| //===-- AMDGPUISelLowering.cpp - AMDGPU Common DAG lowering functions -----===// |
| // |
| // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
| // See https://llvm.org/LICENSE.txt for license information. |
| // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
| // |
| //===----------------------------------------------------------------------===// |
| // |
| /// \file |
| /// This is the parent TargetLowering class for hardware code gen |
| /// targets. |
| // |
| //===----------------------------------------------------------------------===// |
| |
| #include "AMDGPUISelLowering.h" |
| #include "AMDGPU.h" |
| #include "AMDGPUInstrInfo.h" |
| #include "AMDGPUMachineFunction.h" |
| #include "GCNSubtarget.h" |
| #include "SIMachineFunctionInfo.h" |
| #include "llvm/CodeGen/Analysis.h" |
| #include "llvm/IR/DiagnosticInfo.h" |
| #include "llvm/IR/IntrinsicsAMDGPU.h" |
| #include "llvm/Support/CommandLine.h" |
| #include "llvm/Support/KnownBits.h" |
| #include "llvm/Target/TargetMachine.h" |
| |
| using namespace llvm; |
| |
| #include "AMDGPUGenCallingConv.inc" |
| |
| static cl::opt<bool> AMDGPUBypassSlowDiv( |
| "amdgpu-bypass-slow-div", |
| cl::desc("Skip 64-bit divide for dynamic 32-bit values"), |
| cl::init(true)); |
| |
| // Find a larger type to do a load / store of a vector with. |
| EVT AMDGPUTargetLowering::getEquivalentMemType(LLVMContext &Ctx, EVT VT) { |
| unsigned StoreSize = VT.getStoreSizeInBits(); |
| if (StoreSize <= 32) |
| return EVT::getIntegerVT(Ctx, StoreSize); |
| |
| assert(StoreSize % 32 == 0 && "Store size not a multiple of 32"); |
| return EVT::getVectorVT(Ctx, MVT::i32, StoreSize / 32); |
| } |
| |
| unsigned AMDGPUTargetLowering::numBitsUnsigned(SDValue Op, SelectionDAG &DAG) { |
| return DAG.computeKnownBits(Op).countMaxActiveBits(); |
| } |
| |
| unsigned AMDGPUTargetLowering::numBitsSigned(SDValue Op, SelectionDAG &DAG) { |
| // In order for this to be a signed 24-bit value, bit 23, must |
| // be a sign bit. |
| return DAG.ComputeMinSignedBits(Op); |
| } |
| |
| AMDGPUTargetLowering::AMDGPUTargetLowering(const TargetMachine &TM, |
| const AMDGPUSubtarget &STI) |
| : TargetLowering(TM), Subtarget(&STI) { |
| // Lower floating point store/load to integer store/load to reduce the number |
| // of patterns in tablegen. |
| setOperationAction(ISD::LOAD, MVT::f32, Promote); |
| AddPromotedToType(ISD::LOAD, MVT::f32, MVT::i32); |
| |
| setOperationAction(ISD::LOAD, MVT::v2f32, Promote); |
| AddPromotedToType(ISD::LOAD, MVT::v2f32, MVT::v2i32); |
| |
| setOperationAction(ISD::LOAD, MVT::v3f32, Promote); |
| AddPromotedToType(ISD::LOAD, MVT::v3f32, MVT::v3i32); |
| |
| setOperationAction(ISD::LOAD, MVT::v4f32, Promote); |
| AddPromotedToType(ISD::LOAD, MVT::v4f32, MVT::v4i32); |
| |
| setOperationAction(ISD::LOAD, MVT::v5f32, Promote); |
| AddPromotedToType(ISD::LOAD, MVT::v5f32, MVT::v5i32); |
| |
| setOperationAction(ISD::LOAD, MVT::v6f32, Promote); |
| AddPromotedToType(ISD::LOAD, MVT::v6f32, MVT::v6i32); |
| |
| setOperationAction(ISD::LOAD, MVT::v7f32, Promote); |
| AddPromotedToType(ISD::LOAD, MVT::v7f32, MVT::v7i32); |
| |
| setOperationAction(ISD::LOAD, MVT::v8f32, Promote); |
| AddPromotedToType(ISD::LOAD, MVT::v8f32, MVT::v8i32); |
| |
| setOperationAction(ISD::LOAD, MVT::v16f32, Promote); |
| AddPromotedToType(ISD::LOAD, MVT::v16f32, MVT::v16i32); |
| |
| setOperationAction(ISD::LOAD, MVT::v32f32, Promote); |
| AddPromotedToType(ISD::LOAD, MVT::v32f32, MVT::v32i32); |
| |
| setOperationAction(ISD::LOAD, MVT::i64, Promote); |
| AddPromotedToType(ISD::LOAD, MVT::i64, MVT::v2i32); |
| |
| setOperationAction(ISD::LOAD, MVT::v2i64, Promote); |
| AddPromotedToType(ISD::LOAD, MVT::v2i64, MVT::v4i32); |
| |
| setOperationAction(ISD::LOAD, MVT::f64, Promote); |
| AddPromotedToType(ISD::LOAD, MVT::f64, MVT::v2i32); |
| |
| setOperationAction(ISD::LOAD, MVT::v2f64, Promote); |
| AddPromotedToType(ISD::LOAD, MVT::v2f64, MVT::v4i32); |
| |
| setOperationAction(ISD::LOAD, MVT::v3i64, Promote); |
| AddPromotedToType(ISD::LOAD, MVT::v3i64, MVT::v6i32); |
| |
| setOperationAction(ISD::LOAD, MVT::v4i64, Promote); |
| AddPromotedToType(ISD::LOAD, MVT::v4i64, MVT::v8i32); |
| |
| setOperationAction(ISD::LOAD, MVT::v3f64, Promote); |
| AddPromotedToType(ISD::LOAD, MVT::v3f64, MVT::v6i32); |
| |
| setOperationAction(ISD::LOAD, MVT::v4f64, Promote); |
| AddPromotedToType(ISD::LOAD, MVT::v4f64, MVT::v8i32); |
| |
| setOperationAction(ISD::LOAD, MVT::v8i64, Promote); |
| AddPromotedToType(ISD::LOAD, MVT::v8i64, MVT::v16i32); |
| |
| setOperationAction(ISD::LOAD, MVT::v8f64, Promote); |
| AddPromotedToType(ISD::LOAD, MVT::v8f64, MVT::v16i32); |
| |
| setOperationAction(ISD::LOAD, MVT::v16i64, Promote); |
| AddPromotedToType(ISD::LOAD, MVT::v16i64, MVT::v32i32); |
| |
| setOperationAction(ISD::LOAD, MVT::v16f64, Promote); |
| AddPromotedToType(ISD::LOAD, MVT::v16f64, MVT::v32i32); |
| |
| // There are no 64-bit extloads. These should be done as a 32-bit extload and |
| // an extension to 64-bit. |
| for (MVT VT : MVT::integer_valuetypes()) { |
| setLoadExtAction(ISD::EXTLOAD, MVT::i64, VT, Expand); |
| setLoadExtAction(ISD::SEXTLOAD, MVT::i64, VT, Expand); |
| setLoadExtAction(ISD::ZEXTLOAD, MVT::i64, VT, Expand); |
| } |
| |
| for (MVT VT : MVT::integer_valuetypes()) { |
| if (VT == MVT::i64) |
| continue; |
| |
| setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i1, Promote); |
| setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i8, Legal); |
| setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i16, Legal); |
| setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i32, Expand); |
| |
| setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::i1, Promote); |
| setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::i8, Legal); |
| setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::i16, Legal); |
| setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::i32, Expand); |
| |
| setLoadExtAction(ISD::EXTLOAD, VT, MVT::i1, Promote); |
| setLoadExtAction(ISD::EXTLOAD, VT, MVT::i8, Legal); |
| setLoadExtAction(ISD::EXTLOAD, VT, MVT::i16, Legal); |
| setLoadExtAction(ISD::EXTLOAD, VT, MVT::i32, Expand); |
| } |
| |
| for (MVT VT : MVT::integer_fixedlen_vector_valuetypes()) { |
| setLoadExtAction(ISD::EXTLOAD, VT, MVT::v2i8, Expand); |
| setLoadExtAction(ISD::SEXTLOAD, VT, MVT::v2i8, Expand); |
| setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::v2i8, Expand); |
| setLoadExtAction(ISD::EXTLOAD, VT, MVT::v4i8, Expand); |
| setLoadExtAction(ISD::SEXTLOAD, VT, MVT::v4i8, Expand); |
| setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::v4i8, Expand); |
| setLoadExtAction(ISD::EXTLOAD, VT, MVT::v2i16, Expand); |
| setLoadExtAction(ISD::SEXTLOAD, VT, MVT::v2i16, Expand); |
| setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::v2i16, Expand); |
| setLoadExtAction(ISD::EXTLOAD, VT, MVT::v3i16, Expand); |
| setLoadExtAction(ISD::SEXTLOAD, VT, MVT::v3i16, Expand); |
| setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::v3i16, Expand); |
| setLoadExtAction(ISD::EXTLOAD, VT, MVT::v4i16, Expand); |
| setLoadExtAction(ISD::SEXTLOAD, VT, MVT::v4i16, Expand); |
| setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::v4i16, Expand); |
| } |
| |
| setLoadExtAction(ISD::EXTLOAD, MVT::f32, MVT::f16, Expand); |
| setLoadExtAction(ISD::EXTLOAD, MVT::v2f32, MVT::v2f16, Expand); |
| setLoadExtAction(ISD::EXTLOAD, MVT::v3f32, MVT::v3f16, Expand); |
| setLoadExtAction(ISD::EXTLOAD, MVT::v4f32, MVT::v4f16, Expand); |
| setLoadExtAction(ISD::EXTLOAD, MVT::v8f32, MVT::v8f16, Expand); |
| setLoadExtAction(ISD::EXTLOAD, MVT::v16f32, MVT::v16f16, Expand); |
| setLoadExtAction(ISD::EXTLOAD, MVT::v32f32, MVT::v32f16, Expand); |
| |
| setLoadExtAction(ISD::EXTLOAD, MVT::f64, MVT::f32, Expand); |
| setLoadExtAction(ISD::EXTLOAD, MVT::v2f64, MVT::v2f32, Expand); |
| setLoadExtAction(ISD::EXTLOAD, MVT::v3f64, MVT::v3f32, Expand); |
| setLoadExtAction(ISD::EXTLOAD, MVT::v4f64, MVT::v4f32, Expand); |
| setLoadExtAction(ISD::EXTLOAD, MVT::v8f64, MVT::v8f32, Expand); |
| setLoadExtAction(ISD::EXTLOAD, MVT::v16f64, MVT::v16f32, Expand); |
| |
| setLoadExtAction(ISD::EXTLOAD, MVT::f64, MVT::f16, Expand); |
| setLoadExtAction(ISD::EXTLOAD, MVT::v2f64, MVT::v2f16, Expand); |
| setLoadExtAction(ISD::EXTLOAD, MVT::v3f64, MVT::v3f16, Expand); |
| setLoadExtAction(ISD::EXTLOAD, MVT::v4f64, MVT::v4f16, Expand); |
| setLoadExtAction(ISD::EXTLOAD, MVT::v8f64, MVT::v8f16, Expand); |
| setLoadExtAction(ISD::EXTLOAD, MVT::v16f64, MVT::v16f16, Expand); |
| |
| setOperationAction(ISD::STORE, MVT::f32, Promote); |
| AddPromotedToType(ISD::STORE, MVT::f32, MVT::i32); |
| |
| setOperationAction(ISD::STORE, MVT::v2f32, Promote); |
| AddPromotedToType(ISD::STORE, MVT::v2f32, MVT::v2i32); |
| |
| setOperationAction(ISD::STORE, MVT::v3f32, Promote); |
| AddPromotedToType(ISD::STORE, MVT::v3f32, MVT::v3i32); |
| |
| setOperationAction(ISD::STORE, MVT::v4f32, Promote); |
| AddPromotedToType(ISD::STORE, MVT::v4f32, MVT::v4i32); |
| |
| setOperationAction(ISD::STORE, MVT::v5f32, Promote); |
| AddPromotedToType(ISD::STORE, MVT::v5f32, MVT::v5i32); |
| |
| setOperationAction(ISD::STORE, MVT::v6f32, Promote); |
| AddPromotedToType(ISD::STORE, MVT::v6f32, MVT::v6i32); |
| |
| setOperationAction(ISD::STORE, MVT::v7f32, Promote); |
| AddPromotedToType(ISD::STORE, MVT::v7f32, MVT::v7i32); |
| |
| setOperationAction(ISD::STORE, MVT::v8f32, Promote); |
| AddPromotedToType(ISD::STORE, MVT::v8f32, MVT::v8i32); |
| |
| setOperationAction(ISD::STORE, MVT::v16f32, Promote); |
| AddPromotedToType(ISD::STORE, MVT::v16f32, MVT::v16i32); |
| |
| setOperationAction(ISD::STORE, MVT::v32f32, Promote); |
| AddPromotedToType(ISD::STORE, MVT::v32f32, MVT::v32i32); |
| |
| setOperationAction(ISD::STORE, MVT::i64, Promote); |
| AddPromotedToType(ISD::STORE, MVT::i64, MVT::v2i32); |
| |
| setOperationAction(ISD::STORE, MVT::v2i64, Promote); |
| AddPromotedToType(ISD::STORE, MVT::v2i64, MVT::v4i32); |
| |
| setOperationAction(ISD::STORE, MVT::f64, Promote); |
| AddPromotedToType(ISD::STORE, MVT::f64, MVT::v2i32); |
| |
| setOperationAction(ISD::STORE, MVT::v2f64, Promote); |
| AddPromotedToType(ISD::STORE, MVT::v2f64, MVT::v4i32); |
| |
| setOperationAction(ISD::STORE, MVT::v3i64, Promote); |
| AddPromotedToType(ISD::STORE, MVT::v3i64, MVT::v6i32); |
| |
| setOperationAction(ISD::STORE, MVT::v3f64, Promote); |
| AddPromotedToType(ISD::STORE, MVT::v3f64, MVT::v6i32); |
| |
| setOperationAction(ISD::STORE, MVT::v4i64, Promote); |
| AddPromotedToType(ISD::STORE, MVT::v4i64, MVT::v8i32); |
| |
| setOperationAction(ISD::STORE, MVT::v4f64, Promote); |
| AddPromotedToType(ISD::STORE, MVT::v4f64, MVT::v8i32); |
| |
| setOperationAction(ISD::STORE, MVT::v8i64, Promote); |
| AddPromotedToType(ISD::STORE, MVT::v8i64, MVT::v16i32); |
| |
| setOperationAction(ISD::STORE, MVT::v8f64, Promote); |
| AddPromotedToType(ISD::STORE, MVT::v8f64, MVT::v16i32); |
| |
| setOperationAction(ISD::STORE, MVT::v16i64, Promote); |
| AddPromotedToType(ISD::STORE, MVT::v16i64, MVT::v32i32); |
| |
| setOperationAction(ISD::STORE, MVT::v16f64, Promote); |
| AddPromotedToType(ISD::STORE, MVT::v16f64, MVT::v32i32); |
| |
| setTruncStoreAction(MVT::i64, MVT::i1, Expand); |
| setTruncStoreAction(MVT::i64, MVT::i8, Expand); |
| setTruncStoreAction(MVT::i64, MVT::i16, Expand); |
| setTruncStoreAction(MVT::i64, MVT::i32, Expand); |
| |
| setTruncStoreAction(MVT::v2i64, MVT::v2i1, Expand); |
| setTruncStoreAction(MVT::v2i64, MVT::v2i8, Expand); |
| setTruncStoreAction(MVT::v2i64, MVT::v2i16, Expand); |
| setTruncStoreAction(MVT::v2i64, MVT::v2i32, Expand); |
| |
| setTruncStoreAction(MVT::f32, MVT::f16, Expand); |
| setTruncStoreAction(MVT::v2f32, MVT::v2f16, Expand); |
| setTruncStoreAction(MVT::v3f32, MVT::v3f16, Expand); |
| setTruncStoreAction(MVT::v4f32, MVT::v4f16, Expand); |
| setTruncStoreAction(MVT::v8f32, MVT::v8f16, Expand); |
| setTruncStoreAction(MVT::v16f32, MVT::v16f16, Expand); |
| setTruncStoreAction(MVT::v32f32, MVT::v32f16, Expand); |
| |
| setTruncStoreAction(MVT::f64, MVT::f16, Expand); |
| setTruncStoreAction(MVT::f64, MVT::f32, Expand); |
| |
| setTruncStoreAction(MVT::v2f64, MVT::v2f32, Expand); |
| setTruncStoreAction(MVT::v2f64, MVT::v2f16, Expand); |
| |
| setTruncStoreAction(MVT::v3i64, MVT::v3i32, Expand); |
| setTruncStoreAction(MVT::v3i64, MVT::v3i16, Expand); |
| setTruncStoreAction(MVT::v3f64, MVT::v3f32, Expand); |
| setTruncStoreAction(MVT::v3f64, MVT::v3f16, Expand); |
| |
| setTruncStoreAction(MVT::v4i64, MVT::v4i32, Expand); |
| setTruncStoreAction(MVT::v4i64, MVT::v4i16, Expand); |
| setTruncStoreAction(MVT::v4f64, MVT::v4f32, Expand); |
| setTruncStoreAction(MVT::v4f64, MVT::v4f16, Expand); |
| |
| setTruncStoreAction(MVT::v8f64, MVT::v8f32, Expand); |
| setTruncStoreAction(MVT::v8f64, MVT::v8f16, Expand); |
| |
| setTruncStoreAction(MVT::v16f64, MVT::v16f32, Expand); |
| setTruncStoreAction(MVT::v16f64, MVT::v16f16, Expand); |
| setTruncStoreAction(MVT::v16i64, MVT::v16i16, Expand); |
| setTruncStoreAction(MVT::v16i64, MVT::v16i16, Expand); |
| setTruncStoreAction(MVT::v16i64, MVT::v16i8, Expand); |
| setTruncStoreAction(MVT::v16i64, MVT::v16i8, Expand); |
| setTruncStoreAction(MVT::v16i64, MVT::v16i1, Expand); |
| |
| setOperationAction(ISD::Constant, MVT::i32, Legal); |
| setOperationAction(ISD::Constant, MVT::i64, Legal); |
| setOperationAction(ISD::ConstantFP, MVT::f32, Legal); |
| setOperationAction(ISD::ConstantFP, MVT::f64, Legal); |
| |
| setOperationAction(ISD::BR_JT, MVT::Other, Expand); |
| setOperationAction(ISD::BRIND, MVT::Other, Expand); |
| |
| // This is totally unsupported, just custom lower to produce an error. |
| setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i32, Custom); |
| |
| // Library functions. These default to Expand, but we have instructions |
| // for them. |
| setOperationAction(ISD::FCEIL, MVT::f32, Legal); |
| setOperationAction(ISD::FEXP2, MVT::f32, Legal); |
| setOperationAction(ISD::FPOW, MVT::f32, Legal); |
| setOperationAction(ISD::FLOG2, MVT::f32, Legal); |
| setOperationAction(ISD::FABS, MVT::f32, Legal); |
| setOperationAction(ISD::FFLOOR, MVT::f32, Legal); |
| setOperationAction(ISD::FRINT, MVT::f32, Legal); |
| setOperationAction(ISD::FTRUNC, MVT::f32, Legal); |
| setOperationAction(ISD::FMINNUM, MVT::f32, Legal); |
| setOperationAction(ISD::FMAXNUM, MVT::f32, Legal); |
| |
| setOperationAction(ISD::FROUND, MVT::f32, Custom); |
| setOperationAction(ISD::FROUND, MVT::f64, Custom); |
| |
| setOperationAction(ISD::FLOG, MVT::f32, Custom); |
| setOperationAction(ISD::FLOG10, MVT::f32, Custom); |
| setOperationAction(ISD::FEXP, MVT::f32, Custom); |
| |
| |
| setOperationAction(ISD::FNEARBYINT, MVT::f32, Custom); |
| setOperationAction(ISD::FNEARBYINT, MVT::f64, Custom); |
| |
| setOperationAction(ISD::FREM, MVT::f16, Custom); |
| setOperationAction(ISD::FREM, MVT::f32, Custom); |
| setOperationAction(ISD::FREM, MVT::f64, Custom); |
| |
| // Expand to fneg + fadd. |
| setOperationAction(ISD::FSUB, MVT::f64, Expand); |
| |
| setOperationAction(ISD::CONCAT_VECTORS, MVT::v3i32, Custom); |
| setOperationAction(ISD::CONCAT_VECTORS, MVT::v3f32, Custom); |
| setOperationAction(ISD::CONCAT_VECTORS, MVT::v4i32, Custom); |
| setOperationAction(ISD::CONCAT_VECTORS, MVT::v4f32, Custom); |
| setOperationAction(ISD::CONCAT_VECTORS, MVT::v5i32, Custom); |
| setOperationAction(ISD::CONCAT_VECTORS, MVT::v5f32, Custom); |
| setOperationAction(ISD::CONCAT_VECTORS, MVT::v6i32, Custom); |
| setOperationAction(ISD::CONCAT_VECTORS, MVT::v6f32, Custom); |
| setOperationAction(ISD::CONCAT_VECTORS, MVT::v7i32, Custom); |
| setOperationAction(ISD::CONCAT_VECTORS, MVT::v7f32, Custom); |
| setOperationAction(ISD::CONCAT_VECTORS, MVT::v8i32, Custom); |
| setOperationAction(ISD::CONCAT_VECTORS, MVT::v8f32, Custom); |
| setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v2f16, Custom); |
| setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v2i16, Custom); |
| setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v2f32, Custom); |
| setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v2i32, Custom); |
| setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v3f32, Custom); |
| setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v3i32, Custom); |
| setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v4f32, Custom); |
| setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v4i32, Custom); |
| setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v5f32, Custom); |
| setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v5i32, Custom); |
| setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v6f32, Custom); |
| setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v6i32, Custom); |
| setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v7f32, Custom); |
| setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v7i32, Custom); |
| setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v8f32, Custom); |
| setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v8i32, Custom); |
| setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v16f32, Custom); |
| setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v16i32, Custom); |
| setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v32f32, Custom); |
| setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v32i32, Custom); |
| setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v2f64, Custom); |
| setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v2i64, Custom); |
| setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v3f64, Custom); |
| setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v3i64, Custom); |
| setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v4f64, Custom); |
| setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v4i64, Custom); |
| setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v8f64, Custom); |
| setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v8i64, Custom); |
| setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v16f64, Custom); |
| setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v16i64, Custom); |
| |
| setOperationAction(ISD::FP16_TO_FP, MVT::f64, Expand); |
| setOperationAction(ISD::FP_TO_FP16, MVT::f64, Custom); |
| setOperationAction(ISD::FP_TO_FP16, MVT::f32, Custom); |
| |
| const MVT ScalarIntVTs[] = { MVT::i32, MVT::i64 }; |
| for (MVT VT : ScalarIntVTs) { |
| // These should use [SU]DIVREM, so set them to expand |
| setOperationAction(ISD::SDIV, VT, Expand); |
| setOperationAction(ISD::UDIV, VT, Expand); |
| setOperationAction(ISD::SREM, VT, Expand); |
| setOperationAction(ISD::UREM, VT, Expand); |
| |
| // GPU does not have divrem function for signed or unsigned. |
| setOperationAction(ISD::SDIVREM, VT, Custom); |
| setOperationAction(ISD::UDIVREM, VT, Custom); |
| |
| // GPU does not have [S|U]MUL_LOHI functions as a single instruction. |
| setOperationAction(ISD::SMUL_LOHI, VT, Expand); |
| setOperationAction(ISD::UMUL_LOHI, VT, Expand); |
| |
| setOperationAction(ISD::BSWAP, VT, Expand); |
| setOperationAction(ISD::CTTZ, VT, Expand); |
| setOperationAction(ISD::CTLZ, VT, Expand); |
| |
| // AMDGPU uses ADDC/SUBC/ADDE/SUBE |
| setOperationAction(ISD::ADDC, VT, Legal); |
| setOperationAction(ISD::SUBC, VT, Legal); |
| setOperationAction(ISD::ADDE, VT, Legal); |
| setOperationAction(ISD::SUBE, VT, Legal); |
| } |
| |
| // The hardware supports 32-bit FSHR, but not FSHL. |
| setOperationAction(ISD::FSHR, MVT::i32, Legal); |
| |
| // The hardware supports 32-bit ROTR, but not ROTL. |
| setOperationAction(ISD::ROTL, MVT::i32, Expand); |
| setOperationAction(ISD::ROTL, MVT::i64, Expand); |
| setOperationAction(ISD::ROTR, MVT::i64, Expand); |
| |
| setOperationAction(ISD::MULHU, MVT::i16, Expand); |
| setOperationAction(ISD::MULHS, MVT::i16, Expand); |
| |
| setOperationAction(ISD::MUL, MVT::i64, Expand); |
| setOperationAction(ISD::MULHU, MVT::i64, Expand); |
| setOperationAction(ISD::MULHS, MVT::i64, Expand); |
| setOperationAction(ISD::UINT_TO_FP, MVT::i64, Custom); |
| setOperationAction(ISD::SINT_TO_FP, MVT::i64, Custom); |
| setOperationAction(ISD::FP_TO_SINT, MVT::i64, Custom); |
| setOperationAction(ISD::FP_TO_UINT, MVT::i64, Custom); |
| setOperationAction(ISD::SELECT_CC, MVT::i64, Expand); |
| |
| setOperationAction(ISD::SMIN, MVT::i32, Legal); |
| setOperationAction(ISD::UMIN, MVT::i32, Legal); |
| setOperationAction(ISD::SMAX, MVT::i32, Legal); |
| setOperationAction(ISD::UMAX, MVT::i32, Legal); |
| |
| setOperationAction(ISD::CTTZ, MVT::i64, Custom); |
| setOperationAction(ISD::CTTZ_ZERO_UNDEF, MVT::i64, Custom); |
| setOperationAction(ISD::CTLZ, MVT::i64, Custom); |
| setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i64, Custom); |
| |
| static const MVT::SimpleValueType VectorIntTypes[] = { |
| MVT::v2i32, MVT::v3i32, MVT::v4i32, MVT::v5i32, MVT::v6i32, MVT::v7i32}; |
| |
| for (MVT VT : VectorIntTypes) { |
| // Expand the following operations for the current type by default. |
| setOperationAction(ISD::ADD, VT, Expand); |
| setOperationAction(ISD::AND, VT, Expand); |
| setOperationAction(ISD::FP_TO_SINT, VT, Expand); |
| setOperationAction(ISD::FP_TO_UINT, VT, Expand); |
| setOperationAction(ISD::MUL, VT, Expand); |
| setOperationAction(ISD::MULHU, VT, Expand); |
| setOperationAction(ISD::MULHS, VT, Expand); |
| setOperationAction(ISD::OR, VT, Expand); |
| setOperationAction(ISD::SHL, VT, Expand); |
| setOperationAction(ISD::SRA, VT, Expand); |
| setOperationAction(ISD::SRL, VT, Expand); |
| setOperationAction(ISD::ROTL, VT, Expand); |
| setOperationAction(ISD::ROTR, VT, Expand); |
| setOperationAction(ISD::SUB, VT, Expand); |
| setOperationAction(ISD::SINT_TO_FP, VT, Expand); |
| setOperationAction(ISD::UINT_TO_FP, VT, Expand); |
| setOperationAction(ISD::SDIV, VT, Expand); |
| setOperationAction(ISD::UDIV, VT, Expand); |
| setOperationAction(ISD::SREM, VT, Expand); |
| setOperationAction(ISD::UREM, VT, Expand); |
| setOperationAction(ISD::SMUL_LOHI, VT, Expand); |
| setOperationAction(ISD::UMUL_LOHI, VT, Expand); |
| setOperationAction(ISD::SDIVREM, VT, Expand); |
| setOperationAction(ISD::UDIVREM, VT, Expand); |
| setOperationAction(ISD::SELECT, VT, Expand); |
| setOperationAction(ISD::VSELECT, VT, Expand); |
| setOperationAction(ISD::SELECT_CC, VT, Expand); |
| setOperationAction(ISD::XOR, VT, Expand); |
| setOperationAction(ISD::BSWAP, VT, Expand); |
| setOperationAction(ISD::CTPOP, VT, Expand); |
| setOperationAction(ISD::CTTZ, VT, Expand); |
| setOperationAction(ISD::CTLZ, VT, Expand); |
| setOperationAction(ISD::VECTOR_SHUFFLE, VT, Expand); |
| setOperationAction(ISD::SETCC, VT, Expand); |
| } |
| |
| static const MVT::SimpleValueType FloatVectorTypes[] = { |
| MVT::v2f32, MVT::v3f32, MVT::v4f32, MVT::v5f32, MVT::v6f32, MVT::v7f32}; |
| |
| for (MVT VT : FloatVectorTypes) { |
| setOperationAction(ISD::FABS, VT, Expand); |
| setOperationAction(ISD::FMINNUM, VT, Expand); |
| setOperationAction(ISD::FMAXNUM, VT, Expand); |
| setOperationAction(ISD::FADD, VT, Expand); |
| setOperationAction(ISD::FCEIL, VT, Expand); |
| setOperationAction(ISD::FCOS, VT, Expand); |
| setOperationAction(ISD::FDIV, VT, Expand); |
| setOperationAction(ISD::FEXP2, VT, Expand); |
| setOperationAction(ISD::FEXP, VT, Expand); |
| setOperationAction(ISD::FLOG2, VT, Expand); |
| setOperationAction(ISD::FREM, VT, Expand); |
| setOperationAction(ISD::FLOG, VT, Expand); |
| setOperationAction(ISD::FLOG10, VT, Expand); |
| setOperationAction(ISD::FPOW, VT, Expand); |
| setOperationAction(ISD::FFLOOR, VT, Expand); |
| setOperationAction(ISD::FTRUNC, VT, Expand); |
| setOperationAction(ISD::FMUL, VT, Expand); |
| setOperationAction(ISD::FMA, VT, Expand); |
| setOperationAction(ISD::FRINT, VT, Expand); |
| setOperationAction(ISD::FNEARBYINT, VT, Expand); |
| setOperationAction(ISD::FSQRT, VT, Expand); |
| setOperationAction(ISD::FSIN, VT, Expand); |
| setOperationAction(ISD::FSUB, VT, Expand); |
| setOperationAction(ISD::FNEG, VT, Expand); |
| setOperationAction(ISD::VSELECT, VT, Expand); |
| setOperationAction(ISD::SELECT_CC, VT, Expand); |
| setOperationAction(ISD::FCOPYSIGN, VT, Expand); |
| setOperationAction(ISD::VECTOR_SHUFFLE, VT, Expand); |
| setOperationAction(ISD::SETCC, VT, Expand); |
| setOperationAction(ISD::FCANONICALIZE, VT, Expand); |
| } |
| |
| // This causes using an unrolled select operation rather than expansion with |
| // bit operations. This is in general better, but the alternative using BFI |
| // instructions may be better if the select sources are SGPRs. |
| setOperationAction(ISD::SELECT, MVT::v2f32, Promote); |
| AddPromotedToType(ISD::SELECT, MVT::v2f32, MVT::v2i32); |
| |
| setOperationAction(ISD::SELECT, MVT::v3f32, Promote); |
| AddPromotedToType(ISD::SELECT, MVT::v3f32, MVT::v3i32); |
| |
| setOperationAction(ISD::SELECT, MVT::v4f32, Promote); |
| AddPromotedToType(ISD::SELECT, MVT::v4f32, MVT::v4i32); |
| |
| setOperationAction(ISD::SELECT, MVT::v5f32, Promote); |
| AddPromotedToType(ISD::SELECT, MVT::v5f32, MVT::v5i32); |
| |
| setOperationAction(ISD::SELECT, MVT::v6f32, Promote); |
| AddPromotedToType(ISD::SELECT, MVT::v6f32, MVT::v6i32); |
| |
| setOperationAction(ISD::SELECT, MVT::v7f32, Promote); |
| AddPromotedToType(ISD::SELECT, MVT::v7f32, MVT::v7i32); |
| |
| // There are no libcalls of any kind. |
| for (int I = 0; I < RTLIB::UNKNOWN_LIBCALL; ++I) |
| setLibcallName(static_cast<RTLIB::Libcall>(I), nullptr); |
| |
| setSchedulingPreference(Sched::RegPressure); |
| setJumpIsExpensive(true); |
| |
| // FIXME: This is only partially true. If we have to do vector compares, any |
| // SGPR pair can be a condition register. If we have a uniform condition, we |
| // are better off doing SALU operations, where there is only one SCC. For now, |
| // we don't have a way of knowing during instruction selection if a condition |
| // will be uniform and we always use vector compares. Assume we are using |
| // vector compares until that is fixed. |
| setHasMultipleConditionRegisters(true); |
| |
| setMinCmpXchgSizeInBits(32); |
| setSupportsUnalignedAtomics(false); |
| |
| PredictableSelectIsExpensive = false; |
| |
| // We want to find all load dependencies for long chains of stores to enable |
| // merging into very wide vectors. The problem is with vectors with > 4 |
| // elements. MergeConsecutiveStores will attempt to merge these because x8/x16 |
| // vectors are a legal type, even though we have to split the loads |
| // usually. When we can more precisely specify load legality per address |
| // space, we should be able to make FindBetterChain/MergeConsecutiveStores |
| // smarter so that they can figure out what to do in 2 iterations without all |
| // N > 4 stores on the same chain. |
| GatherAllAliasesMaxDepth = 16; |
| |
| // memcpy/memmove/memset are expanded in the IR, so we shouldn't need to worry |
| // about these during lowering. |
| MaxStoresPerMemcpy = 0xffffffff; |
| MaxStoresPerMemmove = 0xffffffff; |
| MaxStoresPerMemset = 0xffffffff; |
| |
| // The expansion for 64-bit division is enormous. |
| if (AMDGPUBypassSlowDiv) |
| addBypassSlowDiv(64, 32); |
| |
| setTargetDAGCombine(ISD::BITCAST); |
| setTargetDAGCombine(ISD::SHL); |
| setTargetDAGCombine(ISD::SRA); |
| setTargetDAGCombine(ISD::SRL); |
| setTargetDAGCombine(ISD::TRUNCATE); |
| setTargetDAGCombine(ISD::MUL); |
| setTargetDAGCombine(ISD::SMUL_LOHI); |
| setTargetDAGCombine(ISD::UMUL_LOHI); |
| setTargetDAGCombine(ISD::MULHU); |
| setTargetDAGCombine(ISD::MULHS); |
| setTargetDAGCombine(ISD::SELECT); |
| setTargetDAGCombine(ISD::SELECT_CC); |
| setTargetDAGCombine(ISD::STORE); |
| setTargetDAGCombine(ISD::FADD); |
| setTargetDAGCombine(ISD::FSUB); |
| setTargetDAGCombine(ISD::FNEG); |
| setTargetDAGCombine(ISD::FABS); |
| setTargetDAGCombine(ISD::AssertZext); |
| setTargetDAGCombine(ISD::AssertSext); |
| setTargetDAGCombine(ISD::INTRINSIC_WO_CHAIN); |
| } |
| |
| bool AMDGPUTargetLowering::mayIgnoreSignedZero(SDValue Op) const { |
| if (getTargetMachine().Options.NoSignedZerosFPMath) |
| return true; |
| |
| const auto Flags = Op.getNode()->getFlags(); |
| if (Flags.hasNoSignedZeros()) |
| return true; |
| |
| return false; |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // Target Information |
| //===----------------------------------------------------------------------===// |
| |
| LLVM_READNONE |
| static bool fnegFoldsIntoOp(unsigned Opc) { |
| switch (Opc) { |
| case ISD::FADD: |
| case ISD::FSUB: |
| case ISD::FMUL: |
| case ISD::FMA: |
| case ISD::FMAD: |
| case ISD::FMINNUM: |
| case ISD::FMAXNUM: |
| case ISD::FMINNUM_IEEE: |
| case ISD::FMAXNUM_IEEE: |
| case ISD::FSIN: |
| case ISD::FTRUNC: |
| case ISD::FRINT: |
| case ISD::FNEARBYINT: |
| case ISD::FCANONICALIZE: |
| case AMDGPUISD::RCP: |
| case AMDGPUISD::RCP_LEGACY: |
| case AMDGPUISD::RCP_IFLAG: |
| case AMDGPUISD::SIN_HW: |
| case AMDGPUISD::FMUL_LEGACY: |
| case AMDGPUISD::FMIN_LEGACY: |
| case AMDGPUISD::FMAX_LEGACY: |
| case AMDGPUISD::FMED3: |
| // TODO: handle llvm.amdgcn.fma.legacy |
| return true; |
| default: |
| return false; |
| } |
| } |
| |
| /// \p returns true if the operation will definitely need to use a 64-bit |
| /// encoding, and thus will use a VOP3 encoding regardless of the source |
| /// modifiers. |
| LLVM_READONLY |
| static bool opMustUseVOP3Encoding(const SDNode *N, MVT VT) { |
| return N->getNumOperands() > 2 || VT == MVT::f64; |
| } |
| |
| // Most FP instructions support source modifiers, but this could be refined |
| // slightly. |
| LLVM_READONLY |
| static bool hasSourceMods(const SDNode *N) { |
| if (isa<MemSDNode>(N)) |
| return false; |
| |
| switch (N->getOpcode()) { |
| case ISD::CopyToReg: |
| case ISD::SELECT: |
| case ISD::FDIV: |
| case ISD::FREM: |
| case ISD::INLINEASM: |
| case ISD::INLINEASM_BR: |
| case AMDGPUISD::DIV_SCALE: |
| case ISD::INTRINSIC_W_CHAIN: |
| |
| // TODO: Should really be looking at the users of the bitcast. These are |
| // problematic because bitcasts are used to legalize all stores to integer |
| // types. |
| case ISD::BITCAST: |
| return false; |
| case ISD::INTRINSIC_WO_CHAIN: { |
| switch (cast<ConstantSDNode>(N->getOperand(0))->getZExtValue()) { |
| case Intrinsic::amdgcn_interp_p1: |
| case Intrinsic::amdgcn_interp_p2: |
| case Intrinsic::amdgcn_interp_mov: |
| case Intrinsic::amdgcn_interp_p1_f16: |
| case Intrinsic::amdgcn_interp_p2_f16: |
| return false; |
| default: |
| return true; |
| } |
| } |
| default: |
| return true; |
| } |
| } |
| |
| bool AMDGPUTargetLowering::allUsesHaveSourceMods(const SDNode *N, |
| unsigned CostThreshold) { |
| // Some users (such as 3-operand FMA/MAD) must use a VOP3 encoding, and thus |
| // it is truly free to use a source modifier in all cases. If there are |
| // multiple users but for each one will necessitate using VOP3, there will be |
| // a code size increase. Try to avoid increasing code size unless we know it |
| // will save on the instruction count. |
| unsigned NumMayIncreaseSize = 0; |
| MVT VT = N->getValueType(0).getScalarType().getSimpleVT(); |
| |
| // XXX - Should this limit number of uses to check? |
| for (const SDNode *U : N->uses()) { |
| if (!hasSourceMods(U)) |
| return false; |
| |
| if (!opMustUseVOP3Encoding(U, VT)) { |
| if (++NumMayIncreaseSize > CostThreshold) |
| return false; |
| } |
| } |
| |
| return true; |
| } |
| |
| EVT AMDGPUTargetLowering::getTypeForExtReturn(LLVMContext &Context, EVT VT, |
| ISD::NodeType ExtendKind) const { |
| assert(!VT.isVector() && "only scalar expected"); |
| |
| // Round to the next multiple of 32-bits. |
| unsigned Size = VT.getSizeInBits(); |
| if (Size <= 32) |
| return MVT::i32; |
| return EVT::getIntegerVT(Context, 32 * ((Size + 31) / 32)); |
| } |
| |
| MVT AMDGPUTargetLowering::getVectorIdxTy(const DataLayout &) const { |
| return MVT::i32; |
| } |
| |
| bool AMDGPUTargetLowering::isSelectSupported(SelectSupportKind SelType) const { |
| return true; |
| } |
| |
| // The backend supports 32 and 64 bit floating point immediates. |
| // FIXME: Why are we reporting vectors of FP immediates as legal? |
| bool AMDGPUTargetLowering::isFPImmLegal(const APFloat &Imm, EVT VT, |
| bool ForCodeSize) const { |
| EVT ScalarVT = VT.getScalarType(); |
| return (ScalarVT == MVT::f32 || ScalarVT == MVT::f64 || |
| (ScalarVT == MVT::f16 && Subtarget->has16BitInsts())); |
| } |
| |
| // We don't want to shrink f64 / f32 constants. |
| bool AMDGPUTargetLowering::ShouldShrinkFPConstant(EVT VT) const { |
| EVT ScalarVT = VT.getScalarType(); |
| return (ScalarVT != MVT::f32 && ScalarVT != MVT::f64); |
| } |
| |
| bool AMDGPUTargetLowering::shouldReduceLoadWidth(SDNode *N, |
| ISD::LoadExtType ExtTy, |
| EVT NewVT) const { |
| // TODO: This may be worth removing. Check regression tests for diffs. |
| if (!TargetLoweringBase::shouldReduceLoadWidth(N, ExtTy, NewVT)) |
| return false; |
| |
| unsigned NewSize = NewVT.getStoreSizeInBits(); |
| |
| // If we are reducing to a 32-bit load or a smaller multi-dword load, |
| // this is always better. |
| if (NewSize >= 32) |
| return true; |
| |
| EVT OldVT = N->getValueType(0); |
| unsigned OldSize = OldVT.getStoreSizeInBits(); |
| |
| MemSDNode *MN = cast<MemSDNode>(N); |
| unsigned AS = MN->getAddressSpace(); |
| // Do not shrink an aligned scalar load to sub-dword. |
| // Scalar engine cannot do sub-dword loads. |
| if (OldSize >= 32 && NewSize < 32 && MN->getAlignment() >= 4 && |
| (AS == AMDGPUAS::CONSTANT_ADDRESS || |
| AS == AMDGPUAS::CONSTANT_ADDRESS_32BIT || |
| (isa<LoadSDNode>(N) && |
| AS == AMDGPUAS::GLOBAL_ADDRESS && MN->isInvariant())) && |
| AMDGPUInstrInfo::isUniformMMO(MN->getMemOperand())) |
| return false; |
| |
| // Don't produce extloads from sub 32-bit types. SI doesn't have scalar |
| // extloads, so doing one requires using a buffer_load. In cases where we |
| // still couldn't use a scalar load, using the wider load shouldn't really |
| // hurt anything. |
| |
| // If the old size already had to be an extload, there's no harm in continuing |
| // to reduce the width. |
| return (OldSize < 32); |
| } |
| |
| bool AMDGPUTargetLowering::isLoadBitCastBeneficial(EVT LoadTy, EVT CastTy, |
| const SelectionDAG &DAG, |
| const MachineMemOperand &MMO) const { |
| |
| assert(LoadTy.getSizeInBits() == CastTy.getSizeInBits()); |
| |
| if (LoadTy.getScalarType() == MVT::i32) |
| return false; |
| |
| unsigned LScalarSize = LoadTy.getScalarSizeInBits(); |
| unsigned CastScalarSize = CastTy.getScalarSizeInBits(); |
| |
| if ((LScalarSize >= CastScalarSize) && (CastScalarSize < 32)) |
| return false; |
| |
| bool Fast = false; |
| return allowsMemoryAccessForAlignment(*DAG.getContext(), DAG.getDataLayout(), |
| CastTy, MMO, &Fast) && |
| Fast; |
| } |
| |
| // SI+ has instructions for cttz / ctlz for 32-bit values. This is probably also |
| // profitable with the expansion for 64-bit since it's generally good to |
| // speculate things. |
| // FIXME: These should really have the size as a parameter. |
| bool AMDGPUTargetLowering::isCheapToSpeculateCttz() const { |
| return true; |
| } |
| |
| bool AMDGPUTargetLowering::isCheapToSpeculateCtlz() const { |
| return true; |
| } |
| |
| bool AMDGPUTargetLowering::isSDNodeAlwaysUniform(const SDNode *N) const { |
| switch (N->getOpcode()) { |
| case ISD::EntryToken: |
| case ISD::TokenFactor: |
| return true; |
| case ISD::INTRINSIC_WO_CHAIN: { |
| unsigned IntrID = cast<ConstantSDNode>(N->getOperand(0))->getZExtValue(); |
| switch (IntrID) { |
| case Intrinsic::amdgcn_readfirstlane: |
| case Intrinsic::amdgcn_readlane: |
| return true; |
| } |
| return false; |
| } |
| case ISD::LOAD: |
| if (cast<LoadSDNode>(N)->getMemOperand()->getAddrSpace() == |
| AMDGPUAS::CONSTANT_ADDRESS_32BIT) |
| return true; |
| return false; |
| } |
| return false; |
| } |
| |
| SDValue AMDGPUTargetLowering::getNegatedExpression( |
| SDValue Op, SelectionDAG &DAG, bool LegalOperations, bool ForCodeSize, |
| NegatibleCost &Cost, unsigned Depth) const { |
| |
| switch (Op.getOpcode()) { |
| case ISD::FMA: |
| case ISD::FMAD: { |
| // Negating a fma is not free if it has users without source mods. |
| if (!allUsesHaveSourceMods(Op.getNode())) |
| return SDValue(); |
| break; |
| } |
| default: |
| break; |
| } |
| |
| return TargetLowering::getNegatedExpression(Op, DAG, LegalOperations, |
| ForCodeSize, Cost, Depth); |
| } |
| |
| //===---------------------------------------------------------------------===// |
| // Target Properties |
| //===---------------------------------------------------------------------===// |
| |
| bool AMDGPUTargetLowering::isFAbsFree(EVT VT) const { |
| assert(VT.isFloatingPoint()); |
| |
| // Packed operations do not have a fabs modifier. |
| return VT == MVT::f32 || VT == MVT::f64 || |
| (Subtarget->has16BitInsts() && VT == MVT::f16); |
| } |
| |
| bool AMDGPUTargetLowering::isFNegFree(EVT VT) const { |
| assert(VT.isFloatingPoint()); |
| // Report this based on the end legalized type. |
| VT = VT.getScalarType(); |
| return VT == MVT::f32 || VT == MVT::f64 || VT == MVT::f16; |
| } |
| |
| bool AMDGPUTargetLowering:: storeOfVectorConstantIsCheap(EVT MemVT, |
| unsigned NumElem, |
| unsigned AS) const { |
| return true; |
| } |
| |
| bool AMDGPUTargetLowering::aggressivelyPreferBuildVectorSources(EVT VecVT) const { |
| // There are few operations which truly have vector input operands. Any vector |
| // operation is going to involve operations on each component, and a |
| // build_vector will be a copy per element, so it always makes sense to use a |
| // build_vector input in place of the extracted element to avoid a copy into a |
| // super register. |
| // |
| // We should probably only do this if all users are extracts only, but this |
| // should be the common case. |
| return true; |
| } |
| |
| bool AMDGPUTargetLowering::isTruncateFree(EVT Source, EVT Dest) const { |
| // Truncate is just accessing a subregister. |
| |
| unsigned SrcSize = Source.getSizeInBits(); |
| unsigned DestSize = Dest.getSizeInBits(); |
| |
| return DestSize < SrcSize && DestSize % 32 == 0 ; |
| } |
| |
| bool AMDGPUTargetLowering::isTruncateFree(Type *Source, Type *Dest) const { |
| // Truncate is just accessing a subregister. |
| |
| unsigned SrcSize = Source->getScalarSizeInBits(); |
| unsigned DestSize = Dest->getScalarSizeInBits(); |
| |
| if (DestSize== 16 && Subtarget->has16BitInsts()) |
| return SrcSize >= 32; |
| |
| return DestSize < SrcSize && DestSize % 32 == 0; |
| } |
| |
| bool AMDGPUTargetLowering::isZExtFree(Type *Src, Type *Dest) const { |
| unsigned SrcSize = Src->getScalarSizeInBits(); |
| unsigned DestSize = Dest->getScalarSizeInBits(); |
| |
| if (SrcSize == 16 && Subtarget->has16BitInsts()) |
| return DestSize >= 32; |
| |
| return SrcSize == 32 && DestSize == 64; |
| } |
| |
| bool AMDGPUTargetLowering::isZExtFree(EVT Src, EVT Dest) const { |
| // Any register load of a 64-bit value really requires 2 32-bit moves. For all |
| // practical purposes, the extra mov 0 to load a 64-bit is free. As used, |
| // this will enable reducing 64-bit operations the 32-bit, which is always |
| // good. |
| |
| if (Src == MVT::i16) |
| return Dest == MVT::i32 ||Dest == MVT::i64 ; |
| |
| return Src == MVT::i32 && Dest == MVT::i64; |
| } |
| |
| bool AMDGPUTargetLowering::isZExtFree(SDValue Val, EVT VT2) const { |
| return isZExtFree(Val.getValueType(), VT2); |
| } |
| |
| bool AMDGPUTargetLowering::isNarrowingProfitable(EVT SrcVT, EVT DestVT) const { |
| // There aren't really 64-bit registers, but pairs of 32-bit ones and only a |
| // limited number of native 64-bit operations. Shrinking an operation to fit |
| // in a single 32-bit register should always be helpful. As currently used, |
| // this is much less general than the name suggests, and is only used in |
| // places trying to reduce the sizes of loads. Shrinking loads to < 32-bits is |
| // not profitable, and may actually be harmful. |
| return SrcVT.getSizeInBits() > 32 && DestVT.getSizeInBits() == 32; |
| } |
| |
| //===---------------------------------------------------------------------===// |
| // TargetLowering Callbacks |
| //===---------------------------------------------------------------------===// |
| |
| CCAssignFn *AMDGPUCallLowering::CCAssignFnForCall(CallingConv::ID CC, |
| bool IsVarArg) { |
| switch (CC) { |
| case CallingConv::AMDGPU_VS: |
| case CallingConv::AMDGPU_GS: |
| case CallingConv::AMDGPU_PS: |
| case CallingConv::AMDGPU_CS: |
| case CallingConv::AMDGPU_HS: |
| case CallingConv::AMDGPU_ES: |
| case CallingConv::AMDGPU_LS: |
| return CC_AMDGPU; |
| case CallingConv::C: |
| case CallingConv::Fast: |
| case CallingConv::Cold: |
| return CC_AMDGPU_Func; |
| case CallingConv::AMDGPU_Gfx: |
| return CC_SI_Gfx; |
| case CallingConv::AMDGPU_KERNEL: |
| case CallingConv::SPIR_KERNEL: |
| default: |
| report_fatal_error("Unsupported calling convention for call"); |
| } |
| } |
| |
| CCAssignFn *AMDGPUCallLowering::CCAssignFnForReturn(CallingConv::ID CC, |
| bool IsVarArg) { |
| switch (CC) { |
| case CallingConv::AMDGPU_KERNEL: |
| case CallingConv::SPIR_KERNEL: |
| llvm_unreachable("kernels should not be handled here"); |
| case CallingConv::AMDGPU_VS: |
| case CallingConv::AMDGPU_GS: |
| case CallingConv::AMDGPU_PS: |
| case CallingConv::AMDGPU_CS: |
| case CallingConv::AMDGPU_HS: |
| case CallingConv::AMDGPU_ES: |
| case CallingConv::AMDGPU_LS: |
| return RetCC_SI_Shader; |
| case CallingConv::AMDGPU_Gfx: |
| return RetCC_SI_Gfx; |
| case CallingConv::C: |
| case CallingConv::Fast: |
| case CallingConv::Cold: |
| return RetCC_AMDGPU_Func; |
| default: |
| report_fatal_error("Unsupported calling convention."); |
| } |
| } |
| |
| /// The SelectionDAGBuilder will automatically promote function arguments |
| /// with illegal types. However, this does not work for the AMDGPU targets |
| /// since the function arguments are stored in memory as these illegal types. |
| /// In order to handle this properly we need to get the original types sizes |
| /// from the LLVM IR Function and fixup the ISD:InputArg values before |
| /// passing them to AnalyzeFormalArguments() |
| |
| /// When the SelectionDAGBuilder computes the Ins, it takes care of splitting |
| /// input values across multiple registers. Each item in the Ins array |
| /// represents a single value that will be stored in registers. Ins[x].VT is |
| /// the value type of the value that will be stored in the register, so |
| /// whatever SDNode we lower the argument to needs to be this type. |
| /// |
| /// In order to correctly lower the arguments we need to know the size of each |
| /// argument. Since Ins[x].VT gives us the size of the register that will |
| /// hold the value, we need to look at Ins[x].ArgVT to see the 'real' type |
| /// for the original function argument so that we can deduce the correct memory |
| /// type to use for Ins[x]. In most cases the correct memory type will be |
| /// Ins[x].ArgVT. However, this will not always be the case. If, for example, |
| /// we have a kernel argument of type v8i8, this argument will be split into |
| /// 8 parts and each part will be represented by its own item in the Ins array. |
| /// For each part the Ins[x].ArgVT will be the v8i8, which is the full type of |
| /// the argument before it was split. From this, we deduce that the memory type |
| /// for each individual part is i8. We pass the memory type as LocVT to the |
| /// calling convention analysis function and the register type (Ins[x].VT) as |
| /// the ValVT. |
| void AMDGPUTargetLowering::analyzeFormalArgumentsCompute( |
| CCState &State, |
| const SmallVectorImpl<ISD::InputArg> &Ins) const { |
| const MachineFunction &MF = State.getMachineFunction(); |
| const Function &Fn = MF.getFunction(); |
| LLVMContext &Ctx = Fn.getParent()->getContext(); |
| const AMDGPUSubtarget &ST = AMDGPUSubtarget::get(MF); |
| const unsigned ExplicitOffset = ST.getExplicitKernelArgOffset(Fn); |
| CallingConv::ID CC = Fn.getCallingConv(); |
| |
| Align MaxAlign = Align(1); |
| uint64_t ExplicitArgOffset = 0; |
| const DataLayout &DL = Fn.getParent()->getDataLayout(); |
| |
| unsigned InIndex = 0; |
| |
| for (const Argument &Arg : Fn.args()) { |
| const bool IsByRef = Arg.hasByRefAttr(); |
| Type *BaseArgTy = Arg.getType(); |
| Type *MemArgTy = IsByRef ? Arg.getParamByRefType() : BaseArgTy; |
| MaybeAlign Alignment = IsByRef ? Arg.getParamAlign() : None; |
| if (!Alignment) |
| Alignment = DL.getABITypeAlign(MemArgTy); |
| MaxAlign = max(Alignment, MaxAlign); |
| uint64_t AllocSize = DL.getTypeAllocSize(MemArgTy); |
| |
| uint64_t ArgOffset = alignTo(ExplicitArgOffset, Alignment) + ExplicitOffset; |
| ExplicitArgOffset = alignTo(ExplicitArgOffset, Alignment) + AllocSize; |
| |
| // We're basically throwing away everything passed into us and starting over |
| // to get accurate in-memory offsets. The "PartOffset" is completely useless |
| // to us as computed in Ins. |
| // |
| // We also need to figure out what type legalization is trying to do to get |
| // the correct memory offsets. |
| |
| SmallVector<EVT, 16> ValueVTs; |
| SmallVector<uint64_t, 16> Offsets; |
| ComputeValueVTs(*this, DL, BaseArgTy, ValueVTs, &Offsets, ArgOffset); |
| |
| for (unsigned Value = 0, NumValues = ValueVTs.size(); |
| Value != NumValues; ++Value) { |
| uint64_t BasePartOffset = Offsets[Value]; |
| |
| EVT ArgVT = ValueVTs[Value]; |
| EVT MemVT = ArgVT; |
| MVT RegisterVT = getRegisterTypeForCallingConv(Ctx, CC, ArgVT); |
| unsigned NumRegs = getNumRegistersForCallingConv(Ctx, CC, ArgVT); |
| |
| if (NumRegs == 1) { |
| // This argument is not split, so the IR type is the memory type. |
| if (ArgVT.isExtended()) { |
| // We have an extended type, like i24, so we should just use the |
| // register type. |
| MemVT = RegisterVT; |
| } else { |
| MemVT = ArgVT; |
| } |
| } else if (ArgVT.isVector() && RegisterVT.isVector() && |
| ArgVT.getScalarType() == RegisterVT.getScalarType()) { |
| assert(ArgVT.getVectorNumElements() > RegisterVT.getVectorNumElements()); |
| // We have a vector value which has been split into a vector with |
| // the same scalar type, but fewer elements. This should handle |
| // all the floating-point vector types. |
| MemVT = RegisterVT; |
| } else if (ArgVT.isVector() && |
| ArgVT.getVectorNumElements() == NumRegs) { |
| // This arg has been split so that each element is stored in a separate |
| // register. |
| MemVT = ArgVT.getScalarType(); |
| } else if (ArgVT.isExtended()) { |
| // We have an extended type, like i65. |
| MemVT = RegisterVT; |
| } else { |
| unsigned MemoryBits = ArgVT.getStoreSizeInBits() / NumRegs; |
| assert(ArgVT.getStoreSizeInBits() % NumRegs == 0); |
| if (RegisterVT.isInteger()) { |
| MemVT = EVT::getIntegerVT(State.getContext(), MemoryBits); |
| } else if (RegisterVT.isVector()) { |
| assert(!RegisterVT.getScalarType().isFloatingPoint()); |
| unsigned NumElements = RegisterVT.getVectorNumElements(); |
| assert(MemoryBits % NumElements == 0); |
| // This vector type has been split into another vector type with |
| // a different elements size. |
| EVT ScalarVT = EVT::getIntegerVT(State.getContext(), |
| MemoryBits / NumElements); |
| MemVT = EVT::getVectorVT(State.getContext(), ScalarVT, NumElements); |
| } else { |
| llvm_unreachable("cannot deduce memory type."); |
| } |
| } |
| |
| // Convert one element vectors to scalar. |
| if (MemVT.isVector() && MemVT.getVectorNumElements() == 1) |
| MemVT = MemVT.getScalarType(); |
| |
| // Round up vec3/vec5 argument. |
| if (MemVT.isVector() && !MemVT.isPow2VectorType()) { |
| assert(MemVT.getVectorNumElements() == 3 || |
| MemVT.getVectorNumElements() == 5); |
| MemVT = MemVT.getPow2VectorType(State.getContext()); |
| } else if (!MemVT.isSimple() && !MemVT.isVector()) { |
| MemVT = MemVT.getRoundIntegerType(State.getContext()); |
| } |
| |
| unsigned PartOffset = 0; |
| for (unsigned i = 0; i != NumRegs; ++i) { |
| State.addLoc(CCValAssign::getCustomMem(InIndex++, RegisterVT, |
| BasePartOffset + PartOffset, |
| MemVT.getSimpleVT(), |
| CCValAssign::Full)); |
| PartOffset += MemVT.getStoreSize(); |
| } |
| } |
| } |
| } |
| |
| SDValue AMDGPUTargetLowering::LowerReturn( |
| SDValue Chain, CallingConv::ID CallConv, |
| bool isVarArg, |
| const SmallVectorImpl<ISD::OutputArg> &Outs, |
| const SmallVectorImpl<SDValue> &OutVals, |
| const SDLoc &DL, SelectionDAG &DAG) const { |
| // FIXME: Fails for r600 tests |
| //assert(!isVarArg && Outs.empty() && OutVals.empty() && |
| // "wave terminate should not have return values"); |
| return DAG.getNode(AMDGPUISD::ENDPGM, DL, MVT::Other, Chain); |
| } |
| |
| //===---------------------------------------------------------------------===// |
| // Target specific lowering |
| //===---------------------------------------------------------------------===// |
| |
| /// Selects the correct CCAssignFn for a given CallingConvention value. |
| CCAssignFn *AMDGPUTargetLowering::CCAssignFnForCall(CallingConv::ID CC, |
| bool IsVarArg) { |
| return AMDGPUCallLowering::CCAssignFnForCall(CC, IsVarArg); |
| } |
| |
| CCAssignFn *AMDGPUTargetLowering::CCAssignFnForReturn(CallingConv::ID CC, |
| bool IsVarArg) { |
| return AMDGPUCallLowering::CCAssignFnForReturn(CC, IsVarArg); |
| } |
| |
| SDValue AMDGPUTargetLowering::addTokenForArgument(SDValue Chain, |
| SelectionDAG &DAG, |
| MachineFrameInfo &MFI, |
| int ClobberedFI) const { |
| SmallVector<SDValue, 8> ArgChains; |
| int64_t FirstByte = MFI.getObjectOffset(ClobberedFI); |
| int64_t LastByte = FirstByte + MFI.getObjectSize(ClobberedFI) - 1; |
| |
| // Include the original chain at the beginning of the list. When this is |
| // used by target LowerCall hooks, this helps legalize find the |
| // CALLSEQ_BEGIN node. |
| ArgChains.push_back(Chain); |
| |
| // Add a chain value for each stack argument corresponding |
| for (SDNode *U : DAG.getEntryNode().getNode()->uses()) { |
| if (LoadSDNode *L = dyn_cast<LoadSDNode>(U)) { |
| if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(L->getBasePtr())) { |
| if (FI->getIndex() < 0) { |
| int64_t InFirstByte = MFI.getObjectOffset(FI->getIndex()); |
| int64_t InLastByte = InFirstByte; |
| InLastByte += MFI.getObjectSize(FI->getIndex()) - 1; |
| |
| if ((InFirstByte <= FirstByte && FirstByte <= InLastByte) || |
| (FirstByte <= InFirstByte && InFirstByte <= LastByte)) |
| ArgChains.push_back(SDValue(L, 1)); |
| } |
| } |
| } |
| } |
| |
| // Build a tokenfactor for all the chains. |
| return DAG.getNode(ISD::TokenFactor, SDLoc(Chain), MVT::Other, ArgChains); |
| } |
| |
| SDValue AMDGPUTargetLowering::lowerUnhandledCall(CallLoweringInfo &CLI, |
| SmallVectorImpl<SDValue> &InVals, |
| StringRef Reason) const { |
| SDValue Callee = CLI.Callee; |
| SelectionDAG &DAG = CLI.DAG; |
| |
| const Function &Fn = DAG.getMachineFunction().getFunction(); |
| |
| StringRef FuncName("<unknown>"); |
| |
| if (const ExternalSymbolSDNode *G = dyn_cast<ExternalSymbolSDNode>(Callee)) |
| FuncName = G->getSymbol(); |
| else if (const GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) |
| FuncName = G->getGlobal()->getName(); |
| |
| DiagnosticInfoUnsupported NoCalls( |
| Fn, Reason + FuncName, CLI.DL.getDebugLoc()); |
| DAG.getContext()->diagnose(NoCalls); |
| |
| if (!CLI.IsTailCall) { |
| for (unsigned I = 0, E = CLI.Ins.size(); I != E; ++I) |
| InVals.push_back(DAG.getUNDEF(CLI.Ins[I].VT)); |
| } |
| |
| return DAG.getEntryNode(); |
| } |
| |
| SDValue AMDGPUTargetLowering::LowerCall(CallLoweringInfo &CLI, |
| SmallVectorImpl<SDValue> &InVals) const { |
| return lowerUnhandledCall(CLI, InVals, "unsupported call to function "); |
| } |
| |
| SDValue AMDGPUTargetLowering::LowerDYNAMIC_STACKALLOC(SDValue Op, |
| SelectionDAG &DAG) const { |
| const Function &Fn = DAG.getMachineFunction().getFunction(); |
| |
| DiagnosticInfoUnsupported NoDynamicAlloca(Fn, "unsupported dynamic alloca", |
| SDLoc(Op).getDebugLoc()); |
| DAG.getContext()->diagnose(NoDynamicAlloca); |
| auto Ops = {DAG.getConstant(0, SDLoc(), Op.getValueType()), Op.getOperand(0)}; |
| return DAG.getMergeValues(Ops, SDLoc()); |
| } |
| |
| SDValue AMDGPUTargetLowering::LowerOperation(SDValue Op, |
| SelectionDAG &DAG) const { |
| switch (Op.getOpcode()) { |
| default: |
| Op->print(errs(), &DAG); |
| llvm_unreachable("Custom lowering code for this " |
| "instruction is not implemented yet!"); |
| break; |
| case ISD::SIGN_EXTEND_INREG: return LowerSIGN_EXTEND_INREG(Op, DAG); |
| case ISD::CONCAT_VECTORS: return LowerCONCAT_VECTORS(Op, DAG); |
| case ISD::EXTRACT_SUBVECTOR: return LowerEXTRACT_SUBVECTOR(Op, DAG); |
| case ISD::UDIVREM: return LowerUDIVREM(Op, DAG); |
| case ISD::SDIVREM: return LowerSDIVREM(Op, DAG); |
| case ISD::FREM: return LowerFREM(Op, DAG); |
| case ISD::FCEIL: return LowerFCEIL(Op, DAG); |
| case ISD::FTRUNC: return LowerFTRUNC(Op, DAG); |
| case ISD::FRINT: return LowerFRINT(Op, DAG); |
| case ISD::FNEARBYINT: return LowerFNEARBYINT(Op, DAG); |
| case ISD::FROUND: return LowerFROUND(Op, DAG); |
| case ISD::FFLOOR: return LowerFFLOOR(Op, DAG); |
| case ISD::FLOG: |
| return LowerFLOG(Op, DAG, numbers::ln2f); |
| case ISD::FLOG10: |
| return LowerFLOG(Op, DAG, numbers::ln2f / numbers::ln10f); |
| case ISD::FEXP: |
| return lowerFEXP(Op, DAG); |
| case ISD::SINT_TO_FP: return LowerSINT_TO_FP(Op, DAG); |
| case ISD::UINT_TO_FP: return LowerUINT_TO_FP(Op, DAG); |
| case ISD::FP_TO_FP16: return LowerFP_TO_FP16(Op, DAG); |
| case ISD::FP_TO_SINT: |
| case ISD::FP_TO_UINT: |
| return LowerFP_TO_INT(Op, DAG); |
| case ISD::CTTZ: |
| case ISD::CTTZ_ZERO_UNDEF: |
| case ISD::CTLZ: |
| case ISD::CTLZ_ZERO_UNDEF: |
| return LowerCTLZ_CTTZ(Op, DAG); |
| case ISD::DYNAMIC_STACKALLOC: return LowerDYNAMIC_STACKALLOC(Op, DAG); |
| } |
| return Op; |
| } |
| |
| void AMDGPUTargetLowering::ReplaceNodeResults(SDNode *N, |
| SmallVectorImpl<SDValue> &Results, |
| SelectionDAG &DAG) const { |
| switch (N->getOpcode()) { |
| case ISD::SIGN_EXTEND_INREG: |
| // Different parts of legalization seem to interpret which type of |
| // sign_extend_inreg is the one to check for custom lowering. The extended |
| // from type is what really matters, but some places check for custom |
| // lowering of the result type. This results in trying to use |
| // ReplaceNodeResults to sext_in_reg to an illegal type, so we'll just do |
| // nothing here and let the illegal result integer be handled normally. |
| return; |
| default: |
| return; |
| } |
| } |
| |
| SDValue AMDGPUTargetLowering::LowerGlobalAddress(AMDGPUMachineFunction* MFI, |
| SDValue Op, |
| SelectionDAG &DAG) const { |
| |
| const DataLayout &DL = DAG.getDataLayout(); |
| GlobalAddressSDNode *G = cast<GlobalAddressSDNode>(Op); |
| const GlobalValue *GV = G->getGlobal(); |
| |
| if (G->getAddressSpace() == AMDGPUAS::LOCAL_ADDRESS || |
| G->getAddressSpace() == AMDGPUAS::REGION_ADDRESS) { |
| if (!MFI->isModuleEntryFunction() && |
| !GV->getName().equals("llvm.amdgcn.module.lds")) { |
| SDLoc DL(Op); |
| const Function &Fn = DAG.getMachineFunction().getFunction(); |
| DiagnosticInfoUnsupported BadLDSDecl( |
| Fn, "local memory global used by non-kernel function", |
| DL.getDebugLoc(), DS_Warning); |
| DAG.getContext()->diagnose(BadLDSDecl); |
| |
| // We currently don't have a way to correctly allocate LDS objects that |
| // aren't directly associated with a kernel. We do force inlining of |
| // functions that use local objects. However, if these dead functions are |
| // not eliminated, we don't want a compile time error. Just emit a warning |
| // and a trap, since there should be no callable path here. |
| SDValue Trap = DAG.getNode(ISD::TRAP, DL, MVT::Other, DAG.getEntryNode()); |
| SDValue OutputChain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, |
| Trap, DAG.getRoot()); |
| DAG.setRoot(OutputChain); |
| return DAG.getUNDEF(Op.getValueType()); |
| } |
| |
| // XXX: What does the value of G->getOffset() mean? |
| assert(G->getOffset() == 0 && |
| "Do not know what to do with an non-zero offset"); |
| |
| // TODO: We could emit code to handle the initialization somewhere. |
| // We ignore the initializer for now and legalize it to allow selection. |
| // The initializer will anyway get errored out during assembly emission. |
| unsigned Offset = MFI->allocateLDSGlobal(DL, *cast<GlobalVariable>(GV)); |
| return DAG.getConstant(Offset, SDLoc(Op), Op.getValueType()); |
| } |
| return SDValue(); |
| } |
| |
| SDValue AMDGPUTargetLowering::LowerCONCAT_VECTORS(SDValue Op, |
| SelectionDAG &DAG) const { |
| SmallVector<SDValue, 8> Args; |
| |
| EVT VT = Op.getValueType(); |
| if (VT == MVT::v4i16 || VT == MVT::v4f16) { |
| SDLoc SL(Op); |
| SDValue Lo = DAG.getNode(ISD::BITCAST, SL, MVT::i32, Op.getOperand(0)); |
| SDValue Hi = DAG.getNode(ISD::BITCAST, SL, MVT::i32, Op.getOperand(1)); |
| |
| SDValue BV = DAG.getBuildVector(MVT::v2i32, SL, { Lo, Hi }); |
| return DAG.getNode(ISD::BITCAST, SL, VT, BV); |
| } |
| |
| for (const SDUse &U : Op->ops()) |
| DAG.ExtractVectorElements(U.get(), Args); |
| |
| return DAG.getBuildVector(Op.getValueType(), SDLoc(Op), Args); |
| } |
| |
| SDValue AMDGPUTargetLowering::LowerEXTRACT_SUBVECTOR(SDValue Op, |
| SelectionDAG &DAG) const { |
| |
| SmallVector<SDValue, 8> Args; |
| unsigned Start = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue(); |
| EVT VT = Op.getValueType(); |
| EVT SrcVT = Op.getOperand(0).getValueType(); |
| |
| // For these types, we have some TableGen patterns except if the index is 1 |
| if (((SrcVT == MVT::v4f16 && VT == MVT::v2f16) || |
| (SrcVT == MVT::v4i16 && VT == MVT::v2i16)) && |
| Start != 1) |
| return Op; |
| |
| DAG.ExtractVectorElements(Op.getOperand(0), Args, Start, |
| VT.getVectorNumElements()); |
| |
| return DAG.getBuildVector(Op.getValueType(), SDLoc(Op), Args); |
| } |
| |
| /// Generate Min/Max node |
| SDValue AMDGPUTargetLowering::combineFMinMaxLegacy(const SDLoc &DL, EVT VT, |
| SDValue LHS, SDValue RHS, |
| SDValue True, SDValue False, |
| SDValue CC, |
| DAGCombinerInfo &DCI) const { |
| if (!(LHS == True && RHS == False) && !(LHS == False && RHS == True)) |
| return SDValue(); |
| |
| SelectionDAG &DAG = DCI.DAG; |
| ISD::CondCode CCOpcode = cast<CondCodeSDNode>(CC)->get(); |
| switch (CCOpcode) { |
| case ISD::SETOEQ: |
| case ISD::SETONE: |
| case ISD::SETUNE: |
| case ISD::SETNE: |
| case ISD::SETUEQ: |
| case ISD::SETEQ: |
| case ISD::SETFALSE: |
| case ISD::SETFALSE2: |
| case ISD::SETTRUE: |
| case ISD::SETTRUE2: |
| case ISD::SETUO: |
| case ISD::SETO: |
| break; |
| case ISD::SETULE: |
| case ISD::SETULT: { |
| if (LHS == True) |
| return DAG.getNode(AMDGPUISD::FMIN_LEGACY, DL, VT, RHS, LHS); |
| return DAG.getNode(AMDGPUISD::FMAX_LEGACY, DL, VT, LHS, RHS); |
| } |
| case ISD::SETOLE: |
| case ISD::SETOLT: |
| case ISD::SETLE: |
| case ISD::SETLT: { |
| // Ordered. Assume ordered for undefined. |
| |
| // Only do this after legalization to avoid interfering with other combines |
| // which might occur. |
| if (DCI.getDAGCombineLevel() < AfterLegalizeDAG && |
| !DCI.isCalledByLegalizer()) |
| return SDValue(); |
| |
| // We need to permute the operands to get the correct NaN behavior. The |
| // selected operand is the second one based on the failing compare with NaN, |
| // so permute it based on the compare type the hardware uses. |
| if (LHS == True) |
| return DAG.getNode(AMDGPUISD::FMIN_LEGACY, DL, VT, LHS, RHS); |
| return DAG.getNode(AMDGPUISD::FMAX_LEGACY, DL, VT, RHS, LHS); |
| } |
| case ISD::SETUGE: |
| case ISD::SETUGT: { |
| if (LHS == True) |
| return DAG.getNode(AMDGPUISD::FMAX_LEGACY, DL, VT, RHS, LHS); |
| return DAG.getNode(AMDGPUISD::FMIN_LEGACY, DL, VT, LHS, RHS); |
| } |
| case ISD::SETGT: |
| case ISD::SETGE: |
| case ISD::SETOGE: |
| case ISD::SETOGT: { |
| if (DCI.getDAGCombineLevel() < AfterLegalizeDAG && |
| !DCI.isCalledByLegalizer()) |
| return SDValue(); |
| |
| if (LHS == True) |
| return DAG.getNode(AMDGPUISD::FMAX_LEGACY, DL, VT, LHS, RHS); |
| return DAG.getNode(AMDGPUISD::FMIN_LEGACY, DL, VT, RHS, LHS); |
| } |
| case ISD::SETCC_INVALID: |
| llvm_unreachable("Invalid setcc condcode!"); |
| } |
| return SDValue(); |
| } |
| |
| std::pair<SDValue, SDValue> |
| AMDGPUTargetLowering::split64BitValue(SDValue Op, SelectionDAG &DAG) const { |
| SDLoc SL(Op); |
| |
| SDValue Vec = DAG.getNode(ISD::BITCAST, SL, MVT::v2i32, Op); |
| |
| const SDValue Zero = DAG.getConstant(0, SL, MVT::i32); |
| const SDValue One = DAG.getConstant(1, SL, MVT::i32); |
| |
| SDValue Lo = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, Vec, Zero); |
| SDValue Hi = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, Vec, One); |
| |
| return std::make_pair(Lo, Hi); |
| } |
| |
| SDValue AMDGPUTargetLowering::getLoHalf64(SDValue Op, SelectionDAG &DAG) const { |
| SDLoc SL(Op); |
| |
| SDValue Vec = DAG.getNode(ISD::BITCAST, SL, MVT::v2i32, Op); |
| const SDValue Zero = DAG.getConstant(0, SL, MVT::i32); |
| return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, Vec, Zero); |
| } |
| |
| SDValue AMDGPUTargetLowering::getHiHalf64(SDValue Op, SelectionDAG &DAG) const { |
| SDLoc SL(Op); |
| |
| SDValue Vec = DAG.getNode(ISD::BITCAST, SL, MVT::v2i32, Op); |
| const SDValue One = DAG.getConstant(1, SL, MVT::i32); |
| return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, Vec, One); |
| } |
| |
| // Split a vector type into two parts. The first part is a power of two vector. |
| // The second part is whatever is left over, and is a scalar if it would |
| // otherwise be a 1-vector. |
| std::pair<EVT, EVT> |
| AMDGPUTargetLowering::getSplitDestVTs(const EVT &VT, SelectionDAG &DAG) const { |
| EVT LoVT, HiVT; |
| EVT EltVT = VT.getVectorElementType(); |
| unsigned NumElts = VT.getVectorNumElements(); |
| unsigned LoNumElts = PowerOf2Ceil((NumElts + 1) / 2); |
| LoVT = EVT::getVectorVT(*DAG.getContext(), EltVT, LoNumElts); |
| HiVT = NumElts - LoNumElts == 1 |
| ? EltVT |
| : EVT::getVectorVT(*DAG.getContext(), EltVT, NumElts - LoNumElts); |
| return std::make_pair(LoVT, HiVT); |
| } |
| |
| // Split a vector value into two parts of types LoVT and HiVT. HiVT could be |
| // scalar. |
| std::pair<SDValue, SDValue> |
| AMDGPUTargetLowering::splitVector(const SDValue &N, const SDLoc &DL, |
| const EVT &LoVT, const EVT &HiVT, |
| SelectionDAG &DAG) const { |
| assert(LoVT.getVectorNumElements() + |
| (HiVT.isVector() ? HiVT.getVectorNumElements() : 1) <= |
| N.getValueType().getVectorNumElements() && |
| "More vector elements requested than available!"); |
| SDValue Lo = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, LoVT, N, |
| DAG.getVectorIdxConstant(0, DL)); |
| SDValue Hi = DAG.getNode( |
| HiVT.isVector() ? ISD::EXTRACT_SUBVECTOR : ISD::EXTRACT_VECTOR_ELT, DL, |
| HiVT, N, DAG.getVectorIdxConstant(LoVT.getVectorNumElements(), DL)); |
| return std::make_pair(Lo, Hi); |
| } |
| |
| SDValue AMDGPUTargetLowering::SplitVectorLoad(const SDValue Op, |
| SelectionDAG &DAG) const { |
| LoadSDNode *Load = cast<LoadSDNode>(Op); |
| EVT VT = Op.getValueType(); |
| SDLoc SL(Op); |
| |
| |
| // If this is a 2 element vector, we really want to scalarize and not create |
| // weird 1 element vectors. |
| if (VT.getVectorNumElements() == 2) { |
| SDValue Ops[2]; |
| std::tie(Ops[0], Ops[1]) = scalarizeVectorLoad(Load, DAG); |
| return DAG.getMergeValues(Ops, SL); |
| } |
| |
| SDValue BasePtr = Load->getBasePtr(); |
| EVT MemVT = Load->getMemoryVT(); |
| |
| const MachinePointerInfo &SrcValue = Load->getMemOperand()->getPointerInfo(); |
| |
| EVT LoVT, HiVT; |
| EVT LoMemVT, HiMemVT; |
| SDValue Lo, Hi; |
| |
| std::tie(LoVT, HiVT) = getSplitDestVTs(VT, DAG); |
| std::tie(LoMemVT, HiMemVT) = getSplitDestVTs(MemVT, DAG); |
| std::tie(Lo, Hi) = splitVector(Op, SL, LoVT, HiVT, DAG); |
| |
| unsigned Size = LoMemVT.getStoreSize(); |
| unsigned BaseAlign = Load->getAlignment(); |
| unsigned HiAlign = MinAlign(BaseAlign, Size); |
| |
| SDValue LoLoad = DAG.getExtLoad(Load->getExtensionType(), SL, LoVT, |
| Load->getChain(), BasePtr, SrcValue, LoMemVT, |
| BaseAlign, Load->getMemOperand()->getFlags()); |
| SDValue HiPtr = DAG.getObjectPtrOffset(SL, BasePtr, TypeSize::Fixed(Size)); |
| SDValue HiLoad = |
| DAG.getExtLoad(Load->getExtensionType(), SL, HiVT, Load->getChain(), |
| HiPtr, SrcValue.getWithOffset(LoMemVT.getStoreSize()), |
| HiMemVT, HiAlign, Load->getMemOperand()->getFlags()); |
| |
| SDValue Join; |
| if (LoVT == HiVT) { |
| // This is the case that the vector is power of two so was evenly split. |
| Join = DAG.getNode(ISD::CONCAT_VECTORS, SL, VT, LoLoad, HiLoad); |
| } else { |
| Join = DAG.getNode(ISD::INSERT_SUBVECTOR, SL, VT, DAG.getUNDEF(VT), LoLoad, |
| DAG.getVectorIdxConstant(0, SL)); |
| Join = DAG.getNode( |
| HiVT.isVector() ? ISD::INSERT_SUBVECTOR : ISD::INSERT_VECTOR_ELT, SL, |
| VT, Join, HiLoad, |
| DAG.getVectorIdxConstant(LoVT.getVectorNumElements(), SL)); |
| } |
| |
| SDValue Ops[] = {Join, DAG.getNode(ISD::TokenFactor, SL, MVT::Other, |
| LoLoad.getValue(1), HiLoad.getValue(1))}; |
| |
| return DAG.getMergeValues(Ops, SL); |
| } |
| |
| SDValue AMDGPUTargetLowering::WidenOrSplitVectorLoad(SDValue Op, |
| SelectionDAG &DAG) const { |
| LoadSDNode *Load = cast<LoadSDNode>(Op); |
| EVT VT = Op.getValueType(); |
| SDValue BasePtr = Load->getBasePtr(); |
| EVT MemVT = Load->getMemoryVT(); |
| SDLoc SL(Op); |
| const MachinePointerInfo &SrcValue = Load->getMemOperand()->getPointerInfo(); |
| unsigned BaseAlign = Load->getAlignment(); |
| unsigned NumElements = MemVT.getVectorNumElements(); |
| |
| // Widen from vec3 to vec4 when the load is at least 8-byte aligned |
| // or 16-byte fully dereferenceable. Otherwise, split the vector load. |
| if (NumElements != 3 || |
| (BaseAlign < 8 && |
| !SrcValue.isDereferenceable(16, *DAG.getContext(), DAG.getDataLayout()))) |
| return SplitVectorLoad(Op, DAG); |
| |
| assert(NumElements == 3); |
| |
| EVT WideVT = |
| EVT::getVectorVT(*DAG.getContext(), VT.getVectorElementType(), 4); |
| EVT WideMemVT = |
| EVT::getVectorVT(*DAG.getContext(), MemVT.getVectorElementType(), 4); |
| SDValue WideLoad = DAG.getExtLoad( |
| Load->getExtensionType(), SL, WideVT, Load->getChain(), BasePtr, SrcValue, |
| WideMemVT, BaseAlign, Load->getMemOperand()->getFlags()); |
| return DAG.getMergeValues( |
| {DAG.getNode(ISD::EXTRACT_SUBVECTOR, SL, VT, WideLoad, |
| DAG.getVectorIdxConstant(0, SL)), |
| WideLoad.getValue(1)}, |
| SL); |
| } |
| |
| SDValue AMDGPUTargetLowering::SplitVectorStore(SDValue Op, |
| SelectionDAG &DAG) const { |
| StoreSDNode *Store = cast<StoreSDNode>(Op); |
| SDValue Val = Store->getValue(); |
| EVT VT = Val.getValueType(); |
| |
| // If this is a 2 element vector, we really want to scalarize and not create |
| // weird 1 element vectors. |
| if (VT.getVectorNumElements() == 2) |
| return scalarizeVectorStore(Store, DAG); |
| |
| EVT MemVT = Store->getMemoryVT(); |
| SDValue Chain = Store->getChain(); |
| SDValue BasePtr = Store->getBasePtr(); |
| SDLoc SL(Op); |
| |
| EVT LoVT, HiVT; |
| EVT LoMemVT, HiMemVT; |
| SDValue Lo, Hi; |
| |
| std::tie(LoVT, HiVT) = getSplitDestVTs(VT, DAG); |
| std::tie(LoMemVT, HiMemVT) = getSplitDestVTs(MemVT, DAG); |
| std::tie(Lo, Hi) = splitVector(Val, SL, LoVT, HiVT, DAG); |
| |
| SDValue HiPtr = DAG.getObjectPtrOffset(SL, BasePtr, LoMemVT.getStoreSize()); |
| |
| const MachinePointerInfo &SrcValue = Store->getMemOperand()->getPointerInfo(); |
| unsigned BaseAlign = Store->getAlignment(); |
| unsigned Size = LoMemVT.getStoreSize(); |
| unsigned HiAlign = MinAlign(BaseAlign, Size); |
| |
| SDValue LoStore = |
| DAG.getTruncStore(Chain, SL, Lo, BasePtr, SrcValue, LoMemVT, BaseAlign, |
| Store->getMemOperand()->getFlags()); |
| SDValue HiStore = |
| DAG.getTruncStore(Chain, SL, Hi, HiPtr, SrcValue.getWithOffset(Size), |
| HiMemVT, HiAlign, Store->getMemOperand()->getFlags()); |
| |
| return DAG.getNode(ISD::TokenFactor, SL, MVT::Other, LoStore, HiStore); |
| } |
| |
| // This is a shortcut for integer division because we have fast i32<->f32 |
| // conversions, and fast f32 reciprocal instructions. The fractional part of a |
| // float is enough to accurately represent up to a 24-bit signed integer. |
| SDValue AMDGPUTargetLowering::LowerDIVREM24(SDValue Op, SelectionDAG &DAG, |
| bool Sign) const { |
| SDLoc DL(Op); |
| EVT VT = Op.getValueType(); |
| SDValue LHS = Op.getOperand(0); |
| SDValue RHS = Op.getOperand(1); |
| MVT IntVT = MVT::i32; |
| MVT FltVT = MVT::f32; |
| |
| unsigned LHSSignBits = DAG.ComputeNumSignBits(LHS); |
| if (LHSSignBits < 9) |
| return SDValue(); |
| |
| unsigned RHSSignBits = DAG.ComputeNumSignBits(RHS); |
| if (RHSSignBits < 9) |
| return SDValue(); |
| |
| unsigned BitSize = VT.getSizeInBits(); |
| unsigned SignBits = std::min(LHSSignBits, RHSSignBits); |
| unsigned DivBits = BitSize - SignBits; |
| if (Sign) |
| ++DivBits; |
| |
| ISD::NodeType ToFp = Sign ? ISD::SINT_TO_FP : ISD::UINT_TO_FP; |
| ISD::NodeType ToInt = Sign ? ISD::FP_TO_SINT : ISD::FP_TO_UINT; |
| |
| SDValue jq = DAG.getConstant(1, DL, IntVT); |
| |
| if (Sign) { |
| // char|short jq = ia ^ ib; |
| jq = DAG.getNode(ISD::XOR, DL, VT, LHS, RHS); |
| |
| // jq = jq >> (bitsize - 2) |
| jq = DAG.getNode(ISD::SRA, DL, VT, jq, |
| DAG.getConstant(BitSize - 2, DL, VT)); |
| |
| // jq = jq | 0x1 |
| jq = DAG.getNode(ISD::OR, DL, VT, jq, DAG.getConstant(1, DL, VT)); |
| } |
| |
| // int ia = (int)LHS; |
| SDValue ia = LHS; |
| |
| // int ib, (int)RHS; |
| SDValue ib = RHS; |
| |
| // float fa = (float)ia; |
| SDValue fa = DAG.getNode(ToFp, DL, FltVT, ia); |
| |
| // float fb = (float)ib; |
| SDValue fb = DAG.getNode(ToFp, DL, FltVT, ib); |
| |
| SDValue fq = DAG.getNode(ISD::FMUL, DL, FltVT, |
| fa, DAG.getNode(AMDGPUISD::RCP, DL, FltVT, fb)); |
| |
| // fq = trunc(fq); |
| fq = DAG.getNode(ISD::FTRUNC, DL, FltVT, fq); |
| |
| // float fqneg = -fq; |
| SDValue fqneg = DAG.getNode(ISD::FNEG, DL, FltVT, fq); |
| |
| MachineFunction &MF = DAG.getMachineFunction(); |
| const AMDGPUMachineFunction *MFI = MF.getInfo<AMDGPUMachineFunction>(); |
| |
| // float fr = mad(fqneg, fb, fa); |
| unsigned OpCode = !Subtarget->hasMadMacF32Insts() ? |
| (unsigned)ISD::FMA : |
| !MFI->getMode().allFP32Denormals() ? |
| (unsigned)ISD::FMAD : |
| (unsigned)AMDGPUISD::FMAD_FTZ; |
| SDValue fr = DAG.getNode(OpCode, DL, FltVT, fqneg, fb, fa); |
| |
| // int iq = (int)fq; |
| SDValue iq = DAG.getNode(ToInt, DL, IntVT, fq); |
| |
| // fr = fabs(fr); |
| fr = DAG.getNode(ISD::FABS, DL, FltVT, fr); |
| |
| // fb = fabs(fb); |
| fb = DAG.getNode(ISD::FABS, DL, FltVT, fb); |
| |
| EVT SetCCVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT); |
| |
| // int cv = fr >= fb; |
| SDValue cv = DAG.getSetCC(DL, SetCCVT, fr, fb, ISD::SETOGE); |
| |
| // jq = (cv ? jq : 0); |
| jq = DAG.getNode(ISD::SELECT, DL, VT, cv, jq, DAG.getConstant(0, DL, VT)); |
| |
| // dst = iq + jq; |
| SDValue Div = DAG.getNode(ISD::ADD, DL, VT, iq, jq); |
| |
| // Rem needs compensation, it's easier to recompute it |
| SDValue Rem = DAG.getNode(ISD::MUL, DL, VT, Div, RHS); |
| Rem = DAG.getNode(ISD::SUB, DL, VT, LHS, Rem); |
| |
| // Truncate to number of bits this divide really is. |
| if (Sign) { |
| SDValue InRegSize |
| = DAG.getValueType(EVT::getIntegerVT(*DAG.getContext(), DivBits)); |
| Div = DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, VT, Div, InRegSize); |
| Rem = DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, VT, Rem, InRegSize); |
| } else { |
| SDValue TruncMask = DAG.getConstant((UINT64_C(1) << DivBits) - 1, DL, VT); |
| Div = DAG.getNode(ISD::AND, DL, VT, Div, TruncMask); |
| Rem = DAG.getNode(ISD::AND, DL, VT, Rem, TruncMask); |
| } |
| |
| return DAG.getMergeValues({ Div, Rem }, DL); |
| } |
| |
| void AMDGPUTargetLowering::LowerUDIVREM64(SDValue Op, |
| SelectionDAG &DAG, |
| SmallVectorImpl<SDValue> &Results) const { |
| SDLoc DL(Op); |
| EVT VT = Op.getValueType(); |
| |
| assert(VT == MVT::i64 && "LowerUDIVREM64 expects an i64"); |
| |
| EVT HalfVT = VT.getHalfSizedIntegerVT(*DAG.getContext()); |
| |
| SDValue One = DAG.getConstant(1, DL, HalfVT); |
| SDValue Zero = DAG.getConstant(0, DL, HalfVT); |
| |
| //HiLo split |
| SDValue LHS = Op.getOperand(0); |
| SDValue LHS_Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, HalfVT, LHS, Zero); |
| SDValue LHS_Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, HalfVT, LHS, One); |
| |
| SDValue RHS = Op.getOperand(1); |
| SDValue RHS_Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, HalfVT, RHS, Zero); |
| SDValue RHS_Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, HalfVT, RHS, One); |
| |
| if (DAG.MaskedValueIsZero(RHS, APInt::getHighBitsSet(64, 32)) && |
| DAG.MaskedValueIsZero(LHS, APInt::getHighBitsSet(64, 32))) { |
| |
| SDValue Res = DAG.getNode(ISD::UDIVREM, DL, DAG.getVTList(HalfVT, HalfVT), |
| LHS_Lo, RHS_Lo); |
| |
| SDValue DIV = DAG.getBuildVector(MVT::v2i32, DL, {Res.getValue(0), Zero}); |
| SDValue REM = DAG.getBuildVector(MVT::v2i32, DL, {Res.getValue(1), Zero}); |
| |
| Results.push_back(DAG.getNode(ISD::BITCAST, DL, MVT::i64, DIV)); |
| Results.push_back(DAG.getNode(ISD::BITCAST, DL, MVT::i64, REM)); |
| return; |
| } |
| |
| if (isTypeLegal(MVT::i64)) { |
| // The algorithm here is based on ideas from "Software Integer Division", |
| // Tom Rodeheffer, August 2008. |
| |
| MachineFunction &MF = DAG.getMachineFunction(); |
| const SIMachineFunctionInfo *MFI = MF.getInfo<SIMachineFunctionInfo>(); |
| |
| // Compute denominator reciprocal. |
| unsigned FMAD = !Subtarget->hasMadMacF32Insts() ? |
| (unsigned)ISD::FMA : |
| !MFI->getMode().allFP32Denormals() ? |
| (unsigned)ISD::FMAD : |
| (unsigned)AMDGPUISD::FMAD_FTZ; |
| |
| SDValue Cvt_Lo = DAG.getNode(ISD::UINT_TO_FP, DL, MVT::f32, RHS_Lo); |
| SDValue Cvt_Hi = DAG.getNode(ISD::UINT_TO_FP, DL, MVT::f32, RHS_Hi); |
| SDValue Mad1 = DAG.getNode(FMAD, DL, MVT::f32, Cvt_Hi, |
| DAG.getConstantFP(APInt(32, 0x4f800000).bitsToFloat(), DL, MVT::f32), |
| Cvt_Lo); |
| SDValue Rcp = DAG.getNode(AMDGPUISD::RCP, DL, MVT::f32, Mad1); |
| SDValue Mul1 = DAG.getNode(ISD::FMUL, DL, MVT::f32, Rcp, |
| DAG.getConstantFP(APInt(32, 0x5f7ffffc).bitsToFloat(), DL, MVT::f32)); |
| SDValue Mul2 = DAG.getNode(ISD::FMUL, DL, MVT::f32, Mul1, |
| DAG.getConstantFP(APInt(32, 0x2f800000).bitsToFloat(), DL, MVT::f32)); |
| SDValue Trunc = DAG.getNode(ISD::FTRUNC, DL, MVT::f32, Mul2); |
| SDValue Mad2 = DAG.getNode(FMAD, DL, MVT::f32, Trunc, |
| DAG.getConstantFP(APInt(32, 0xcf800000).bitsToFloat(), DL, MVT::f32), |
| Mul1); |
| SDValue Rcp_Lo = DAG.getNode(ISD::FP_TO_UINT, DL, HalfVT, Mad2); |
| SDValue Rcp_Hi = DAG.getNode(ISD::FP_TO_UINT, DL, HalfVT, Trunc); |
| SDValue Rcp64 = DAG.getBitcast(VT, |
| DAG.getBuildVector(MVT::v2i32, DL, {Rcp_Lo, Rcp_Hi})); |
| |
| SDValue Zero64 = DAG.getConstant(0, DL, VT); |
| SDValue One64 = DAG.getConstant(1, DL, VT); |
| SDValue Zero1 = DAG.getConstant(0, DL, MVT::i1); |
| SDVTList HalfCarryVT = DAG.getVTList(HalfVT, MVT::i1); |
| |
| // First round of UNR (Unsigned integer Newton-Raphson). |
| SDValue Neg_RHS = DAG.getNode(ISD::SUB, DL, VT, Zero64, RHS); |
| SDValue Mullo1 = DAG.getNode(ISD::MUL, DL, VT, Neg_RHS, Rcp64); |
| SDValue Mulhi1 = DAG.getNode(ISD::MULHU, DL, VT, Rcp64, Mullo1); |
| SDValue Mulhi1_Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, HalfVT, Mulhi1, |
| Zero); |
| SDValue Mulhi1_Hi = |
| DAG.getNode(ISD::EXTRACT_ELEMENT, DL, HalfVT, Mulhi1, One); |
| SDValue Add1_Lo = DAG.getNode(ISD::ADDCARRY, DL, HalfCarryVT, Rcp_Lo, |
| Mulhi1_Lo, Zero1); |
| SDValue Add1_Hi = DAG.getNode(ISD::ADDCARRY, DL, HalfCarryVT, Rcp_Hi, |
| Mulhi1_Hi, Add1_Lo.getValue(1)); |
| SDValue Add1 = DAG.getBitcast(VT, |
| DAG.getBuildVector(MVT::v2i32, DL, {Add1_Lo, Add1_Hi})); |
| |
| // Second round of UNR. |
| SDValue Mullo2 = DAG.getNode(ISD::MUL, DL, VT, Neg_RHS, Add1); |
| SDValue Mulhi2 = DAG.getNode(ISD::MULHU, DL, VT, Add1, Mullo2); |
| SDValue Mulhi2_Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, HalfVT, Mulhi2, |
| Zero); |
| SDValue Mulhi2_Hi = |
| DAG.getNode(ISD::EXTRACT_ELEMENT, DL, HalfVT, Mulhi2, One); |
| SDValue Add2_Lo = DAG.getNode(ISD::ADDCARRY, DL, HalfCarryVT, Add1_Lo, |
| Mulhi2_Lo, Zero1); |
| SDValue Add2_Hi = DAG.getNode(ISD::ADDCARRY, DL, HalfCarryVT, Add1_Hi, |
| Mulhi2_Hi, Add2_Lo.getValue(1)); |
| SDValue Add2 = DAG.getBitcast(VT, |
| DAG.getBuildVector(MVT::v2i32, DL, {Add2_Lo, Add2_Hi})); |
| |
| SDValue Mulhi3 = DAG.getNode(ISD::MULHU, DL, VT, LHS, Add2); |
| |
| SDValue Mul3 = DAG.getNode(ISD::MUL, DL, VT, RHS, Mulhi3); |
| |
| SDValue Mul3_Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, HalfVT, Mul3, Zero); |
| SDValue Mul3_Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, HalfVT, Mul3, One); |
| SDValue Sub1_Lo = DAG.getNode(ISD::SUBCARRY, DL, HalfCarryVT, LHS_Lo, |
| Mul3_Lo, Zero1); |
| SDValue Sub1_Hi = DAG.getNode(ISD::SUBCARRY, DL, HalfCarryVT, LHS_Hi, |
| Mul3_Hi, Sub1_Lo.getValue(1)); |
| SDValue Sub1_Mi = DAG.getNode(ISD::SUB, DL, HalfVT, LHS_Hi, Mul3_Hi); |
| SDValue Sub1 = DAG.getBitcast(VT, |
| DAG.getBuildVector(MVT::v2i32, DL, {Sub1_Lo, Sub1_Hi})); |
| |
| SDValue MinusOne = DAG.getConstant(0xffffffffu, DL, HalfVT); |
| SDValue C1 = DAG.getSelectCC(DL, Sub1_Hi, RHS_Hi, MinusOne, Zero, |
| ISD::SETUGE); |
| SDValue C2 = DAG.getSelectCC(DL, Sub1_Lo, RHS_Lo, MinusOne, Zero, |
| ISD::SETUGE); |
| SDValue C3 = DAG.getSelectCC(DL, Sub1_Hi, RHS_Hi, C2, C1, ISD::SETEQ); |
| |
| // TODO: Here and below portions of the code can be enclosed into if/endif. |
| // Currently control flow is unconditional and we have 4 selects after |
| // potential endif to substitute PHIs. |
| |
| // if C3 != 0 ... |
| SDValue Sub2_Lo = DAG.getNode(ISD::SUBCARRY, DL, HalfCarryVT, Sub1_Lo, |
| RHS_Lo, Zero1); |
| SDValue Sub2_Mi = DAG.getNode(ISD::SUBCARRY, DL, HalfCarryVT, Sub1_Mi, |
| RHS_Hi, Sub1_Lo.getValue(1)); |
| SDValue Sub2_Hi = DAG.getNode(ISD::SUBCARRY, DL, HalfCarryVT, Sub2_Mi, |
| Zero, Sub2_Lo.getValue(1)); |
| SDValue Sub2 = DAG.getBitcast(VT, |
| DAG.getBuildVector(MVT::v2i32, DL, {Sub2_Lo, Sub2_Hi})); |
| |
| SDValue Add3 = DAG.getNode(ISD::ADD, DL, VT, Mulhi3, One64); |
| |
| SDValue C4 = DAG.getSelectCC(DL, Sub2_Hi, RHS_Hi, MinusOne, Zero, |
| ISD::SETUGE); |
| SDValue C5 = DAG.getSelectCC(DL, Sub2_Lo, RHS_Lo, MinusOne, Zero, |
| ISD::SETUGE); |
| SDValue C6 = DAG.getSelectCC(DL, Sub2_Hi, RHS_Hi, C5, C4, ISD::SETEQ); |
| |
| // if (C6 != 0) |
| SDValue Add4 = DAG.getNode(ISD::ADD, DL, VT, Add3, One64); |
| |
| SDValue Sub3_Lo = DAG.getNode(ISD::SUBCARRY, DL, HalfCarryVT, Sub2_Lo, |
| RHS_Lo, Zero1); |
| SDValue Sub3_Mi = DAG.getNode(ISD::SUBCARRY, DL, HalfCarryVT, Sub2_Mi, |
| RHS_Hi, Sub2_Lo.getValue(1)); |
| SDValue Sub3_Hi = DAG.getNode(ISD::SUBCARRY, DL, HalfCarryVT, Sub3_Mi, |
| Zero, Sub3_Lo.getValue(1)); |
| SDValue Sub3 = DAG.getBitcast(VT, |
| DAG.getBuildVector(MVT::v2i32, DL, {Sub3_Lo, Sub3_Hi})); |
| |
| // endif C6 |
| // endif C3 |
| |
| SDValue Sel1 = DAG.getSelectCC(DL, C6, Zero, Add4, Add3, ISD::SETNE); |
| SDValue Div = DAG.getSelectCC(DL, C3, Zero, Sel1, Mulhi3, ISD::SETNE); |
| |
| SDValue Sel2 = DAG.getSelectCC(DL, C6, Zero, Sub3, Sub2, ISD::SETNE); |
| SDValue Rem = DAG.getSelectCC(DL, C3, Zero, Sel2, Sub1, ISD::SETNE); |
| |
| Results.push_back(Div); |
| Results.push_back(Rem); |
| |
| return; |
| } |
| |
| // r600 expandion. |
| // Get Speculative values |
| SDValue DIV_Part = DAG.getNode(ISD::UDIV, DL, HalfVT, LHS_Hi, RHS_Lo); |
| SDValue REM_Part = DAG.getNode(ISD::UREM, DL, HalfVT, LHS_Hi, RHS_Lo); |
| |
| SDValue REM_Lo = DAG.getSelectCC(DL, RHS_Hi, Zero, REM_Part, LHS_Hi, ISD::SETEQ); |
| SDValue REM = DAG.getBuildVector(MVT::v2i32, DL, {REM_Lo, Zero}); |
| REM = DAG.getNode(ISD::BITCAST, DL, MVT::i64, REM); |
| |
| SDValue DIV_Hi = DAG.getSelectCC(DL, RHS_Hi, Zero, DIV_Part, Zero, ISD::SETEQ); |
| SDValue DIV_Lo = Zero; |
| |
| const unsigned halfBitWidth = HalfVT.getSizeInBits(); |
| |
| for (unsigned i = 0; i < halfBitWidth; ++i) { |
| const unsigned bitPos = halfBitWidth - i - 1; |
| SDValue POS = DAG.getConstant(bitPos, DL, HalfVT); |
| // Get value of high bit |
| SDValue HBit = DAG.getNode(ISD::SRL, DL, HalfVT, LHS_Lo, POS); |
| HBit = DAG.getNode(ISD::AND, DL, HalfVT, HBit, One); |
| HBit = DAG.getNode(ISD::ZERO_EXTEND, DL, VT, HBit); |
| |
| // Shift |
| REM = DAG.getNode(ISD::SHL, DL, VT, REM, DAG.getConstant(1, DL, VT)); |
| // Add LHS high bit |
| REM = DAG.getNode(ISD::OR, DL, VT, REM, HBit); |
| |
| SDValue BIT = DAG.getConstant(1ULL << bitPos, DL, HalfVT); |
| SDValue realBIT = DAG.getSelectCC(DL, REM, RHS, BIT, Zero, ISD::SETUGE); |
| |
| DIV_Lo = DAG.getNode(ISD::OR, DL, HalfVT, DIV_Lo, realBIT); |
| |
| // Update REM |
| SDValue REM_sub = DAG.getNode(ISD::SUB, DL, VT, REM, RHS); |
| REM = DAG.getSelectCC(DL, REM, RHS, REM_sub, REM, ISD::SETUGE); |
| } |
| |
| SDValue DIV = DAG.getBuildVector(MVT::v2i32, DL, {DIV_Lo, DIV_Hi}); |
| DIV = DAG.getNode(ISD::BITCAST, DL, MVT::i64, DIV); |
| Results.push_back(DIV); |
| Results.push_back(REM); |
| } |
| |
| SDValue AMDGPUTargetLowering::LowerUDIVREM(SDValue Op, |
| SelectionDAG &DAG) const { |
| SDLoc DL(Op); |
| EVT VT = Op.getValueType(); |
| |
| if (VT == MVT::i64) { |
| SmallVector<SDValue, 2> Results; |
| LowerUDIVREM64(Op, DAG, Results); |
| return DAG.getMergeValues(Results, DL); |
| } |
| |
| if (VT == MVT::i32) { |
| if (SDValue Res = LowerDIVREM24(Op, DAG, false)) |
| return Res; |
| } |
| |
| SDValue X = Op.getOperand(0); |
| SDValue Y = Op.getOperand(1); |
| |
| // See AMDGPUCodeGenPrepare::expandDivRem32 for a description of the |
| // algorithm used here. |
| |
| // Initial estimate of inv(y). |
| SDValue Z = DAG.getNode(AMDGPUISD::URECIP, DL, VT, Y); |
| |
| // One round of UNR. |
| SDValue NegY = DAG.getNode(ISD::SUB, DL, VT, DAG.getConstant(0, DL, VT), Y); |
| SDValue NegYZ = DAG.getNode(ISD::MUL, DL, VT, NegY, Z); |
| Z = DAG.getNode(ISD::ADD, DL, VT, Z, |
| DAG.getNode(ISD::MULHU, DL, VT, Z, NegYZ)); |
| |
| // Quotient/remainder estimate. |
| SDValue Q = DAG.getNode(ISD::MULHU, DL, VT, X, Z); |
| SDValue R = |
| DAG.getNode(ISD::SUB, DL, VT, X, DAG.getNode(ISD::MUL, DL, VT, Q, Y)); |
| |
| // First quotient/remainder refinement. |
| EVT CCVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT); |
| SDValue One = DAG.getConstant(1, DL, VT); |
| SDValue Cond = DAG.getSetCC(DL, CCVT, R, Y, ISD::SETUGE); |
| Q = DAG.getNode(ISD::SELECT, DL, VT, Cond, |
| DAG.getNode(ISD::ADD, DL, VT, Q, One), Q); |
| R = DAG.getNode(ISD::SELECT, DL, VT, Cond, |
| DAG.getNode(ISD::SUB, DL, VT, R, Y), R); |
| |
| // Second quotient/remainder refinement. |
| Cond = DAG.getSetCC(DL, CCVT, R, Y, ISD::SETUGE); |
| Q = DAG.getNode(ISD::SELECT, DL, VT, Cond, |
| DAG.getNode(ISD::ADD, DL, VT, Q, One), Q); |
| R = DAG.getNode(ISD::SELECT, DL, VT, Cond, |
| DAG.getNode(ISD::SUB, DL, VT, R, Y), R); |
| |
| return DAG.getMergeValues({Q, R}, DL); |
| } |
| |
| SDValue AMDGPUTargetLowering::LowerSDIVREM(SDValue Op, |
| SelectionDAG &DAG) const { |
| SDLoc DL(Op); |
| EVT VT = Op.getValueType(); |
| |
| SDValue LHS = Op.getOperand(0); |
| SDValue RHS = Op.getOperand(1); |
| |
| SDValue Zero = DAG.getConstant(0, DL, VT); |
| SDValue NegOne = DAG.getConstant(-1, DL, VT); |
| |
| if (VT == MVT::i32) { |
| if (SDValue Res = LowerDIVREM24(Op, DAG, true)) |
| return Res; |
| } |
| |
| if (VT == MVT::i64 && |
| DAG.ComputeNumSignBits(LHS) > 32 && |
| DAG.ComputeNumSignBits(RHS) > 32) { |
| EVT HalfVT = VT.getHalfSizedIntegerVT(*DAG.getContext()); |
| |
| //HiLo split |
| SDValue LHS_Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, HalfVT, LHS, Zero); |
| SDValue RHS_Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, HalfVT, RHS, Zero); |
| SDValue DIVREM = DAG.getNode(ISD::SDIVREM, DL, DAG.getVTList(HalfVT, HalfVT), |
| LHS_Lo, RHS_Lo); |
| SDValue Res[2] = { |
| DAG.getNode(ISD::SIGN_EXTEND, DL, VT, DIVREM.getValue(0)), |
| DAG.getNode(ISD::SIGN_EXTEND, DL, VT, DIVREM.getValue(1)) |
| }; |
| return DAG.getMergeValues(Res, DL); |
| } |
| |
| SDValue LHSign = DAG.getSelectCC(DL, LHS, Zero, NegOne, Zero, ISD::SETLT); |
| SDValue RHSign = DAG.getSelectCC(DL, RHS, Zero, NegOne, Zero, ISD::SETLT); |
| SDValue DSign = DAG.getNode(ISD::XOR, DL, VT, LHSign, RHSign); |
| SDValue RSign = LHSign; // Remainder sign is the same as LHS |
| |
| LHS = DAG.getNode(ISD::ADD, DL, VT, LHS, LHSign); |
| RHS = DAG.getNode(ISD::ADD, DL, VT, RHS, RHSign); |
| |
| LHS = DAG.getNode(ISD::XOR, DL, VT, LHS, LHSign); |
| RHS = DAG.getNode(ISD::XOR, DL, VT, RHS, RHSign); |
| |
| SDValue Div = DAG.getNode(ISD::UDIVREM, DL, DAG.getVTList(VT, VT), LHS, RHS); |
| SDValue Rem = Div.getValue(1); |
| |
| Div = DAG.getNode(ISD::XOR, DL, VT, Div, DSign); |
| Rem = DAG.getNode(ISD::XOR, DL, VT, Rem, RSign); |
| |
| Div = DAG.getNode(ISD::SUB, DL, VT, Div, DSign); |
| Rem = DAG.getNode(ISD::SUB, DL, VT, Rem, RSign); |
| |
| SDValue Res[2] = { |
| Div, |
| Rem |
| }; |
| return DAG.getMergeValues(Res, DL); |
| } |
| |
| // (frem x, y) -> (fma (fneg (ftrunc (fdiv x, y))), y, x) |
| SDValue AMDGPUTargetLowering::LowerFREM(SDValue Op, SelectionDAG &DAG) const { |
| SDLoc SL(Op); |
| EVT VT = Op.getValueType(); |
| auto Flags = Op->getFlags(); |
| SDValue X = Op.getOperand(0); |
| SDValue Y = Op.getOperand(1); |
| |
| SDValue Div = DAG.getNode(ISD::FDIV, SL, VT, X, Y, Flags); |
| SDValue Trunc = DAG.getNode(ISD::FTRUNC, SL, VT, Div, Flags); |
| SDValue Neg = DAG.getNode(ISD::FNEG, SL, VT, Trunc, Flags); |
| // TODO: For f32 use FMAD instead if !hasFastFMA32? |
| return DAG.getNode(ISD::FMA, SL, VT, Neg, Y, X, Flags); |
| } |
| |
| SDValue AMDGPUTargetLowering::LowerFCEIL(SDValue Op, SelectionDAG &DAG) const { |
| SDLoc SL(Op); |
| SDValue Src = Op.getOperand(0); |
| |
| // result = trunc(src) |
| // if (src > 0.0 && src != result) |
| // result += 1.0 |
| |
| SDValue Trunc = DAG.getNode(ISD::FTRUNC, SL, MVT::f64, Src); |
| |
| const SDValue Zero = DAG.getConstantFP(0.0, SL, MVT::f64); |
| const SDValue One = DAG.getConstantFP(1.0, SL, MVT::f64); |
| |
| EVT SetCCVT = |
| getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), MVT::f64); |
| |
| SDValue Lt0 = DAG.getSetCC(SL, SetCCVT, Src, Zero, ISD::SETOGT); |
| SDValue NeTrunc = DAG.getSetCC(SL, SetCCVT, Src, Trunc, ISD::SETONE); |
| SDValue And = DAG.getNode(ISD::AND, SL, SetCCVT, Lt0, NeTrunc); |
| |
| SDValue Add = DAG.getNode(ISD::SELECT, SL, MVT::f64, And, One, Zero); |
| // TODO: Should this propagate fast-math-flags? |
| return DAG.getNode(ISD::FADD, SL, MVT::f64, Trunc, Add); |
| } |
| |
| static SDValue extractF64Exponent(SDValue Hi, const SDLoc &SL, |
| SelectionDAG &DAG) { |
| const unsigned FractBits = 52; |
| const unsigned ExpBits = 11; |
| |
| SDValue ExpPart = DAG.getNode(AMDGPUISD::BFE_U32, SL, MVT::i32, |
| Hi, |
| DAG.getConstant(FractBits - 32, SL, MVT::i32), |
| DAG.getConstant(ExpBits, SL, MVT::i32)); |
| SDValue Exp = DAG.getNode(ISD::SUB, SL, MVT::i32, ExpPart, |
| DAG.getConstant(1023, SL, MVT::i32)); |
| |
| return Exp; |
| } |
| |
| SDValue AMDGPUTargetLowering::LowerFTRUNC(SDValue Op, SelectionDAG &DAG) const { |
| SDLoc SL(Op); |
| SDValue Src = Op.getOperand(0); |
| |
| assert(Op.getValueType() == MVT::f64); |
| |
| const SDValue Zero = DAG.getConstant(0, SL, MVT::i32); |
| |
| // Extract the upper half, since this is where we will find the sign and |
| // exponent. |
| SDValue Hi = getHiHalf64(Src, DAG); |
| |
| SDValue Exp = extractF64Exponent(Hi, SL, DAG); |
| |
| const unsigned FractBits = 52; |
| |
| // Extract the sign bit. |
| const SDValue SignBitMask = DAG.getConstant(UINT32_C(1) << 31, SL, MVT::i32); |
| SDValue SignBit = DAG.getNode(ISD::AND, SL, MVT::i32, Hi, SignBitMask); |
| |
| // Extend back to 64-bits. |
| SDValue SignBit64 = DAG.getBuildVector(MVT::v2i32, SL, {Zero, SignBit}); |
| SignBit64 = DAG.getNode(ISD::BITCAST, SL, MVT::i64, SignBit64); |
| |
| SDValue BcInt = DAG.getNode(ISD::BITCAST, SL, MVT::i64, Src); |
| const SDValue FractMask |
| = DAG.getConstant((UINT64_C(1) << FractBits) - 1, SL, MVT::i64); |
| |
| SDValue Shr = DAG.getNode(ISD::SRA, SL, MVT::i64, FractMask, Exp); |
| SDValue Not = DAG.getNOT(SL, Shr, MVT::i64); |
| SDValue Tmp0 = DAG.getNode(ISD::AND, SL, MVT::i64, BcInt, Not); |
| |
| EVT SetCCVT = |
| getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), MVT::i32); |
| |
| const SDValue FiftyOne = DAG.getConstant(FractBits - 1, SL, MVT::i32); |
| |
| SDValue ExpLt0 = DAG.getSetCC(SL, SetCCVT, Exp, Zero, ISD::SETLT); |
| SDValue ExpGt51 = DAG.getSetCC(SL, SetCCVT, Exp, FiftyOne, ISD::SETGT); |
| |
| SDValue Tmp1 = DAG.getNode(ISD::SELECT, SL, MVT::i64, ExpLt0, SignBit64, Tmp0); |
| SDValue Tmp2 = DAG.getNode(ISD::SELECT, SL, MVT::i64, ExpGt51, BcInt, Tmp1); |
| |
| return DAG.getNode(ISD::BITCAST, SL, MVT::f64, Tmp2); |
| } |
| |
| SDValue AMDGPUTargetLowering::LowerFRINT(SDValue Op, SelectionDAG &DAG) const { |
| SDLoc SL(Op); |
| SDValue Src = Op.getOperand(0); |
| |
| assert(Op.getValueType() == MVT::f64); |
| |
| APFloat C1Val(APFloat::IEEEdouble(), "0x1.0p+52"); |
| SDValue C1 = DAG.getConstantFP(C1Val, SL, MVT::f64); |
| SDValue CopySign = DAG.getNode(ISD::FCOPYSIGN, SL, MVT::f64, C1, Src); |
| |
| // TODO: Should this propagate fast-math-flags? |
| |
| SDValue Tmp1 = DAG.getNode(ISD::FADD, SL, MVT::f64, Src, CopySign); |
| SDValue Tmp2 = DAG.getNode(ISD::FSUB, SL, MVT::f64, Tmp1, CopySign); |
| |
| SDValue Fabs = DAG.getNode(ISD::FABS, SL, MVT::f64, Src); |
| |
| APFloat C2Val(APFloat::IEEEdouble(), "0x1.fffffffffffffp+51"); |
| SDValue C2 = DAG.getConstantFP(C2Val, SL, MVT::f64); |
| |
| EVT SetCCVT = |
| getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), MVT::f64); |
| SDValue Cond = DAG.getSetCC(SL, SetCCVT, Fabs, C2, ISD::SETOGT); |
| |
| return DAG.getSelect(SL, MVT::f64, Cond, Src, Tmp2); |
| } |
| |
| SDValue AMDGPUTargetLowering::LowerFNEARBYINT(SDValue Op, SelectionDAG &DAG) const { |
| // FNEARBYINT and FRINT are the same, except in their handling of FP |
| // exceptions. Those aren't really meaningful for us, and OpenCL only has |
| // rint, so just treat them as equivalent. |
| return DAG.getNode(ISD::FRINT, SDLoc(Op), Op.getValueType(), Op.getOperand(0)); |
| } |
| |
| // XXX - May require not supporting f32 denormals? |
| |
| // Don't handle v2f16. The extra instructions to scalarize and repack around the |
| // compare and vselect end up producing worse code than scalarizing the whole |
| // operation. |
| SDValue AMDGPUTargetLowering::LowerFROUND(SDValue Op, SelectionDAG &DAG) const { |
| SDLoc SL(Op); |
| SDValue X = Op.getOperand(0); |
| EVT VT = Op.getValueType(); |
| |
| SDValue T = DAG.getNode(ISD::FTRUNC, SL, VT, X); |
| |
| // TODO: Should this propagate fast-math-flags? |
| |
| SDValue Diff = DAG.getNode(ISD::FSUB, SL, VT, X, T); |
| |
| SDValue AbsDiff = DAG.getNode(ISD::FABS, SL, VT, Diff); |
| |
| const SDValue Zero = DAG.getConstantFP(0.0, SL, VT); |
| const SDValue One = DAG.getConstantFP(1.0, SL, VT); |
| const SDValue Half = DAG.getConstantFP(0.5, SL, VT); |
| |
| SDValue SignOne = DAG.getNode(ISD::FCOPYSIGN, SL, VT, One, X); |
| |
| EVT SetCCVT = |
| getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT); |
| |
| SDValue Cmp = DAG.getSetCC(SL, SetCCVT, AbsDiff, Half, ISD::SETOGE); |
| |
| SDValue Sel = DAG.getNode(ISD::SELECT, SL, VT, Cmp, SignOne, Zero); |
| |
| return DAG.getNode(ISD::FADD, SL, VT, T, Sel); |
| } |
| |
| SDValue AMDGPUTargetLowering::LowerFFLOOR(SDValue Op, SelectionDAG &DAG) const { |
| SDLoc SL(Op); |
| SDValue Src = Op.getOperand(0); |
| |
| // result = trunc(src); |
| // if (src < 0.0 && src != result) |
| // result += -1.0. |
| |
| SDValue Trunc = DAG.getNode(ISD::FTRUNC, SL, MVT::f64, Src); |
| |
| const SDValue Zero = DAG.getConstantFP(0.0, SL, MVT::f64); |
| const SDValue NegOne = DAG.getConstantFP(-1.0, SL, MVT::f64); |
| |
| EVT SetCCVT = |
| getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), MVT::f64); |
| |
| SDValue Lt0 = DAG.getSetCC(SL, SetCCVT, Src, Zero, ISD::SETOLT); |
| SDValue NeTrunc = DAG.getSetCC(SL, SetCCVT, Src, Trunc, ISD::SETONE); |
| SDValue And = DAG.getNode(ISD::AND, SL, SetCCVT, Lt0, NeTrunc); |
| |
| SDValue Add = DAG.getNode(ISD::SELECT, SL, MVT::f64, And, NegOne, Zero); |
| // TODO: Should this propagate fast-math-flags? |
| return DAG.getNode(ISD::FADD, SL, MVT::f64, Trunc, Add); |
| } |
| |
| SDValue AMDGPUTargetLowering::LowerFLOG(SDValue Op, SelectionDAG &DAG, |
| double Log2BaseInverted) const { |
| EVT VT = Op.getValueType(); |
| |
| SDLoc SL(Op); |
| SDValue Operand = Op.getOperand(0); |
| SDValue Log2Operand = DAG.getNode(ISD::FLOG2, SL, VT, Operand); |
| SDValue Log2BaseInvertedOperand = DAG.getConstantFP(Log2BaseInverted, SL, VT); |
| |
| return DAG.getNode(ISD::FMUL, SL, VT, Log2Operand, Log2BaseInvertedOperand); |
| } |
| |
| // exp2(M_LOG2E_F * f); |
| SDValue AMDGPUTargetLowering::lowerFEXP(SDValue Op, SelectionDAG &DAG) const { |
| EVT VT = Op.getValueType(); |
| SDLoc SL(Op); |
| SDValue Src = Op.getOperand(0); |
| |
| const SDValue K = DAG.getConstantFP(numbers::log2e, SL, VT); |
| SDValue Mul = DAG.getNode(ISD::FMUL, SL, VT, Src, K, Op->getFlags()); |
| return DAG.getNode(ISD::FEXP2, SL, VT, Mul, Op->getFlags()); |
| } |
| |
| static bool isCtlzOpc(unsigned Opc) { |
| return Opc == ISD::CTLZ || Opc == ISD::CTLZ_ZERO_UNDEF; |
| } |
| |
| static bool isCttzOpc(unsigned Opc) { |
| return Opc == ISD::CTTZ || Opc == ISD::CTTZ_ZERO_UNDEF; |
| } |
| |
| SDValue AMDGPUTargetLowering::LowerCTLZ_CTTZ(SDValue Op, SelectionDAG &DAG) const { |
| SDLoc SL(Op); |
| SDValue Src = Op.getOperand(0); |
| |
| assert(isCtlzOpc(Op.getOpcode()) || isCttzOpc(Op.getOpcode())); |
| bool Ctlz = isCtlzOpc(Op.getOpcode()); |
| unsigned NewOpc = Ctlz ? AMDGPUISD::FFBH_U32 : AMDGPUISD::FFBL_B32; |
| |
| bool ZeroUndef = Op.getOpcode() == ISD::CTLZ_ZERO_UNDEF || |
| Op.getOpcode() == ISD::CTTZ_ZERO_UNDEF; |
| |
| if (Src.getValueType() == MVT::i32) { |
| // (ctlz hi:lo) -> (umin (ffbh src), 32) |
| // (cttz hi:lo) -> (umin (ffbl src), 32) |
| // (ctlz_zero_undef src) -> (ffbh src) |
| // (cttz_zero_undef src) -> (ffbl src) |
| SDValue NewOpr = DAG.getNode(NewOpc, SL, MVT::i32, Src); |
| if (!ZeroUndef) { |
| const SDValue Const32 = DAG.getConstant(32, SL, MVT::i32); |
| NewOpr = DAG.getNode(ISD::UMIN, SL, MVT::i32, NewOpr, Const32); |
| |