blob: 3ec5dd7e0eff45e1ee27325993b7f91c516542b9 [file] [log] [blame]
//===-- AMDGPUPromoteAlloca.cpp - Promote Allocas -------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This pass eliminates allocas by either converting them into vectors or
// by migrating them to local address space.
//
//===----------------------------------------------------------------------===//
#include "AMDGPU.h"
#include "GCNSubtarget.h"
#include "llvm/Analysis/CaptureTracking.h"
#include "llvm/Analysis/ValueTracking.h"
#include "llvm/CodeGen/TargetPassConfig.h"
#include "llvm/IR/IRBuilder.h"
#include "llvm/IR/IntrinsicsAMDGPU.h"
#include "llvm/IR/IntrinsicsR600.h"
#include "llvm/Pass.h"
#include "llvm/Target/TargetMachine.h"
#include "Utils/AMDGPUBaseInfo.h"
#define DEBUG_TYPE "amdgpu-promote-alloca"
using namespace llvm;
namespace {
static cl::opt<bool> DisablePromoteAllocaToVector(
"disable-promote-alloca-to-vector",
cl::desc("Disable promote alloca to vector"),
cl::init(false));
static cl::opt<bool> DisablePromoteAllocaToLDS(
"disable-promote-alloca-to-lds",
cl::desc("Disable promote alloca to LDS"),
cl::init(false));
static cl::opt<unsigned> PromoteAllocaToVectorLimit(
"amdgpu-promote-alloca-to-vector-limit",
cl::desc("Maximum byte size to consider promote alloca to vector"),
cl::init(0));
// FIXME: This can create globals so should be a module pass.
class AMDGPUPromoteAlloca : public FunctionPass {
public:
static char ID;
AMDGPUPromoteAlloca() : FunctionPass(ID) {}
bool runOnFunction(Function &F) override;
StringRef getPassName() const override { return "AMDGPU Promote Alloca"; }
bool handleAlloca(AllocaInst &I, bool SufficientLDS);
void getAnalysisUsage(AnalysisUsage &AU) const override {
AU.setPreservesCFG();
FunctionPass::getAnalysisUsage(AU);
}
};
class AMDGPUPromoteAllocaImpl {
private:
const TargetMachine &TM;
Module *Mod = nullptr;
const DataLayout *DL = nullptr;
// FIXME: This should be per-kernel.
uint32_t LocalMemLimit = 0;
uint32_t CurrentLocalMemUsage = 0;
unsigned MaxVGPRs;
bool IsAMDGCN = false;
bool IsAMDHSA = false;
std::pair<Value *, Value *> getLocalSizeYZ(IRBuilder<> &Builder);
Value *getWorkitemID(IRBuilder<> &Builder, unsigned N);
/// BaseAlloca is the alloca root the search started from.
/// Val may be that alloca or a recursive user of it.
bool collectUsesWithPtrTypes(Value *BaseAlloca,
Value *Val,
std::vector<Value*> &WorkList) const;
/// Val is a derived pointer from Alloca. OpIdx0/OpIdx1 are the operand
/// indices to an instruction with 2 pointer inputs (e.g. select, icmp).
/// Returns true if both operands are derived from the same alloca. Val should
/// be the same value as one of the input operands of UseInst.
bool binaryOpIsDerivedFromSameAlloca(Value *Alloca, Value *Val,
Instruction *UseInst,
int OpIdx0, int OpIdx1) const;
/// Check whether we have enough local memory for promotion.
bool hasSufficientLocalMem(const Function &F);
bool handleAlloca(AllocaInst &I, bool SufficientLDS);
public:
AMDGPUPromoteAllocaImpl(TargetMachine &TM) : TM(TM) {}
bool run(Function &F);
};
class AMDGPUPromoteAllocaToVector : public FunctionPass {
public:
static char ID;
AMDGPUPromoteAllocaToVector() : FunctionPass(ID) {}
bool runOnFunction(Function &F) override;
StringRef getPassName() const override {
return "AMDGPU Promote Alloca to vector";
}
void getAnalysisUsage(AnalysisUsage &AU) const override {
AU.setPreservesCFG();
FunctionPass::getAnalysisUsage(AU);
}
};
} // end anonymous namespace
char AMDGPUPromoteAlloca::ID = 0;
char AMDGPUPromoteAllocaToVector::ID = 0;
INITIALIZE_PASS_BEGIN(AMDGPUPromoteAlloca, DEBUG_TYPE,
"AMDGPU promote alloca to vector or LDS", false, false)
// Move LDS uses from functions to kernels before promote alloca for accurate
// estimation of LDS available
INITIALIZE_PASS_DEPENDENCY(AMDGPULowerModuleLDS)
INITIALIZE_PASS_END(AMDGPUPromoteAlloca, DEBUG_TYPE,
"AMDGPU promote alloca to vector or LDS", false, false)
INITIALIZE_PASS(AMDGPUPromoteAllocaToVector, DEBUG_TYPE "-to-vector",
"AMDGPU promote alloca to vector", false, false)
char &llvm::AMDGPUPromoteAllocaID = AMDGPUPromoteAlloca::ID;
char &llvm::AMDGPUPromoteAllocaToVectorID = AMDGPUPromoteAllocaToVector::ID;
bool AMDGPUPromoteAlloca::runOnFunction(Function &F) {
if (skipFunction(F))
return false;
if (auto *TPC = getAnalysisIfAvailable<TargetPassConfig>()) {
return AMDGPUPromoteAllocaImpl(TPC->getTM<TargetMachine>()).run(F);
}
return false;
}
PreservedAnalyses AMDGPUPromoteAllocaPass::run(Function &F,
FunctionAnalysisManager &AM) {
bool Changed = AMDGPUPromoteAllocaImpl(TM).run(F);
if (Changed) {
PreservedAnalyses PA;
PA.preserveSet<CFGAnalyses>();
return PA;
}
return PreservedAnalyses::all();
}
bool AMDGPUPromoteAllocaImpl::run(Function &F) {
Mod = F.getParent();
DL = &Mod->getDataLayout();
const Triple &TT = TM.getTargetTriple();
IsAMDGCN = TT.getArch() == Triple::amdgcn;
IsAMDHSA = TT.getOS() == Triple::AMDHSA;
const AMDGPUSubtarget &ST = AMDGPUSubtarget::get(TM, F);
if (!ST.isPromoteAllocaEnabled())
return false;
if (IsAMDGCN) {
const GCNSubtarget &ST = TM.getSubtarget<GCNSubtarget>(F);
MaxVGPRs = ST.getMaxNumVGPRs(ST.getWavesPerEU(F).first);
// A non-entry function has only 32 caller preserved registers.
// Do not promote alloca which will force spilling.
if (!AMDGPU::isEntryFunctionCC(F.getCallingConv()))
MaxVGPRs = std::min(MaxVGPRs, 32u);
} else {
MaxVGPRs = 128;
}
bool SufficientLDS = hasSufficientLocalMem(F);
bool Changed = false;
BasicBlock &EntryBB = *F.begin();
SmallVector<AllocaInst *, 16> Allocas;
for (Instruction &I : EntryBB) {
if (AllocaInst *AI = dyn_cast<AllocaInst>(&I))
Allocas.push_back(AI);
}
for (AllocaInst *AI : Allocas) {
if (handleAlloca(*AI, SufficientLDS))
Changed = true;
}
return Changed;
}
std::pair<Value *, Value *>
AMDGPUPromoteAllocaImpl::getLocalSizeYZ(IRBuilder<> &Builder) {
Function &F = *Builder.GetInsertBlock()->getParent();
const AMDGPUSubtarget &ST = AMDGPUSubtarget::get(TM, F);
if (!IsAMDHSA) {
Function *LocalSizeYFn
= Intrinsic::getDeclaration(Mod, Intrinsic::r600_read_local_size_y);
Function *LocalSizeZFn
= Intrinsic::getDeclaration(Mod, Intrinsic::r600_read_local_size_z);
CallInst *LocalSizeY = Builder.CreateCall(LocalSizeYFn, {});
CallInst *LocalSizeZ = Builder.CreateCall(LocalSizeZFn, {});
ST.makeLIDRangeMetadata(LocalSizeY);
ST.makeLIDRangeMetadata(LocalSizeZ);
return std::make_pair(LocalSizeY, LocalSizeZ);
}
// We must read the size out of the dispatch pointer.
assert(IsAMDGCN);
// We are indexing into this struct, and want to extract the workgroup_size_*
// fields.
//
// typedef struct hsa_kernel_dispatch_packet_s {
// uint16_t header;
// uint16_t setup;
// uint16_t workgroup_size_x ;
// uint16_t workgroup_size_y;
// uint16_t workgroup_size_z;
// uint16_t reserved0;
// uint32_t grid_size_x ;
// uint32_t grid_size_y ;
// uint32_t grid_size_z;
//
// uint32_t private_segment_size;
// uint32_t group_segment_size;
// uint64_t kernel_object;
//
// #ifdef HSA_LARGE_MODEL
// void *kernarg_address;
// #elif defined HSA_LITTLE_ENDIAN
// void *kernarg_address;
// uint32_t reserved1;
// #else
// uint32_t reserved1;
// void *kernarg_address;
// #endif
// uint64_t reserved2;
// hsa_signal_t completion_signal; // uint64_t wrapper
// } hsa_kernel_dispatch_packet_t
//
Function *DispatchPtrFn
= Intrinsic::getDeclaration(Mod, Intrinsic::amdgcn_dispatch_ptr);
CallInst *DispatchPtr = Builder.CreateCall(DispatchPtrFn, {});
DispatchPtr->addRetAttr(Attribute::NoAlias);
DispatchPtr->addRetAttr(Attribute::NonNull);
F.removeFnAttr("amdgpu-no-dispatch-ptr");
// Size of the dispatch packet struct.
DispatchPtr->addDereferenceableRetAttr(64);
Type *I32Ty = Type::getInt32Ty(Mod->getContext());
Value *CastDispatchPtr = Builder.CreateBitCast(
DispatchPtr, PointerType::get(I32Ty, AMDGPUAS::CONSTANT_ADDRESS));
// We could do a single 64-bit load here, but it's likely that the basic
// 32-bit and extract sequence is already present, and it is probably easier
// to CSE this. The loads should be mergeable later anyway.
Value *GEPXY = Builder.CreateConstInBoundsGEP1_64(I32Ty, CastDispatchPtr, 1);
LoadInst *LoadXY = Builder.CreateAlignedLoad(I32Ty, GEPXY, Align(4));
Value *GEPZU = Builder.CreateConstInBoundsGEP1_64(I32Ty, CastDispatchPtr, 2);
LoadInst *LoadZU = Builder.CreateAlignedLoad(I32Ty, GEPZU, Align(4));
MDNode *MD = MDNode::get(Mod->getContext(), None);
LoadXY->setMetadata(LLVMContext::MD_invariant_load, MD);
LoadZU->setMetadata(LLVMContext::MD_invariant_load, MD);
ST.makeLIDRangeMetadata(LoadZU);
// Extract y component. Upper half of LoadZU should be zero already.
Value *Y = Builder.CreateLShr(LoadXY, 16);
return std::make_pair(Y, LoadZU);
}
Value *AMDGPUPromoteAllocaImpl::getWorkitemID(IRBuilder<> &Builder,
unsigned N) {
Function *F = Builder.GetInsertBlock()->getParent();
const AMDGPUSubtarget &ST = AMDGPUSubtarget::get(TM, *F);
Intrinsic::ID IntrID = Intrinsic::not_intrinsic;
StringRef AttrName;
switch (N) {
case 0:
IntrID = IsAMDGCN ? (Intrinsic::ID)Intrinsic::amdgcn_workitem_id_x
: (Intrinsic::ID)Intrinsic::r600_read_tidig_x;
AttrName = "amdgpu-no-workitem-id-x";
break;
case 1:
IntrID = IsAMDGCN ? (Intrinsic::ID)Intrinsic::amdgcn_workitem_id_y
: (Intrinsic::ID)Intrinsic::r600_read_tidig_y;
AttrName = "amdgpu-no-workitem-id-y";
break;
case 2:
IntrID = IsAMDGCN ? (Intrinsic::ID)Intrinsic::amdgcn_workitem_id_z
: (Intrinsic::ID)Intrinsic::r600_read_tidig_z;
AttrName = "amdgpu-no-workitem-id-z";
break;
default:
llvm_unreachable("invalid dimension");
}
Function *WorkitemIdFn = Intrinsic::getDeclaration(Mod, IntrID);
CallInst *CI = Builder.CreateCall(WorkitemIdFn);
ST.makeLIDRangeMetadata(CI);
F->removeFnAttr(AttrName);
return CI;
}
static FixedVectorType *arrayTypeToVecType(ArrayType *ArrayTy) {
return FixedVectorType::get(ArrayTy->getElementType(),
ArrayTy->getNumElements());
}
static Value *stripBitcasts(Value *V) {
while (Instruction *I = dyn_cast<Instruction>(V)) {
if (I->getOpcode() != Instruction::BitCast)
break;
V = I->getOperand(0);
}
return V;
}
static Value *
calculateVectorIndex(Value *Ptr,
const std::map<GetElementPtrInst *, Value *> &GEPIdx) {
GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(stripBitcasts(Ptr));
if (!GEP)
return nullptr;
auto I = GEPIdx.find(GEP);
return I == GEPIdx.end() ? nullptr : I->second;
}
static Value* GEPToVectorIndex(GetElementPtrInst *GEP) {
// FIXME we only support simple cases
if (GEP->getNumOperands() != 3)
return nullptr;
ConstantInt *I0 = dyn_cast<ConstantInt>(GEP->getOperand(1));
if (!I0 || !I0->isZero())
return nullptr;
return GEP->getOperand(2);
}
// Not an instruction handled below to turn into a vector.
//
// TODO: Check isTriviallyVectorizable for calls and handle other
// instructions.
static bool canVectorizeInst(Instruction *Inst, User *User,
const DataLayout &DL) {
switch (Inst->getOpcode()) {
case Instruction::Load: {
// Currently only handle the case where the Pointer Operand is a GEP.
// Also we could not vectorize volatile or atomic loads.
LoadInst *LI = cast<LoadInst>(Inst);
if (isa<AllocaInst>(User) &&
LI->getPointerOperandType() == User->getType() &&
isa<VectorType>(LI->getType()))
return true;
Instruction *PtrInst = dyn_cast<Instruction>(LI->getPointerOperand());
if (!PtrInst)
return false;
return (PtrInst->getOpcode() == Instruction::GetElementPtr ||
PtrInst->getOpcode() == Instruction::BitCast) &&
LI->isSimple();
}
case Instruction::BitCast:
return true;
case Instruction::Store: {
// Must be the stored pointer operand, not a stored value, plus
// since it should be canonical form, the User should be a GEP.
// Also we could not vectorize volatile or atomic stores.
StoreInst *SI = cast<StoreInst>(Inst);
if (isa<AllocaInst>(User) &&
SI->getPointerOperandType() == User->getType() &&
isa<VectorType>(SI->getValueOperand()->getType()))
return true;
Instruction *UserInst = dyn_cast<Instruction>(User);
if (!UserInst)
return false;
return (SI->getPointerOperand() == User) &&
(UserInst->getOpcode() == Instruction::GetElementPtr ||
UserInst->getOpcode() == Instruction::BitCast) &&
SI->isSimple();
}
default:
return false;
}
}
static bool tryPromoteAllocaToVector(AllocaInst *Alloca, const DataLayout &DL,
unsigned MaxVGPRs) {
if (DisablePromoteAllocaToVector) {
LLVM_DEBUG(dbgs() << " Promotion alloca to vector is disabled\n");
return false;
}
Type *AllocaTy = Alloca->getAllocatedType();
auto *VectorTy = dyn_cast<FixedVectorType>(AllocaTy);
if (auto *ArrayTy = dyn_cast<ArrayType>(AllocaTy)) {
if (VectorType::isValidElementType(ArrayTy->getElementType()) &&
ArrayTy->getNumElements() > 0)
VectorTy = arrayTypeToVecType(ArrayTy);
}
// Use up to 1/4 of available register budget for vectorization.
unsigned Limit = PromoteAllocaToVectorLimit ? PromoteAllocaToVectorLimit * 8
: (MaxVGPRs * 32);
if (DL.getTypeSizeInBits(AllocaTy) * 4 > Limit) {
LLVM_DEBUG(dbgs() << " Alloca too big for vectorization with "
<< MaxVGPRs << " registers available\n");
return false;
}
LLVM_DEBUG(dbgs() << "Alloca candidate for vectorization\n");
// FIXME: There is no reason why we can't support larger arrays, we
// are just being conservative for now.
// FIXME: We also reject alloca's of the form [ 2 x [ 2 x i32 ]] or equivalent. Potentially these
// could also be promoted but we don't currently handle this case
if (!VectorTy || VectorTy->getNumElements() > 16 ||
VectorTy->getNumElements() < 2) {
LLVM_DEBUG(dbgs() << " Cannot convert type to vector\n");
return false;
}
std::map<GetElementPtrInst*, Value*> GEPVectorIdx;
std::vector<Value *> WorkList;
SmallVector<User *, 8> Users(Alloca->users());
SmallVector<User *, 8> UseUsers(Users.size(), Alloca);
Type *VecEltTy = VectorTy->getElementType();
while (!Users.empty()) {
User *AllocaUser = Users.pop_back_val();
User *UseUser = UseUsers.pop_back_val();
Instruction *Inst = dyn_cast<Instruction>(AllocaUser);
GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(AllocaUser);
if (!GEP) {
if (!canVectorizeInst(Inst, UseUser, DL))
return false;
if (Inst->getOpcode() == Instruction::BitCast) {
Type *FromTy = Inst->getOperand(0)->getType()->getPointerElementType();
Type *ToTy = Inst->getType()->getPointerElementType();
if (FromTy->isAggregateType() || ToTy->isAggregateType() ||
DL.getTypeSizeInBits(FromTy) != DL.getTypeSizeInBits(ToTy))
continue;
for (User *CastUser : Inst->users()) {
if (isAssumeLikeIntrinsic(cast<Instruction>(CastUser)))
continue;
Users.push_back(CastUser);
UseUsers.push_back(Inst);
}
continue;
}
WorkList.push_back(AllocaUser);
continue;
}
Value *Index = GEPToVectorIndex(GEP);
// If we can't compute a vector index from this GEP, then we can't
// promote this alloca to vector.
if (!Index) {
LLVM_DEBUG(dbgs() << " Cannot compute vector index for GEP " << *GEP
<< '\n');
return false;
}
GEPVectorIdx[GEP] = Index;
Users.append(GEP->user_begin(), GEP->user_end());
UseUsers.append(GEP->getNumUses(), GEP);
}
LLVM_DEBUG(dbgs() << " Converting alloca to vector " << *AllocaTy << " -> "
<< *VectorTy << '\n');
for (Value *V : WorkList) {
Instruction *Inst = cast<Instruction>(V);
IRBuilder<> Builder(Inst);
switch (Inst->getOpcode()) {
case Instruction::Load: {
if (Inst->getType() == AllocaTy || Inst->getType()->isVectorTy())
break;
Value *Ptr = cast<LoadInst>(Inst)->getPointerOperand();
Value *Index = calculateVectorIndex(Ptr, GEPVectorIdx);
if (!Index)
break;
Type *VecPtrTy = VectorTy->getPointerTo(AMDGPUAS::PRIVATE_ADDRESS);
Value *BitCast = Builder.CreateBitCast(Alloca, VecPtrTy);
Value *VecValue = Builder.CreateLoad(VectorTy, BitCast);
Value *ExtractElement = Builder.CreateExtractElement(VecValue, Index);
if (Inst->getType() != VecEltTy)
ExtractElement = Builder.CreateBitOrPointerCast(ExtractElement, Inst->getType());
Inst->replaceAllUsesWith(ExtractElement);
Inst->eraseFromParent();
break;
}
case Instruction::Store: {
StoreInst *SI = cast<StoreInst>(Inst);
if (SI->getValueOperand()->getType() == AllocaTy ||
SI->getValueOperand()->getType()->isVectorTy())
break;
Value *Ptr = SI->getPointerOperand();
Value *Index = calculateVectorIndex(Ptr, GEPVectorIdx);
if (!Index)
break;
Type *VecPtrTy = VectorTy->getPointerTo(AMDGPUAS::PRIVATE_ADDRESS);
Value *BitCast = Builder.CreateBitCast(Alloca, VecPtrTy);
Value *VecValue = Builder.CreateLoad(VectorTy, BitCast);
Value *Elt = SI->getValueOperand();
if (Elt->getType() != VecEltTy)
Elt = Builder.CreateBitOrPointerCast(Elt, VecEltTy);
Value *NewVecValue = Builder.CreateInsertElement(VecValue, Elt, Index);
Builder.CreateStore(NewVecValue, BitCast);
Inst->eraseFromParent();
break;
}
default:
llvm_unreachable("Inconsistency in instructions promotable to vector");
}
}
return true;
}
static bool isCallPromotable(CallInst *CI) {
IntrinsicInst *II = dyn_cast<IntrinsicInst>(CI);
if (!II)
return false;
switch (II->getIntrinsicID()) {
case Intrinsic::memcpy:
case Intrinsic::memmove:
case Intrinsic::memset:
case Intrinsic::lifetime_start:
case Intrinsic::lifetime_end:
case Intrinsic::invariant_start:
case Intrinsic::invariant_end:
case Intrinsic::launder_invariant_group:
case Intrinsic::strip_invariant_group:
case Intrinsic::objectsize:
return true;
default:
return false;
}
}
bool AMDGPUPromoteAllocaImpl::binaryOpIsDerivedFromSameAlloca(
Value *BaseAlloca, Value *Val, Instruction *Inst, int OpIdx0,
int OpIdx1) const {
// Figure out which operand is the one we might not be promoting.
Value *OtherOp = Inst->getOperand(OpIdx0);
if (Val == OtherOp)
OtherOp = Inst->getOperand(OpIdx1);
if (isa<ConstantPointerNull>(OtherOp))
return true;
Value *OtherObj = getUnderlyingObject(OtherOp);
if (!isa<AllocaInst>(OtherObj))
return false;
// TODO: We should be able to replace undefs with the right pointer type.
// TODO: If we know the other base object is another promotable
// alloca, not necessarily this alloca, we can do this. The
// important part is both must have the same address space at
// the end.
if (OtherObj != BaseAlloca) {
LLVM_DEBUG(
dbgs() << "Found a binary instruction with another alloca object\n");
return false;
}
return true;
}
bool AMDGPUPromoteAllocaImpl::collectUsesWithPtrTypes(
Value *BaseAlloca, Value *Val, std::vector<Value *> &WorkList) const {
for (User *User : Val->users()) {
if (is_contained(WorkList, User))
continue;
if (CallInst *CI = dyn_cast<CallInst>(User)) {
if (!isCallPromotable(CI))
return false;
WorkList.push_back(User);
continue;
}
Instruction *UseInst = cast<Instruction>(User);
if (UseInst->getOpcode() == Instruction::PtrToInt)
return false;
if (LoadInst *LI = dyn_cast<LoadInst>(UseInst)) {
if (LI->isVolatile())
return false;
continue;
}
if (StoreInst *SI = dyn_cast<StoreInst>(UseInst)) {
if (SI->isVolatile())
return false;
// Reject if the stored value is not the pointer operand.
if (SI->getPointerOperand() != Val)
return false;
} else if (AtomicRMWInst *RMW = dyn_cast<AtomicRMWInst>(UseInst)) {
if (RMW->isVolatile())
return false;
} else if (AtomicCmpXchgInst *CAS = dyn_cast<AtomicCmpXchgInst>(UseInst)) {
if (CAS->isVolatile())
return false;
}
// Only promote a select if we know that the other select operand
// is from another pointer that will also be promoted.
if (ICmpInst *ICmp = dyn_cast<ICmpInst>(UseInst)) {
if (!binaryOpIsDerivedFromSameAlloca(BaseAlloca, Val, ICmp, 0, 1))
return false;
// May need to rewrite constant operands.
WorkList.push_back(ICmp);
}
if (UseInst->getOpcode() == Instruction::AddrSpaceCast) {
// Give up if the pointer may be captured.
if (PointerMayBeCaptured(UseInst, true, true))
return false;
// Don't collect the users of this.
WorkList.push_back(User);
continue;
}
// Do not promote vector/aggregate type instructions. It is hard to track
// their users.
if (isa<InsertValueInst>(User) || isa<InsertElementInst>(User))
return false;
if (!User->getType()->isPointerTy())
continue;
if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(UseInst)) {
// Be conservative if an address could be computed outside the bounds of
// the alloca.
if (!GEP->isInBounds())
return false;
}
// Only promote a select if we know that the other select operand is from
// another pointer that will also be promoted.
if (SelectInst *SI = dyn_cast<SelectInst>(UseInst)) {
if (!binaryOpIsDerivedFromSameAlloca(BaseAlloca, Val, SI, 1, 2))
return false;
}
// Repeat for phis.
if (PHINode *Phi = dyn_cast<PHINode>(UseInst)) {
// TODO: Handle more complex cases. We should be able to replace loops
// over arrays.
switch (Phi->getNumIncomingValues()) {
case 1:
break;
case 2:
if (!binaryOpIsDerivedFromSameAlloca(BaseAlloca, Val, Phi, 0, 1))
return false;
break;
default:
return false;
}
}
WorkList.push_back(User);
if (!collectUsesWithPtrTypes(BaseAlloca, User, WorkList))
return false;
}
return true;
}
bool AMDGPUPromoteAllocaImpl::hasSufficientLocalMem(const Function &F) {
FunctionType *FTy = F.getFunctionType();
const AMDGPUSubtarget &ST = AMDGPUSubtarget::get(TM, F);
// If the function has any arguments in the local address space, then it's
// possible these arguments require the entire local memory space, so
// we cannot use local memory in the pass.
for (Type *ParamTy : FTy->params()) {
PointerType *PtrTy = dyn_cast<PointerType>(ParamTy);
if (PtrTy && PtrTy->getAddressSpace() == AMDGPUAS::LOCAL_ADDRESS) {
LocalMemLimit = 0;
LLVM_DEBUG(dbgs() << "Function has local memory argument. Promoting to "
"local memory disabled.\n");
return false;
}
}
LocalMemLimit = ST.getLocalMemorySize();
if (LocalMemLimit == 0)
return false;
SmallVector<const Constant *, 16> Stack;
SmallPtrSet<const Constant *, 8> VisitedConstants;
SmallPtrSet<const GlobalVariable *, 8> UsedLDS;
auto visitUsers = [&](const GlobalVariable *GV, const Constant *Val) -> bool {
for (const User *U : Val->users()) {
if (const Instruction *Use = dyn_cast<Instruction>(U)) {
if (Use->getParent()->getParent() == &F)
return true;
} else {
const Constant *C = cast<Constant>(U);
if (VisitedConstants.insert(C).second)
Stack.push_back(C);
}
}
return false;
};
for (GlobalVariable &GV : Mod->globals()) {
if (GV.getAddressSpace() != AMDGPUAS::LOCAL_ADDRESS)
continue;
if (visitUsers(&GV, &GV)) {
UsedLDS.insert(&GV);
Stack.clear();
continue;
}
// For any ConstantExpr uses, we need to recursively search the users until
// we see a function.
while (!Stack.empty()) {
const Constant *C = Stack.pop_back_val();
if (visitUsers(&GV, C)) {
UsedLDS.insert(&GV);
Stack.clear();
break;
}
}
}
const DataLayout &DL = Mod->getDataLayout();
SmallVector<std::pair<uint64_t, Align>, 16> AllocatedSizes;
AllocatedSizes.reserve(UsedLDS.size());
for (const GlobalVariable *GV : UsedLDS) {
Align Alignment =
DL.getValueOrABITypeAlignment(GV->getAlign(), GV->getValueType());
uint64_t AllocSize = DL.getTypeAllocSize(GV->getValueType());
AllocatedSizes.emplace_back(AllocSize, Alignment);
}
// Sort to try to estimate the worst case alignment padding
//
// FIXME: We should really do something to fix the addresses to a more optimal
// value instead
llvm::sort(AllocatedSizes, [](std::pair<uint64_t, Align> LHS,
std::pair<uint64_t, Align> RHS) {
return LHS.second < RHS.second;
});
// Check how much local memory is being used by global objects
CurrentLocalMemUsage = 0;
// FIXME: Try to account for padding here. The real padding and address is
// currently determined from the inverse order of uses in the function when
// legalizing, which could also potentially change. We try to estimate the
// worst case here, but we probably should fix the addresses earlier.
for (auto Alloc : AllocatedSizes) {
CurrentLocalMemUsage = alignTo(CurrentLocalMemUsage, Alloc.second);
CurrentLocalMemUsage += Alloc.first;
}
unsigned MaxOccupancy = ST.getOccupancyWithLocalMemSize(CurrentLocalMemUsage,
F);
// Restrict local memory usage so that we don't drastically reduce occupancy,
// unless it is already significantly reduced.
// TODO: Have some sort of hint or other heuristics to guess occupancy based
// on other factors..
unsigned OccupancyHint = ST.getWavesPerEU(F).second;
if (OccupancyHint == 0)
OccupancyHint = 7;
// Clamp to max value.
OccupancyHint = std::min(OccupancyHint, ST.getMaxWavesPerEU());
// Check the hint but ignore it if it's obviously wrong from the existing LDS
// usage.
MaxOccupancy = std::min(OccupancyHint, MaxOccupancy);
// Round up to the next tier of usage.
unsigned MaxSizeWithWaveCount
= ST.getMaxLocalMemSizeWithWaveCount(MaxOccupancy, F);
// Program is possibly broken by using more local mem than available.
if (CurrentLocalMemUsage > MaxSizeWithWaveCount)
return false;
LocalMemLimit = MaxSizeWithWaveCount;
LLVM_DEBUG(dbgs() << F.getName() << " uses " << CurrentLocalMemUsage
<< " bytes of LDS\n"
<< " Rounding size to " << MaxSizeWithWaveCount
<< " with a maximum occupancy of " << MaxOccupancy << '\n'
<< " and " << (LocalMemLimit - CurrentLocalMemUsage)
<< " available for promotion\n");
return true;
}
// FIXME: Should try to pick the most likely to be profitable allocas first.
bool AMDGPUPromoteAllocaImpl::handleAlloca(AllocaInst &I, bool SufficientLDS) {
// Array allocations are probably not worth handling, since an allocation of
// the array type is the canonical form.
if (!I.isStaticAlloca() || I.isArrayAllocation())
return false;
const DataLayout &DL = Mod->getDataLayout();
IRBuilder<> Builder(&I);
// First try to replace the alloca with a vector
Type *AllocaTy = I.getAllocatedType();
LLVM_DEBUG(dbgs() << "Trying to promote " << I << '\n');
if (tryPromoteAllocaToVector(&I, DL, MaxVGPRs))
return true; // Promoted to vector.
if (DisablePromoteAllocaToLDS)
return false;
const Function &ContainingFunction = *I.getParent()->getParent();
CallingConv::ID CC = ContainingFunction.getCallingConv();
// Don't promote the alloca to LDS for shader calling conventions as the work
// item ID intrinsics are not supported for these calling conventions.
// Furthermore not all LDS is available for some of the stages.
switch (CC) {
case CallingConv::AMDGPU_KERNEL:
case CallingConv::SPIR_KERNEL:
break;
default:
LLVM_DEBUG(
dbgs()
<< " promote alloca to LDS not supported with calling convention.\n");
return false;
}
// Not likely to have sufficient local memory for promotion.
if (!SufficientLDS)
return false;
const AMDGPUSubtarget &ST = AMDGPUSubtarget::get(TM, ContainingFunction);
unsigned WorkGroupSize = ST.getFlatWorkGroupSizes(ContainingFunction).second;
Align Alignment =
DL.getValueOrABITypeAlignment(I.getAlign(), I.getAllocatedType());
// FIXME: This computed padding is likely wrong since it depends on inverse
// usage order.
//
// FIXME: It is also possible that if we're allowed to use all of the memory
// could could end up using more than the maximum due to alignment padding.
uint32_t NewSize = alignTo(CurrentLocalMemUsage, Alignment);
uint32_t AllocSize = WorkGroupSize * DL.getTypeAllocSize(AllocaTy);
NewSize += AllocSize;
if (NewSize > LocalMemLimit) {
LLVM_DEBUG(dbgs() << " " << AllocSize
<< " bytes of local memory not available to promote\n");
return false;
}
CurrentLocalMemUsage = NewSize;
std::vector<Value*> WorkList;
if (!collectUsesWithPtrTypes(&I, &I, WorkList)) {
LLVM_DEBUG(dbgs() << " Do not know how to convert all uses\n");
return false;
}
LLVM_DEBUG(dbgs() << "Promoting alloca to local memory\n");
Function *F = I.getParent()->getParent();
Type *GVTy = ArrayType::get(I.getAllocatedType(), WorkGroupSize);
GlobalVariable *GV = new GlobalVariable(
*Mod, GVTy, false, GlobalValue::InternalLinkage,
UndefValue::get(GVTy),
Twine(F->getName()) + Twine('.') + I.getName(),
nullptr,
GlobalVariable::NotThreadLocal,
AMDGPUAS::LOCAL_ADDRESS);
GV->setUnnamedAddr(GlobalValue::UnnamedAddr::Global);
GV->setAlignment(MaybeAlign(I.getAlignment()));
Value *TCntY, *TCntZ;
std::tie(TCntY, TCntZ) = getLocalSizeYZ(Builder);
Value *TIdX = getWorkitemID(Builder, 0);
Value *TIdY = getWorkitemID(Builder, 1);
Value *TIdZ = getWorkitemID(Builder, 2);
Value *Tmp0 = Builder.CreateMul(TCntY, TCntZ, "", true, true);
Tmp0 = Builder.CreateMul(Tmp0, TIdX);
Value *Tmp1 = Builder.CreateMul(TIdY, TCntZ, "", true, true);
Value *TID = Builder.CreateAdd(Tmp0, Tmp1);
TID = Builder.CreateAdd(TID, TIdZ);
Value *Indices[] = {
Constant::getNullValue(Type::getInt32Ty(Mod->getContext())),
TID
};
Value *Offset = Builder.CreateInBoundsGEP(GVTy, GV, Indices);
I.mutateType(Offset->getType());
I.replaceAllUsesWith(Offset);
I.eraseFromParent();
SmallVector<IntrinsicInst *> DeferredIntrs;
for (Value *V : WorkList) {
CallInst *Call = dyn_cast<CallInst>(V);
if (!Call) {
if (ICmpInst *CI = dyn_cast<ICmpInst>(V)) {
Value *Src0 = CI->getOperand(0);
PointerType *NewTy = PointerType::getWithSamePointeeType(
cast<PointerType>(Src0->getType()), AMDGPUAS::LOCAL_ADDRESS);
if (isa<ConstantPointerNull>(CI->getOperand(0)))
CI->setOperand(0, ConstantPointerNull::get(NewTy));
if (isa<ConstantPointerNull>(CI->getOperand(1)))
CI->setOperand(1, ConstantPointerNull::get(NewTy));
continue;
}
// The operand's value should be corrected on its own and we don't want to
// touch the users.
if (isa<AddrSpaceCastInst>(V))
continue;
PointerType *NewTy = PointerType::getWithSamePointeeType(
cast<PointerType>(V->getType()), AMDGPUAS::LOCAL_ADDRESS);
// FIXME: It doesn't really make sense to try to do this for all
// instructions.
V->mutateType(NewTy);
// Adjust the types of any constant operands.
if (SelectInst *SI = dyn_cast<SelectInst>(V)) {
if (isa<ConstantPointerNull>(SI->getOperand(1)))
SI->setOperand(1, ConstantPointerNull::get(NewTy));
if (isa<ConstantPointerNull>(SI->getOperand(2)))
SI->setOperand(2, ConstantPointerNull::get(NewTy));
} else if (PHINode *Phi = dyn_cast<PHINode>(V)) {
for (unsigned I = 0, E = Phi->getNumIncomingValues(); I != E; ++I) {
if (isa<ConstantPointerNull>(Phi->getIncomingValue(I)))
Phi->setIncomingValue(I, ConstantPointerNull::get(NewTy));
}
}
continue;
}
IntrinsicInst *Intr = cast<IntrinsicInst>(Call);
Builder.SetInsertPoint(Intr);
switch (Intr->getIntrinsicID()) {
case Intrinsic::lifetime_start:
case Intrinsic::lifetime_end:
// These intrinsics are for address space 0 only
Intr->eraseFromParent();
continue;
case Intrinsic::memcpy:
case Intrinsic::memmove:
// These have 2 pointer operands. In case if second pointer also needs
// to be replaced we defer processing of these intrinsics until all
// other values are processed.
DeferredIntrs.push_back(Intr);
continue;
case Intrinsic::memset: {
MemSetInst *MemSet = cast<MemSetInst>(Intr);
Builder.CreateMemSet(
MemSet->getRawDest(), MemSet->getValue(), MemSet->getLength(),
MaybeAlign(MemSet->getDestAlignment()), MemSet->isVolatile());
Intr->eraseFromParent();
continue;
}
case Intrinsic::invariant_start:
case Intrinsic::invariant_end:
case Intrinsic::launder_invariant_group:
case Intrinsic::strip_invariant_group:
Intr->eraseFromParent();
// FIXME: I think the invariant marker should still theoretically apply,
// but the intrinsics need to be changed to accept pointers with any
// address space.
continue;
case Intrinsic::objectsize: {
Value *Src = Intr->getOperand(0);
Function *ObjectSize = Intrinsic::getDeclaration(
Mod, Intrinsic::objectsize,
{Intr->getType(),
PointerType::getWithSamePointeeType(
cast<PointerType>(Src->getType()), AMDGPUAS::LOCAL_ADDRESS)});
CallInst *NewCall = Builder.CreateCall(
ObjectSize,
{Src, Intr->getOperand(1), Intr->getOperand(2), Intr->getOperand(3)});
Intr->replaceAllUsesWith(NewCall);
Intr->eraseFromParent();
continue;
}
default:
Intr->print(errs());
llvm_unreachable("Don't know how to promote alloca intrinsic use.");
}
}
for (IntrinsicInst *Intr : DeferredIntrs) {
Builder.SetInsertPoint(Intr);
Intrinsic::ID ID = Intr->getIntrinsicID();
assert(ID == Intrinsic::memcpy || ID == Intrinsic::memmove);
MemTransferInst *MI = cast<MemTransferInst>(Intr);
auto *B =
Builder.CreateMemTransferInst(ID, MI->getRawDest(), MI->getDestAlign(),
MI->getRawSource(), MI->getSourceAlign(),
MI->getLength(), MI->isVolatile());
for (unsigned I = 0; I != 2; ++I) {
if (uint64_t Bytes = Intr->getParamDereferenceableBytes(I)) {
B->addDereferenceableParamAttr(I, Bytes);
}
}
Intr->eraseFromParent();
}
return true;
}
bool handlePromoteAllocaToVector(AllocaInst &I, unsigned MaxVGPRs) {
// Array allocations are probably not worth handling, since an allocation of
// the array type is the canonical form.
if (!I.isStaticAlloca() || I.isArrayAllocation())
return false;
LLVM_DEBUG(dbgs() << "Trying to promote " << I << '\n');
Module *Mod = I.getParent()->getParent()->getParent();
return tryPromoteAllocaToVector(&I, Mod->getDataLayout(), MaxVGPRs);
}
bool promoteAllocasToVector(Function &F, TargetMachine &TM) {
if (DisablePromoteAllocaToVector)
return false;
const AMDGPUSubtarget &ST = AMDGPUSubtarget::get(TM, F);
if (!ST.isPromoteAllocaEnabled())
return false;
unsigned MaxVGPRs;
if (TM.getTargetTriple().getArch() == Triple::amdgcn) {
const GCNSubtarget &ST = TM.getSubtarget<GCNSubtarget>(F);
MaxVGPRs = ST.getMaxNumVGPRs(ST.getWavesPerEU(F).first);
// A non-entry function has only 32 caller preserved registers.
// Do not promote alloca which will force spilling.
if (!AMDGPU::isEntryFunctionCC(F.getCallingConv()))
MaxVGPRs = std::min(MaxVGPRs, 32u);
} else {
MaxVGPRs = 128;
}
bool Changed = false;
BasicBlock &EntryBB = *F.begin();
SmallVector<AllocaInst *, 16> Allocas;
for (Instruction &I : EntryBB) {
if (AllocaInst *AI = dyn_cast<AllocaInst>(&I))
Allocas.push_back(AI);
}
for (AllocaInst *AI : Allocas) {
if (handlePromoteAllocaToVector(*AI, MaxVGPRs))
Changed = true;
}
return Changed;
}
bool AMDGPUPromoteAllocaToVector::runOnFunction(Function &F) {
if (skipFunction(F))
return false;
if (auto *TPC = getAnalysisIfAvailable<TargetPassConfig>()) {
return promoteAllocasToVector(F, TPC->getTM<TargetMachine>());
}
return false;
}
PreservedAnalyses
AMDGPUPromoteAllocaToVectorPass::run(Function &F, FunctionAnalysisManager &AM) {
bool Changed = promoteAllocasToVector(F, TM);
if (Changed) {
PreservedAnalyses PA;
PA.preserveSet<CFGAnalyses>();
return PA;
}
return PreservedAnalyses::all();
}
FunctionPass *llvm::createAMDGPUPromoteAlloca() {
return new AMDGPUPromoteAlloca();
}
FunctionPass *llvm::createAMDGPUPromoteAllocaToVector() {
return new AMDGPUPromoteAllocaToVector();
}