[WebAssembly] Added initial type checker to MC Assembler

This to protect against non-sensical instruction sequences being assembled,
which would either cause asserts/crashes further down, or a Wasm module being output that doesn't validate.

Unlike a validator, this type checker is able to give type-errors as part of the parsing process, which makes the assembler much friendlier to be used by humans writing manual input.

Because the MC system is single pass (instructions aren't even stored in MC format, they are directly output) the type checker has to be single pass as well, which means that from now on .globaltype and .functype decls must come before their use. An extra pass is added to Codegen to collect information for this purpose, since AsmPrinter is normally single pass / streaming as well, and would otherwise generate this information on the fly.

A `-no-type-check` flag was added to llvm-mc (and any other tools that take asm input) that surpresses type errors, as a quick escape hatch for tests that were not intended to be type correct.

This is a first version of the type checker that ignores control flow, i.e. it checks that types are correct along the linear path, but not the branch path. This will still catch most errors. Branch checking could be added in the future.

Differential Revision: https://reviews.llvm.org/D104945
93 files changed
tree: f15372eabce245d57476b25aae81af6714bf9ea3
  1. .github/
  2. clang/
  3. clang-tools-extra/
  4. compiler-rt/
  5. cross-project-tests/
  6. flang/
  7. libc/
  8. libclc/
  9. libcxx/
  10. libcxxabi/
  11. libunwind/
  12. lld/
  13. lldb/
  14. llvm/
  15. mlir/
  16. openmp/
  17. parallel-libs/
  18. polly/
  19. pstl/
  20. runtimes/
  21. utils/
  22. .arcconfig
  23. .arclint
  24. .clang-format
  25. .clang-tidy
  26. .git-blame-ignore-revs
  27. .gitignore
  28. .mailmap
  29. CONTRIBUTING.md
  30. README.md
  31. SECURITY.md
README.md

The LLVM Compiler Infrastructure

This directory and its sub-directories contain source code for LLVM, a toolkit for the construction of highly optimized compilers, optimizers, and run-time environments.

The README briefly describes how to get started with building LLVM. For more information on how to contribute to the LLVM project, please take a look at the Contributing to LLVM guide.

Getting Started with the LLVM System

Taken from https://llvm.org/docs/GettingStarted.html.

Overview

Welcome to the LLVM project!

The LLVM project has multiple components. The core of the project is itself called “LLVM”. This contains all of the tools, libraries, and header files needed to process intermediate representations and convert them into object files. Tools include an assembler, disassembler, bitcode analyzer, and bitcode optimizer. It also contains basic regression tests.

C-like languages use the Clang front end. This component compiles C, C++, Objective-C, and Objective-C++ code into LLVM bitcode -- and from there into object files, using LLVM.

Other components include: the libc++ C++ standard library, the LLD linker, and more.

Getting the Source Code and Building LLVM

The LLVM Getting Started documentation may be out of date. The Clang Getting Started page might have more accurate information.

This is an example work-flow and configuration to get and build the LLVM source:

  1. Checkout LLVM (including related sub-projects like Clang):

    • git clone https://github.com/llvm/llvm-project.git

    • Or, on windows, git clone --config core.autocrlf=false https://github.com/llvm/llvm-project.git

  2. Configure and build LLVM and Clang:

    • cd llvm-project

    • cmake -S llvm -B build -G <generator> [options]

      Some common build system generators are:

      • Ninja --- for generating Ninja build files. Most llvm developers use Ninja.
      • Unix Makefiles --- for generating make-compatible parallel makefiles.
      • Visual Studio --- for generating Visual Studio projects and solutions.
      • Xcode --- for generating Xcode projects.

      Some Common options:

      • -DLLVM_ENABLE_PROJECTS='...' --- semicolon-separated list of the LLVM sub-projects you'd like to additionally build. Can include any of: clang, clang-tools-extra, libcxx, libcxxabi, libunwind, lldb, compiler-rt, lld, polly, or cross-project-tests.

        For example, to build LLVM, Clang, libcxx, and libcxxabi, use -DLLVM_ENABLE_PROJECTS="clang;libcxx;libcxxabi".

      • -DCMAKE_INSTALL_PREFIX=directory --- Specify for directory the full path name of where you want the LLVM tools and libraries to be installed (default /usr/local).

      • -DCMAKE_BUILD_TYPE=type --- Valid options for type are Debug, Release, RelWithDebInfo, and MinSizeRel. Default is Debug.

      • -DLLVM_ENABLE_ASSERTIONS=On --- Compile with assertion checks enabled (default is Yes for Debug builds, No for all other build types).

    • cmake --build build [-- [options] <target>] or your build system specified above directly.

      • The default target (i.e. ninja or make) will build all of LLVM.

      • The check-all target (i.e. ninja check-all) will run the regression tests to ensure everything is in working order.

      • CMake will generate targets for each tool and library, and most LLVM sub-projects generate their own check-<project> target.

      • Running a serial build will be slow. To improve speed, try running a parallel build. That's done by default in Ninja; for make, use the option -j NNN, where NNN is the number of parallel jobs, e.g. the number of CPUs you have.

    • For more information see CMake

Consult the Getting Started with LLVM page for detailed information on configuring and compiling LLVM. You can visit Directory Layout to learn about the layout of the source code tree.