, /*NewMI=*/false, Operand0, Operand1); |
| TreeWalker.resetTopOperands(Insert); |
| TentativelyCommuting = true; |
| Declined = false; |
| } |
| } |
| } |
| |
| /// Stackification for some operand was successful. Reset to the default |
| /// state. |
| void reset() { |
| TentativelyCommuting = false; |
| Declined = false; |
| } |
| }; |
| } // end anonymous namespace |
| |
| bool WebAssemblyRegStackify::runOnMachineFunction(MachineFunction &MF) { |
| LLVM_DEBUG(dbgs() << "********** Register Stackifying **********\n" |
| "********** Function: " |
| << MF.getName() << '\n'); |
| |
| bool Changed = false; |
| MachineRegisterInfo &MRI = MF.getRegInfo(); |
| WebAssemblyFunctionInfo &MFI = *MF.getInfo<WebAssemblyFunctionInfo>(); |
| const auto *TII = MF.getSubtarget<WebAssemblySubtarget>().getInstrInfo(); |
| const auto *TRI = MF.getSubtarget<WebAssemblySubtarget>().getRegisterInfo(); |
| AliasAnalysis &AA = getAnalysis<AAResultsWrapperPass>().getAAResults(); |
| auto &MDT = getAnalysis<MachineDominatorTree>(); |
| auto &LIS = getAnalysis<LiveIntervals>(); |
| |
| // Walk the instructions from the bottom up. Currently we don't look past |
| // block boundaries, and the blocks aren't ordered so the block visitation |
| // order isn't significant, but we may want to change this in the future. |
| for (MachineBasicBlock &MBB : MF) { |
| // Don't use a range-based for loop, because we modify the list as we're |
| // iterating over it and the end iterator may change. |
| for (auto MII = MBB.rbegin(); MII != MBB.rend(); ++MII) { |
| MachineInstr *Insert = &*MII; |
| // Don't nest anything inside an inline asm, because we don't have |
| // constraints for $push inputs. |
| if (Insert->isInlineAsm()) |
| continue; |
| |
| // Ignore debugging intrinsics. |
| if (Insert->isDebugValue()) |
| continue; |
| |
| // Iterate through the inputs in reverse order, since we'll be pulling |
| // operands off the stack in LIFO order. |
| CommutingState Commuting; |
| TreeWalkerState TreeWalker(Insert); |
| while (!TreeWalker.done()) { |
| MachineOperand &Use = TreeWalker.pop(); |
| |
| // We're only interested in explicit virtual register operands. |
| if (!Use.isReg()) |
| continue; |
| |
| Register Reg = Use.getReg(); |
| assert(Use.isUse() && "explicit_uses() should only iterate over uses"); |
| assert(!Use.isImplicit() && |
| "explicit_uses() should only iterate over explicit operands"); |
| if (Register::isPhysicalRegister(Reg)) |
| continue; |
| |
| // Identify the definition for this register at this point. |
| MachineInstr *DefI = getVRegDef(Reg, Insert, MRI, LIS); |
| if (!DefI) |
| continue; |
| |
| // Don't nest an INLINE_ASM def into anything, because we don't have |
| // constraints for $pop outputs. |
| if (DefI->isInlineAsm()) |
| continue; |
| |
| // Argument instructions represent live-in registers and not real |
| // instructions. |
| if (WebAssembly::isArgument(DefI->getOpcode())) |
| continue; |
| |
| MachineOperand *Def = DefI->findRegisterDefOperand(Reg); |
| assert(Def != nullptr); |
| |
| // Decide which strategy to take. Prefer to move a single-use value |
| // over cloning it, and prefer cloning over introducing a tee. |
| // For moving, we require the def to be in the same block as the use; |
| // this makes things simpler (LiveIntervals' handleMove function only |
| // supports intra-block moves) and it's MachineSink's job to catch all |
| // the sinking opportunities anyway. |
| bool SameBlock = DefI->getParent() == &MBB; |
| bool CanMove = SameBlock && |
| isSafeToMove(Def, &Use, Insert, AA, MFI, MRI) && |
| !TreeWalker.isOnStack(Reg); |
| if (CanMove && hasOneUse(Reg, DefI, MRI, MDT, LIS)) { |
| Insert = moveForSingleUse(Reg, Use, DefI, MBB, Insert, LIS, MFI, MRI); |
| |
| // If we are removing the frame base reg completely, remove the debug |
| // info as well. |
| // TODO: Encode this properly as a stackified value. |
| if (MFI.isFrameBaseVirtual() && MFI.getFrameBaseVreg() == Reg) |
| MFI.clearFrameBaseVreg(); |
| } else if (shouldRematerialize(*DefI, AA, TII)) { |
| Insert = |
| rematerializeCheapDef(Reg, Use, *DefI, MBB, Insert->getIterator(), |
| LIS, MFI, MRI, TII, TRI); |
| } else if (CanMove && oneUseDominatesOtherUses(Reg, Use, MBB, MRI, MDT, |
| LIS, MFI)) { |
| Insert = moveAndTeeForMultiUse(Reg, Use, DefI, MBB, Insert, LIS, MFI, |
| MRI, TII); |
| } else { |
| // We failed to stackify the operand. If the problem was ordering |
| // constraints, Commuting may be able to help. |
| if (!CanMove && SameBlock) |
| Commuting.maybeCommute(Insert, TreeWalker, TII); |
| // Proceed to the next operand. |
| continue; |
| } |
| |
| // Stackifying a multivalue def may unlock in-place stackification of |
| // subsequent defs. TODO: Handle the case where the consecutive uses are |
| // not all in the same instruction. |
| auto *SubsequentDef = Insert->defs().begin(); |
| auto *SubsequentUse = &Use; |
| while (SubsequentDef != Insert->defs().end() && |
| SubsequentUse != Use.getParent()->uses().end()) { |
| if (!SubsequentDef->isReg() || !SubsequentUse->isReg()) |
| break; |
| unsigned DefReg = SubsequentDef->getReg(); |
| unsigned UseReg = SubsequentUse->getReg(); |
| // TODO: This single-use restriction could be relaxed by using tees |
| if (DefReg != UseReg || !MRI.hasOneUse(DefReg)) |
| break; |
| MFI.stackifyVReg(MRI, DefReg); |
| ++SubsequentDef; |
| ++SubsequentUse; |
| } |
| |
| // If the instruction we just stackified is an IMPLICIT_DEF, convert it |
| // to a constant 0 so that the def is explicit, and the push/pop |
| // correspondence is maintained. |
| if (Insert->getOpcode() == TargetOpcode::IMPLICIT_DEF) |
| convertImplicitDefToConstZero(Insert, MRI, TII, MF, LIS); |
| |
| // We stackified an operand. Add the defining instruction's operands to |
| // the worklist stack now to continue to build an ever deeper tree. |
| Commuting.reset(); |
| TreeWalker.pushOperands(Insert); |
| } |
| |
| // If we stackified any operands, skip over the tree to start looking for |
| // the next instruction we can build a tree on. |
| if (Insert != &*MII) { |
| imposeStackOrdering(&*MII); |
| MII = MachineBasicBlock::iterator(Insert).getReverse(); |
| Changed = true; |
| } |
| } |
| } |
| |
| // If we used VALUE_STACK anywhere, add it to the live-in sets everywhere so |
| // that it never looks like a use-before-def. |
| if (Changed) { |
| MF.getRegInfo().addLiveIn(WebAssembly::VALUE_STACK); |
| for (MachineBasicBlock &MBB : MF) |
| MBB.addLiveIn(WebAssembly::VALUE_STACK); |
| } |
| |
| #ifndef NDEBUG |
| // Verify that pushes and pops are performed in LIFO order. |
| SmallVector<unsigned, 0> Stack; |
| for (MachineBasicBlock &MBB : MF) { |
| for (MachineInstr &MI : MBB) { |
| if (MI.isDebugInstr()) |
| continue; |
| for (MachineOperand &MO : reverse(MI.explicit_uses())) { |
| if (!MO.isReg()) |
| continue; |
| Register Reg = MO.getReg(); |
| if (MFI.isVRegStackified(Reg)) |
| assert(Stack.pop_back_val() == Reg && |
| "Register stack pop should be paired with a push"); |
| } |
| for (MachineOperand &MO : MI.defs()) { |
| if (!MO.isReg()) |
| continue; |
| Register Reg = MO.getReg(); |
| if (MFI.isVRegStackified(Reg)) |
| Stack.push_back(MO.getReg()); |
| } |
| } |
| // TODO: Generalize this code to support keeping values on the stack across |
| // basic block boundaries. |
| assert(Stack.empty() && |
| "Register stack pushes and pops should be balanced"); |
| } |
| #endif |
| |
| return Changed; |
| } |