| //===-- SparcInstr64Bit.td - 64-bit instructions for Sparc Target ---------===// |
| // |
| // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
| // See https://llvm.org/LICENSE.txt for license information. |
| // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
| // |
| //===----------------------------------------------------------------------===// |
| // |
| // This file contains instruction definitions and patterns needed for 64-bit |
| // code generation on SPARC v9. |
| // |
| // Some SPARC v9 instructions are defined in SparcInstrInfo.td because they can |
| // also be used in 32-bit code running on a SPARC v9 CPU. |
| // |
| //===----------------------------------------------------------------------===// |
| |
| let Predicates = [Is64Bit] in { |
| // The same integer registers are used for i32 and i64 values. |
| // When registers hold i32 values, the high bits are don't care. |
| // This give us free trunc and anyext. |
| def : Pat<(i64 (anyext i32:$val)), (COPY_TO_REGCLASS $val, I64Regs)>; |
| def : Pat<(i32 (trunc i64:$val)), (COPY_TO_REGCLASS $val, IntRegs)>; |
| |
| } // Predicates = [Is64Bit] |
| |
| |
| //===----------------------------------------------------------------------===// |
| // 64-bit Shift Instructions. |
| //===----------------------------------------------------------------------===// |
| // |
| // The 32-bit shift instructions are still available. The left shift srl |
| // instructions shift all 64 bits, but it only accepts a 5-bit shift amount. |
| // |
| // The srl instructions only shift the low 32 bits and clear the high 32 bits. |
| // Finally, sra shifts the low 32 bits and sign-extends to 64 bits. |
| |
| let Predicates = [Is64Bit] in { |
| |
| def : Pat<(i64 (zext i32:$val)), (SRLri $val, 0)>; |
| def : Pat<(i64 (sext i32:$val)), (SRAri $val, 0)>; |
| |
| def : Pat<(i64 (and i64:$val, 0xffffffff)), (SRLri $val, 0)>; |
| def : Pat<(i64 (sext_inreg i64:$val, i32)), (SRAri $val, 0)>; |
| |
| defm SLLX : F3_S<"sllx", 0b100101, 1, shl, i64, shift_imm6, I64Regs>; |
| defm SRLX : F3_S<"srlx", 0b100110, 1, srl, i64, shift_imm6, I64Regs>; |
| defm SRAX : F3_S<"srax", 0b100111, 1, sra, i64, shift_imm6, I64Regs>; |
| |
| } // Predicates = [Is64Bit] |
| |
| |
| //===----------------------------------------------------------------------===// |
| // 64-bit Immediates. |
| //===----------------------------------------------------------------------===// |
| // |
| // All 32-bit immediates can be materialized with sethi+or, but 64-bit |
| // immediates may require more code. There may be a point where it is |
| // preferable to use a constant pool load instead, depending on the |
| // microarchitecture. |
| |
| // Single-instruction patterns. |
| |
| // The ALU instructions want their simm13 operands as i32 immediates. |
| def as_i32imm : SDNodeXForm<imm, [{ |
| return CurDAG->getTargetConstant(N->getSExtValue(), SDLoc(N), MVT::i32); |
| }]>; |
| def : Pat<(i64 simm13:$val), (ORri (i64 G0), (as_i32imm $val))>; |
| def : Pat<(i64 SETHIimm:$val), (SETHIi (HI22 $val))>; |
| |
| // Double-instruction patterns. |
| |
| // All unsigned i32 immediates can be handled by sethi+or. |
| def uimm32 : PatLeaf<(imm), [{ return isUInt<32>(N->getZExtValue()); }]>; |
| def : Pat<(i64 uimm32:$val), (ORri (SETHIi (HI22 $val)), (LO10 $val))>, |
| Requires<[Is64Bit]>; |
| |
| // All negative i33 immediates can be handled by sethi+xor. |
| def nimm33 : PatLeaf<(imm), [{ |
| int64_t Imm = N->getSExtValue(); |
| return Imm < 0 && isInt<33>(Imm); |
| }]>; |
| // Bits 10-31 inverted. Same as assembler's %hix. |
| def HIX22 : SDNodeXForm<imm, [{ |
| uint64_t Val = (~N->getZExtValue() >> 10) & ((1u << 22) - 1); |
| return CurDAG->getTargetConstant(Val, SDLoc(N), MVT::i32); |
| }]>; |
| // Bits 0-9 with ones in bits 10-31. Same as assembler's %lox. |
| def LOX10 : SDNodeXForm<imm, [{ |
| return CurDAG->getTargetConstant(~(~N->getZExtValue() & 0x3ff), SDLoc(N), |
| MVT::i32); |
| }]>; |
| def : Pat<(i64 nimm33:$val), (XORri (SETHIi (HIX22 $val)), (LOX10 $val))>, |
| Requires<[Is64Bit]>; |
| |
| // More possible patterns: |
| // |
| // (sllx sethi, n) |
| // (sllx simm13, n) |
| // |
| // 3 instrs: |
| // |
| // (xor (sllx sethi), simm13) |
| // (sllx (xor sethi, simm13)) |
| // |
| // 4 instrs: |
| // |
| // (or sethi, (sllx sethi)) |
| // (xnor sethi, (sllx sethi)) |
| // |
| // 5 instrs: |
| // |
| // (or (sllx sethi), (or sethi, simm13)) |
| // (xnor (sllx sethi), (or sethi, simm13)) |
| // (or (sllx sethi), (sllx sethi)) |
| // (xnor (sllx sethi), (sllx sethi)) |
| // |
| // Worst case is 6 instrs: |
| // |
| // (or (sllx (or sethi, simmm13)), (or sethi, simm13)) |
| |
| // Bits 42-63, same as assembler's %hh. |
| def HH22 : SDNodeXForm<imm, [{ |
| uint64_t Val = (N->getZExtValue() >> 42) & ((1u << 22) - 1); |
| return CurDAG->getTargetConstant(Val, SDLoc(N), MVT::i32); |
| }]>; |
| // Bits 32-41, same as assembler's %hm. |
| def HM10 : SDNodeXForm<imm, [{ |
| uint64_t Val = (N->getZExtValue() >> 32) & ((1u << 10) - 1); |
| return CurDAG->getTargetConstant(Val, SDLoc(N), MVT::i32); |
| }]>; |
| def : Pat<(i64 imm:$val), |
| (ORrr (SLLXri (ORri (SETHIi (HH22 $val)), (HM10 $val)), (i32 32)), |
| (ORri (SETHIi (HI22 $val)), (LO10 $val)))>, |
| Requires<[Is64Bit]>; |
| |
| |
| //===----------------------------------------------------------------------===// |
| // 64-bit Integer Arithmetic and Logic. |
| //===----------------------------------------------------------------------===// |
| |
| let Predicates = [Is64Bit] in { |
| |
| // Register-register instructions. |
| let isCodeGenOnly = 1 in { |
| defm ANDX : F3_12<"and", 0b000001, and, I64Regs, i64, i64imm>; |
| defm ORX : F3_12<"or", 0b000010, or, I64Regs, i64, i64imm>; |
| defm XORX : F3_12<"xor", 0b000011, xor, I64Regs, i64, i64imm>; |
| |
| def ANDXNrr : F3_1<2, 0b000101, |
| (outs I64Regs:$dst), (ins I64Regs:$b, I64Regs:$c), |
| "andn $b, $c, $dst", |
| [(set i64:$dst, (and i64:$b, (not i64:$c)))]>; |
| def ORXNrr : F3_1<2, 0b000110, |
| (outs I64Regs:$dst), (ins I64Regs:$b, I64Regs:$c), |
| "orn $b, $c, $dst", |
| [(set i64:$dst, (or i64:$b, (not i64:$c)))]>; |
| def XNORXrr : F3_1<2, 0b000111, |
| (outs I64Regs:$dst), (ins I64Regs:$b, I64Regs:$c), |
| "xnor $b, $c, $dst", |
| [(set i64:$dst, (not (xor i64:$b, i64:$c)))]>; |
| |
| defm ADDX : F3_12<"add", 0b000000, add, I64Regs, i64, i64imm>; |
| defm SUBX : F3_12<"sub", 0b000100, sub, I64Regs, i64, i64imm>; |
| |
| def TLS_ADDXrr : F3_1<2, 0b000000, (outs I64Regs:$rd), |
| (ins I64Regs:$rs1, I64Regs:$rs2, TLSSym:$sym), |
| "add $rs1, $rs2, $rd, $sym", |
| [(set i64:$rd, |
| (tlsadd i64:$rs1, i64:$rs2, tglobaltlsaddr:$sym))]>; |
| |
| // "LEA" form of add |
| def LEAX_ADDri : F3_2<2, 0b000000, |
| (outs I64Regs:$dst), (ins MEMri:$addr), |
| "add ${addr:arith}, $dst", |
| [(set iPTR:$dst, ADDRri:$addr)]>; |
| } |
| |
| def : Pat<(SPcmpicc i64:$a, i64:$b), (CMPrr $a, $b)>; |
| def : Pat<(SPcmpicc i64:$a, (i64 simm13:$b)), (CMPri $a, (as_i32imm $b))>; |
| def : Pat<(i64 (ctpop i64:$src)), (POPCrr $src)>; |
| |
| } // Predicates = [Is64Bit] |
| |
| |
| //===----------------------------------------------------------------------===// |
| // 64-bit Integer Multiply and Divide. |
| //===----------------------------------------------------------------------===// |
| |
| let Predicates = [Is64Bit] in { |
| |
| def MULXrr : F3_1<2, 0b001001, |
| (outs I64Regs:$rd), (ins I64Regs:$rs1, I64Regs:$rs2), |
| "mulx $rs1, $rs2, $rd", |
| [(set i64:$rd, (mul i64:$rs1, i64:$rs2))]>; |
| def MULXri : F3_2<2, 0b001001, |
| (outs IntRegs:$rd), (ins IntRegs:$rs1, i64imm:$simm13), |
| "mulx $rs1, $simm13, $rd", |
| [(set i64:$rd, (mul i64:$rs1, (i64 simm13:$simm13)))]>; |
| |
| // Division can trap. |
| let hasSideEffects = 1 in { |
| def SDIVXrr : F3_1<2, 0b101101, |
| (outs I64Regs:$rd), (ins I64Regs:$rs1, I64Regs:$rs2), |
| "sdivx $rs1, $rs2, $rd", |
| [(set i64:$rd, (sdiv i64:$rs1, i64:$rs2))]>; |
| def SDIVXri : F3_2<2, 0b101101, |
| (outs IntRegs:$rd), (ins IntRegs:$rs1, i64imm:$simm13), |
| "sdivx $rs1, $simm13, $rd", |
| [(set i64:$rd, (sdiv i64:$rs1, (i64 simm13:$simm13)))]>; |
| |
| def UDIVXrr : F3_1<2, 0b001101, |
| (outs I64Regs:$rd), (ins I64Regs:$rs1, I64Regs:$rs2), |
| "udivx $rs1, $rs2, $rd", |
| [(set i64:$rd, (udiv i64:$rs1, i64:$rs2))]>; |
| def UDIVXri : F3_2<2, 0b001101, |
| (outs IntRegs:$rd), (ins IntRegs:$rs1, i64imm:$simm13), |
| "udivx $rs1, $simm13, $rd", |
| [(set i64:$rd, (udiv i64:$rs1, (i64 simm13:$simm13)))]>; |
| } // hasSideEffects = 1 |
| |
| } // Predicates = [Is64Bit] |
| |
| |
| //===----------------------------------------------------------------------===// |
| // 64-bit Loads and Stores. |
| //===----------------------------------------------------------------------===// |
| // |
| // All the 32-bit loads and stores are available. The extending loads are sign |
| // or zero-extending to 64 bits. The LDrr and LDri instructions load 32 bits |
| // zero-extended to i64. Their mnemonic is lduw in SPARC v9 (Load Unsigned |
| // Word). |
| // |
| // SPARC v9 adds 64-bit loads as well as a sign-extending ldsw i32 loads. |
| |
| let Predicates = [Is64Bit] in { |
| |
| // 64-bit loads. |
| let DecoderMethod = "DecodeLoadInt" in |
| defm LDX : Load<"ldx", 0b001011, load, I64Regs, i64>; |
| |
| let mayLoad = 1, isAsmParserOnly = 1 in |
| def TLS_LDXrr : F3_1<3, 0b001011, |
| (outs IntRegs:$dst), (ins MEMrr:$addr, TLSSym:$sym), |
| "ldx [$addr], $dst, $sym", |
| [(set i64:$dst, |
| (tlsld ADDRrr:$addr, tglobaltlsaddr:$sym))]>; |
| |
| // Extending loads to i64. |
| def : Pat<(i64 (zextloadi1 ADDRrr:$addr)), (LDUBrr ADDRrr:$addr)>; |
| def : Pat<(i64 (zextloadi1 ADDRri:$addr)), (LDUBri ADDRri:$addr)>; |
| def : Pat<(i64 (extloadi1 ADDRrr:$addr)), (LDUBrr ADDRrr:$addr)>; |
| def : Pat<(i64 (extloadi1 ADDRri:$addr)), (LDUBri ADDRri:$addr)>; |
| |
| def : Pat<(i64 (zextloadi8 ADDRrr:$addr)), (LDUBrr ADDRrr:$addr)>; |
| def : Pat<(i64 (zextloadi8 ADDRri:$addr)), (LDUBri ADDRri:$addr)>; |
| def : Pat<(i64 (extloadi8 ADDRrr:$addr)), (LDUBrr ADDRrr:$addr)>; |
| def : Pat<(i64 (extloadi8 ADDRri:$addr)), (LDUBri ADDRri:$addr)>; |
| def : Pat<(i64 (sextloadi8 ADDRrr:$addr)), (LDSBrr ADDRrr:$addr)>; |
| def : Pat<(i64 (sextloadi8 ADDRri:$addr)), (LDSBri ADDRri:$addr)>; |
| |
| def : Pat<(i64 (zextloadi16 ADDRrr:$addr)), (LDUHrr ADDRrr:$addr)>; |
| def : Pat<(i64 (zextloadi16 ADDRri:$addr)), (LDUHri ADDRri:$addr)>; |
| def : Pat<(i64 (extloadi16 ADDRrr:$addr)), (LDUHrr ADDRrr:$addr)>; |
| def : Pat<(i64 (extloadi16 ADDRri:$addr)), (LDUHri ADDRri:$addr)>; |
| def : Pat<(i64 (sextloadi16 ADDRrr:$addr)), (LDSHrr ADDRrr:$addr)>; |
| def : Pat<(i64 (sextloadi16 ADDRri:$addr)), (LDSHri ADDRri:$addr)>; |
| |
| def : Pat<(i64 (zextloadi32 ADDRrr:$addr)), (LDrr ADDRrr:$addr)>; |
| def : Pat<(i64 (zextloadi32 ADDRri:$addr)), (LDri ADDRri:$addr)>; |
| def : Pat<(i64 (extloadi32 ADDRrr:$addr)), (LDrr ADDRrr:$addr)>; |
| def : Pat<(i64 (extloadi32 ADDRri:$addr)), (LDri ADDRri:$addr)>; |
| |
| // Sign-extending load of i32 into i64 is a new SPARC v9 instruction. |
| let DecoderMethod = "DecodeLoadInt" in |
| defm LDSW : Load<"ldsw", 0b001000, sextloadi32, I64Regs, i64>; |
| |
| // 64-bit stores. |
| let DecoderMethod = "DecodeStoreInt" in |
| defm STX : Store<"stx", 0b001110, store, I64Regs, i64>; |
| |
| // Truncating stores from i64 are identical to the i32 stores. |
| def : Pat<(truncstorei8 i64:$src, ADDRrr:$addr), (STBrr ADDRrr:$addr, $src)>; |
| def : Pat<(truncstorei8 i64:$src, ADDRri:$addr), (STBri ADDRri:$addr, $src)>; |
| def : Pat<(truncstorei16 i64:$src, ADDRrr:$addr), (STHrr ADDRrr:$addr, $src)>; |
| def : Pat<(truncstorei16 i64:$src, ADDRri:$addr), (STHri ADDRri:$addr, $src)>; |
| def : Pat<(truncstorei32 i64:$src, ADDRrr:$addr), (STrr ADDRrr:$addr, $src)>; |
| def : Pat<(truncstorei32 i64:$src, ADDRri:$addr), (STri ADDRri:$addr, $src)>; |
| |
| // store 0, addr -> store %g0, addr |
| def : Pat<(store (i64 0), ADDRrr:$dst), (STXrr ADDRrr:$dst, (i64 G0))>; |
| def : Pat<(store (i64 0), ADDRri:$dst), (STXri ADDRri:$dst, (i64 G0))>; |
| |
| } // Predicates = [Is64Bit] |
| |
| |
| //===----------------------------------------------------------------------===// |
| // 64-bit Conditionals. |
| //===----------------------------------------------------------------------===// |
| |
| // |
| // Flag-setting instructions like subcc and addcc set both icc and xcc flags. |
| // The icc flags correspond to the 32-bit result, and the xcc are for the |
| // full 64-bit result. |
| // |
| // We reuse CMPICC SDNodes for compares, but use new BRXCC branch nodes for |
| // 64-bit compares. See LowerBR_CC. |
| |
| let Predicates = [Is64Bit] in { |
| |
| let Uses = [ICC], cc = 0b10 in |
| defm BPX : IPredBranch<"%xcc", [(SPbrxcc bb:$imm19, imm:$cond)]>; |
| |
| // Conditional moves on %xcc. |
| let Uses = [ICC], Constraints = "$f = $rd" in { |
| let intcc = 1, cc = 0b10 in { |
| def MOVXCCrr : F4_1<0b101100, (outs IntRegs:$rd), |
| (ins IntRegs:$rs2, IntRegs:$f, CCOp:$cond), |
| "mov$cond %xcc, $rs2, $rd", |
| [(set i32:$rd, |
| (SPselectxcc i32:$rs2, i32:$f, imm:$cond))]>; |
| def MOVXCCri : F4_2<0b101100, (outs IntRegs:$rd), |
| (ins i32imm:$simm11, IntRegs:$f, CCOp:$cond), |
| "mov$cond %xcc, $simm11, $rd", |
| [(set i32:$rd, |
| (SPselectxcc simm11:$simm11, i32:$f, imm:$cond))]>; |
| } // cc |
| |
| let intcc = 1, opf_cc = 0b10 in { |
| def FMOVS_XCC : F4_3<0b110101, 0b000001, (outs FPRegs:$rd), |
| (ins FPRegs:$rs2, FPRegs:$f, CCOp:$cond), |
| "fmovs$cond %xcc, $rs2, $rd", |
| [(set f32:$rd, |
| (SPselectxcc f32:$rs2, f32:$f, imm:$cond))]>; |
| def FMOVD_XCC : F4_3<0b110101, 0b000010, (outs DFPRegs:$rd), |
| (ins DFPRegs:$rs2, DFPRegs:$f, CCOp:$cond), |
| "fmovd$cond %xcc, $rs2, $rd", |
| [(set f64:$rd, |
| (SPselectxcc f64:$rs2, f64:$f, imm:$cond))]>; |
| def FMOVQ_XCC : F4_3<0b110101, 0b000011, (outs QFPRegs:$rd), |
| (ins QFPRegs:$rs2, QFPRegs:$f, CCOp:$cond), |
| "fmovq$cond %xcc, $rs2, $rd", |
| [(set f128:$rd, |
| (SPselectxcc f128:$rs2, f128:$f, imm:$cond))]>; |
| } // opf_cc |
| } // Uses, Constraints |
| |
| // Branch On integer register with Prediction (BPr). |
| let isBranch = 1, isTerminator = 1, hasDelaySlot = 1 in |
| multiclass BranchOnReg<bits<3> cond, string OpcStr> { |
| def napt : F2_4<cond, 0, 1, (outs), (ins I64Regs:$rs1, bprtarget16:$imm16), |
| !strconcat(OpcStr, " $rs1, $imm16"), []>; |
| def apt : F2_4<cond, 1, 1, (outs), (ins I64Regs:$rs1, bprtarget16:$imm16), |
| !strconcat(OpcStr, ",a $rs1, $imm16"), []>; |
| def napn : F2_4<cond, 0, 0, (outs), (ins I64Regs:$rs1, bprtarget16:$imm16), |
| !strconcat(OpcStr, ",pn $rs1, $imm16"), []>; |
| def apn : F2_4<cond, 1, 0, (outs), (ins I64Regs:$rs1, bprtarget16:$imm16), |
| !strconcat(OpcStr, ",a,pn $rs1, $imm16"), []>; |
| } |
| |
| multiclass bpr_alias<string OpcStr, Instruction NAPT, Instruction APT> { |
| def : InstAlias<!strconcat(OpcStr, ",pt $rs1, $imm16"), |
| (NAPT I64Regs:$rs1, bprtarget16:$imm16), 0>; |
| def : InstAlias<!strconcat(OpcStr, ",a,pt $rs1, $imm16"), |
| (APT I64Regs:$rs1, bprtarget16:$imm16), 0>; |
| } |
| |
| defm BPZ : BranchOnReg<0b001, "brz">; |
| defm BPLEZ : BranchOnReg<0b010, "brlez">; |
| defm BPLZ : BranchOnReg<0b011, "brlz">; |
| defm BPNZ : BranchOnReg<0b101, "brnz">; |
| defm BPGZ : BranchOnReg<0b110, "brgz">; |
| defm BPGEZ : BranchOnReg<0b111, "brgez">; |
| |
| defm : bpr_alias<"brz", BPZnapt, BPZapt >; |
| defm : bpr_alias<"brlez", BPLEZnapt, BPLEZapt>; |
| defm : bpr_alias<"brlz", BPLZnapt, BPLZapt >; |
| defm : bpr_alias<"brnz", BPNZnapt, BPNZapt >; |
| defm : bpr_alias<"brgz", BPGZnapt, BPGZapt >; |
| defm : bpr_alias<"brgez", BPGEZnapt, BPGEZapt>; |
| |
| // Move integer register on register condition (MOVr). |
| multiclass MOVR< bits<3> rcond, string OpcStr> { |
| def rr : F4_4r<0b101111, 0b00000, rcond, (outs I64Regs:$rd), |
| (ins I64Regs:$rs1, IntRegs:$rs2), |
| !strconcat(OpcStr, " $rs1, $rs2, $rd"), []>; |
| |
| def ri : F4_4i<0b101111, rcond, (outs I64Regs:$rd), |
| (ins I64Regs:$rs1, i64imm:$simm10), |
| !strconcat(OpcStr, " $rs1, $simm10, $rd"), []>; |
| } |
| |
| defm MOVRRZ : MOVR<0b001, "movrz">; |
| defm MOVRLEZ : MOVR<0b010, "movrlez">; |
| defm MOVRLZ : MOVR<0b011, "movrlz">; |
| defm MOVRNZ : MOVR<0b101, "movrnz">; |
| defm MOVRGZ : MOVR<0b110, "movrgz">; |
| defm MOVRGEZ : MOVR<0b111, "movrgez">; |
| |
| // Move FP register on integer register condition (FMOVr). |
| multiclass FMOVR<bits<3> rcond, string OpcStr> { |
| |
| def S : F4_4r<0b110101, 0b00101, rcond, |
| (outs FPRegs:$rd), (ins I64Regs:$rs1, FPRegs:$rs2), |
| !strconcat(!strconcat("fmovrs", OpcStr)," $rs1, $rs2, $rd"), |
| []>; |
| def D : F4_4r<0b110101, 0b00110, rcond, |
| (outs FPRegs:$rd), (ins I64Regs:$rs1, FPRegs:$rs2), |
| !strconcat(!strconcat("fmovrd", OpcStr)," $rs1, $rs2, $rd"), |
| []>; |
| def Q : F4_4r<0b110101, 0b00111, rcond, |
| (outs FPRegs:$rd), (ins I64Regs:$rs1, FPRegs:$rs2), |
| !strconcat(!strconcat("fmovrq", OpcStr)," $rs1, $rs2, $rd"), |
| []>, Requires<[HasHardQuad]>; |
| } |
| |
| let Predicates = [HasV9] in { |
| defm FMOVRZ : FMOVR<0b001, "z">; |
| defm FMOVRLEZ : FMOVR<0b010, "lez">; |
| defm FMOVRLZ : FMOVR<0b011, "lz">; |
| defm FMOVRNZ : FMOVR<0b101, "nz">; |
| defm FMOVRGZ : FMOVR<0b110, "gz">; |
| defm FMOVRGEZ : FMOVR<0b111, "gez">; |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // 64-bit Floating Point Conversions. |
| //===----------------------------------------------------------------------===// |
| |
| let Predicates = [Is64Bit] in { |
| |
| def FXTOS : F3_3u<2, 0b110100, 0b010000100, |
| (outs FPRegs:$rd), (ins DFPRegs:$rs2), |
| "fxtos $rs2, $rd", |
| [(set FPRegs:$rd, (SPxtof DFPRegs:$rs2))]>; |
| def FXTOD : F3_3u<2, 0b110100, 0b010001000, |
| (outs DFPRegs:$rd), (ins DFPRegs:$rs2), |
| "fxtod $rs2, $rd", |
| [(set DFPRegs:$rd, (SPxtof DFPRegs:$rs2))]>; |
| def FXTOQ : F3_3u<2, 0b110100, 0b010001100, |
| (outs QFPRegs:$rd), (ins DFPRegs:$rs2), |
| "fxtoq $rs2, $rd", |
| [(set QFPRegs:$rd, (SPxtof DFPRegs:$rs2))]>, |
| Requires<[HasHardQuad]>; |
| |
| def FSTOX : F3_3u<2, 0b110100, 0b010000001, |
| (outs DFPRegs:$rd), (ins FPRegs:$rs2), |
| "fstox $rs2, $rd", |
| [(set DFPRegs:$rd, (SPftox FPRegs:$rs2))]>; |
| def FDTOX : F3_3u<2, 0b110100, 0b010000010, |
| (outs DFPRegs:$rd), (ins DFPRegs:$rs2), |
| "fdtox $rs2, $rd", |
| [(set DFPRegs:$rd, (SPftox DFPRegs:$rs2))]>; |
| def FQTOX : F3_3u<2, 0b110100, 0b010000011, |
| (outs DFPRegs:$rd), (ins QFPRegs:$rs2), |
| "fqtox $rs2, $rd", |
| [(set DFPRegs:$rd, (SPftox QFPRegs:$rs2))]>, |
| Requires<[HasHardQuad]>; |
| |
| } // Predicates = [Is64Bit] |
| |
| def : Pat<(SPselectxcc i64:$t, i64:$f, imm:$cond), |
| (MOVXCCrr $t, $f, imm:$cond)>; |
| def : Pat<(SPselectxcc (i64 simm11:$t), i64:$f, imm:$cond), |
| (MOVXCCri (as_i32imm $t), $f, imm:$cond)>; |
| |
| def : Pat<(SPselecticc i64:$t, i64:$f, imm:$cond), |
| (MOVICCrr $t, $f, imm:$cond)>; |
| def : Pat<(SPselecticc (i64 simm11:$t), i64:$f, imm:$cond), |
| (MOVICCri (as_i32imm $t), $f, imm:$cond)>; |
| |
| def : Pat<(SPselectfcc i64:$t, i64:$f, imm:$cond), |
| (MOVFCCrr $t, $f, imm:$cond)>; |
| def : Pat<(SPselectfcc (i64 simm11:$t), i64:$f, imm:$cond), |
| (MOVFCCri (as_i32imm $t), $f, imm:$cond)>; |
| |
| } // Predicates = [Is64Bit] |
| |
| |
| // 64 bit SETHI |
| let Predicates = [Is64Bit], isCodeGenOnly = 1 in { |
| def SETHIXi : F2_1<0b100, |
| (outs IntRegs:$rd), (ins i64imm:$imm22), |
| "sethi $imm22, $rd", |
| [(set i64:$rd, SETHIimm:$imm22)]>; |
| } |
| |
| // ATOMICS. |
| let Predicates = [Is64Bit], Constraints = "$swap = $rd", asi = 0b10000000 in { |
| def CASXrr: F3_1_asi<3, 0b111110, |
| (outs I64Regs:$rd), (ins I64Regs:$rs1, I64Regs:$rs2, |
| I64Regs:$swap), |
| "casx [$rs1], $rs2, $rd", |
| [(set i64:$rd, |
| (atomic_cmp_swap_64 i64:$rs1, i64:$rs2, i64:$swap))]>; |
| |
| } // Predicates = [Is64Bit], Constraints = ... |
| |
| let Predicates = [Is64Bit] in { |
| |
| // atomic_load_64 addr -> load addr |
| def : Pat<(i64 (atomic_load_64 ADDRrr:$src)), (LDXrr ADDRrr:$src)>; |
| def : Pat<(i64 (atomic_load_64 ADDRri:$src)), (LDXri ADDRri:$src)>; |
| |
| // atomic_store_64 val, addr -> store val, addr |
| def : Pat<(atomic_store_64 ADDRrr:$dst, i64:$val), (STXrr ADDRrr:$dst, $val)>; |
| def : Pat<(atomic_store_64 ADDRri:$dst, i64:$val), (STXri ADDRri:$dst, $val)>; |
| |
| } // Predicates = [Is64Bit] |
| |
| let Predicates = [Is64Bit], hasSideEffects = 1, Uses = [ICC], cc = 0b10 in |
| defm TXCC : TRAP<"%xcc">; |
| |
| // Global addresses, constant pool entries |
| let Predicates = [Is64Bit] in { |
| |
| def : Pat<(SPhi tglobaladdr:$in), (SETHIi tglobaladdr:$in)>; |
| def : Pat<(SPlo tglobaladdr:$in), (ORXri (i64 G0), tglobaladdr:$in)>; |
| def : Pat<(SPhi tconstpool:$in), (SETHIi tconstpool:$in)>; |
| def : Pat<(SPlo tconstpool:$in), (ORXri (i64 G0), tconstpool:$in)>; |
| |
| // GlobalTLS addresses |
| def : Pat<(SPhi tglobaltlsaddr:$in), (SETHIi tglobaltlsaddr:$in)>; |
| def : Pat<(SPlo tglobaltlsaddr:$in), (ORXri (i64 G0), tglobaltlsaddr:$in)>; |
| def : Pat<(add (SPhi tglobaltlsaddr:$in1), (SPlo tglobaltlsaddr:$in2)), |
| (ADDXri (SETHIXi tglobaltlsaddr:$in1), (tglobaltlsaddr:$in2))>; |
| def : Pat<(xor (SPhi tglobaltlsaddr:$in1), (SPlo tglobaltlsaddr:$in2)), |
| (XORXri (SETHIXi tglobaltlsaddr:$in1), (tglobaltlsaddr:$in2))>; |
| |
| // Blockaddress |
| def : Pat<(SPhi tblockaddress:$in), (SETHIi tblockaddress:$in)>; |
| def : Pat<(SPlo tblockaddress:$in), (ORXri (i64 G0), tblockaddress:$in)>; |
| |
| // Add reg, lo. This is used when taking the addr of a global/constpool entry. |
| def : Pat<(add iPTR:$r, (SPlo tglobaladdr:$in)), (ADDXri $r, tglobaladdr:$in)>; |
| def : Pat<(add iPTR:$r, (SPlo tconstpool:$in)), (ADDXri $r, tconstpool:$in)>; |
| def : Pat<(add iPTR:$r, (SPlo tblockaddress:$in)), |
| (ADDXri $r, tblockaddress:$in)>; |
| } |