| // 1) Compile shared code into different object files and into an executable. |
| |
| // RUN: %clangxx_profgen -std=c++14 -fcoverage-mapping %s -c -o %t.v1.o \ |
| // RUN: -D_VERSION_1 |
| // RUN: %clangxx_profgen -std=c++14 -fcoverage-mapping %s -c -o %t.v2.o \ |
| // RUN: -D_VERSION_2 |
| // RUN: %clangxx_profgen -std=c++14 -fcoverage-mapping %t.v1.o %t.v2.o \ |
| // RUN: -o %t.exe |
| |
| // 2) Collect profile data. |
| |
| // RUN: env LLVM_PROFILE_FILE=%t.profraw %run %t.exe |
| // RUN: llvm-profdata merge %t.profraw -o %t.profdata |
| |
| // 3) Generate coverage reports from the different object files and the exe. |
| |
| // RUN: llvm-cov show %t.v1.o -instr-profile=%t.profdata | FileCheck %s -check-prefixes=V1,V1-ONLY |
| // RUN: llvm-cov show %t.v2.o -instr-profile=%t.profdata | FileCheck %s -check-prefixes=V2,V2-ONLY |
| // RUN: llvm-cov show %t.v1.o -object %t.v2.o -instr-profile=%t.profdata | FileCheck %s -check-prefixes=V1,V2 |
| // RUN: llvm-cov show %t.exe -instr-profile=%t.profdata | FileCheck %s -check-prefixes=V1,V2 |
| |
| // 4) Verify that coverage reporting on the aggregate coverage mapping shows |
| // hits for all code. (We used to arbitrarily pick a mapping from one binary |
| // and prefer it over others.) When only limited coverage information is |
| // available (just from one binary), don't try to guess any region counts. |
| |
| struct A { |
| A() {} // V1: [[@LINE]]{{ *}}|{{ *}}1 |
| // V1-ONLY: [[@LINE+1]]{{ *}}|{{ *}}| |
| A(int) {} // V2-ONLY: [[@LINE-2]]{{ *}}|{{ *}}| |
| // V2: [[@LINE-1]]{{ *}}|{{ *}}1 |
| }; |
| |
| #ifdef _VERSION_1 |
| |
| void foo(); |
| |
| void bar() { |
| A x; // V1: [[@LINE]]{{ *}}|{{ *}}1 |
| } |
| |
| int main() { |
| foo(); // V1: [[@LINE]]{{ *}}|{{ *}}1 |
| bar(); |
| return 0; |
| } |
| |
| #endif // _VERSION_1 |
| |
| #ifdef _VERSION_2 |
| |
| void foo() { |
| A x{0}; // V2: [[@LINE]]{{ *}}|{{ *}}1 |
| } |
| |
| #endif // _VERSION_2 |