[LangRef][AliasAnalysis] Clarify `noalias` affects only modified objects

We already mention that `noalias` is modeled after the C99 `restrict`
qualifier but we did omit one important requirement in the description.
For the restrict guarantees the object affected has to be modified
during the execution of the function, in any way (see 6.7.3.1.4 in [0]).

There are two reasons we want this restriction as well:
  1) To match the `restrict` semantics when we lower it to `noalias`.
  2) To allow the reasoning that the object pointed to by a `noalias`
     pointer is not modified through means not derived from this
     pointer. Hence, following the uses of that pointer is sufficient
     to determine potential modifications.

The discussion on this came up as part of D73428. In that patch the
Attributor is taught to derive `noalias` for call site arguments based
on alias queries against objects that are accessed in the callee. This
is possible even if the pointer passed at the call site was "not-`noalias`".
To simplify the logic there *and* to allow the use of `noalias` as
described in 2) above, it is beneficial to follow the C `restrict`
semantics in cases where there might be "read-read-aliases". Note that
 AliasAnalysis* queries for read only objects already result in
 `NoAlias` even if the pointers might "alias".

 * From this point of view our Alias Analysis is basically a Dependence
   Analysis.

[0] http://www.open-std.org/jtc1/sc22/wg14/www/docs/n1124.pdf

Reviewed By: efriedma

Differential Revision: https://reviews.llvm.org/D74935
1 file changed
tree: dedec9eb754fa1f6bd53e0e21e0876f33b243d87
  1. clang/
  2. clang-tools-extra/
  3. compiler-rt/
  4. debuginfo-tests/
  5. libc/
  6. libclc/
  7. libcxx/
  8. libcxxabi/
  9. libunwind/
  10. lld/
  11. lldb/
  12. llvm/
  13. mlir/
  14. openmp/
  15. parallel-libs/
  16. polly/
  17. pstl/
  18. utils/
  19. .arcconfig
  20. .arclint
  21. .clang-format
  22. .clang-tidy
  23. .git-blame-ignore-revs
  24. .gitignore
  25. CONTRIBUTING.md
  26. README.md
README.md

The LLVM Compiler Infrastructure

This directory and its sub-directories contain source code for LLVM, a toolkit for the construction of highly optimized compilers, optimizers, and run-time environments.

The README briefly describes how to get started with building LLVM. For more information on how to contribute to the LLVM project, please take a look at the Contributing to LLVM guide.

Getting Started with the LLVM System

Taken from https://llvm.org/docs/GettingStarted.html.

Overview

Welcome to the LLVM project!

The LLVM project has multiple components. The core of the project is itself called “LLVM”. This contains all of the tools, libraries, and header files needed to process intermediate representations and converts it into object files. Tools include an assembler, disassembler, bitcode analyzer, and bitcode optimizer. It also contains basic regression tests.

C-like languages use the Clang front end. This component compiles C, C++, Objective C, and Objective C++ code into LLVM bitcode -- and from there into object files, using LLVM.

Other components include: the libc++ C++ standard library, the LLD linker, and more.

Getting the Source Code and Building LLVM

The LLVM Getting Started documentation may be out of date. The Clang Getting Started page might have more accurate information.

This is an example work-flow and configuration to get and build the LLVM source:

  1. Checkout LLVM (including related sub-projects like Clang):

    • git clone https://github.com/llvm/llvm-project.git

    • Or, on windows, git clone --config core.autocrlf=false https://github.com/llvm/llvm-project.git

  2. Configure and build LLVM and Clang:

    • cd llvm-project

    • mkdir build

    • cd build

    • cmake -G <generator> [options] ../llvm

      Some common build system generators are:

      • Ninja --- for generating Ninja build files. Most llvm developers use Ninja.
      • Unix Makefiles --- for generating make-compatible parallel makefiles.
      • Visual Studio --- for generating Visual Studio projects and solutions.
      • Xcode --- for generating Xcode projects.

      Some Common options:

      • -DLLVM_ENABLE_PROJECTS='...' --- semicolon-separated list of the LLVM sub-projects you'd like to additionally build. Can include any of: clang, clang-tools-extra, libcxx, libcxxabi, libunwind, lldb, compiler-rt, lld, polly, or debuginfo-tests.

        For example, to build LLVM, Clang, libcxx, and libcxxabi, use -DLLVM_ENABLE_PROJECTS="clang;libcxx;libcxxabi".

      • -DCMAKE_INSTALL_PREFIX=directory --- Specify for directory the full path name of where you want the LLVM tools and libraries to be installed (default /usr/local).

      • -DCMAKE_BUILD_TYPE=type --- Valid options for type are Debug, Release, RelWithDebInfo, and MinSizeRel. Default is Debug.

      • -DLLVM_ENABLE_ASSERTIONS=On --- Compile with assertion checks enabled (default is Yes for Debug builds, No for all other build types).

    • cmake --build . [-- [options] <target>] or your build system specified above directly.

      • The default target (i.e. ninja or make) will build all of LLVM.

      • The check-all target (i.e. ninja check-all) will run the regression tests to ensure everything is in working order.

      • CMake will generate targets for each tool and library, and most LLVM sub-projects generate their own check-<project> target.

      • Running a serial build will be slow. To improve speed, try running a parallel build. That's done by default in Ninja; for make, use the option -j NNN, where NNN is the number of parallel jobs, e.g. the number of CPUs you have.

    • For more information see CMake

Consult the Getting Started with LLVM page for detailed information on configuring and compiling LLVM. You can visit Directory Layout to learn about the layout of the source code tree.