| //===-- RISCVRegisterInfo.td - RISC-V Register defs --------*- tablegen -*-===// |
| // |
| // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
| // See https://llvm.org/LICENSE.txt for license information. |
| // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
| // |
| //===----------------------------------------------------------------------===// |
| |
| //===----------------------------------------------------------------------===// |
| // Declarations that describe the RISC-V register files |
| //===----------------------------------------------------------------------===// |
| |
| let Namespace = "RISCV" in { |
| class RISCVReg<bits<5> Enc, string n, list<string> alt = []> : Register<n> { |
| let HWEncoding{4-0} = Enc; |
| let AltNames = alt; |
| } |
| |
| class RISCVReg16<bits<5> Enc, string n, list<string> alt = []> : Register<n> { |
| let HWEncoding{4-0} = Enc; |
| let AltNames = alt; |
| } |
| |
| def sub_16 : SubRegIndex<16>; |
| class RISCVReg32<RISCVReg16 subreg> : Register<""> { |
| let HWEncoding{4-0} = subreg.HWEncoding{4-0}; |
| let SubRegs = [subreg]; |
| let SubRegIndices = [sub_16]; |
| let AsmName = subreg.AsmName; |
| let AltNames = subreg.AltNames; |
| } |
| |
| // Because RISCVReg64 register have AsmName and AltNames that alias with their |
| // 16/32-bit sub-register, RISCVAsmParser will need to coerce a register number |
| // from a RISCVReg16/RISCVReg32 to the equivalent RISCVReg64 when appropriate. |
| def sub_32 : SubRegIndex<32>; |
| class RISCVReg64<RISCVReg32 subreg> : Register<""> { |
| let HWEncoding{4-0} = subreg.HWEncoding{4-0}; |
| let SubRegs = [subreg]; |
| let SubRegIndices = [sub_32]; |
| let AsmName = subreg.AsmName; |
| let AltNames = subreg.AltNames; |
| } |
| |
| class RISCVRegWithSubRegs<bits<5> Enc, string n, list<Register> subregs, |
| list<string> alt = []> |
| : RegisterWithSubRegs<n, subregs> { |
| let HWEncoding{4-0} = Enc; |
| let AltNames = alt; |
| } |
| |
| def ABIRegAltName : RegAltNameIndex; |
| |
| def sub_vrm4_0 : SubRegIndex<256>; |
| def sub_vrm4_1 : SubRegIndex<256, 256>; |
| def sub_vrm2_0 : SubRegIndex<128>; |
| def sub_vrm2_1 : SubRegIndex<128, 128>; |
| def sub_vrm2_2 : ComposedSubRegIndex<sub_vrm4_1, sub_vrm2_0>; |
| def sub_vrm2_3 : ComposedSubRegIndex<sub_vrm4_1, sub_vrm2_1>; |
| def sub_vrm1_0 : SubRegIndex<64>; |
| def sub_vrm1_1 : SubRegIndex<64, 64>; |
| def sub_vrm1_2 : ComposedSubRegIndex<sub_vrm2_1, sub_vrm1_0>; |
| def sub_vrm1_3 : ComposedSubRegIndex<sub_vrm2_1, sub_vrm1_1>; |
| def sub_vrm1_4 : ComposedSubRegIndex<sub_vrm2_2, sub_vrm1_0>; |
| def sub_vrm1_5 : ComposedSubRegIndex<sub_vrm2_2, sub_vrm1_1>; |
| def sub_vrm1_6 : ComposedSubRegIndex<sub_vrm2_3, sub_vrm1_0>; |
| def sub_vrm1_7 : ComposedSubRegIndex<sub_vrm2_3, sub_vrm1_1>; |
| |
| } // Namespace = "RISCV" |
| |
| // Integer registers |
| // CostPerUse is set higher for registers that may not be compressible as they |
| // are not part of GPRC, the most restrictive register class used by the |
| // compressed instruction set. This will influence the greedy register |
| // allocator to reduce the use of registers that can't be encoded in 16 bit |
| // instructions. This affects register allocation even when compressed |
| // instruction isn't targeted, we see no major negative codegen impact. |
| |
| let RegAltNameIndices = [ABIRegAltName] in { |
| def X0 : RISCVReg<0, "x0", ["zero"]>, DwarfRegNum<[0]>; |
| let CostPerUse = [1] in { |
| def X1 : RISCVReg<1, "x1", ["ra"]>, DwarfRegNum<[1]>; |
| def X2 : RISCVReg<2, "x2", ["sp"]>, DwarfRegNum<[2]>; |
| def X3 : RISCVReg<3, "x3", ["gp"]>, DwarfRegNum<[3]>; |
| def X4 : RISCVReg<4, "x4", ["tp"]>, DwarfRegNum<[4]>; |
| def X5 : RISCVReg<5, "x5", ["t0"]>, DwarfRegNum<[5]>; |
| def X6 : RISCVReg<6, "x6", ["t1"]>, DwarfRegNum<[6]>; |
| def X7 : RISCVReg<7, "x7", ["t2"]>, DwarfRegNum<[7]>; |
| } |
| def X8 : RISCVReg<8, "x8", ["s0", "fp"]>, DwarfRegNum<[8]>; |
| def X9 : RISCVReg<9, "x9", ["s1"]>, DwarfRegNum<[9]>; |
| def X10 : RISCVReg<10,"x10", ["a0"]>, DwarfRegNum<[10]>; |
| def X11 : RISCVReg<11,"x11", ["a1"]>, DwarfRegNum<[11]>; |
| def X12 : RISCVReg<12,"x12", ["a2"]>, DwarfRegNum<[12]>; |
| def X13 : RISCVReg<13,"x13", ["a3"]>, DwarfRegNum<[13]>; |
| def X14 : RISCVReg<14,"x14", ["a4"]>, DwarfRegNum<[14]>; |
| def X15 : RISCVReg<15,"x15", ["a5"]>, DwarfRegNum<[15]>; |
| let CostPerUse = [1] in { |
| def X16 : RISCVReg<16,"x16", ["a6"]>, DwarfRegNum<[16]>; |
| def X17 : RISCVReg<17,"x17", ["a7"]>, DwarfRegNum<[17]>; |
| def X18 : RISCVReg<18,"x18", ["s2"]>, DwarfRegNum<[18]>; |
| def X19 : RISCVReg<19,"x19", ["s3"]>, DwarfRegNum<[19]>; |
| def X20 : RISCVReg<20,"x20", ["s4"]>, DwarfRegNum<[20]>; |
| def X21 : RISCVReg<21,"x21", ["s5"]>, DwarfRegNum<[21]>; |
| def X22 : RISCVReg<22,"x22", ["s6"]>, DwarfRegNum<[22]>; |
| def X23 : RISCVReg<23,"x23", ["s7"]>, DwarfRegNum<[23]>; |
| def X24 : RISCVReg<24,"x24", ["s8"]>, DwarfRegNum<[24]>; |
| def X25 : RISCVReg<25,"x25", ["s9"]>, DwarfRegNum<[25]>; |
| def X26 : RISCVReg<26,"x26", ["s10"]>, DwarfRegNum<[26]>; |
| def X27 : RISCVReg<27,"x27", ["s11"]>, DwarfRegNum<[27]>; |
| def X28 : RISCVReg<28,"x28", ["t3"]>, DwarfRegNum<[28]>; |
| def X29 : RISCVReg<29,"x29", ["t4"]>, DwarfRegNum<[29]>; |
| def X30 : RISCVReg<30,"x30", ["t5"]>, DwarfRegNum<[30]>; |
| def X31 : RISCVReg<31,"x31", ["t6"]>, DwarfRegNum<[31]>; |
| } |
| } |
| |
| def XLenVT : ValueTypeByHwMode<[RV32, RV64], |
| [i32, i64]>; |
| def XLenRI : RegInfoByHwMode< |
| [RV32, RV64], |
| [RegInfo<32,32,32>, RegInfo<64,64,64>]>; |
| |
| // The order of registers represents the preferred allocation sequence. |
| // Registers are listed in the order caller-save, callee-save, specials. |
| def GPR : RegisterClass<"RISCV", [XLenVT], 32, (add |
| (sequence "X%u", 10, 17), |
| (sequence "X%u", 5, 7), |
| (sequence "X%u", 28, 31), |
| (sequence "X%u", 8, 9), |
| (sequence "X%u", 18, 27), |
| (sequence "X%u", 0, 4) |
| )> { |
| let RegInfos = XLenRI; |
| } |
| |
| def GPRX0 : RegisterClass<"RISCV", [XLenVT], 32, (add X0)> { |
| let RegInfos = XLenRI; |
| } |
| |
| // The order of registers represents the preferred allocation sequence. |
| // Registers are listed in the order caller-save, callee-save, specials. |
| def GPRNoX0 : RegisterClass<"RISCV", [XLenVT], 32, (add |
| (sequence "X%u", 10, 17), |
| (sequence "X%u", 5, 7), |
| (sequence "X%u", 28, 31), |
| (sequence "X%u", 8, 9), |
| (sequence "X%u", 18, 27), |
| (sequence "X%u", 1, 4) |
| )> { |
| let RegInfos = XLenRI; |
| } |
| |
| def GPRNoX0X2 : RegisterClass<"RISCV", [XLenVT], 32, (add |
| (sequence "X%u", 10, 17), |
| (sequence "X%u", 5, 7), |
| (sequence "X%u", 28, 31), |
| (sequence "X%u", 8, 9), |
| (sequence "X%u", 18, 27), |
| X1, X3, X4 |
| )> { |
| let RegInfos = XLenRI; |
| } |
| |
| // Don't use X1 or X5 for JALR since that is a hint to pop the return address |
| // stack on some microarchitectures. Also remove the reserved registers X0, X2, |
| // X3, and X4 as it reduces the number of register classes that get synthesized |
| // by tablegen. |
| def GPRJALR : RegisterClass<"RISCV", [XLenVT], 32, (add |
| (sequence "X%u", 10, 17), |
| (sequence "X%u", 6, 7), |
| (sequence "X%u", 28, 31), |
| (sequence "X%u", 8, 9), |
| (sequence "X%u", 18, 27) |
| )> { |
| let RegInfos = XLenRI; |
| } |
| |
| def GPRC : RegisterClass<"RISCV", [XLenVT], 32, (add |
| (sequence "X%u", 10, 15), |
| (sequence "X%u", 8, 9) |
| )> { |
| let RegInfos = XLenRI; |
| } |
| |
| // For indirect tail calls, we can't use callee-saved registers, as they are |
| // restored to the saved value before the tail call, which would clobber a call |
| // address. We shouldn't use x5 since that is a hint for to pop the return |
| // address stack on some microarchitectures. |
| def GPRTC : RegisterClass<"RISCV", [XLenVT], 32, (add |
| (sequence "X%u", 6, 7), |
| (sequence "X%u", 10, 17), |
| (sequence "X%u", 28, 31) |
| )> { |
| let RegInfos = XLenRI; |
| } |
| |
| def SP : RegisterClass<"RISCV", [XLenVT], 32, (add X2)> { |
| let RegInfos = XLenRI; |
| } |
| |
| // Floating point registers |
| let RegAltNameIndices = [ABIRegAltName] in { |
| def F0_H : RISCVReg16<0, "f0", ["ft0"]>, DwarfRegNum<[32]>; |
| def F1_H : RISCVReg16<1, "f1", ["ft1"]>, DwarfRegNum<[33]>; |
| def F2_H : RISCVReg16<2, "f2", ["ft2"]>, DwarfRegNum<[34]>; |
| def F3_H : RISCVReg16<3, "f3", ["ft3"]>, DwarfRegNum<[35]>; |
| def F4_H : RISCVReg16<4, "f4", ["ft4"]>, DwarfRegNum<[36]>; |
| def F5_H : RISCVReg16<5, "f5", ["ft5"]>, DwarfRegNum<[37]>; |
| def F6_H : RISCVReg16<6, "f6", ["ft6"]>, DwarfRegNum<[38]>; |
| def F7_H : RISCVReg16<7, "f7", ["ft7"]>, DwarfRegNum<[39]>; |
| def F8_H : RISCVReg16<8, "f8", ["fs0"]>, DwarfRegNum<[40]>; |
| def F9_H : RISCVReg16<9, "f9", ["fs1"]>, DwarfRegNum<[41]>; |
| def F10_H : RISCVReg16<10,"f10", ["fa0"]>, DwarfRegNum<[42]>; |
| def F11_H : RISCVReg16<11,"f11", ["fa1"]>, DwarfRegNum<[43]>; |
| def F12_H : RISCVReg16<12,"f12", ["fa2"]>, DwarfRegNum<[44]>; |
| def F13_H : RISCVReg16<13,"f13", ["fa3"]>, DwarfRegNum<[45]>; |
| def F14_H : RISCVReg16<14,"f14", ["fa4"]>, DwarfRegNum<[46]>; |
| def F15_H : RISCVReg16<15,"f15", ["fa5"]>, DwarfRegNum<[47]>; |
| def F16_H : RISCVReg16<16,"f16", ["fa6"]>, DwarfRegNum<[48]>; |
| def F17_H : RISCVReg16<17,"f17", ["fa7"]>, DwarfRegNum<[49]>; |
| def F18_H : RISCVReg16<18,"f18", ["fs2"]>, DwarfRegNum<[50]>; |
| def F19_H : RISCVReg16<19,"f19", ["fs3"]>, DwarfRegNum<[51]>; |
| def F20_H : RISCVReg16<20,"f20", ["fs4"]>, DwarfRegNum<[52]>; |
| def F21_H : RISCVReg16<21,"f21", ["fs5"]>, DwarfRegNum<[53]>; |
| def F22_H : RISCVReg16<22,"f22", ["fs6"]>, DwarfRegNum<[54]>; |
| def F23_H : RISCVReg16<23,"f23", ["fs7"]>, DwarfRegNum<[55]>; |
| def F24_H : RISCVReg16<24,"f24", ["fs8"]>, DwarfRegNum<[56]>; |
| def F25_H : RISCVReg16<25,"f25", ["fs9"]>, DwarfRegNum<[57]>; |
| def F26_H : RISCVReg16<26,"f26", ["fs10"]>, DwarfRegNum<[58]>; |
| def F27_H : RISCVReg16<27,"f27", ["fs11"]>, DwarfRegNum<[59]>; |
| def F28_H : RISCVReg16<28,"f28", ["ft8"]>, DwarfRegNum<[60]>; |
| def F29_H : RISCVReg16<29,"f29", ["ft9"]>, DwarfRegNum<[61]>; |
| def F30_H : RISCVReg16<30,"f30", ["ft10"]>, DwarfRegNum<[62]>; |
| def F31_H : RISCVReg16<31,"f31", ["ft11"]>, DwarfRegNum<[63]>; |
| |
| foreach Index = 0-31 in { |
| def F#Index#_F : RISCVReg32<!cast<RISCVReg16>("F"#Index#"_H")>, |
| DwarfRegNum<[!add(Index, 32)]>; |
| } |
| |
| foreach Index = 0-31 in { |
| def F#Index#_D : RISCVReg64<!cast<RISCVReg32>("F"#Index#"_F")>, |
| DwarfRegNum<[!add(Index, 32)]>; |
| } |
| } |
| |
| // The order of registers represents the preferred allocation sequence, |
| // meaning caller-save regs are listed before callee-save. |
| def FPR16 : RegisterClass<"RISCV", [f16], 16, (add |
| (sequence "F%u_H", 0, 7), |
| (sequence "F%u_H", 10, 17), |
| (sequence "F%u_H", 28, 31), |
| (sequence "F%u_H", 8, 9), |
| (sequence "F%u_H", 18, 27) |
| )>; |
| |
| def FPR32 : RegisterClass<"RISCV", [f32], 32, (add |
| (sequence "F%u_F", 0, 7), |
| (sequence "F%u_F", 10, 17), |
| (sequence "F%u_F", 28, 31), |
| (sequence "F%u_F", 8, 9), |
| (sequence "F%u_F", 18, 27) |
| )>; |
| |
| def FPR32C : RegisterClass<"RISCV", [f32], 32, (add |
| (sequence "F%u_F", 10, 15), |
| (sequence "F%u_F", 8, 9) |
| )>; |
| |
| // The order of registers represents the preferred allocation sequence, |
| // meaning caller-save regs are listed before callee-save. |
| def FPR64 : RegisterClass<"RISCV", [f64], 64, (add |
| (sequence "F%u_D", 0, 7), |
| (sequence "F%u_D", 10, 17), |
| (sequence "F%u_D", 28, 31), |
| (sequence "F%u_D", 8, 9), |
| (sequence "F%u_D", 18, 27) |
| )>; |
| |
| def FPR64C : RegisterClass<"RISCV", [f64], 64, (add |
| (sequence "F%u_D", 10, 15), |
| (sequence "F%u_D", 8, 9) |
| )>; |
| |
| // Vector type mapping to LLVM types. |
| // |
| // The V vector extension requires that VLEN >= 128 and <= 65536. |
| // Additionally, the only supported ELEN values are 32 and 64, |
| // thus `vscale` can be defined as VLEN/64, |
| // allowing the same types with either ELEN value. |
| // |
| // MF8 MF4 MF2 M1 M2 M4 M8 |
| // i64* N/A N/A N/A nxv1i64 nxv2i64 nxv4i64 nxv8i64 |
| // i32 N/A N/A nxv1i32 nxv2i32 nxv4i32 nxv8i32 nxv16i32 |
| // i16 N/A nxv1i16 nxv2i16 nxv4i16 nxv8i16 nxv16i16 nxv32i16 |
| // i8 nxv1i8 nxv2i8 nxv4i8 nxv8i8 nxv16i8 nxv32i8 nxv64i8 |
| // double* N/A N/A N/A nxv1f64 nxv2f64 nxv4f64 nxv8f64 |
| // float N/A N/A nxv1f32 nxv2f32 nxv4f32 nxv8f32 nxv16f32 |
| // half N/A nxv1f16 nxv2f16 nxv4f16 nxv8f16 nxv16f16 nxv32f16 |
| // * ELEN=64 |
| |
| defvar vint8mf8_t = nxv1i8; |
| defvar vint8mf4_t = nxv2i8; |
| defvar vint8mf2_t = nxv4i8; |
| defvar vint8m1_t = nxv8i8; |
| defvar vint8m2_t = nxv16i8; |
| defvar vint8m4_t = nxv32i8; |
| defvar vint8m8_t = nxv64i8; |
| |
| defvar vint16mf4_t = nxv1i16; |
| defvar vint16mf2_t = nxv2i16; |
| defvar vint16m1_t = nxv4i16; |
| defvar vint16m2_t = nxv8i16; |
| defvar vint16m4_t = nxv16i16; |
| defvar vint16m8_t = nxv32i16; |
| |
| defvar vint32mf2_t = nxv1i32; |
| defvar vint32m1_t = nxv2i32; |
| defvar vint32m2_t = nxv4i32; |
| defvar vint32m4_t = nxv8i32; |
| defvar vint32m8_t = nxv16i32; |
| |
| defvar vint64m1_t = nxv1i64; |
| defvar vint64m2_t = nxv2i64; |
| defvar vint64m4_t = nxv4i64; |
| defvar vint64m8_t = nxv8i64; |
| |
| defvar vfloat16mf4_t = nxv1f16; |
| defvar vfloat16mf2_t = nxv2f16; |
| defvar vfloat16m1_t = nxv4f16; |
| defvar vfloat16m2_t = nxv8f16; |
| defvar vfloat16m4_t = nxv16f16; |
| defvar vfloat16m8_t = nxv32f16; |
| |
| defvar vfloat32mf2_t = nxv1f32; |
| defvar vfloat32m1_t = nxv2f32; |
| defvar vfloat32m2_t = nxv4f32; |
| defvar vfloat32m4_t = nxv8f32; |
| defvar vfloat32m8_t = nxv16f32; |
| |
| defvar vfloat64m1_t = nxv1f64; |
| defvar vfloat64m2_t = nxv2f64; |
| defvar vfloat64m4_t = nxv4f64; |
| defvar vfloat64m8_t = nxv8f64; |
| |
| defvar vbool1_t = nxv64i1; |
| defvar vbool2_t = nxv32i1; |
| defvar vbool4_t = nxv16i1; |
| defvar vbool8_t = nxv8i1; |
| defvar vbool16_t = nxv4i1; |
| defvar vbool32_t = nxv2i1; |
| defvar vbool64_t = nxv1i1; |
| |
| // There is no need to define register classes for fractional LMUL. |
| def LMULList { |
| list<int> m = [1, 2, 4, 8]; |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // Utility classes for segment load/store. |
| //===----------------------------------------------------------------------===// |
| // The set of legal NF for LMUL = lmul. |
| // LMUL == 1, NF = 2, 3, 4, 5, 6, 7, 8 |
| // LMUL == 2, NF = 2, 3, 4 |
| // LMUL == 4, NF = 2 |
| class NFList<int lmul> { |
| list<int> L = !cond(!eq(lmul, 1): [2, 3, 4, 5, 6, 7, 8], |
| !eq(lmul, 2): [2, 3, 4], |
| !eq(lmul, 4): [2], |
| !eq(lmul, 8): []); |
| } |
| |
| // Generate [start, end) SubRegIndex list. |
| class SubRegSet<int nf, int lmul> { |
| list<SubRegIndex> L = !foldl([]<SubRegIndex>, |
| [0, 1, 2, 3, 4, 5, 6, 7], |
| AccList, i, |
| !listconcat(AccList, |
| !if(!lt(i, nf), |
| [!cast<SubRegIndex>("sub_vrm" # lmul # "_" # i)], |
| []))); |
| } |
| |
| // Collect the valid indexes into 'R' under NF and LMUL values from TUPLE_INDEX. |
| // When NF = 2, the valid TUPLE_INDEX is 0 and 1. |
| // For example, when LMUL = 4, the potential valid indexes is |
| // [8, 12, 16, 20, 24, 28, 4]. However, not all these indexes are valid under |
| // NF = 2. For example, 28 is not valid under LMUL = 4, NF = 2 and TUPLE_INDEX = 0. |
| // The filter is |
| // (tuple_index + i) x lmul <= (tuple_index x lmul) + 32 - (nf x lmul) |
| // |
| // Use START = 0, LMUL = 4 and NF = 2 as the example, |
| // i x 4 <= 24 |
| // The class will return [8, 12, 16, 20, 24, 4]. |
| // Use START = 1, LMUL = 4 and NF = 2 as the example, |
| // (1 + i) x 4 <= 28 |
| // The class will return [12, 16, 20, 24, 28, 8]. |
| // |
| class IndexSet<int tuple_index, int nf, int lmul, bit isV0 = false> { |
| list<int> R = |
| !foldl([]<int>, |
| !if(isV0, [0], |
| !cond( |
| !eq(lmul, 1): |
| [8, 9, 10, 11, 12, 13, 14, 15, |
| 16, 17, 18, 19, 20, 21, 22, 23, |
| 24, 25, 26, 27, 28, 29, 30, 31, |
| 1, 2, 3, 4, 5, 6, 7], |
| !eq(lmul, 2): |
| [4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 1, 2, 3], |
| !eq(lmul, 4): |
| [2, 3, 4, 5, 6, 7, 1])), |
| L, i, |
| !listconcat(L, |
| !if(!le(!mul(!add(i, tuple_index), lmul), |
| !sub(!add(32, !mul(tuple_index, lmul)), !mul(nf, lmul))), |
| [!mul(!add(i, tuple_index), lmul)], []))); |
| } |
| |
| // This class returns a list of vector register collections. |
| // For example, for NF = 2 and LMUL = 4, |
| // it will return |
| // ([ V8M4, V12M4, V16M4, V20M4, V24M4, V4M4], |
| // [V12M4, V16M4, V20M4, V24M4, V28M4, V8M4]) |
| // |
| class VRegList<list<dag> LIn, int start, int nf, int lmul, bit isV0> { |
| list<dag> L = |
| !if(!ge(start, nf), |
| LIn, |
| !listconcat( |
| [!dag(add, |
| !foreach(i, IndexSet<start, nf, lmul, isV0>.R, |
| !cast<Register>("V" # i # !cond(!eq(lmul, 2): "M2", |
| !eq(lmul, 4): "M4", |
| true: ""))), |
| !listsplat("", |
| !size(IndexSet<start, nf, lmul, isV0>.R)))], |
| VRegList<LIn, !add(start, 1), nf, lmul, isV0>.L)); |
| } |
| |
| // Vector registers |
| let RegAltNameIndices = [ABIRegAltName] in { |
| foreach Index = 0-31 in { |
| def V#Index : RISCVReg<Index, "v"#Index, ["v"#Index]>, DwarfRegNum<[!add(Index, 96)]>; |
| } |
| |
| foreach Index = [0, 2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, |
| 24, 26, 28, 30] in { |
| def V#Index#M2 : RISCVRegWithSubRegs<Index, "v"#Index, |
| [!cast<Register>("V"#Index), |
| !cast<Register>("V"#!add(Index, 1))], |
| ["v"#Index]>, |
| DwarfRegAlias<!cast<Register>("V"#Index)> { |
| let SubRegIndices = [sub_vrm1_0, sub_vrm1_1]; |
| } |
| } |
| |
| foreach Index = [0, 4, 8, 12, 16, 20, 24, 28] in { |
| def V#Index#M4 : RISCVRegWithSubRegs<Index, "v"#Index, |
| [!cast<Register>("V"#Index#"M2"), |
| !cast<Register>("V"#!add(Index, 2)#"M2")], |
| ["v"#Index]>, |
| DwarfRegAlias<!cast<Register>("V"#Index)> { |
| let SubRegIndices = [sub_vrm2_0, sub_vrm2_1]; |
| } |
| } |
| |
| foreach Index = [0, 8, 16, 24] in { |
| def V#Index#M8 : RISCVRegWithSubRegs<Index, "v"#Index, |
| [!cast<Register>("V"#Index#"M4"), |
| !cast<Register>("V"#!add(Index, 4)#"M4")], |
| ["v"#Index]>, |
| DwarfRegAlias<!cast<Register>("V"#Index)> { |
| let SubRegIndices = [sub_vrm4_0, sub_vrm4_1]; |
| } |
| } |
| |
| def VTYPE : RISCVReg<0, "vtype", ["vtype"]>; |
| def VL : RISCVReg<0, "vl", ["vl"]>; |
| def VXSAT : RISCVReg<0, "vxsat", ["vxsat"]>; |
| def VXRM : RISCVReg<0, "vxrm", ["vxrm"]>; |
| def VLENB : RISCVReg<0, "vlenb", ["vlenb"]>, |
| DwarfRegNum<[!add(4096, SysRegVLENB.Encoding)]>; |
| } |
| |
| foreach m = [1, 2, 4] in { |
| foreach n = NFList<m>.L in { |
| def "VN" # n # "M" # m # "NoV0": RegisterTuples< |
| SubRegSet<n, m>.L, |
| VRegList<[], 0, n, m, false>.L>; |
| def "VN" # n # "M" # m # "V0" : RegisterTuples< |
| SubRegSet<n, m>.L, |
| VRegList<[], 0, n, m, true>.L>; |
| } |
| } |
| |
| class VReg<list<ValueType> regTypes, dag regList, int Vlmul> |
| : RegisterClass<"RISCV", |
| regTypes, |
| 64, // The maximum supported ELEN is 64. |
| regList> { |
| int VLMul = Vlmul; |
| int Size = !mul(Vlmul, 64); |
| } |
| |
| def VR : VReg<[vint8m1_t, vint16m1_t, vint32m1_t, vint64m1_t, |
| vfloat16m1_t, vfloat32m1_t, vfloat64m1_t, |
| vint8mf2_t, vint8mf4_t, vint8mf8_t, |
| vint16mf2_t, vint16mf4_t, vint32mf2_t, |
| vfloat16mf4_t, vfloat16mf2_t, vfloat32mf2_t, |
| vbool64_t, vbool32_t, vbool16_t, vbool8_t, vbool4_t, |
| vbool2_t, vbool1_t], |
| (add (sequence "V%u", 8, 31), |
| (sequence "V%u", 0, 7)), 1>; |
| |
| def VRNoV0 : VReg<[vint8m1_t, vint16m1_t, vint32m1_t, vint64m1_t, |
| vfloat16m1_t, vfloat32m1_t, vfloat64m1_t, |
| vint8mf2_t, vint8mf4_t, vint8mf8_t, |
| vint16mf2_t, vint16mf4_t, vint32mf2_t, |
| vfloat16mf4_t, vfloat16mf2_t, vfloat32mf2_t, |
| vbool64_t, vbool32_t, vbool16_t, vbool8_t, vbool4_t, |
| vbool2_t, vbool1_t], |
| (add (sequence "V%u", 8, 31), |
| (sequence "V%u", 1, 7)), 1>; |
| |
| def VRM2 : VReg<[vint8m2_t, vint16m2_t, vint32m2_t, vint64m2_t, |
| vfloat16m2_t, vfloat32m2_t, vfloat64m2_t], |
| (add (sequence "V%uM2", 8, 31, 2), |
| (sequence "V%uM2", 0, 7, 2)), 2>; |
| |
| def VRM2NoV0 : VReg<[vint8m2_t, vint16m2_t, vint32m2_t, vint64m2_t, |
| vfloat16m2_t, vfloat32m2_t, vfloat64m2_t], |
| (add (sequence "V%uM2", 8, 31, 2), |
| (sequence "V%uM2", 2, 7, 2)), 2>; |
| |
| def VRM4 : VReg<[vint8m4_t, vint16m4_t, vint32m4_t, vint64m4_t, |
| vfloat16m4_t, vfloat32m4_t, vfloat64m4_t], |
| (add V8M4, V12M4, V16M4, V20M4, V24M4, V28M4, V0M4, V4M4), 4>; |
| |
| def VRM4NoV0 : VReg<[vint8m4_t, vint16m4_t, vint32m4_t, vint64m4_t, |
| vfloat16m4_t, vfloat32m4_t, vfloat64m4_t], |
| (add V8M4, V12M4, V16M4, V20M4, V24M4, V28M4, V4M4), 4>; |
| |
| def VRM8 : VReg<[vint8m8_t, vint16m8_t, vint32m8_t, vint64m8_t, |
| vfloat16m8_t, vfloat32m8_t, vfloat64m8_t], |
| (add V8M8, V16M8, V24M8, V0M8), 8>; |
| |
| def VRM8NoV0 : VReg<[vint8m8_t, vint16m8_t, vint32m8_t, vint64m8_t, |
| vfloat16m8_t, vfloat32m8_t, vfloat64m8_t], |
| (add V8M8, V16M8, V24M8), 8>; |
| |
| defvar VMaskVTs = [vbool64_t, vbool32_t, vbool16_t, vbool8_t, |
| vbool4_t, vbool2_t, vbool1_t]; |
| |
| def VMV0 : RegisterClass<"RISCV", VMaskVTs, 64, (add V0)> { |
| let Size = 64; |
| } |
| |
| // The register class is added for inline assembly for vector mask types. |
| def VM : VReg<[vbool1_t, vbool2_t, vbool4_t, vbool8_t, vbool16_t, |
| vbool32_t, vbool64_t], |
| (add (sequence "V%u", 8, 31), |
| (sequence "V%u", 0, 7)), 1>; |
| |
| foreach m = LMULList.m in { |
| foreach nf = NFList<m>.L in { |
| def "VRN" # nf # "M" # m # "NoV0": VReg<[untyped], |
| (add !cast<RegisterTuples>("VN" # nf # "M" # m # "NoV0")), |
| !mul(nf, m)>; |
| def "VRN" # nf # "M" # m: VReg<[untyped], |
| (add !cast<RegisterTuples>("VN" # nf # "M" # m # "NoV0"), |
| !cast<RegisterTuples>("VN" # nf # "M" # m # "V0")), |
| !mul(nf, m)>; |
| } |
| } |
| |
| // Special registers |
| def FFLAGS : RISCVReg<0, "fflags">; |
| def FRM : RISCVReg<0, "frm">; |
| def FCSR : RISCVReg<0, "fcsr">; |
| |
| // Any type register. Used for .insn directives when we don't know what the |
| // register types could be. |
| // NOTE: The alignment and size are bogus values. The Size needs to be non-zero |
| // or tablegen will use "untyped" to determine the size which will assert. |
| let isAllocatable = 0 in |
| def AnyReg : RegisterClass<"RISCV", [untyped], 32, |
| (add (sequence "X%u", 0, 31), |
| (sequence "F%u_D", 0, 31), |
| (sequence "V%u", 0, 31))> { |
| let Size = 32; |
| } |