| //===- RISCVMatInt.cpp - Immediate materialisation -------------*- C++ -*--===// |
| // |
| // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
| // See https://llvm.org/LICENSE.txt for license information. |
| // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
| // |
| //===----------------------------------------------------------------------===// |
| |
| #include "RISCVMatInt.h" |
| #include "MCTargetDesc/RISCVMCTargetDesc.h" |
| #include "llvm/ADT/APInt.h" |
| #include "llvm/Support/MathExtras.h" |
| using namespace llvm; |
| |
| static int getInstSeqCost(RISCVMatInt::InstSeq &Res, bool HasRVC) { |
| if (!HasRVC) |
| return Res.size(); |
| |
| int Cost = 0; |
| for (auto Instr : Res) { |
| bool Compressed; |
| switch (Instr.Opc) { |
| default: |
| llvm_unreachable("Unexpected opcode"); |
| case RISCV::SLLI: |
| case RISCV::SRLI: |
| Compressed = true; |
| break; |
| case RISCV::ADDI: |
| case RISCV::ADDIW: |
| case RISCV::LUI: |
| Compressed = isInt<6>(Instr.Imm); |
| break; |
| case RISCV::ADDUW: |
| Compressed = false; |
| break; |
| } |
| // Two RVC instructions take the same space as one RVI instruction, but |
| // can take longer to execute than the single RVI instruction. Thus, we |
| // consider that two RVC instruction are slightly more costly than one |
| // RVI instruction. For longer sequences of RVC instructions the space |
| // savings can be worth it, though. The costs below try to model that. |
| if (!Compressed) |
| Cost += 100; // Baseline cost of one RVI instruction: 100%. |
| else |
| Cost += 70; // 70% cost of baseline. |
| } |
| return Cost; |
| } |
| |
| // Recursively generate a sequence for materializing an integer. |
| static void generateInstSeqImpl(int64_t Val, |
| const FeatureBitset &ActiveFeatures, |
| RISCVMatInt::InstSeq &Res) { |
| bool IsRV64 = ActiveFeatures[RISCV::Feature64Bit]; |
| |
| if (isInt<32>(Val)) { |
| // Depending on the active bits in the immediate Value v, the following |
| // instruction sequences are emitted: |
| // |
| // v == 0 : ADDI |
| // v[0,12) != 0 && v[12,32) == 0 : ADDI |
| // v[0,12) == 0 && v[12,32) != 0 : LUI |
| // v[0,32) != 0 : LUI+ADDI(W) |
| int64_t Hi20 = ((Val + 0x800) >> 12) & 0xFFFFF; |
| int64_t Lo12 = SignExtend64<12>(Val); |
| |
| if (Hi20) |
| Res.push_back(RISCVMatInt::Inst(RISCV::LUI, Hi20)); |
| |
| if (Lo12 || Hi20 == 0) { |
| unsigned AddiOpc = (IsRV64 && Hi20) ? RISCV::ADDIW : RISCV::ADDI; |
| Res.push_back(RISCVMatInt::Inst(AddiOpc, Lo12)); |
| } |
| return; |
| } |
| |
| assert(IsRV64 && "Can't emit >32-bit imm for non-RV64 target"); |
| |
| // In the worst case, for a full 64-bit constant, a sequence of 8 instructions |
| // (i.e., LUI+ADDIW+SLLI+ADDI+SLLI+ADDI+SLLI+ADDI) has to be emitted. Note |
| // that the first two instructions (LUI+ADDIW) can contribute up to 32 bits |
| // while the following ADDI instructions contribute up to 12 bits each. |
| // |
| // On the first glance, implementing this seems to be possible by simply |
| // emitting the most significant 32 bits (LUI+ADDIW) followed by as many left |
| // shift (SLLI) and immediate additions (ADDI) as needed. However, due to the |
| // fact that ADDI performs a sign extended addition, doing it like that would |
| // only be possible when at most 11 bits of the ADDI instructions are used. |
| // Using all 12 bits of the ADDI instructions, like done by GAS, actually |
| // requires that the constant is processed starting with the least significant |
| // bit. |
| // |
| // In the following, constants are processed from LSB to MSB but instruction |
| // emission is performed from MSB to LSB by recursively calling |
| // generateInstSeq. In each recursion, first the lowest 12 bits are removed |
| // from the constant and the optimal shift amount, which can be greater than |
| // 12 bits if the constant is sparse, is determined. Then, the shifted |
| // remaining constant is processed recursively and gets emitted as soon as it |
| // fits into 32 bits. The emission of the shifts and additions is subsequently |
| // performed when the recursion returns. |
| |
| int64_t Lo12 = SignExtend64<12>(Val); |
| int64_t Hi52 = ((uint64_t)Val + 0x800ull) >> 12; |
| int ShiftAmount = 12 + findFirstSet((uint64_t)Hi52); |
| Hi52 = SignExtend64(Hi52 >> (ShiftAmount - 12), 64 - ShiftAmount); |
| |
| // If the remaining bits don't fit in 12 bits, we might be able to reduce the |
| // shift amount in order to use LUI which will zero the lower 12 bits. |
| bool Unsigned = false; |
| if (ShiftAmount > 12 && !isInt<12>(Hi52)) { |
| if (isInt<32>((uint64_t)Hi52 << 12)) { |
| // Reduce the shift amount and add zeros to the LSBs so it will match LUI. |
| ShiftAmount -= 12; |
| Hi52 = (uint64_t)Hi52 << 12; |
| } else if (isUInt<32>((uint64_t)Hi52 << 12) && |
| ActiveFeatures[RISCV::FeatureStdExtZba]) { |
| // Reduce the shift amount and add zeros to the LSBs so it will match |
| // LUI, then shift left with SLLI.UW to clear the upper 32 set bits. |
| ShiftAmount -= 12; |
| Hi52 = ((uint64_t)Hi52 << 12) | (0xffffffffull << 32); |
| Unsigned = true; |
| } |
| } |
| |
| // Try to use SLLIUW for Hi52 when it is uint32 but not int32. |
| if (isUInt<32>((uint64_t)Hi52) && !isInt<32>((uint64_t)Hi52) && |
| ActiveFeatures[RISCV::FeatureStdExtZba]) { |
| // Use LUI+ADDI or LUI to compose, then clear the upper 32 bits with SLLIUW. |
| Hi52 = ((uint64_t)Hi52) | (0xffffffffull << 32); |
| Unsigned = true; |
| } |
| |
| generateInstSeqImpl(Hi52, ActiveFeatures, Res); |
| |
| if (Unsigned) |
| Res.push_back(RISCVMatInt::Inst(RISCV::SLLIUW, ShiftAmount)); |
| else |
| Res.push_back(RISCVMatInt::Inst(RISCV::SLLI, ShiftAmount)); |
| if (Lo12) |
| Res.push_back(RISCVMatInt::Inst(RISCV::ADDI, Lo12)); |
| } |
| |
| namespace llvm { |
| namespace RISCVMatInt { |
| InstSeq generateInstSeq(int64_t Val, const FeatureBitset &ActiveFeatures) { |
| RISCVMatInt::InstSeq Res; |
| generateInstSeqImpl(Val, ActiveFeatures, Res); |
| |
| // If the constant is positive we might be able to generate a shifted constant |
| // with no leading zeros and use a final SRLI to restore them. |
| if (Val > 0 && Res.size() > 2) { |
| assert(ActiveFeatures[RISCV::Feature64Bit] && |
| "Expected RV32 to only need 2 instructions"); |
| unsigned LeadingZeros = countLeadingZeros((uint64_t)Val); |
| uint64_t ShiftedVal = (uint64_t)Val << LeadingZeros; |
| // Fill in the bits that will be shifted out with 1s. An example where this |
| // helps is trailing one masks with 32 or more ones. This will generate |
| // ADDI -1 and an SRLI. |
| ShiftedVal |= maskTrailingOnes<uint64_t>(LeadingZeros); |
| |
| RISCVMatInt::InstSeq TmpSeq; |
| generateInstSeqImpl(ShiftedVal, ActiveFeatures, TmpSeq); |
| TmpSeq.push_back(RISCVMatInt::Inst(RISCV::SRLI, LeadingZeros)); |
| |
| // Keep the new sequence if it is an improvement. |
| if (TmpSeq.size() < Res.size()) { |
| Res = TmpSeq; |
| // A 2 instruction sequence is the best we can do. |
| if (Res.size() <= 2) |
| return Res; |
| } |
| |
| // Some cases can benefit from filling the lower bits with zeros instead. |
| ShiftedVal &= maskTrailingZeros<uint64_t>(LeadingZeros); |
| TmpSeq.clear(); |
| generateInstSeqImpl(ShiftedVal, ActiveFeatures, TmpSeq); |
| TmpSeq.push_back(RISCVMatInt::Inst(RISCV::SRLI, LeadingZeros)); |
| |
| // Keep the new sequence if it is an improvement. |
| if (TmpSeq.size() < Res.size()) { |
| Res = TmpSeq; |
| // A 2 instruction sequence is the best we can do. |
| if (Res.size() <= 2) |
| return Res; |
| } |
| |
| // If we have exactly 32 leading zeros and Zba, we can try using zext.w at |
| // the end of the sequence. |
| if (LeadingZeros == 32 && ActiveFeatures[RISCV::FeatureStdExtZba]) { |
| // Try replacing upper bits with 1. |
| uint64_t LeadingOnesVal = Val | maskLeadingOnes<uint64_t>(LeadingZeros); |
| TmpSeq.clear(); |
| generateInstSeqImpl(LeadingOnesVal, ActiveFeatures, TmpSeq); |
| TmpSeq.push_back(RISCVMatInt::Inst(RISCV::ADDUW, 0)); |
| |
| // Keep the new sequence if it is an improvement. |
| if (TmpSeq.size() < Res.size()) { |
| Res = TmpSeq; |
| // A 2 instruction sequence is the best we can do. |
| if (Res.size() <= 2) |
| return Res; |
| } |
| } |
| } |
| |
| // Perform optimization with BCLRI/BSETI in the Zbs extension. |
| if (Res.size() > 2 && ActiveFeatures[RISCV::FeatureStdExtZbs]) { |
| assert(ActiveFeatures[RISCV::Feature64Bit] && |
| "Expected RV32 to only need 2 instructions"); |
| |
| // 1. For values in range 0xffffffff 7fffffff ~ 0xffffffff 00000000, |
| // call generateInstSeqImpl with Val|0x80000000 (which is expected be |
| // an int32), then emit (BCLRI r, 31). |
| // 2. For values in range 0x80000000 ~ 0xffffffff, call generateInstSeqImpl |
| // with Val&~0x80000000 (which is expected to be an int32), then |
| // emit (BSETI r, 31). |
| int64_t NewVal; |
| unsigned Opc; |
| if (Val < 0) { |
| Opc = RISCV::BCLRI; |
| NewVal = Val | 0x80000000ll; |
| } else { |
| Opc = RISCV::BSETI; |
| NewVal = Val & ~0x80000000ll; |
| } |
| if (isInt<32>(NewVal)) { |
| RISCVMatInt::InstSeq TmpSeq; |
| generateInstSeqImpl(NewVal, ActiveFeatures, TmpSeq); |
| TmpSeq.push_back(RISCVMatInt::Inst(Opc, 31)); |
| if (TmpSeq.size() < Res.size()) |
| Res = TmpSeq; |
| } |
| |
| // Try to use BCLRI for upper 32 bits if the original lower 32 bits are |
| // negative int32, or use BSETI for upper 32 bits if the original lower |
| // 32 bits are positive int32. |
| int32_t Lo = Val; |
| uint32_t Hi = Val >> 32; |
| Opc = 0; |
| RISCVMatInt::InstSeq TmpSeq; |
| generateInstSeqImpl(Lo, ActiveFeatures, TmpSeq); |
| // Check if it is profitable to use BCLRI/BSETI. |
| if (Lo > 0 && TmpSeq.size() + countPopulation(Hi) < Res.size()) { |
| Opc = RISCV::BSETI; |
| } else if (Lo < 0 && TmpSeq.size() + countPopulation(~Hi) < Res.size()) { |
| Opc = RISCV::BCLRI; |
| Hi = ~Hi; |
| } |
| // Search for each bit and build corresponding BCLRI/BSETI. |
| if (Opc > 0) { |
| while (Hi != 0) { |
| unsigned Bit = countTrailingZeros(Hi); |
| TmpSeq.push_back(RISCVMatInt::Inst(Opc, Bit + 32)); |
| Hi &= ~(1 << Bit); |
| } |
| if (TmpSeq.size() < Res.size()) |
| Res = TmpSeq; |
| } |
| } |
| |
| // Perform optimization with SH*ADD in the Zba extension. |
| if (Res.size() > 2 && ActiveFeatures[RISCV::FeatureStdExtZba]) { |
| assert(ActiveFeatures[RISCV::Feature64Bit] && |
| "Expected RV32 to only need 2 instructions"); |
| int64_t Div = 0; |
| unsigned Opc = 0; |
| RISCVMatInt::InstSeq TmpSeq; |
| // Select the opcode and divisor. |
| if ((Val % 3) == 0 && isInt<32>(Val / 3)) { |
| Div = 3; |
| Opc = RISCV::SH1ADD; |
| } else if ((Val % 5) == 0 && isInt<32>(Val / 5)) { |
| Div = 5; |
| Opc = RISCV::SH2ADD; |
| } else if ((Val % 9) == 0 && isInt<32>(Val / 9)) { |
| Div = 9; |
| Opc = RISCV::SH3ADD; |
| } |
| // Build the new instruction sequence. |
| if (Div > 0) { |
| generateInstSeqImpl(Val / Div, ActiveFeatures, TmpSeq); |
| TmpSeq.push_back(RISCVMatInt::Inst(Opc, 0)); |
| if (TmpSeq.size() < Res.size()) |
| Res = TmpSeq; |
| } |
| // Try to use LUI+SH*ADD+ADDI. |
| int64_t Hi52 = ((uint64_t)Val + 0x800ull) & ~0xfffull; |
| int64_t Lo12 = SignExtend64<12>(Val); |
| Div = 0; |
| if (isInt<32>(Hi52 / 3) && (Hi52 % 3) == 0) { |
| Div = 3; |
| Opc = RISCV::SH1ADD; |
| } else if (isInt<32>(Hi52 / 5) && (Hi52 % 5) == 0) { |
| Div = 5; |
| Opc = RISCV::SH2ADD; |
| } else if (isInt<32>(Hi52 / 9) && (Hi52 % 9) == 0) { |
| Div = 9; |
| Opc = RISCV::SH3ADD; |
| } |
| // Build the new instruction sequence. |
| if (Div > 0) { |
| // For Val that has zero Lo12 (implies Val equals to Hi52) should has |
| // already been processed to LUI+SH*ADD by previous optimization. |
| assert(Lo12 != 0 && |
| "unexpected instruction sequence for immediate materialisation"); |
| generateInstSeqImpl(Hi52 / Div, ActiveFeatures, TmpSeq); |
| TmpSeq.push_back(RISCVMatInt::Inst(Opc, 0)); |
| TmpSeq.push_back(RISCVMatInt::Inst(RISCV::ADDI, Lo12)); |
| if (TmpSeq.size() < Res.size()) |
| Res = TmpSeq; |
| } |
| } |
| |
| return Res; |
| } |
| |
| int getIntMatCost(const APInt &Val, unsigned Size, |
| const FeatureBitset &ActiveFeatures, bool CompressionCost) { |
| bool IsRV64 = ActiveFeatures[RISCV::Feature64Bit]; |
| bool HasRVC = CompressionCost && ActiveFeatures[RISCV::FeatureStdExtC]; |
| int PlatRegSize = IsRV64 ? 64 : 32; |
| |
| // Split the constant into platform register sized chunks, and calculate cost |
| // of each chunk. |
| int Cost = 0; |
| for (unsigned ShiftVal = 0; ShiftVal < Size; ShiftVal += PlatRegSize) { |
| APInt Chunk = Val.ashr(ShiftVal).sextOrTrunc(PlatRegSize); |
| InstSeq MatSeq = generateInstSeq(Chunk.getSExtValue(), ActiveFeatures); |
| Cost += getInstSeqCost(MatSeq, HasRVC); |
| } |
| return std::max(1, Cost); |
| } |
| } // namespace RISCVMatInt |
| } // namespace llvm |