blob: a1972f5c649635b3b179f5b9a8895859608ec2f4 [file] [log] [blame]
//===- ASTWriter.cpp - AST File Writer ------------------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file defines the ASTWriter class, which writes AST files.
//
//===----------------------------------------------------------------------===//
#include "ASTCommon.h"
#include "ASTReaderInternals.h"
#include "MultiOnDiskHashTable.h"
#include "clang/AST/ASTContext.h"
#include "clang/AST/ASTUnresolvedSet.h"
#include "clang/AST/AbstractTypeWriter.h"
#include "clang/AST/Attr.h"
#include "clang/AST/Decl.h"
#include "clang/AST/DeclBase.h"
#include "clang/AST/DeclCXX.h"
#include "clang/AST/DeclContextInternals.h"
#include "clang/AST/DeclFriend.h"
#include "clang/AST/DeclObjC.h"
#include "clang/AST/DeclTemplate.h"
#include "clang/AST/DeclarationName.h"
#include "clang/AST/Expr.h"
#include "clang/AST/ExprCXX.h"
#include "clang/AST/LambdaCapture.h"
#include "clang/AST/NestedNameSpecifier.h"
#include "clang/AST/OpenMPClause.h"
#include "clang/AST/RawCommentList.h"
#include "clang/AST/TemplateName.h"
#include "clang/AST/Type.h"
#include "clang/AST/TypeLocVisitor.h"
#include "clang/Basic/Diagnostic.h"
#include "clang/Basic/DiagnosticOptions.h"
#include "clang/Basic/FileManager.h"
#include "clang/Basic/FileSystemOptions.h"
#include "clang/Basic/IdentifierTable.h"
#include "clang/Basic/LLVM.h"
#include "clang/Basic/Lambda.h"
#include "clang/Basic/LangOptions.h"
#include "clang/Basic/Module.h"
#include "clang/Basic/ObjCRuntime.h"
#include "clang/Basic/OpenCLOptions.h"
#include "clang/Basic/SourceLocation.h"
#include "clang/Basic/SourceManager.h"
#include "clang/Basic/SourceManagerInternals.h"
#include "clang/Basic/Specifiers.h"
#include "clang/Basic/TargetInfo.h"
#include "clang/Basic/TargetOptions.h"
#include "clang/Basic/Version.h"
#include "clang/Lex/HeaderSearch.h"
#include "clang/Lex/HeaderSearchOptions.h"
#include "clang/Lex/MacroInfo.h"
#include "clang/Lex/ModuleMap.h"
#include "clang/Lex/PreprocessingRecord.h"
#include "clang/Lex/Preprocessor.h"
#include "clang/Lex/PreprocessorOptions.h"
#include "clang/Lex/Token.h"
#include "clang/Sema/IdentifierResolver.h"
#include "clang/Sema/ObjCMethodList.h"
#include "clang/Sema/Sema.h"
#include "clang/Sema/Weak.h"
#include "clang/Serialization/ASTBitCodes.h"
#include "clang/Serialization/ASTReader.h"
#include "clang/Serialization/ASTRecordWriter.h"
#include "clang/Serialization/InMemoryModuleCache.h"
#include "clang/Serialization/ModuleFile.h"
#include "clang/Serialization/ModuleFileExtension.h"
#include "clang/Serialization/SerializationDiagnostic.h"
#include "llvm/ADT/APFloat.h"
#include "llvm/ADT/APInt.h"
#include "llvm/ADT/APSInt.h"
#include "llvm/ADT/ArrayRef.h"
#include "llvm/ADT/DenseMap.h"
#include "llvm/ADT/Hashing.h"
#include "llvm/ADT/Optional.h"
#include "llvm/ADT/PointerIntPair.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/ADT/ScopeExit.h"
#include "llvm/ADT/SmallPtrSet.h"
#include "llvm/ADT/SmallString.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/ADT/StringMap.h"
#include "llvm/ADT/StringRef.h"
#include "llvm/Bitstream/BitCodes.h"
#include "llvm/Bitstream/BitstreamWriter.h"
#include "llvm/Support/Casting.h"
#include "llvm/Support/Compression.h"
#include "llvm/Support/DJB.h"
#include "llvm/Support/Endian.h"
#include "llvm/Support/EndianStream.h"
#include "llvm/Support/Error.h"
#include "llvm/Support/ErrorHandling.h"
#include "llvm/Support/LEB128.h"
#include "llvm/Support/MemoryBuffer.h"
#include "llvm/Support/OnDiskHashTable.h"
#include "llvm/Support/Path.h"
#include "llvm/Support/SHA1.h"
#include "llvm/Support/VersionTuple.h"
#include "llvm/Support/raw_ostream.h"
#include <algorithm>
#include <cassert>
#include <cstdint>
#include <cstdlib>
#include <cstring>
#include <ctime>
#include <deque>
#include <limits>
#include <memory>
#include <queue>
#include <tuple>
#include <utility>
#include <vector>
using namespace clang;
using namespace clang::serialization;
template <typename T, typename Allocator>
static StringRef bytes(const std::vector<T, Allocator> &v) {
if (v.empty()) return StringRef();
return StringRef(reinterpret_cast<const char*>(&v[0]),
sizeof(T) * v.size());
}
template <typename T>
static StringRef bytes(const SmallVectorImpl<T> &v) {
return StringRef(reinterpret_cast<const char*>(v.data()),
sizeof(T) * v.size());
}
static std::string bytes(const std::vector<bool> &V) {
std::string Str;
Str.reserve(V.size() / 8);
for (unsigned I = 0, E = V.size(); I < E;) {
char Byte = 0;
for (unsigned Bit = 0; Bit < 8 && I < E; ++Bit, ++I)
Byte |= V[I] << Bit;
Str += Byte;
}
return Str;
}
//===----------------------------------------------------------------------===//
// Type serialization
//===----------------------------------------------------------------------===//
static TypeCode getTypeCodeForTypeClass(Type::TypeClass id) {
switch (id) {
#define TYPE_BIT_CODE(CLASS_ID, CODE_ID, CODE_VALUE) \
case Type::CLASS_ID: return TYPE_##CODE_ID;
#include "clang/Serialization/TypeBitCodes.def"
case Type::Builtin:
llvm_unreachable("shouldn't be serializing a builtin type this way");
}
llvm_unreachable("bad type kind");
}
namespace {
std::set<const FileEntry *> GetAllModuleMaps(const HeaderSearch &HS,
Module *RootModule) {
std::set<const FileEntry *> ModuleMaps{};
std::set<Module *> ProcessedModules;
SmallVector<Module *> ModulesToProcess{RootModule};
SmallVector<const FileEntry *, 16> FilesByUID;
HS.getFileMgr().GetUniqueIDMapping(FilesByUID);
if (FilesByUID.size() > HS.header_file_size())
FilesByUID.resize(HS.header_file_size());
for (unsigned UID = 0, LastUID = FilesByUID.size(); UID != LastUID; ++UID) {
const FileEntry *File = FilesByUID[UID];
if (!File)
continue;
const HeaderFileInfo *HFI =
HS.getExistingFileInfo(File, /*WantExternal*/ false);
if (!HFI || (HFI->isModuleHeader && !HFI->isCompilingModuleHeader))
continue;
for (const auto &KH : HS.findAllModulesForHeader(File)) {
if (!KH.getModule())
continue;
ModulesToProcess.push_back(KH.getModule());
}
}
while (!ModulesToProcess.empty()) {
auto *CurrentModule = ModulesToProcess.pop_back_val();
ProcessedModules.insert(CurrentModule);
auto *ModuleMapFile =
HS.getModuleMap().getModuleMapFileForUniquing(CurrentModule);
if (!ModuleMapFile) {
continue;
}
ModuleMaps.insert(ModuleMapFile);
for (auto *ImportedModule : (CurrentModule)->Imports) {
if (!ImportedModule ||
ProcessedModules.find(ImportedModule) != ProcessedModules.end()) {
continue;
}
ModulesToProcess.push_back(ImportedModule);
}
}
return ModuleMaps;
}
class ASTTypeWriter {
ASTWriter &Writer;
ASTWriter::RecordData Record;
ASTRecordWriter BasicWriter;
public:
ASTTypeWriter(ASTWriter &Writer)
: Writer(Writer), BasicWriter(Writer, Record) {}
uint64_t write(QualType T) {
if (T.hasLocalNonFastQualifiers()) {
Qualifiers Qs = T.getLocalQualifiers();
BasicWriter.writeQualType(T.getLocalUnqualifiedType());
BasicWriter.writeQualifiers(Qs);
return BasicWriter.Emit(TYPE_EXT_QUAL, Writer.getTypeExtQualAbbrev());
}
const Type *typePtr = T.getTypePtr();
serialization::AbstractTypeWriter<ASTRecordWriter> atw(BasicWriter);
atw.write(typePtr);
return BasicWriter.Emit(getTypeCodeForTypeClass(typePtr->getTypeClass()),
/*abbrev*/ 0);
}
};
class TypeLocWriter : public TypeLocVisitor<TypeLocWriter> {
ASTRecordWriter &Record;
public:
TypeLocWriter(ASTRecordWriter &Record) : Record(Record) {}
#define ABSTRACT_TYPELOC(CLASS, PARENT)
#define TYPELOC(CLASS, PARENT) \
void Visit##CLASS##TypeLoc(CLASS##TypeLoc TyLoc);
#include "clang/AST/TypeLocNodes.def"
void VisitArrayTypeLoc(ArrayTypeLoc TyLoc);
void VisitFunctionTypeLoc(FunctionTypeLoc TyLoc);
};
} // namespace
void TypeLocWriter::VisitQualifiedTypeLoc(QualifiedTypeLoc TL) {
// nothing to do
}
void TypeLocWriter::VisitBuiltinTypeLoc(BuiltinTypeLoc TL) {
Record.AddSourceLocation(TL.getBuiltinLoc());
if (TL.needsExtraLocalData()) {
Record.push_back(TL.getWrittenTypeSpec());
Record.push_back(static_cast<uint64_t>(TL.getWrittenSignSpec()));
Record.push_back(static_cast<uint64_t>(TL.getWrittenWidthSpec()));
Record.push_back(TL.hasModeAttr());
}
}
void TypeLocWriter::VisitComplexTypeLoc(ComplexTypeLoc TL) {
Record.AddSourceLocation(TL.getNameLoc());
}
void TypeLocWriter::VisitPointerTypeLoc(PointerTypeLoc TL) {
Record.AddSourceLocation(TL.getStarLoc());
}
void TypeLocWriter::VisitDecayedTypeLoc(DecayedTypeLoc TL) {
// nothing to do
}
void TypeLocWriter::VisitAdjustedTypeLoc(AdjustedTypeLoc TL) {
// nothing to do
}
void TypeLocWriter::VisitBlockPointerTypeLoc(BlockPointerTypeLoc TL) {
Record.AddSourceLocation(TL.getCaretLoc());
}
void TypeLocWriter::VisitLValueReferenceTypeLoc(LValueReferenceTypeLoc TL) {
Record.AddSourceLocation(TL.getAmpLoc());
}
void TypeLocWriter::VisitRValueReferenceTypeLoc(RValueReferenceTypeLoc TL) {
Record.AddSourceLocation(TL.getAmpAmpLoc());
}
void TypeLocWriter::VisitMemberPointerTypeLoc(MemberPointerTypeLoc TL) {
Record.AddSourceLocation(TL.getStarLoc());
Record.AddTypeSourceInfo(TL.getClassTInfo());
}
void TypeLocWriter::VisitArrayTypeLoc(ArrayTypeLoc TL) {
Record.AddSourceLocation(TL.getLBracketLoc());
Record.AddSourceLocation(TL.getRBracketLoc());
Record.push_back(TL.getSizeExpr() ? 1 : 0);
if (TL.getSizeExpr())
Record.AddStmt(TL.getSizeExpr());
}
void TypeLocWriter::VisitConstantArrayTypeLoc(ConstantArrayTypeLoc TL) {
VisitArrayTypeLoc(TL);
}
void TypeLocWriter::VisitIncompleteArrayTypeLoc(IncompleteArrayTypeLoc TL) {
VisitArrayTypeLoc(TL);
}
void TypeLocWriter::VisitVariableArrayTypeLoc(VariableArrayTypeLoc TL) {
VisitArrayTypeLoc(TL);
}
void TypeLocWriter::VisitDependentSizedArrayTypeLoc(
DependentSizedArrayTypeLoc TL) {
VisitArrayTypeLoc(TL);
}
void TypeLocWriter::VisitDependentAddressSpaceTypeLoc(
DependentAddressSpaceTypeLoc TL) {
Record.AddSourceLocation(TL.getAttrNameLoc());
SourceRange range = TL.getAttrOperandParensRange();
Record.AddSourceLocation(range.getBegin());
Record.AddSourceLocation(range.getEnd());
Record.AddStmt(TL.getAttrExprOperand());
}
void TypeLocWriter::VisitDependentSizedExtVectorTypeLoc(
DependentSizedExtVectorTypeLoc TL) {
Record.AddSourceLocation(TL.getNameLoc());
}
void TypeLocWriter::VisitVectorTypeLoc(VectorTypeLoc TL) {
Record.AddSourceLocation(TL.getNameLoc());
}
void TypeLocWriter::VisitDependentVectorTypeLoc(
DependentVectorTypeLoc TL) {
Record.AddSourceLocation(TL.getNameLoc());
}
void TypeLocWriter::VisitExtVectorTypeLoc(ExtVectorTypeLoc TL) {
Record.AddSourceLocation(TL.getNameLoc());
}
void TypeLocWriter::VisitConstantMatrixTypeLoc(ConstantMatrixTypeLoc TL) {
Record.AddSourceLocation(TL.getAttrNameLoc());
SourceRange range = TL.getAttrOperandParensRange();
Record.AddSourceLocation(range.getBegin());
Record.AddSourceLocation(range.getEnd());
Record.AddStmt(TL.getAttrRowOperand());
Record.AddStmt(TL.getAttrColumnOperand());
}
void TypeLocWriter::VisitDependentSizedMatrixTypeLoc(
DependentSizedMatrixTypeLoc TL) {
Record.AddSourceLocation(TL.getAttrNameLoc());
SourceRange range = TL.getAttrOperandParensRange();
Record.AddSourceLocation(range.getBegin());
Record.AddSourceLocation(range.getEnd());
Record.AddStmt(TL.getAttrRowOperand());
Record.AddStmt(TL.getAttrColumnOperand());
}
void TypeLocWriter::VisitFunctionTypeLoc(FunctionTypeLoc TL) {
Record.AddSourceLocation(TL.getLocalRangeBegin());
Record.AddSourceLocation(TL.getLParenLoc());
Record.AddSourceLocation(TL.getRParenLoc());
Record.AddSourceRange(TL.getExceptionSpecRange());
Record.AddSourceLocation(TL.getLocalRangeEnd());
for (unsigned i = 0, e = TL.getNumParams(); i != e; ++i)
Record.AddDeclRef(TL.getParam(i));
}
void TypeLocWriter::VisitFunctionProtoTypeLoc(FunctionProtoTypeLoc TL) {
VisitFunctionTypeLoc(TL);
}
void TypeLocWriter::VisitFunctionNoProtoTypeLoc(FunctionNoProtoTypeLoc TL) {
VisitFunctionTypeLoc(TL);
}
void TypeLocWriter::VisitUnresolvedUsingTypeLoc(UnresolvedUsingTypeLoc TL) {
Record.AddSourceLocation(TL.getNameLoc());
}
void TypeLocWriter::VisitTypedefTypeLoc(TypedefTypeLoc TL) {
Record.AddSourceLocation(TL.getNameLoc());
}
void TypeLocWriter::VisitObjCTypeParamTypeLoc(ObjCTypeParamTypeLoc TL) {
if (TL.getNumProtocols()) {
Record.AddSourceLocation(TL.getProtocolLAngleLoc());
Record.AddSourceLocation(TL.getProtocolRAngleLoc());
}
for (unsigned i = 0, e = TL.getNumProtocols(); i != e; ++i)
Record.AddSourceLocation(TL.getProtocolLoc(i));
}
void TypeLocWriter::VisitTypeOfExprTypeLoc(TypeOfExprTypeLoc TL) {
Record.AddSourceLocation(TL.getTypeofLoc());
Record.AddSourceLocation(TL.getLParenLoc());
Record.AddSourceLocation(TL.getRParenLoc());
}
void TypeLocWriter::VisitTypeOfTypeLoc(TypeOfTypeLoc TL) {
Record.AddSourceLocation(TL.getTypeofLoc());
Record.AddSourceLocation(TL.getLParenLoc());
Record.AddSourceLocation(TL.getRParenLoc());
Record.AddTypeSourceInfo(TL.getUnderlyingTInfo());
}
void TypeLocWriter::VisitDecltypeTypeLoc(DecltypeTypeLoc TL) {
Record.AddSourceLocation(TL.getNameLoc());
}
void TypeLocWriter::VisitUnaryTransformTypeLoc(UnaryTransformTypeLoc TL) {
Record.AddSourceLocation(TL.getKWLoc());
Record.AddSourceLocation(TL.getLParenLoc());
Record.AddSourceLocation(TL.getRParenLoc());
Record.AddTypeSourceInfo(TL.getUnderlyingTInfo());
}
void TypeLocWriter::VisitAutoTypeLoc(AutoTypeLoc TL) {
Record.AddSourceLocation(TL.getNameLoc());
Record.push_back(TL.isConstrained());
if (TL.isConstrained()) {
Record.AddNestedNameSpecifierLoc(TL.getNestedNameSpecifierLoc());
Record.AddSourceLocation(TL.getTemplateKWLoc());
Record.AddSourceLocation(TL.getConceptNameLoc());
Record.AddDeclRef(TL.getFoundDecl());
Record.AddSourceLocation(TL.getLAngleLoc());
Record.AddSourceLocation(TL.getRAngleLoc());
for (unsigned I = 0; I < TL.getNumArgs(); ++I)
Record.AddTemplateArgumentLocInfo(TL.getTypePtr()->getArg(I).getKind(),
TL.getArgLocInfo(I));
}
}
void TypeLocWriter::VisitDeducedTemplateSpecializationTypeLoc(
DeducedTemplateSpecializationTypeLoc TL) {
Record.AddSourceLocation(TL.getTemplateNameLoc());
}
void TypeLocWriter::VisitRecordTypeLoc(RecordTypeLoc TL) {
Record.AddSourceLocation(TL.getNameLoc());
}
void TypeLocWriter::VisitEnumTypeLoc(EnumTypeLoc TL) {
Record.AddSourceLocation(TL.getNameLoc());
}
void TypeLocWriter::VisitAttributedTypeLoc(AttributedTypeLoc TL) {
Record.AddAttr(TL.getAttr());
}
void TypeLocWriter::VisitTemplateTypeParmTypeLoc(TemplateTypeParmTypeLoc TL) {
Record.AddSourceLocation(TL.getNameLoc());
}
void TypeLocWriter::VisitSubstTemplateTypeParmTypeLoc(
SubstTemplateTypeParmTypeLoc TL) {
Record.AddSourceLocation(TL.getNameLoc());
}
void TypeLocWriter::VisitSubstTemplateTypeParmPackTypeLoc(
SubstTemplateTypeParmPackTypeLoc TL) {
Record.AddSourceLocation(TL.getNameLoc());
}
void TypeLocWriter::VisitTemplateSpecializationTypeLoc(
TemplateSpecializationTypeLoc TL) {
Record.AddSourceLocation(TL.getTemplateKeywordLoc());
Record.AddSourceLocation(TL.getTemplateNameLoc());
Record.AddSourceLocation(TL.getLAngleLoc());
Record.AddSourceLocation(TL.getRAngleLoc());
for (unsigned i = 0, e = TL.getNumArgs(); i != e; ++i)
Record.AddTemplateArgumentLocInfo(TL.getArgLoc(i).getArgument().getKind(),
TL.getArgLoc(i).getLocInfo());
}
void TypeLocWriter::VisitParenTypeLoc(ParenTypeLoc TL) {
Record.AddSourceLocation(TL.getLParenLoc());
Record.AddSourceLocation(TL.getRParenLoc());
}
void TypeLocWriter::VisitMacroQualifiedTypeLoc(MacroQualifiedTypeLoc TL) {
Record.AddSourceLocation(TL.getExpansionLoc());
}
void TypeLocWriter::VisitElaboratedTypeLoc(ElaboratedTypeLoc TL) {
Record.AddSourceLocation(TL.getElaboratedKeywordLoc());
Record.AddNestedNameSpecifierLoc(TL.getQualifierLoc());
}
void TypeLocWriter::VisitInjectedClassNameTypeLoc(InjectedClassNameTypeLoc TL) {
Record.AddSourceLocation(TL.getNameLoc());
}
void TypeLocWriter::VisitDependentNameTypeLoc(DependentNameTypeLoc TL) {
Record.AddSourceLocation(TL.getElaboratedKeywordLoc());
Record.AddNestedNameSpecifierLoc(TL.getQualifierLoc());
Record.AddSourceLocation(TL.getNameLoc());
}
void TypeLocWriter::VisitDependentTemplateSpecializationTypeLoc(
DependentTemplateSpecializationTypeLoc TL) {
Record.AddSourceLocation(TL.getElaboratedKeywordLoc());
Record.AddNestedNameSpecifierLoc(TL.getQualifierLoc());
Record.AddSourceLocation(TL.getTemplateKeywordLoc());
Record.AddSourceLocation(TL.getTemplateNameLoc());
Record.AddSourceLocation(TL.getLAngleLoc());
Record.AddSourceLocation(TL.getRAngleLoc());
for (unsigned I = 0, E = TL.getNumArgs(); I != E; ++I)
Record.AddTemplateArgumentLocInfo(TL.getArgLoc(I).getArgument().getKind(),
TL.getArgLoc(I).getLocInfo());
}
void TypeLocWriter::VisitPackExpansionTypeLoc(PackExpansionTypeLoc TL) {
Record.AddSourceLocation(TL.getEllipsisLoc());
}
void TypeLocWriter::VisitObjCInterfaceTypeLoc(ObjCInterfaceTypeLoc TL) {
Record.AddSourceLocation(TL.getNameLoc());
}
void TypeLocWriter::VisitObjCObjectTypeLoc(ObjCObjectTypeLoc TL) {
Record.push_back(TL.hasBaseTypeAsWritten());
Record.AddSourceLocation(TL.getTypeArgsLAngleLoc());
Record.AddSourceLocation(TL.getTypeArgsRAngleLoc());
for (unsigned i = 0, e = TL.getNumTypeArgs(); i != e; ++i)
Record.AddTypeSourceInfo(TL.getTypeArgTInfo(i));
Record.AddSourceLocation(TL.getProtocolLAngleLoc());
Record.AddSourceLocation(TL.getProtocolRAngleLoc());
for (unsigned i = 0, e = TL.getNumProtocols(); i != e; ++i)
Record.AddSourceLocation(TL.getProtocolLoc(i));
}
void TypeLocWriter::VisitObjCObjectPointerTypeLoc(ObjCObjectPointerTypeLoc TL) {
Record.AddSourceLocation(TL.getStarLoc());
}
void TypeLocWriter::VisitAtomicTypeLoc(AtomicTypeLoc TL) {
Record.AddSourceLocation(TL.getKWLoc());
Record.AddSourceLocation(TL.getLParenLoc());
Record.AddSourceLocation(TL.getRParenLoc());
}
void TypeLocWriter::VisitPipeTypeLoc(PipeTypeLoc TL) {
Record.AddSourceLocation(TL.getKWLoc());
}
void TypeLocWriter::VisitExtIntTypeLoc(clang::ExtIntTypeLoc TL) {
Record.AddSourceLocation(TL.getNameLoc());
}
void TypeLocWriter::VisitDependentExtIntTypeLoc(
clang::DependentExtIntTypeLoc TL) {
Record.AddSourceLocation(TL.getNameLoc());
}
void ASTWriter::WriteTypeAbbrevs() {
using namespace llvm;
std::shared_ptr<BitCodeAbbrev> Abv;
// Abbreviation for TYPE_EXT_QUAL
Abv = std::make_shared<BitCodeAbbrev>();
Abv->Add(BitCodeAbbrevOp(serialization::TYPE_EXT_QUAL));
Abv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // Type
Abv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 3)); // Quals
TypeExtQualAbbrev = Stream.EmitAbbrev(std::move(Abv));
// Abbreviation for TYPE_FUNCTION_PROTO
Abv = std::make_shared<BitCodeAbbrev>();
Abv->Add(BitCodeAbbrevOp(serialization::TYPE_FUNCTION_PROTO));
// FunctionType
Abv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // ReturnType
Abv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // NoReturn
Abv->Add(BitCodeAbbrevOp(0)); // HasRegParm
Abv->Add(BitCodeAbbrevOp(0)); // RegParm
Abv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // CC
Abv->Add(BitCodeAbbrevOp(0)); // ProducesResult
Abv->Add(BitCodeAbbrevOp(0)); // NoCallerSavedRegs
Abv->Add(BitCodeAbbrevOp(0)); // NoCfCheck
Abv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // CmseNSCall
// FunctionProtoType
Abv->Add(BitCodeAbbrevOp(0)); // IsVariadic
Abv->Add(BitCodeAbbrevOp(0)); // HasTrailingReturn
Abv->Add(BitCodeAbbrevOp(0)); // TypeQuals
Abv->Add(BitCodeAbbrevOp(0)); // RefQualifier
Abv->Add(BitCodeAbbrevOp(EST_None)); // ExceptionSpec
Abv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // NumParams
Abv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
Abv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // Params
TypeFunctionProtoAbbrev = Stream.EmitAbbrev(std::move(Abv));
}
//===----------------------------------------------------------------------===//
// ASTWriter Implementation
//===----------------------------------------------------------------------===//
static void EmitBlockID(unsigned ID, const char *Name,
llvm::BitstreamWriter &Stream,
ASTWriter::RecordDataImpl &Record) {
Record.clear();
Record.push_back(ID);
Stream.EmitRecord(llvm::bitc::BLOCKINFO_CODE_SETBID, Record);
// Emit the block name if present.
if (!Name || Name[0] == 0)
return;
Record.clear();
while (*Name)
Record.push_back(*Name++);
Stream.EmitRecord(llvm::bitc::BLOCKINFO_CODE_BLOCKNAME, Record);
}
static void EmitRecordID(unsigned ID, const char *Name,
llvm::BitstreamWriter &Stream,
ASTWriter::RecordDataImpl &Record) {
Record.clear();
Record.push_back(ID);
while (*Name)
Record.push_back(*Name++);
Stream.EmitRecord(llvm::bitc::BLOCKINFO_CODE_SETRECORDNAME, Record);
}
static void AddStmtsExprs(llvm::BitstreamWriter &Stream,
ASTWriter::RecordDataImpl &Record) {
#define RECORD(X) EmitRecordID(X, #X, Stream, Record)
RECORD(STMT_STOP);
RECORD(STMT_NULL_PTR);
RECORD(STMT_REF_PTR);
RECORD(STMT_NULL);
RECORD(STMT_COMPOUND);
RECORD(STMT_CASE);
RECORD(STMT_DEFAULT);
RECORD(STMT_LABEL);
RECORD(STMT_ATTRIBUTED);
RECORD(STMT_IF);
RECORD(STMT_SWITCH);
RECORD(STMT_WHILE);
RECORD(STMT_DO);
RECORD(STMT_FOR);
RECORD(STMT_GOTO);
RECORD(STMT_INDIRECT_GOTO);
RECORD(STMT_CONTINUE);
RECORD(STMT_BREAK);
RECORD(STMT_RETURN);
RECORD(STMT_DECL);
RECORD(STMT_GCCASM);
RECORD(STMT_MSASM);
RECORD(EXPR_PREDEFINED);
RECORD(EXPR_DECL_REF);
RECORD(EXPR_INTEGER_LITERAL);
RECORD(EXPR_FIXEDPOINT_LITERAL);
RECORD(EXPR_FLOATING_LITERAL);
RECORD(EXPR_IMAGINARY_LITERAL);
RECORD(EXPR_STRING_LITERAL);
RECORD(EXPR_CHARACTER_LITERAL);
RECORD(EXPR_PAREN);
RECORD(EXPR_PAREN_LIST);
RECORD(EXPR_UNARY_OPERATOR);
RECORD(EXPR_SIZEOF_ALIGN_OF);
RECORD(EXPR_ARRAY_SUBSCRIPT);
RECORD(EXPR_CALL);
RECORD(EXPR_MEMBER);
RECORD(EXPR_BINARY_OPERATOR);
RECORD(EXPR_COMPOUND_ASSIGN_OPERATOR);
RECORD(EXPR_CONDITIONAL_OPERATOR);
RECORD(EXPR_IMPLICIT_CAST);
RECORD(EXPR_CSTYLE_CAST);
RECORD(EXPR_COMPOUND_LITERAL);
RECORD(EXPR_EXT_VECTOR_ELEMENT);
RECORD(EXPR_INIT_LIST);
RECORD(EXPR_DESIGNATED_INIT);
RECORD(EXPR_DESIGNATED_INIT_UPDATE);
RECORD(EXPR_IMPLICIT_VALUE_INIT);
RECORD(EXPR_NO_INIT);
RECORD(EXPR_VA_ARG);
RECORD(EXPR_ADDR_LABEL);
RECORD(EXPR_STMT);
RECORD(EXPR_CHOOSE);
RECORD(EXPR_GNU_NULL);
RECORD(EXPR_SHUFFLE_VECTOR);
RECORD(EXPR_BLOCK);
RECORD(EXPR_GENERIC_SELECTION);
RECORD(EXPR_OBJC_STRING_LITERAL);
RECORD(EXPR_OBJC_BOXED_EXPRESSION);
RECORD(EXPR_OBJC_ARRAY_LITERAL);
RECORD(EXPR_OBJC_DICTIONARY_LITERAL);
RECORD(EXPR_OBJC_ENCODE);
RECORD(EXPR_OBJC_SELECTOR_EXPR);
RECORD(EXPR_OBJC_PROTOCOL_EXPR);
RECORD(EXPR_OBJC_IVAR_REF_EXPR);
RECORD(EXPR_OBJC_PROPERTY_REF_EXPR);
RECORD(EXPR_OBJC_KVC_REF_EXPR);
RECORD(EXPR_OBJC_MESSAGE_EXPR);
RECORD(STMT_OBJC_FOR_COLLECTION);
RECORD(STMT_OBJC_CATCH);
RECORD(STMT_OBJC_FINALLY);
RECORD(STMT_OBJC_AT_TRY);
RECORD(STMT_OBJC_AT_SYNCHRONIZED);
RECORD(STMT_OBJC_AT_THROW);
RECORD(EXPR_OBJC_BOOL_LITERAL);
RECORD(STMT_CXX_CATCH);
RECORD(STMT_CXX_TRY);
RECORD(STMT_CXX_FOR_RANGE);
RECORD(EXPR_CXX_OPERATOR_CALL);
RECORD(EXPR_CXX_MEMBER_CALL);
RECORD(EXPR_CXX_REWRITTEN_BINARY_OPERATOR);
RECORD(EXPR_CXX_CONSTRUCT);
RECORD(EXPR_CXX_TEMPORARY_OBJECT);
RECORD(EXPR_CXX_STATIC_CAST);
RECORD(EXPR_CXX_DYNAMIC_CAST);
RECORD(EXPR_CXX_REINTERPRET_CAST);
RECORD(EXPR_CXX_CONST_CAST);
RECORD(EXPR_CXX_ADDRSPACE_CAST);
RECORD(EXPR_CXX_FUNCTIONAL_CAST);
RECORD(EXPR_USER_DEFINED_LITERAL);
RECORD(EXPR_CXX_STD_INITIALIZER_LIST);
RECORD(EXPR_CXX_BOOL_LITERAL);
RECORD(EXPR_CXX_NULL_PTR_LITERAL);
RECORD(EXPR_CXX_TYPEID_EXPR);
RECORD(EXPR_CXX_TYPEID_TYPE);
RECORD(EXPR_CXX_THIS);
RECORD(EXPR_CXX_THROW);
RECORD(EXPR_CXX_DEFAULT_ARG);
RECORD(EXPR_CXX_DEFAULT_INIT);
RECORD(EXPR_CXX_BIND_TEMPORARY);
RECORD(EXPR_CXX_SCALAR_VALUE_INIT);
RECORD(EXPR_CXX_NEW);
RECORD(EXPR_CXX_DELETE);
RECORD(EXPR_CXX_PSEUDO_DESTRUCTOR);
RECORD(EXPR_EXPR_WITH_CLEANUPS);
RECORD(EXPR_CXX_DEPENDENT_SCOPE_MEMBER);
RECORD(EXPR_CXX_DEPENDENT_SCOPE_DECL_REF);
RECORD(EXPR_CXX_UNRESOLVED_CONSTRUCT);
RECORD(EXPR_CXX_UNRESOLVED_MEMBER);
RECORD(EXPR_CXX_UNRESOLVED_LOOKUP);
RECORD(EXPR_CXX_EXPRESSION_TRAIT);
RECORD(EXPR_CXX_NOEXCEPT);
RECORD(EXPR_OPAQUE_VALUE);
RECORD(EXPR_BINARY_CONDITIONAL_OPERATOR);
RECORD(EXPR_TYPE_TRAIT);
RECORD(EXPR_ARRAY_TYPE_TRAIT);
RECORD(EXPR_PACK_EXPANSION);
RECORD(EXPR_SIZEOF_PACK);
RECORD(EXPR_SUBST_NON_TYPE_TEMPLATE_PARM);
RECORD(EXPR_SUBST_NON_TYPE_TEMPLATE_PARM_PACK);
RECORD(EXPR_FUNCTION_PARM_PACK);
RECORD(EXPR_MATERIALIZE_TEMPORARY);
RECORD(EXPR_CUDA_KERNEL_CALL);
RECORD(EXPR_CXX_UUIDOF_EXPR);
RECORD(EXPR_CXX_UUIDOF_TYPE);
RECORD(EXPR_LAMBDA);
#undef RECORD
}
void ASTWriter::WriteBlockInfoBlock() {
RecordData Record;
Stream.EnterBlockInfoBlock();
#define BLOCK(X) EmitBlockID(X ## _ID, #X, Stream, Record)
#define RECORD(X) EmitRecordID(X, #X, Stream, Record)
// Control Block.
BLOCK(CONTROL_BLOCK);
RECORD(METADATA);
RECORD(MODULE_NAME);
RECORD(MODULE_DIRECTORY);
RECORD(MODULE_MAP_FILE);
RECORD(IMPORTS);
RECORD(ORIGINAL_FILE);
RECORD(ORIGINAL_PCH_DIR);
RECORD(ORIGINAL_FILE_ID);
RECORD(INPUT_FILE_OFFSETS);
BLOCK(OPTIONS_BLOCK);
RECORD(LANGUAGE_OPTIONS);
RECORD(TARGET_OPTIONS);
RECORD(FILE_SYSTEM_OPTIONS);
RECORD(HEADER_SEARCH_OPTIONS);
RECORD(PREPROCESSOR_OPTIONS);
BLOCK(INPUT_FILES_BLOCK);
RECORD(INPUT_FILE);
RECORD(INPUT_FILE_HASH);
// AST Top-Level Block.
BLOCK(AST_BLOCK);
RECORD(TYPE_OFFSET);
RECORD(DECL_OFFSET);
RECORD(IDENTIFIER_OFFSET);
RECORD(IDENTIFIER_TABLE);
RECORD(EAGERLY_DESERIALIZED_DECLS);
RECORD(MODULAR_CODEGEN_DECLS);
RECORD(SPECIAL_TYPES);
RECORD(STATISTICS);
RECORD(TENTATIVE_DEFINITIONS);
RECORD(SELECTOR_OFFSETS);
RECORD(METHOD_POOL);
RECORD(PP_COUNTER_VALUE);
RECORD(SOURCE_LOCATION_OFFSETS);
RECORD(SOURCE_LOCATION_PRELOADS);
RECORD(EXT_VECTOR_DECLS);
RECORD(UNUSED_FILESCOPED_DECLS);
RECORD(PPD_ENTITIES_OFFSETS);
RECORD(VTABLE_USES);
RECORD(PPD_SKIPPED_RANGES);
RECORD(REFERENCED_SELECTOR_POOL);
RECORD(TU_UPDATE_LEXICAL);
RECORD(SEMA_DECL_REFS);
RECORD(WEAK_UNDECLARED_IDENTIFIERS);
RECORD(PENDING_IMPLICIT_INSTANTIATIONS);
RECORD(UPDATE_VISIBLE);
RECORD(DECL_UPDATE_OFFSETS);
RECORD(DECL_UPDATES);
RECORD(CUDA_SPECIAL_DECL_REFS);
RECORD(HEADER_SEARCH_TABLE);
RECORD(FP_PRAGMA_OPTIONS);
RECORD(OPENCL_EXTENSIONS);
RECORD(OPENCL_EXTENSION_TYPES);
RECORD(OPENCL_EXTENSION_DECLS);
RECORD(DELEGATING_CTORS);
RECORD(KNOWN_NAMESPACES);
RECORD(MODULE_OFFSET_MAP);
RECORD(SOURCE_MANAGER_LINE_TABLE);
RECORD(OBJC_CATEGORIES_MAP);
RECORD(FILE_SORTED_DECLS);
RECORD(IMPORTED_MODULES);
RECORD(OBJC_CATEGORIES);
RECORD(MACRO_OFFSET);
RECORD(INTERESTING_IDENTIFIERS);
RECORD(UNDEFINED_BUT_USED);
RECORD(LATE_PARSED_TEMPLATE);
RECORD(OPTIMIZE_PRAGMA_OPTIONS);
RECORD(MSSTRUCT_PRAGMA_OPTIONS);
RECORD(POINTERS_TO_MEMBERS_PRAGMA_OPTIONS);
RECORD(UNUSED_LOCAL_TYPEDEF_NAME_CANDIDATES);
RECORD(DELETE_EXPRS_TO_ANALYZE);
RECORD(CUDA_PRAGMA_FORCE_HOST_DEVICE_DEPTH);
RECORD(PP_CONDITIONAL_STACK);
RECORD(DECLS_TO_CHECK_FOR_DEFERRED_DIAGS);
// SourceManager Block.
BLOCK(SOURCE_MANAGER_BLOCK);
RECORD(SM_SLOC_FILE_ENTRY);
RECORD(SM_SLOC_BUFFER_ENTRY);
RECORD(SM_SLOC_BUFFER_BLOB);
RECORD(SM_SLOC_BUFFER_BLOB_COMPRESSED);
RECORD(SM_SLOC_EXPANSION_ENTRY);
// Preprocessor Block.
BLOCK(PREPROCESSOR_BLOCK);
RECORD(PP_MACRO_DIRECTIVE_HISTORY);
RECORD(PP_MACRO_FUNCTION_LIKE);
RECORD(PP_MACRO_OBJECT_LIKE);
RECORD(PP_MODULE_MACRO);
RECORD(PP_TOKEN);
// Submodule Block.
BLOCK(SUBMODULE_BLOCK);
RECORD(SUBMODULE_METADATA);
RECORD(SUBMODULE_DEFINITION);
RECORD(SUBMODULE_UMBRELLA_HEADER);
RECORD(SUBMODULE_HEADER);
RECORD(SUBMODULE_TOPHEADER);
RECORD(SUBMODULE_UMBRELLA_DIR);
RECORD(SUBMODULE_IMPORTS);
RECORD(SUBMODULE_EXPORTS);
RECORD(SUBMODULE_REQUIRES);
RECORD(SUBMODULE_EXCLUDED_HEADER);
RECORD(SUBMODULE_LINK_LIBRARY);
RECORD(SUBMODULE_CONFIG_MACRO);
RECORD(SUBMODULE_CONFLICT);
RECORD(SUBMODULE_PRIVATE_HEADER);
RECORD(SUBMODULE_TEXTUAL_HEADER);
RECORD(SUBMODULE_PRIVATE_TEXTUAL_HEADER);
RECORD(SUBMODULE_INITIALIZERS);
RECORD(SUBMODULE_EXPORT_AS);
// Comments Block.
BLOCK(COMMENTS_BLOCK);
RECORD(COMMENTS_RAW_COMMENT);
// Decls and Types block.
BLOCK(DECLTYPES_BLOCK);
RECORD(TYPE_EXT_QUAL);
RECORD(TYPE_COMPLEX);
RECORD(TYPE_POINTER);
RECORD(TYPE_BLOCK_POINTER);
RECORD(TYPE_LVALUE_REFERENCE);
RECORD(TYPE_RVALUE_REFERENCE);
RECORD(TYPE_MEMBER_POINTER);
RECORD(TYPE_CONSTANT_ARRAY);
RECORD(TYPE_INCOMPLETE_ARRAY);
RECORD(TYPE_VARIABLE_ARRAY);
RECORD(TYPE_VECTOR);
RECORD(TYPE_EXT_VECTOR);
RECORD(TYPE_FUNCTION_NO_PROTO);
RECORD(TYPE_FUNCTION_PROTO);
RECORD(TYPE_TYPEDEF);
RECORD(TYPE_TYPEOF_EXPR);
RECORD(TYPE_TYPEOF);
RECORD(TYPE_RECORD);
RECORD(TYPE_ENUM);
RECORD(TYPE_OBJC_INTERFACE);
RECORD(TYPE_OBJC_OBJECT_POINTER);
RECORD(TYPE_DECLTYPE);
RECORD(TYPE_ELABORATED);
RECORD(TYPE_SUBST_TEMPLATE_TYPE_PARM);
RECORD(TYPE_UNRESOLVED_USING);
RECORD(TYPE_INJECTED_CLASS_NAME);
RECORD(TYPE_OBJC_OBJECT);
RECORD(TYPE_TEMPLATE_TYPE_PARM);
RECORD(TYPE_TEMPLATE_SPECIALIZATION);
RECORD(TYPE_DEPENDENT_NAME);
RECORD(TYPE_DEPENDENT_TEMPLATE_SPECIALIZATION);
RECORD(TYPE_DEPENDENT_SIZED_ARRAY);
RECORD(TYPE_PAREN);
RECORD(TYPE_MACRO_QUALIFIED);
RECORD(TYPE_PACK_EXPANSION);
RECORD(TYPE_ATTRIBUTED);
RECORD(TYPE_SUBST_TEMPLATE_TYPE_PARM_PACK);
RECORD(TYPE_AUTO);
RECORD(TYPE_UNARY_TRANSFORM);
RECORD(TYPE_ATOMIC);
RECORD(TYPE_DECAYED);
RECORD(TYPE_ADJUSTED);
RECORD(TYPE_OBJC_TYPE_PARAM);
RECORD(LOCAL_REDECLARATIONS);
RECORD(DECL_TYPEDEF);
RECORD(DECL_TYPEALIAS);
RECORD(DECL_ENUM);
RECORD(DECL_RECORD);
RECORD(DECL_ENUM_CONSTANT);
RECORD(DECL_FUNCTION);
RECORD(DECL_OBJC_METHOD);
RECORD(DECL_OBJC_INTERFACE);
RECORD(DECL_OBJC_PROTOCOL);
RECORD(DECL_OBJC_IVAR);
RECORD(DECL_OBJC_AT_DEFS_FIELD);
RECORD(DECL_OBJC_CATEGORY);
RECORD(DECL_OBJC_CATEGORY_IMPL);
RECORD(DECL_OBJC_IMPLEMENTATION);
RECORD(DECL_OBJC_COMPATIBLE_ALIAS);
RECORD(DECL_OBJC_PROPERTY);
RECORD(DECL_OBJC_PROPERTY_IMPL);
RECORD(DECL_FIELD);
RECORD(DECL_MS_PROPERTY);
RECORD(DECL_VAR);
RECORD(DECL_IMPLICIT_PARAM);
RECORD(DECL_PARM_VAR);
RECORD(DECL_FILE_SCOPE_ASM);
RECORD(DECL_BLOCK);
RECORD(DECL_CONTEXT_LEXICAL);
RECORD(DECL_CONTEXT_VISIBLE);
RECORD(DECL_NAMESPACE);
RECORD(DECL_NAMESPACE_ALIAS);
RECORD(DECL_USING);
RECORD(DECL_USING_SHADOW);
RECORD(DECL_USING_DIRECTIVE);
RECORD(DECL_UNRESOLVED_USING_VALUE);
RECORD(DECL_UNRESOLVED_USING_TYPENAME);
RECORD(DECL_LINKAGE_SPEC);
RECORD(DECL_CXX_RECORD);
RECORD(DECL_CXX_METHOD);
RECORD(DECL_CXX_CONSTRUCTOR);
RECORD(DECL_CXX_DESTRUCTOR);
RECORD(DECL_CXX_CONVERSION);
RECORD(DECL_ACCESS_SPEC);
RECORD(DECL_FRIEND);
RECORD(DECL_FRIEND_TEMPLATE);
RECORD(DECL_CLASS_TEMPLATE);
RECORD(DECL_CLASS_TEMPLATE_SPECIALIZATION);
RECORD(DECL_CLASS_TEMPLATE_PARTIAL_SPECIALIZATION);
RECORD(DECL_VAR_TEMPLATE);
RECORD(DECL_VAR_TEMPLATE_SPECIALIZATION);
RECORD(DECL_VAR_TEMPLATE_PARTIAL_SPECIALIZATION);
RECORD(DECL_FUNCTION_TEMPLATE);
RECORD(DECL_TEMPLATE_TYPE_PARM);
RECORD(DECL_NON_TYPE_TEMPLATE_PARM);
RECORD(DECL_TEMPLATE_TEMPLATE_PARM);
RECORD(DECL_CONCEPT);
RECORD(DECL_REQUIRES_EXPR_BODY);
RECORD(DECL_TYPE_ALIAS_TEMPLATE);
RECORD(DECL_STATIC_ASSERT);
RECORD(DECL_CXX_BASE_SPECIFIERS);
RECORD(DECL_CXX_CTOR_INITIALIZERS);
RECORD(DECL_INDIRECTFIELD);
RECORD(DECL_EXPANDED_NON_TYPE_TEMPLATE_PARM_PACK);
RECORD(DECL_EXPANDED_TEMPLATE_TEMPLATE_PARM_PACK);
RECORD(DECL_CLASS_SCOPE_FUNCTION_SPECIALIZATION);
RECORD(DECL_IMPORT);
RECORD(DECL_OMP_THREADPRIVATE);
RECORD(DECL_EMPTY);
RECORD(DECL_OBJC_TYPE_PARAM);
RECORD(DECL_OMP_CAPTUREDEXPR);
RECORD(DECL_PRAGMA_COMMENT);
RECORD(DECL_PRAGMA_DETECT_MISMATCH);
RECORD(DECL_OMP_DECLARE_REDUCTION);
RECORD(DECL_OMP_ALLOCATE);
// Statements and Exprs can occur in the Decls and Types block.
AddStmtsExprs(Stream, Record);
BLOCK(PREPROCESSOR_DETAIL_BLOCK);
RECORD(PPD_MACRO_EXPANSION);
RECORD(PPD_MACRO_DEFINITION);
RECORD(PPD_INCLUSION_DIRECTIVE);
// Decls and Types block.
BLOCK(EXTENSION_BLOCK);
RECORD(EXTENSION_METADATA);
BLOCK(UNHASHED_CONTROL_BLOCK);
RECORD(SIGNATURE);
RECORD(AST_BLOCK_HASH);
RECORD(DIAGNOSTIC_OPTIONS);
RECORD(DIAG_PRAGMA_MAPPINGS);
#undef RECORD
#undef BLOCK
Stream.ExitBlock();
}
/// Prepares a path for being written to an AST file by converting it
/// to an absolute path and removing nested './'s.
///
/// \return \c true if the path was changed.
static bool cleanPathForOutput(FileManager &FileMgr,
SmallVectorImpl<char> &Path) {
bool Changed = FileMgr.makeAbsolutePath(Path);
return Changed | llvm::sys::path::remove_dots(Path);
}
/// Adjusts the given filename to only write out the portion of the
/// filename that is not part of the system root directory.
///
/// \param Filename the file name to adjust.
///
/// \param BaseDir When non-NULL, the PCH file is a relocatable AST file and
/// the returned filename will be adjusted by this root directory.
///
/// \returns either the original filename (if it needs no adjustment) or the
/// adjusted filename (which points into the @p Filename parameter).
static const char *
adjustFilenameForRelocatableAST(const char *Filename, StringRef BaseDir) {
assert(Filename && "No file name to adjust?");
if (BaseDir.empty())
return Filename;
// Verify that the filename and the system root have the same prefix.
unsigned Pos = 0;
for (; Filename[Pos] && Pos < BaseDir.size(); ++Pos)
if (Filename[Pos] != BaseDir[Pos])
return Filename; // Prefixes don't match.
// We hit the end of the filename before we hit the end of the system root.
if (!Filename[Pos])
return Filename;
// If there's not a path separator at the end of the base directory nor
// immediately after it, then this isn't within the base directory.
if (!llvm::sys::path::is_separator(Filename[Pos])) {
if (!llvm::sys::path::is_separator(BaseDir.back()))
return Filename;
} else {
// If the file name has a '/' at the current position, skip over the '/'.
// We distinguish relative paths from absolute paths by the
// absence of '/' at the beginning of relative paths.
//
// FIXME: This is wrong. We distinguish them by asking if the path is
// absolute, which isn't the same thing. And there might be multiple '/'s
// in a row. Use a better mechanism to indicate whether we have emitted an
// absolute or relative path.
++Pos;
}
return Filename + Pos;
}
std::pair<ASTFileSignature, ASTFileSignature>
ASTWriter::createSignature(StringRef AllBytes, StringRef ASTBlockBytes) {
llvm::SHA1 Hasher;
Hasher.update(ASTBlockBytes);
auto Hash = Hasher.result();
ASTFileSignature ASTBlockHash = ASTFileSignature::create(Hash);
// Add the remaining bytes (i.e. bytes before the unhashed control block that
// are not part of the AST block).
Hasher.update(
AllBytes.take_front(ASTBlockBytes.bytes_end() - AllBytes.bytes_begin()));
Hasher.update(
AllBytes.take_back(AllBytes.bytes_end() - ASTBlockBytes.bytes_end()));
Hash = Hasher.result();
ASTFileSignature Signature = ASTFileSignature::create(Hash);
return std::make_pair(ASTBlockHash, Signature);
}
ASTFileSignature ASTWriter::writeUnhashedControlBlock(Preprocessor &PP,
ASTContext &Context) {
using namespace llvm;
// Flush first to prepare the PCM hash (signature).
Stream.FlushToWord();
auto StartOfUnhashedControl = Stream.GetCurrentBitNo() >> 3;
// Enter the block and prepare to write records.
RecordData Record;
Stream.EnterSubblock(UNHASHED_CONTROL_BLOCK_ID, 5);
// For implicit modules, write the hash of the PCM as its signature.
ASTFileSignature Signature;
if (WritingModule &&
PP.getHeaderSearchInfo().getHeaderSearchOpts().ModulesHashContent) {
ASTFileSignature ASTBlockHash;
auto ASTBlockStartByte = ASTBlockRange.first >> 3;
auto ASTBlockByteLength = (ASTBlockRange.second >> 3) - ASTBlockStartByte;
std::tie(ASTBlockHash, Signature) = createSignature(
StringRef(Buffer.begin(), StartOfUnhashedControl),
StringRef(Buffer.begin() + ASTBlockStartByte, ASTBlockByteLength));
Record.append(ASTBlockHash.begin(), ASTBlockHash.end());
Stream.EmitRecord(AST_BLOCK_HASH, Record);
Record.clear();
Record.append(Signature.begin(), Signature.end());
Stream.EmitRecord(SIGNATURE, Record);
Record.clear();
}
// Diagnostic options.
const auto &Diags = Context.getDiagnostics();
const DiagnosticOptions &DiagOpts = Diags.getDiagnosticOptions();
#define DIAGOPT(Name, Bits, Default) Record.push_back(DiagOpts.Name);
#define ENUM_DIAGOPT(Name, Type, Bits, Default) \
Record.push_back(static_cast<unsigned>(DiagOpts.get##Name()));
#include "clang/Basic/DiagnosticOptions.def"
Record.push_back(DiagOpts.Warnings.size());
for (unsigned I = 0, N = DiagOpts.Warnings.size(); I != N; ++I)
AddString(DiagOpts.Warnings[I], Record);
Record.push_back(DiagOpts.Remarks.size());
for (unsigned I = 0, N = DiagOpts.Remarks.size(); I != N; ++I)
AddString(DiagOpts.Remarks[I], Record);
// Note: we don't serialize the log or serialization file names, because they
// are generally transient files and will almost always be overridden.
Stream.EmitRecord(DIAGNOSTIC_OPTIONS, Record);
Record.clear();
// Write out the diagnostic/pragma mappings.
WritePragmaDiagnosticMappings(Diags, /* isModule = */ WritingModule);
// Header search entry usage.
auto HSEntryUsage = PP.getHeaderSearchInfo().computeUserEntryUsage();
auto Abbrev = std::make_shared<BitCodeAbbrev>();
Abbrev->Add(BitCodeAbbrevOp(HEADER_SEARCH_ENTRY_USAGE));
Abbrev->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32)); // Number of bits.
Abbrev->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Blob)); // Bit vector.
unsigned HSUsageAbbrevCode = Stream.EmitAbbrev(std::move(Abbrev));
{
RecordData::value_type Record[] = {HEADER_SEARCH_ENTRY_USAGE,
HSEntryUsage.size()};
Stream.EmitRecordWithBlob(HSUsageAbbrevCode, Record, bytes(HSEntryUsage));
}
// Leave the options block.
Stream.ExitBlock();
return Signature;
}
/// Write the control block.
void ASTWriter::WriteControlBlock(Preprocessor &PP, ASTContext &Context,
StringRef isysroot,
const std::string &OutputFile) {
using namespace llvm;
Stream.EnterSubblock(CONTROL_BLOCK_ID, 5);
RecordData Record;
// Metadata
auto MetadataAbbrev = std::make_shared<BitCodeAbbrev>();
MetadataAbbrev->Add(BitCodeAbbrevOp(METADATA));
MetadataAbbrev->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 16)); // Major
MetadataAbbrev->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 16)); // Minor
MetadataAbbrev->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 16)); // Clang maj.
MetadataAbbrev->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 16)); // Clang min.
MetadataAbbrev->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // Relocatable
MetadataAbbrev->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // Timestamps
MetadataAbbrev->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // Errors
MetadataAbbrev->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Blob)); // SVN branch/tag
unsigned MetadataAbbrevCode = Stream.EmitAbbrev(std::move(MetadataAbbrev));
assert((!WritingModule || isysroot.empty()) &&
"writing module as a relocatable PCH?");
{
RecordData::value_type Record[] = {
METADATA,
VERSION_MAJOR,
VERSION_MINOR,
CLANG_VERSION_MAJOR,
CLANG_VERSION_MINOR,
!isysroot.empty(),
IncludeTimestamps,
ASTHasCompilerErrors};
Stream.EmitRecordWithBlob(MetadataAbbrevCode, Record,
getClangFullRepositoryVersion());
}
if (WritingModule) {
// Module name
auto Abbrev = std::make_shared<BitCodeAbbrev>();
Abbrev->Add(BitCodeAbbrevOp(MODULE_NAME));
Abbrev->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Blob)); // Name
unsigned AbbrevCode = Stream.EmitAbbrev(std::move(Abbrev));
RecordData::value_type Record[] = {MODULE_NAME};
Stream.EmitRecordWithBlob(AbbrevCode, Record, WritingModule->Name);
}
if (WritingModule && WritingModule->Directory) {
SmallString<128> BaseDir(WritingModule->Directory->getName());
cleanPathForOutput(Context.getSourceManager().getFileManager(), BaseDir);
// If the home of the module is the current working directory, then we
// want to pick up the cwd of the build process loading the module, not
// our cwd, when we load this module.
if (!PP.getHeaderSearchInfo()
.getHeaderSearchOpts()
.ModuleMapFileHomeIsCwd ||
WritingModule->Directory->getName() != StringRef(".")) {
// Module directory.
auto Abbrev = std::make_shared<BitCodeAbbrev>();
Abbrev->Add(BitCodeAbbrevOp(MODULE_DIRECTORY));
Abbrev->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Blob)); // Directory
unsigned AbbrevCode = Stream.EmitAbbrev(std::move(Abbrev));
RecordData::value_type Record[] = {MODULE_DIRECTORY};
Stream.EmitRecordWithBlob(AbbrevCode, Record, BaseDir);
}
// Write out all other paths relative to the base directory if possible.
BaseDirectory.assign(BaseDir.begin(), BaseDir.end());
} else if (!isysroot.empty()) {
// Write out paths relative to the sysroot if possible.
BaseDirectory = std::string(isysroot);
}
// Module map file
if (WritingModule && WritingModule->Kind == Module::ModuleMapModule) {
Record.clear();
auto &Map = PP.getHeaderSearchInfo().getModuleMap();
AddPath(WritingModule->PresumedModuleMapFile.empty()
? Map.getModuleMapFileForUniquing(WritingModule)->getName()
: StringRef(WritingModule->PresumedModuleMapFile),
Record);
// Additional module map files.
if (auto *AdditionalModMaps =
Map.getAdditionalModuleMapFiles(WritingModule)) {
Record.push_back(AdditionalModMaps->size());
for (const FileEntry *F : *AdditionalModMaps)
AddPath(F->getName(), Record);
} else {
Record.push_back(0);
}
Stream.EmitRecord(MODULE_MAP_FILE, Record);
}
// Imports
if (Chain) {
serialization::ModuleManager &Mgr = Chain->getModuleManager();
Record.clear();
for (ModuleFile &M : Mgr) {
// Skip modules that weren't directly imported.
if (!M.isDirectlyImported())
continue;
Record.push_back((unsigned)M.Kind); // FIXME: Stable encoding
AddSourceLocation(M.ImportLoc, Record);
// If we have calculated signature, there is no need to store
// the size or timestamp.
Record.push_back(M.Signature ? 0 : M.File->getSize());
Record.push_back(M.Signature ? 0 : getTimestampForOutput(M.File));
for (auto I : M.Signature)
Record.push_back(I);
AddString(M.ModuleName, Record);
AddPath(M.FileName, Record);
}
Stream.EmitRecord(IMPORTS, Record);
}
// Write the options block.
Stream.EnterSubblock(OPTIONS_BLOCK_ID, 4);
// Language options.
Record.clear();
const LangOptions &LangOpts = Context.getLangOpts();
#define LANGOPT(Name, Bits, Default, Description) \
Record.push_back(LangOpts.Name);
#define ENUM_LANGOPT(Name, Type, Bits, Default, Description) \
Record.push_back(static_cast<unsigned>(LangOpts.get##Name()));
#include "clang/Basic/LangOptions.def"
#define SANITIZER(NAME, ID) \
Record.push_back(LangOpts.Sanitize.has(SanitizerKind::ID));
#include "clang/Basic/Sanitizers.def"
Record.push_back(LangOpts.ModuleFeatures.size());
for (StringRef Feature : LangOpts.ModuleFeatures)
AddString(Feature, Record);
Record.push_back((unsigned) LangOpts.ObjCRuntime.getKind());
AddVersionTuple(LangOpts.ObjCRuntime.getVersion(), Record);
AddString(LangOpts.CurrentModule, Record);
// Comment options.
Record.push_back(LangOpts.CommentOpts.BlockCommandNames.size());
for (const auto &I : LangOpts.CommentOpts.BlockCommandNames) {
AddString(I, Record);
}
Record.push_back(LangOpts.CommentOpts.ParseAllComments);
// OpenMP offloading options.
Record.push_back(LangOpts.OMPTargetTriples.size());
for (auto &T : LangOpts.OMPTargetTriples)
AddString(T.getTriple(), Record);
AddString(LangOpts.OMPHostIRFile, Record);
Stream.EmitRecord(LANGUAGE_OPTIONS, Record);
// Target options.
Record.clear();
const TargetInfo &Target = Context.getTargetInfo();
const TargetOptions &TargetOpts = Target.getTargetOpts();
AddString(TargetOpts.Triple, Record);
AddString(TargetOpts.CPU, Record);
AddString(TargetOpts.TuneCPU, Record);
AddString(TargetOpts.ABI, Record);
Record.push_back(TargetOpts.FeaturesAsWritten.size());
for (unsigned I = 0, N = TargetOpts.FeaturesAsWritten.size(); I != N; ++I) {
AddString(TargetOpts.FeaturesAsWritten[I], Record);
}
Record.push_back(TargetOpts.Features.size());
for (unsigned I = 0, N = TargetOpts.Features.size(); I != N; ++I) {
AddString(TargetOpts.Features[I], Record);
}
Stream.EmitRecord(TARGET_OPTIONS, Record);
// File system options.
Record.clear();
const FileSystemOptions &FSOpts =
Context.getSourceManager().getFileManager().getFileSystemOpts();
AddString(FSOpts.WorkingDir, Record);
Stream.EmitRecord(FILE_SYSTEM_OPTIONS, Record);
// Header search options.
Record.clear();
const HeaderSearchOptions &HSOpts
= PP.getHeaderSearchInfo().getHeaderSearchOpts();
AddString(HSOpts.Sysroot, Record);
// Include entries.
Record.push_back(HSOpts.UserEntries.size());
for (unsigned I = 0, N = HSOpts.UserEntries.size(); I != N; ++I) {
const HeaderSearchOptions::Entry &Entry = HSOpts.UserEntries[I];
AddString(Entry.Path, Record);
Record.push_back(static_cast<unsigned>(Entry.Group));
Record.push_back(Entry.IsFramework);
Record.push_back(Entry.IgnoreSysRoot);
}
// System header prefixes.
Record.push_back(HSOpts.SystemHeaderPrefixes.size());
for (unsigned I = 0, N = HSOpts.SystemHeaderPrefixes.size(); I != N; ++I) {
AddString(HSOpts.SystemHeaderPrefixes[I].Prefix, Record);
Record.push_back(HSOpts.SystemHeaderPrefixes[I].IsSystemHeader);
}
AddString(HSOpts.ResourceDir, Record);
AddString(HSOpts.ModuleCachePath, Record);
AddString(HSOpts.ModuleUserBuildPath, Record);
Record.push_back(HSOpts.DisableModuleHash);
Record.push_back(HSOpts.ImplicitModuleMaps);
Record.push_back(HSOpts.ModuleMapFileHomeIsCwd);
Record.push_back(HSOpts.EnablePrebuiltImplicitModules);
Record.push_back(HSOpts.UseBuiltinIncludes);
Record.push_back(HSOpts.UseStandardSystemIncludes);
Record.push_back(HSOpts.UseStandardCXXIncludes);
Record.push_back(HSOpts.UseLibcxx);
// Write out the specific module cache path that contains the module files.
AddString(PP.getHeaderSearchInfo().getModuleCachePath(), Record);
Stream.EmitRecord(HEADER_SEARCH_OPTIONS, Record);
// Preprocessor options.
Record.clear();
const PreprocessorOptions &PPOpts = PP.getPreprocessorOpts();
// Macro definitions.
Record.push_back(PPOpts.Macros.size());
for (unsigned I = 0, N = PPOpts.Macros.size(); I != N; ++I) {
AddString(PPOpts.Macros[I].first, Record);
Record.push_back(PPOpts.Macros[I].second);
}
// Includes
Record.push_back(PPOpts.Includes.size());
for (unsigned I = 0, N = PPOpts.Includes.size(); I != N; ++I)
AddString(PPOpts.Includes[I], Record);
// Macro includes
Record.push_back(PPOpts.MacroIncludes.size());
for (unsigned I = 0, N = PPOpts.MacroIncludes.size(); I != N; ++I)
AddString(PPOpts.MacroIncludes[I], Record);
Record.push_back(PPOpts.UsePredefines);
// Detailed record is important since it is used for the module cache hash.
Record.push_back(PPOpts.DetailedRecord);
AddString(PPOpts.ImplicitPCHInclude, Record);
Record.push_back(static_cast<unsigned>(PPOpts.ObjCXXARCStandardLibrary));
Stream.EmitRecord(PREPROCESSOR_OPTIONS, Record);
// Leave the options block.
Stream.ExitBlock();
// Original file name and file ID
SourceManager &SM = Context.getSourceManager();
if (const FileEntry *MainFile = SM.getFileEntryForID(SM.getMainFileID())) {
auto FileAbbrev = std::make_shared<BitCodeAbbrev>();
FileAbbrev->Add(BitCodeAbbrevOp(ORIGINAL_FILE));
FileAbbrev->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // File ID
FileAbbrev->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Blob)); // File name
unsigned FileAbbrevCode = Stream.EmitAbbrev(std::move(FileAbbrev));
Record.clear();
Record.push_back(ORIGINAL_FILE);
Record.push_back(SM.getMainFileID().getOpaqueValue());
EmitRecordWithPath(FileAbbrevCode, Record, MainFile->getName());
}
Record.clear();
Record.push_back(SM.getMainFileID().getOpaqueValue());
Stream.EmitRecord(ORIGINAL_FILE_ID, Record);
// Original PCH directory
if (!OutputFile.empty() && OutputFile != "-") {
auto Abbrev = std::make_shared<BitCodeAbbrev>();
Abbrev->Add(BitCodeAbbrevOp(ORIGINAL_PCH_DIR));
Abbrev->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Blob)); // File name
unsigned AbbrevCode = Stream.EmitAbbrev(std::move(Abbrev));
SmallString<128> OutputPath(OutputFile);
SM.getFileManager().makeAbsolutePath(OutputPath);
StringRef origDir = llvm::sys::path::parent_path(OutputPath);
RecordData::value_type Record[] = {ORIGINAL_PCH_DIR};
Stream.EmitRecordWithBlob(AbbrevCode, Record, origDir);
}
std::set<const FileEntry *> AffectingModuleMaps;
if (WritingModule) {
AffectingModuleMaps =
GetAllModuleMaps(PP.getHeaderSearchInfo(), WritingModule);
}
WriteInputFiles(Context.SourceMgr,
PP.getHeaderSearchInfo().getHeaderSearchOpts(),
AffectingModuleMaps);
Stream.ExitBlock();
}
namespace {
/// An input file.
struct InputFileEntry {
const FileEntry *File;
bool IsSystemFile;
bool IsTransient;
bool BufferOverridden;
bool IsTopLevelModuleMap;
uint32_t ContentHash[2];
};
} // namespace
void ASTWriter::WriteInputFiles(
SourceManager &SourceMgr, HeaderSearchOptions &HSOpts,
std::set<const FileEntry *> &AffectingModuleMaps) {
using namespace llvm;
Stream.EnterSubblock(INPUT_FILES_BLOCK_ID, 4);
// Create input-file abbreviation.
auto IFAbbrev = std::make_shared<BitCodeAbbrev>();
IFAbbrev->Add(BitCodeAbbrevOp(INPUT_FILE));
IFAbbrev->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // ID
IFAbbrev->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 12)); // Size
IFAbbrev->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 32)); // Modification time
IFAbbrev->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // Overridden
IFAbbrev->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // Transient
IFAbbrev->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // Module map
IFAbbrev->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Blob)); // File name
unsigned IFAbbrevCode = Stream.EmitAbbrev(std::move(IFAbbrev));
// Create input file hash abbreviation.
auto IFHAbbrev = std::make_shared<BitCodeAbbrev>();
IFHAbbrev->Add(BitCodeAbbrevOp(INPUT_FILE_HASH));
IFHAbbrev->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32));
IFHAbbrev->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32));
unsigned IFHAbbrevCode = Stream.EmitAbbrev(std::move(IFHAbbrev));
// Get all ContentCache objects for files, sorted by whether the file is a
// system one or not. System files go at the back, users files at the front.
std::deque<InputFileEntry> SortedFiles;
for (unsigned I = 1, N = SourceMgr.local_sloc_entry_size(); I != N; ++I) {
// Get this source location entry.
const SrcMgr::SLocEntry *SLoc = &SourceMgr.getLocalSLocEntry(I);
assert(&SourceMgr.getSLocEntry(FileID::get(I)) == SLoc);
// We only care about file entries that were not overridden.
if (!SLoc->isFile())
continue;
const SrcMgr::FileInfo &File = SLoc->getFile();
const SrcMgr::ContentCache *Cache = &File.getContentCache();
if (!Cache->OrigEntry)
continue;
if (isModuleMap(File.getFileCharacteristic()) &&
!isSystem(File.getFileCharacteristic()) &&
!AffectingModuleMaps.empty() &&
AffectingModuleMaps.find(Cache->OrigEntry) ==
AffectingModuleMaps.end()) {
SkippedModuleMaps.insert(Cache->OrigEntry);
// Do not emit modulemaps that do not affect current module.
continue;
}
InputFileEntry Entry;
Entry.File = Cache->OrigEntry;
Entry.IsSystemFile = isSystem(File.getFileCharacteristic());
Entry.IsTransient = Cache->IsTransient;
Entry.BufferOverridden = Cache->BufferOverridden;
Entry.IsTopLevelModuleMap = isModuleMap(File.getFileCharacteristic()) &&
File.getIncludeLoc().isInvalid();
auto ContentHash = hash_code(-1);
if (PP->getHeaderSearchInfo()
.getHeaderSearchOpts()
.ValidateASTInputFilesContent) {
auto MemBuff = Cache->getBufferIfLoaded();
if (MemBuff)
ContentHash = hash_value(MemBuff->getBuffer());
else
// FIXME: The path should be taken from the FileEntryRef.
PP->Diag(SourceLocation(), diag::err_module_unable_to_hash_content)
<< Entry.File->getName();
}
auto CH = llvm::APInt(64, ContentHash);
Entry.ContentHash[0] =
static_cast<uint32_t>(CH.getLoBits(32).getZExtValue());
Entry.ContentHash[1] =
static_cast<uint32_t>(CH.getHiBits(32).getZExtValue());
if (Entry.IsSystemFile)
SortedFiles.push_back(Entry);
else
SortedFiles.push_front(Entry);
}
unsigned UserFilesNum = 0;
// Write out all of the input files.
std::vector<uint64_t> InputFileOffsets;
for (const auto &Entry : SortedFiles) {
uint32_t &InputFileID = InputFileIDs[Entry.File];
if (InputFileID != 0)
continue; // already recorded this file.
// Record this entry's offset.
InputFileOffsets.push_back(Stream.GetCurrentBitNo());
InputFileID = InputFileOffsets.size();
if (!Entry.IsSystemFile)
++UserFilesNum;
// Emit size/modification time for this file.
// And whether this file was overridden.
{
RecordData::value_type Record[] = {
INPUT_FILE,
InputFileOffsets.size(),
(uint64_t)Entry.File->getSize(),
(uint64_t)getTimestampForOutput(Entry.File),
Entry.BufferOverridden,
Entry.IsTransient,
Entry.IsTopLevelModuleMap};
// FIXME: The path should be taken from the FileEntryRef.
EmitRecordWithPath(IFAbbrevCode, Record, Entry.File->getName());
}
// Emit content hash for this file.
{
RecordData::value_type Record[] = {INPUT_FILE_HASH, Entry.ContentHash[0],
Entry.ContentHash[1]};
Stream.EmitRecordWithAbbrev(IFHAbbrevCode, Record);
}
}
Stream.ExitBlock();
// Create input file offsets abbreviation.
auto OffsetsAbbrev = std::make_shared<BitCodeAbbrev>();
OffsetsAbbrev->Add(BitCodeAbbrevOp(INPUT_FILE_OFFSETS));
OffsetsAbbrev->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // # input files
OffsetsAbbrev->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // # non-system
// input files
OffsetsAbbrev->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Blob)); // Array
unsigned OffsetsAbbrevCode = Stream.EmitAbbrev(std::move(OffsetsAbbrev));
// Write input file offsets.
RecordData::value_type Record[] = {INPUT_FILE_OFFSETS,
InputFileOffsets.size(), UserFilesNum};
Stream.EmitRecordWithBlob(OffsetsAbbrevCode, Record, bytes(InputFileOffsets));
}
//===----------------------------------------------------------------------===//
// Source Manager Serialization
//===----------------------------------------------------------------------===//
/// Create an abbreviation for the SLocEntry that refers to a
/// file.
static unsigned CreateSLocFileAbbrev(llvm::BitstreamWriter &Stream) {
using namespace llvm;
auto Abbrev = std::make_shared<BitCodeAbbrev>();
Abbrev->Add(BitCodeAbbrevOp(SM_SLOC_FILE_ENTRY));
Abbrev->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // Offset
Abbrev->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // Include location
Abbrev->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 3)); // Characteristic
Abbrev->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // Line directives
// FileEntry fields.
Abbrev->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // Input File ID
Abbrev->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // NumCreatedFIDs
Abbrev->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 24)); // FirstDeclIndex
Abbrev->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // NumDecls
return Stream.EmitAbbrev(std::move(Abbrev));
}
/// Create an abbreviation for the SLocEntry that refers to a
/// buffer.
static unsigned CreateSLocBufferAbbrev(llvm::BitstreamWriter &Stream) {
using namespace llvm;
auto Abbrev = std::make_shared<BitCodeAbbrev>();
Abbrev->Add(BitCodeAbbrevOp(SM_SLOC_BUFFER_ENTRY));
Abbrev->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // Offset
Abbrev->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // Include location
Abbrev->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 3)); // Characteristic
Abbrev->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // Line directives
Abbrev->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Blob)); // Buffer name blob
return Stream.EmitAbbrev(std::move(Abbrev));
}
/// Create an abbreviation for the SLocEntry that refers to a
/// buffer's blob.
static unsigned CreateSLocBufferBlobAbbrev(llvm::BitstreamWriter &Stream,
bool Compressed) {
using namespace llvm;
auto Abbrev = std::make_shared<BitCodeAbbrev>();
Abbrev->Add(BitCodeAbbrevOp(Compressed ? SM_SLOC_BUFFER_BLOB_COMPRESSED
: SM_SLOC_BUFFER_BLOB));
if (Compressed)
Abbrev->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // Uncompressed size
Abbrev->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Blob)); // Blob
return Stream.EmitAbbrev(std::move(Abbrev));
}
/// Create an abbreviation for the SLocEntry that refers to a macro
/// expansion.
static unsigned CreateSLocExpansionAbbrev(llvm::BitstreamWriter &Stream) {
using namespace llvm;
auto Abbrev = std::make_shared<BitCodeAbbrev>();
Abbrev->Add(BitCodeAbbrevOp(SM_SLOC_EXPANSION_ENTRY));
Abbrev->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // Offset
Abbrev->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // Spelling location
Abbrev->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // Start location
Abbrev->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // End location
Abbrev->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // Is token range
Abbrev->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // Token length
return Stream.EmitAbbrev(std::move(Abbrev));
}
/// Emit key length and data length as ULEB-encoded data, and return them as a
/// pair.
static std::pair<unsigned, unsigned>
emitULEBKeyDataLength(unsigned KeyLen, unsigned DataLen, raw_ostream &Out) {
llvm::encodeULEB128(KeyLen, Out);
llvm::encodeULEB128(DataLen, Out);
return std::make_pair(KeyLen, DataLen);
}
namespace {
// Trait used for the on-disk hash table of header search information.
class HeaderFileInfoTrait {
ASTWriter &Writer;
// Keep track of the framework names we've used during serialization.
SmallString<128> FrameworkStringData;
llvm::StringMap<unsigned> FrameworkNameOffset;
public:
HeaderFileInfoTrait(ASTWriter &Writer) : Writer(Writer) {}
struct key_type {
StringRef Filename;
off_t Size;
time_t ModTime;
};
using key_type_ref = const key_type &;
using UnresolvedModule =
llvm::PointerIntPair<Module *, 2, ModuleMap::ModuleHeaderRole>;
struct data_type {
const HeaderFileInfo &HFI;
ArrayRef<ModuleMap::KnownHeader> KnownHeaders;
UnresolvedModule Unresolved;
};
using data_type_ref = const data_type &;
using hash_value_type = unsigned;
using offset_type = unsigned;
hash_value_type ComputeHash(key_type_ref key) {
// The hash is based only on size/time of the file, so that the reader can
// match even when symlinking or excess path elements ("foo/../", "../")
// change the form of the name. However, complete path is still the key.
return llvm::hash_combine(key.Size, key.ModTime);
}
std::pair<unsigned, unsigned>
EmitKeyDataLength(raw_ostream& Out, key_type_ref key, data_type_ref Data) {
unsigned KeyLen = key.Filename.size() + 1 + 8 + 8;
unsigned DataLen = 1 + 2 + 4 + 4;
for (auto ModInfo : Data.KnownHeaders)
if (Writer.getLocalOrImportedSubmoduleID(ModInfo.getModule()))
DataLen += 4;
if (Data.Unresolved.getPointer())
DataLen += 4;
return emitULEBKeyDataLength(KeyLen, DataLen, Out);
}
void EmitKey(raw_ostream& Out, key_type_ref key, unsigned KeyLen) {
using namespace llvm::support;
endian::Writer LE(Out, little);
LE.write<uint64_t>(key.Size);
KeyLen -= 8;
LE.write<uint64_t>(key.ModTime);
KeyLen -= 8;
Out.write(key.Filename.data(), KeyLen);
}
void EmitData(raw_ostream &Out, key_type_ref key,
data_type_ref Data, unsigned DataLen) {
using namespace llvm::support;
endian::Writer LE(Out, little);
uint64_t Start = Out.tell(); (void)Start;
unsigned char Flags = (Data.HFI.isImport << 5)
| (Data.HFI.isPragmaOnce << 4)
| (Data.HFI.DirInfo << 1)
| Data.HFI.IndexHeaderMapHeader;
LE.write<uint8_t>(Flags);
LE.write<uint16_t>(Data.HFI.NumIncludes);
if (!Data.HFI.ControllingMacro)
LE.write<uint32_t>(Data.HFI.ControllingMacroID);
else
LE.write<uint32_t>(Writer.getIdentifierRef(Data.HFI.ControllingMacro));
unsigned Offset = 0;
if (!Data.HFI.Framework.empty()) {
// If this header refers into a framework, save the framework name.
llvm::StringMap<unsigned>::iterator Pos
= FrameworkNameOffset.find(Data.HFI.Framework);
if (Pos == FrameworkNameOffset.end()) {
Offset = FrameworkStringData.size() + 1;
FrameworkStringData.append(Data.HFI.Framework);
FrameworkStringData.push_back(0);
FrameworkNameOffset[Data.HFI.Framework] = Offset;
} else
Offset = Pos->second;
}
LE.write<uint32_t>(Offset);
auto EmitModule = [&](Module *M, ModuleMap::ModuleHeaderRole Role) {
if (uint32_t ModID = Writer.getLocalOrImportedSubmoduleID(M)) {
uint32_t Value = (ModID << 2) | (unsigned)Role;
assert((Value >> 2) == ModID && "overflow in header module info");
LE.write<uint32_t>(Value);
}
};
// FIXME: If the header is excluded, we should write out some
// record of that fact.
for (auto ModInfo : Data.KnownHeaders)
EmitModule(ModInfo.getModule(), ModInfo.getRole());
if (Data.Unresolved.getPointer())
EmitModule(Data.Unresolved.getPointer(), Data.Unresolved.getInt());
assert(Out.tell() - Start == DataLen && "Wrong data length");
}
const char *strings_begin() const { return FrameworkStringData.begin(); }
const char *strings_end() const { return FrameworkStringData.end(); }
};
} // namespace
/// Write the header search block for the list of files that
///
/// \param HS The header search structure to save.
void ASTWriter::WriteHeaderSearch(const HeaderSearch &HS) {
HeaderFileInfoTrait GeneratorTrait(*this);
llvm::OnDiskChainedHashTableGenerator<HeaderFileInfoTrait> Generator;
SmallVector<const char *, 4> SavedStrings;
unsigned NumHeaderSearchEntries = 0;
// Find all unresolved headers for the current module. We generally will
// have resolved them before we get here, but not necessarily: we might be
// compiling a preprocessed module, where there is no requirement for the
// original files to exist any more.
const HeaderFileInfo Empty; // So we can take a reference.
if (WritingModule) {
llvm::SmallVector<Module *, 16> Worklist(1, WritingModule);
while (!Worklist.empty()) {
Module *M = Worklist.pop_back_val();
// We don't care about headers in unimportable submodules.
if (M->isUnimportable())
continue;
// Map to disk files where possible, to pick up any missing stat
// information. This also means we don't need to check the unresolved
// headers list when emitting resolved headers in the first loop below.
// FIXME: It'd be preferable to avoid doing this if we were given
// sufficient stat information in the module map.
HS.getModuleMap().resolveHeaderDirectives(M);
// If the file didn't exist, we can still create a module if we were given
// enough information in the module map.
for (auto U : M->MissingHeaders) {
// Check that we were given enough information to build a module
// without this file existing on disk.
if (!U.Size || (!U.ModTime && IncludeTimestamps)) {
PP->Diag(U.FileNameLoc, diag::err_module_no_size_mtime_for_header)
<< WritingModule->getFullModuleName() << U.Size.hasValue()
<< U.FileName;
continue;
}
// Form the effective relative pathname for the file.
SmallString<128> Filename(M->Directory->getName());
llvm::sys::path::append(Filename, U.FileName);
PreparePathForOutput(Filename);
StringRef FilenameDup = strdup(Filename.c_str());
SavedStrings.push_back(FilenameDup.data());
HeaderFileInfoTrait::key_type Key = {
FilenameDup, *U.Size, IncludeTimestamps ? *U.ModTime : 0
};
HeaderFileInfoTrait::data_type Data = {
Empty, {}, {M, ModuleMap::headerKindToRole(U.Kind)}
};
// FIXME: Deal with cases where there are multiple unresolved header
// directives in different submodules for the same header.
Generator.insert(Key, Data, GeneratorTrait);
++NumHeaderSearchEntries;
}
Worklist.append(M->submodule_begin(), M->submodule_end());
}
}
SmallVector<const FileEntry *, 16> FilesByUID;
HS.getFileMgr().GetUniqueIDMapping(FilesByUID);
if (FilesByUID.size() > HS.header_file_size())
FilesByUID.resize(HS.header_file_size());
for (unsigned UID = 0, LastUID = FilesByUID.size(); UID != LastUID; ++UID) {
const FileEntry *File = FilesByUID[UID];
if (!File)
continue;
// Get the file info. This will load info from the external source if
// necessary. Skip emitting this file if we have no information on it
// as a header file (in which case HFI will be null) or if it hasn't
// changed since it was loaded. Also skip it if it's for a modular header
// from a different module; in that case, we rely on the module(s)
// containing the header to provide this information.
const HeaderFileInfo *HFI =
HS.getExistingFileInfo(File, /*WantExternal*/!Chain);
if (!HFI || (HFI->isModuleHeader && !HFI->isCompilingModuleHeader))
continue;
// Massage the file path into an appropriate form.
StringRef Filename = File->getName();
SmallString<128> FilenameTmp(Filename);
if (PreparePathForOutput(FilenameTmp)) {
// If we performed any translation on the file name at all, we need to
// save this string, since the generator will refer to it later.
Filename = StringRef(strdup(FilenameTmp.c_str()));
SavedStrings.push_back(Filename.data());
}
HeaderFileInfoTrait::key_type Key = {
Filename, File->getSize(), getTimestampForOutput(File)
};
HeaderFileInfoTrait::data_type Data = {
*HFI, HS.getModuleMap().findResolvedModulesForHeader(File), {}
};
Generator.insert(Key, Data, GeneratorTrait);
++NumHeaderSearchEntries;
}
// Create the on-disk hash table in a buffer.
SmallString<4096> TableData;
uint32_t BucketOffset;
{
using namespace llvm::support;
llvm::raw_svector_ostream Out(TableData);
// Make sure that no bucket is at offset 0
endian::write<uint32_t>(Out, 0, little);
BucketOffset = Generator.Emit(Out, GeneratorTrait);
}
// Create a blob abbreviation
using namespace llvm;
auto Abbrev = std::make_shared<BitCodeAbbrev>();
Abbrev->Add(BitCodeAbbrevOp(HEADER_SEARCH_TABLE));
Abbrev->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32));
Abbrev->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32));
Abbrev->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32));
Abbrev->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Blob));
unsigned TableAbbrev = Stream.EmitAbbrev(std::move(Abbrev));
// Write the header search table
RecordData::value_type Record[] = {HEADER_SEARCH_TABLE, BucketOffset,
NumHeaderSearchEntries, TableData.size()};
TableData.append(GeneratorTrait.strings_begin(),GeneratorTrait.strings_end());
Stream.EmitRecordWithBlob(TableAbbrev, Record, TableData);
// Free all of the strings we had to duplicate.
for (unsigned I = 0, N = SavedStrings.size(); I != N; ++I)
free(const_cast<char *>(SavedStrings[I]));
}
static void emitBlob(llvm::BitstreamWriter &Stream, StringRef Blob,
unsigned SLocBufferBlobCompressedAbbrv,
unsigned SLocBufferBlobAbbrv) {
using RecordDataType = ASTWriter::RecordData::value_type;
// Compress the buffer if possible. We expect that almost all PCM
// consumers will not want its contents.
SmallString<0> CompressedBuffer;
if (llvm::zlib::isAvailable()) {
llvm::Error E = llvm::zlib::compress(Blob.drop_back(1), CompressedBuffer);
if (!E) {
RecordDataType Record[] = {SM_SLOC_BUFFER_BLOB_COMPRESSED,
Blob.size() - 1};
Stream.EmitRecordWithBlob(SLocBufferBlobCompressedAbbrv, Record,
CompressedBuffer);
return;
}
llvm::consumeError(std::move(E));
}
RecordDataType Record[] = {SM_SLOC_BUFFER_BLOB};
Stream.EmitRecordWithBlob(SLocBufferBlobAbbrv, Record, Blob);
}
/// Writes the block containing the serialized form of the
/// source manager.
///
/// TODO: We should probably use an on-disk hash table (stored in a
/// blob), indexed based on the file name, so that we only create
/// entries for files that we actually need. In the common case (no
/// errors), we probably won't have to create file entries for any of
/// the files in the AST.
void ASTWriter::WriteSourceManagerBlock(SourceManager &SourceMgr,
const Preprocessor &PP) {
RecordData Record;
// Enter the source manager block.
Stream.EnterSubblock(SOURCE_MANAGER_BLOCK_ID, 4);
const uint64_t SourceManagerBlockOffset = Stream.GetCurrentBitNo();
// Abbreviations for the various kinds of source-location entries.
unsigned SLocFileAbbrv = CreateSLocFileAbbrev(Stream);
unsigned SLocBufferAbbrv = CreateSLocBufferAbbrev(Stream);
unsigned SLocBufferBlobAbbrv = CreateSLocBufferBlobAbbrev(Stream, false);
unsigned SLocBufferBlobCompressedAbbrv =
CreateSLocBufferBlobAbbrev(Stream, true);
unsigned SLocExpansionAbbrv = CreateSLocExpansionAbbrev(Stream);
// Write out the source location entry table. We skip the first
// entry, which is always the same dummy entry.
std::vector<uint32_t> SLocEntryOffsets;
uint64_t SLocEntryOffsetsBase = Stream.GetCurrentBitNo();
RecordData PreloadSLocs;
SLocEntryOffsets.reserve(SourceMgr.local_sloc_entry_size() - 1);
for (unsigned I = 1, N = SourceMgr.local_sloc_entry_size();
I != N; ++I) {
// Get this source location entry.
const SrcMgr::SLocEntry *SLoc = &SourceMgr.getLocalSLocEntry(I);
FileID FID = FileID::get(I);
assert(&SourceMgr.getSLocEntry(FID) == SLoc);
// Record the offset of this source-location entry.
uint64_t Offset = Stream.GetCurrentBitNo() - SLocEntryOffsetsBase;
assert((Offset >> 32) == 0 && "SLocEntry offset too large");
SLocEntryOffsets.push_back(Offset);
// Figure out which record code to use.
unsigned Code;
if (SLoc->isFile()) {
const SrcMgr::ContentCache *Cache = &SLoc->getFile().getContentCache();
if (Cache->OrigEntry) {
Code = SM_SLOC_FILE_ENTRY;
} else
Code = SM_SLOC_BUFFER_ENTRY;
} else
Code = SM_SLOC_EXPANSION_ENTRY;
Record.clear();
Record.push_back(Code);
// Starting offset of this entry within this module, so skip the dummy.
Record.push_back(SLoc->getOffset() - 2);
if (SLoc->isFile()) {
const SrcMgr::FileInfo &File = SLoc->getFile();
const SrcMgr::ContentCache *Content = &File.getContentCache();
if (Content->OrigEntry && !SkippedModuleMaps.empty() &&
SkippedModuleMaps.find(Content->OrigEntry) !=
SkippedModuleMaps.end()) {
// Do not emit files that were not listed as inputs.
continue;
}
AddSourceLocation(File.getIncludeLoc(), Record);
Record.push_back(File.getFileCharacteristic()); // FIXME: stable encoding
Record.push_back(File.hasLineDirectives());
bool EmitBlob = false;
if (Content->OrigEntry) {
assert(Content->OrigEntry == Content->ContentsEntry &&
"Writing to AST an overridden file is not supported");
// The source location entry is a file. Emit input file ID.
assert(InputFileIDs[Content->OrigEntry] != 0 && "Missed file entry");
Record.push_back(InputFileIDs[Content->OrigEntry]);
Record.push_back(File.NumCreatedFIDs);
FileDeclIDsTy::iterator FDI = FileDeclIDs.find(FID);
if (FDI != FileDeclIDs.end()) {
Record.push_back(FDI->second->FirstDeclIndex);
Record.push_back(FDI->second->DeclIDs.size());
} else {
Record.push_back(0);
Record.push_back(0);
}
Stream.EmitRecordWithAbbrev(SLocFileAbbrv, Record);
if (Content->BufferOverridden || Content->IsTransient)
EmitBlob = true;
} else {
// The source location entry is a buffer. The blob associated
// with this entry contains the contents of the buffer.
// We add one to the size so that we capture the trailing NULL
// that is required by llvm::MemoryBuffer::getMemBuffer (on
// the reader side).
llvm::Optional<llvm::MemoryBufferRef> Buffer =
Content->getBufferOrNone(PP.getDiagnostics(), PP.getFileManager());
StringRef Name = Buffer ? Buffer->getBufferIdentifier() : "";
Stream.EmitRecordWithBlob(SLocBufferAbbrv, Record,
StringRef(Name.data(), Name.size() + 1));
EmitBlob = true;
if (Name == "<built-in>")
PreloadSLocs.push_back(SLocEntryOffsets.size());
}
if (EmitBlob) {
// Include the implicit terminating null character in the on-disk buffer
// if we're writing it uncompressed.
llvm::Optional<llvm::MemoryBufferRef> Buffer =
Content->getBufferOrNone(PP.getDiagnostics(), PP.getFileManager());
if (!Buffer)
Buffer = llvm::MemoryBufferRef("<<<INVALID BUFFER>>>", "");
StringRef Blob(Buffer->getBufferStart(), Buffer->getBufferSize() + 1);
emitBlob(Stream, Blob, SLocBufferBlobCompressedAbbrv,
SLocBufferBlobAbbrv);
}
} else {
// The source location entry is a macro expansion.
const SrcMgr::ExpansionInfo &Expansion = SLoc->getExpansion();
AddSourceLocation(Expansion.getSpellingLoc(), Record);
AddSourceLocation(Expansion.getExpansionLocStart(), Record);
AddSourceLocation(Expansion.isMacroArgExpansion()
? SourceLocation()
: Expansion.getExpansionLocEnd(),
Record);
Record.push_back(Expansion.isExpansionTokenRange());
// Compute the token length for this macro expansion.
SourceLocation::UIntTy NextOffset = SourceMgr.getNextLocalOffset();
if (I + 1 != N)
NextOffset = SourceMgr.getLocalSLocEntry(I + 1).getOffset();
Record.push_back(NextOffset - SLoc->getOffset() - 1);
Stream.EmitRecordWithAbbrev(SLocExpansionAbbrv, Record);
}
}
Stream.ExitBlock();
if (SLocEntryOffsets.empty())
return;
// Write the source-location offsets table into the AST block. This
// table is used for lazily loading source-location information.
using namespace llvm;
auto Abbrev = std::make_shared<BitCodeAbbrev>();
Abbrev->Add(BitCodeAbbrevOp(SOURCE_LOCATION_OFFSETS));
Abbrev->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 16)); // # of slocs
Abbrev->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 16)); // total size
Abbrev->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 32)); // base offset
Abbrev->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Blob)); // offsets
unsigned SLocOffsetsAbbrev = Stream.EmitAbbrev(std::move(Abbrev));
{
RecordData::value_type Record[] = {
SOURCE_LOCATION_OFFSETS, SLocEntryOffsets.size(),
SourceMgr.getNextLocalOffset() - 1 /* skip dummy */,
SLocEntryOffsetsBase - SourceManagerBlockOffset};
Stream.EmitRecordWithBlob(SLocOffsetsAbbrev, Record,
bytes(SLocEntryOffsets));
}
// Write the source location entry preloads array, telling the AST
// reader which source locations entries it should load eagerly.
Stream.EmitRecord(SOURCE_LOCATION_PRELOADS, PreloadSLocs);
// Write the line table. It depends on remapping working, so it must come
// after the source location offsets.
if (SourceMgr.hasLineTable()) {
LineTableInfo &LineTable = SourceMgr.getLineTable();
Record.clear();
// Emit the needed file names.
llvm::DenseMap<int, int> FilenameMap;
FilenameMap[-1] = -1; // For unspecified filenames.
for (const auto &L : LineTable) {
if (L.first.ID < 0)
continue;
for (auto &LE : L.second) {
if (FilenameMap.insert(std::make_pair(LE.FilenameID,
FilenameMap.size() - 1)).second)
AddPath(LineTable.getFilename(LE.FilenameID), Record);
}
}
Record.push_back(0);
// Emit the line entries
for (const auto &L : LineTable) {
// Only emit entries for local files.
if (L.first.ID < 0)
continue;
// Emit the file ID
Record.push_back(L.first.ID);
// Emit the line entries
Record.push_back(L.second.size());
for (const auto &LE : L.second) {
Record.push_back(LE.FileOffset);
Record.push_back(LE.LineNo);
Record.push_back(FilenameMap[LE.FilenameID]);
Record.push_back((unsigned)LE.FileKind);
Record.push_back(LE.IncludeOffset);
}
}
Stream.EmitRecord(SOURCE_MANAGER_LINE_TABLE, Record);
}
}
//===----------------------------------------------------------------------===//
// Preprocessor Serialization
//===----------------------------------------------------------------------===//
static bool shouldIgnoreMacro(MacroDirective *MD, bool IsModule,
const Preprocessor &PP) {
if (MacroInfo *MI = MD->getMacroInfo())
if (MI->isBuiltinMacro())
return true;
if (IsModule) {
SourceLocation Loc = MD->getLocation();
if (Loc.isInvalid())
return true;
if (PP.getSourceManager().getFileID(Loc) == PP.getPredefinesFileID())
return true;
}
return false;
}
/// Writes the block containing the serialized form of the
/// preprocessor.
void ASTWriter::WritePreprocessor(const Preprocessor &PP, bool IsModule) {
uint64_t MacroOffsetsBase = Stream.GetCurrentBitNo();
PreprocessingRecord *PPRec = PP.getPreprocessingRecord();
if (PPRec)
WritePreprocessorDetail(*PPRec, MacroOffsetsBase);
RecordData Record;
RecordData ModuleMacroRecord;
// If the preprocessor __COUNTER__ value has been bumped, remember it.
if (PP.getCounterValue() != 0) {
RecordData::value_type Record[] = {PP.getCounterValue()};
Stream.EmitRecord(PP_COUNTER_VALUE, Record);
}
if (PP.isRecordingPreamble() && PP.hasRecordedPreamble()) {
assert(!IsModule);
auto SkipInfo = PP.getPreambleSkipInfo();
if (SkipInfo.hasValue()) {
Record.push_back(true);
AddSourceLocation(SkipInfo->HashTokenLoc, Record);
AddSourceLocation(SkipInfo->IfTokenLoc, Record);
Record.push_back(SkipInfo->FoundNonSkipPortion);
Record.push_back(SkipInfo->FoundElse);
AddSourceLocation(SkipInfo->ElseLoc, Record);
} else {
Record.push_back(false);
}
for (const auto &Cond : PP.getPreambleConditionalStack()) {
AddSourceLocation(Cond.IfLoc, Record);
Record.push_back(Cond.WasSkipping);
Record.push_back(Cond.FoundNonSkip);
Record.push_back(Cond.FoundElse);
}
Stream.EmitRecord(PP_CONDITIONAL_STACK, Record);
Record.clear();
}
// Enter the preprocessor block.
Stream.EnterSubblock(PREPROCESSOR_BLOCK_ID, 3);
// If the AST file contains __DATE__ or __TIME__ emit a warning about this.
// FIXME: Include a location for the use, and say which one was used.
if (PP.SawDateOrTime())
PP.Diag(SourceLocation(), diag::warn_module_uses_date_time) << IsModule;
// Loop over all the macro directives that are live at the end of the file,
// emitting each to the PP section.
// Construct the list of identifiers with macro directives that need to be
// serialized.
SmallVector<const IdentifierInfo *, 128> MacroIdentifiers;
for (auto &Id : PP.getIdentifierTable())
if (Id.second->hadMacroDefinition() &&
(!Id.second->isFromAST() ||
Id.second->hasChangedSinceDeserialization()))
MacroIdentifiers.push_back(Id.second);
// Sort the set of macro definitions that need to be serialized by the
// name of the macro, to provide a stable ordering.
llvm::sort(MacroIdentifiers, llvm::deref<std::less<>>());
// Emit the macro directives as a list and associate the offset with the
// identifier they belong to.
for (const IdentifierInfo *Name : MacroIdentifiers) {
MacroDirective *MD = PP.getLocalMacroDirectiveHistory(Name);
uint64_t StartOffset = Stream.GetCurrentBitNo() - MacroOffsetsBase;
assert((StartOffset >> 32) == 0 && "Macro identifiers offset too large");
// Emit the macro directives in reverse source order.
for (; MD; MD = MD->getPrevious()) {
// Once we hit an ignored macro, we're done: the rest of the chain
// will all be ignored macros.
if (shouldIgnoreMacro(MD, IsModule, PP))
break;
AddSourceLocation(MD->getLocation(), Record);
Record.push_back(MD->getKind());
if (auto *DefMD = dyn_cast<DefMacroDirective>(MD)) {
Record.push_back(getMacroRef(DefMD->getInfo(), Name));
} else if (auto *VisMD = dyn_cast<VisibilityMacroDirective>(MD)) {
Record.push_back(VisMD->isPublic());
}
}
// Write out any exported module macros.
bool EmittedModuleMacros = false;
// We write out exported module macros for PCH as well.
auto Leafs = PP.getLeafModuleMacros(Name);
SmallVector<ModuleMacro*, 8> Worklist(Leafs.begin(), Leafs.end());
llvm::DenseMap<ModuleMacro*, unsigned> Visits;
while (!Worklist.empty()) {
auto *Macro = Worklist.pop_back_val();
// Emit a record indicating this submodule exports this macro.
ModuleMacroRecord.push_back(
getSubmoduleID(Macro->getOwningModule()));
ModuleMacroRecord.push_back(getMacroRef(Macro->getMacroInfo(), Name));
for (auto *M : Macro->overrides())
ModuleMacroRecord.push_back(getSubmoduleID(M->getOwningModule()));
Stream.EmitRecord(PP_MODULE_MACRO, ModuleMacroRecord);
ModuleMacroRecord.clear();
// Enqueue overridden macros once we've visited all their ancestors.
for (auto *M : Macro->overrides())
if (++Visits[M] == M->getNumOverridingMacros())
Worklist.push_back(M);
EmittedModuleMacros = true;
}
if (Record.empty() && !EmittedModuleMacros)
continue;
IdentMacroDirectivesOffsetMap[Name] = StartOffset;
Stream.EmitRecord(PP_MACRO_DIRECTIVE_HISTORY, Record);
Record.clear();
}
/// Offsets of each of the macros into the bitstream, indexed by
/// the local macro ID
///
/// For each identifier that is associated with a macro, this map
/// provides the offset into the bitstream where that macro is
/// defined.
std::vector<uint32_t> MacroOffsets;
for (unsigned I = 0, N = MacroInfosToEmit.size(); I != N; ++I) {
const IdentifierInfo *Name = MacroInfosToEmit[I].Name;
MacroInfo *MI = MacroInfosToEmit[I].MI;
MacroID ID = MacroInfosToEmit[I].ID;
if (ID < FirstMacroID) {
assert(0 && "Loaded MacroInfo entered MacroInfosToEmit ?");
continue;
}
// Record the local offset of this macro.
unsigned Index = ID - FirstMacroID;
if (Index >= MacroOffsets.size())
MacroOffsets.resize(Index + 1);
uint64_t Offset = Stream.GetCurrentBitNo() - MacroOffsetsBase;
assert((Offset >> 32) == 0 && "Macro offset too large");
MacroOffsets[Index] = Offset;
AddIdentifierRef(Name, Record);
AddSourceLocation(MI->getDefinitionLoc(), Record);
AddSourceLocation(MI->getDefinitionEndLoc(), Record);
Record.push_back(MI->isUsed());
Record.push_back(MI->isUsedForHeaderGuard());
unsigned Code;
if (MI->isObjectLike()) {
Code = PP_MACRO_OBJECT_LIKE;
} else {
Code = PP_MACRO_FUNCTION_LIKE;
Record.push_back(MI->isC99Varargs());
Record.push_back(MI->isGNUVarargs());
Record.push_back(MI->hasCommaPasting());
Record.push_back(MI->getNumParams());
for (const IdentifierInfo *Param : MI->params())
AddIdentifierRef(Param, Record);
}
// If we have a detailed preprocessing record, record the macro definition
// ID that corresponds to this macro.
if (PPRec)
Record.push_back(MacroDefinitions[PPRec->findMacroDefinition(MI)]);
Stream.EmitRecord(Code, Record);
Record.clear();
// Emit the tokens array.
for (unsigned TokNo = 0, e = MI->getNumTokens(); TokNo != e; ++TokNo) {
// Note that we know that the preprocessor does not have any annotation
// tokens in it because they are created by the parser, and thus can't
// be in a macro definition.
const Token &Tok = MI->getReplacementToken(TokNo);
AddToken(Tok, Record);
Stream.EmitRecord(PP_TOKEN, Record);
Record.clear();
}
++NumMacros;
}
Stream.ExitBlock();
// Write the offsets table for macro IDs.
using namespace llvm;
auto Abbrev = std::make_shared<BitCodeAbbrev>();
Abbrev->Add(BitCodeAbbrevOp(MACRO_OFFSET));
Abbrev->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32)); // # of macros
Abbrev->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32)); // first ID
Abbrev->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 32)); // base offset
Abbrev->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Blob));
unsigned MacroOffsetAbbrev = Stream.EmitAbbrev(std::move(Abbrev));
{
RecordData::value_type Record[] = {MACRO_OFFSET, MacroOffsets.size(),
FirstMacroID - NUM_PREDEF_MACRO_IDS,
MacroOffsetsBase - ASTBlockStartOffset};
Stream.EmitRecordWithBlob(MacroOffsetAbbrev, Record, bytes(MacroOffsets));
}
}
void ASTWriter::WritePreprocessorDetail(PreprocessingRecord &PPRec,
uint64_t MacroOffsetsBase) {
if (PPRec.local_begin() == PPRec.local_end())
return;
SmallVector<PPEntityOffset, 64> PreprocessedEntityOffsets;
// Enter the preprocessor block.
Stream.EnterSubblock(PREPROCESSOR_DETAIL_BLOCK_ID, 3);
// If the preprocessor has a preprocessing record, emit it.
unsigned NumPreprocessingRecords = 0;
using namespace llvm;
// Set up the abbreviation for
unsigned InclusionAbbrev = 0;
{
auto Abbrev = std::make_shared<BitCodeAbbrev>();
Abbrev->Add(BitCodeAbbrevOp(PPD_INCLUSION_DIRECTIVE));
Abbrev->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32)); // filename length
Abbrev->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // in quotes
Abbrev->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 2)); // kind
Abbrev->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // imported module
Abbrev->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Blob));
InclusionAbbrev = Stream.EmitAbbrev(std::move(Abbrev));
}
unsigned FirstPreprocessorEntityID
= (Chain ? PPRec.getNumLoadedPreprocessedEntities() : 0)
+ NUM_PREDEF_PP_ENTITY_IDS;
unsigned NextPreprocessorEntityID = FirstPreprocessorEntityID;
RecordData Record;
for (PreprocessingRecord::iterator E = PPRec.local_begin(),
EEnd = PPRec.local_end();
E != EEnd;
(void)++E, ++NumPreprocessingRecords, ++NextPreprocessorEntityID) {
Record.clear();
uint64_t Offset = Stream.GetCurrentBitNo() - MacroOffsetsBase;
assert((Offset >> 32) == 0 && "Preprocessed entity offset too large");
PreprocessedEntityOffsets.push_back(
PPEntityOffset((*E)->getSourceRange(), Offset));
if (auto *MD = dyn_cast<MacroDefinitionRecord>(*E)) {
// Record this macro definition's ID.
MacroDefinitions[MD] = NextPreprocessorEntityID;
AddIdentifierRef(MD->getName(), Record);
Stream.EmitRecord(PPD_MACRO_DEFINITION, Record);
continue;
}
if (auto *ME = dyn_cast<MacroExpansion>(*E)) {
Record.push_back(ME->isBuiltinMacro());
if (ME->isBuiltinMacro())
AddIdentifierRef(ME->getName(), Record);
else
Record.push_back(MacroDefinitions[ME->getDefinition()]);
Stream.EmitRecord(PPD_MACRO_EXPANSION, Record);
continue;
}
if (auto *ID = dyn_cast<InclusionDirective>(*E)) {
Record.push_back(PPD_INCLUSION_DIRECTIVE);
Record.push_back(ID->getFileName().size());
Record.push_back(ID->wasInQuotes());
Record.push_back(static_cast<unsigned>(ID->getKind()));
Record.push_back(ID->importedModule());
SmallString<64> Buffer;
Buffer += ID->getFileName();
// Check that the FileEntry is not null because it was not resolved and
// we create a PCH even with compiler errors.
if (ID->getFile())
Buffer += ID->getFile()->getName();
Stream.EmitRecordWithBlob(InclusionAbbrev, Record, Buffer);
continue;
}
llvm_unreachable("Unhandled PreprocessedEntity in ASTWriter");
}
Stream.ExitBlock();
// Write the offsets table for the preprocessing record.
if (NumPreprocessingRecords > 0) {
assert(PreprocessedEntityOffsets.size() == NumPreprocessingRecords);
// Write the offsets table for identifier IDs.
using namespace llvm;
auto Abbrev = std::make_shared<BitCodeAbbrev>();
Abbrev->Add(BitCodeAbbrevOp(PPD_ENTITIES_OFFSETS));
Abbrev->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32)); // first pp entity
Abbrev->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Blob));
unsigned PPEOffsetAbbrev = Stream.EmitAbbrev(std::move(Abbrev));
RecordData::value_type Record[] = {PPD_ENTITIES_OFFSETS,
FirstPreprocessorEntityID -
NUM_PREDEF_PP_ENTITY_IDS};
Stream.EmitRecordWithBlob(PPEOffsetAbbrev, Record,
bytes(PreprocessedEntityOffsets));
}
// Write the skipped region table for the preprocessing record.
ArrayRef<SourceRange> SkippedRanges = PPRec.getSkippedRanges();
if (SkippedRanges.size() > 0) {
std::vector<PPSkippedRange> SerializedSkippedRanges;
SerializedSkippedRanges.reserve(SkippedRanges.size());
for (auto const& Range : SkippedRanges)
SerializedSkippedRanges.emplace_back(Range);
using namespace llvm;
auto Abbrev = std::make_shared<BitCodeAbbrev>();
Abbrev->Add(BitCodeAbbrevOp(PPD_SKIPPED_RANGES));
Abbrev->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Blob));
unsigned PPESkippedRangeAbbrev = Stream.EmitAbbrev(std::move(Abbrev));
Record.clear();
Record.push_back(PPD_SKIPPED_RANGES);
Stream.EmitRecordWithBlob(PPESkippedRangeAbbrev, Record,
bytes(SerializedSkippedRanges));
}
}
unsigned ASTWriter::getLocalOrImportedSubmoduleID(const Module *Mod) {
if (!Mod)
return 0;
auto Known = SubmoduleIDs.find(Mod);
if (Known != SubmoduleIDs.end())
return Known->second;
auto *Top = Mod->getTopLevelModule();
if (Top != WritingModule &&
(getLangOpts().CompilingPCH ||
!Top->fullModuleNameIs(StringRef(getLangOpts().CurrentModule))))
return 0;
return SubmoduleIDs[Mod] = NextSubmoduleID++;
}
unsigned ASTWriter::getSubmoduleID(Module *Mod) {
// FIXME: This can easily happen, if we have a reference to a submodule that
// did not result in us loading a module file for that submodule. For
// instance, a cross-top-level-module 'conflict' declaration will hit this.
unsigned ID = getLocalOrImportedSubmoduleID(Mod);
assert((ID || !Mod) &&
"asked for module ID for non-local, non-imported module");
return ID;
}
/// Compute the number of modules within the given tree (including the
/// given module).
static unsigned getNumberOfModules(Module *Mod) {
unsigned ChildModules = 0;
for (auto Sub = Mod->submodule_begin(), SubEnd = Mod->submodule_end();
Sub != SubEnd; ++Sub)
ChildModules += getNumberOfModules(*Sub);
return ChildModules + 1;
}
void ASTWriter::WriteSubmodules(Module *WritingModule) {
// Enter the submodule description block.
Stream.EnterSubblock(SUBMODULE_BLOCK_ID, /*bits for abbreviations*/5);
// Write the abbreviations needed for the submodules block.
using namespace llvm;
auto Abbrev = std::make_shared<BitCodeAbbrev>();
Abbrev->Add(BitCodeAbbrevOp(SUBMODULE_DEFINITION));
Abbrev->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // ID
Abbrev->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // Parent
Abbrev->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 2)); // Kind
Abbrev->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // IsFramework
Abbrev->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // IsExplicit
Abbrev->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // IsSystem
Abbrev->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // IsExternC
Abbrev->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // InferSubmodules...
Abbrev->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // InferExplicit...
Abbrev->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // InferExportWild...
Abbrev->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // ConfigMacrosExh...
Abbrev->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // ModuleMapIsPriv...
Abbrev->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Blob)); // Name
unsigned DefinitionAbbrev = Stream.EmitAbbrev(std::move(Abbrev));
Abbrev = std::make_shared<BitCodeAbbrev>();
Abbrev->Add(BitCodeAbbrevOp(SUBMODULE_UMBRELLA_HEADER));
Abbrev->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Blob)); // Name
unsigned UmbrellaAbbrev = Stream.EmitAbbrev(std::move(Abbrev));
Abbrev = std::make_shared<BitCodeAbbrev>();
Abbrev->Add(BitCodeAbbrevOp(SUBMODULE_HEADER));
Abbrev->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Blob)); // Name
unsigned HeaderAbbrev = Stream.EmitAbbrev(std::move(Abbrev));
Abbrev = std::make_shared<BitCodeAbbrev>();
Abbrev->Add(BitCodeAbbrevOp(SUBMODULE_TOPHEADER));
Abbrev->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Blob)); // Name
unsigned TopHeaderAbbrev = Stream.EmitAbbrev(std::move(Abbrev));
Abbrev = std::make_shared<BitCodeAbbrev>();
Abbrev->Add(BitCodeAbbrevOp(SUBMODULE_UMBRELLA_DIR));
Abbrev->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Blob)); // Name
unsigned UmbrellaDirAbbrev = Stream.EmitAbbrev(std::move(Abbrev));
Abbrev = std::make_shared<BitCodeAbbrev>();
Abbrev->Add(BitCodeAbbrevOp(SUBMODULE_REQUIRES));
Abbrev->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // State
Abbrev->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Blob)); // Feature
unsigned RequiresAbbrev = Stream.EmitAbbrev(std::move(Abbrev));
Abbrev = std::make_shared<BitCodeAbbrev>();
Abbrev->Add(BitCodeAbbrevOp(SUBMODULE_EXCLUDED_HEADER));
Abbrev->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Blob)); // Name
unsigned ExcludedHeaderAbbrev = Stream.EmitAbbrev(std::move(Abbrev));
Abbrev = std::make_shared<BitCodeAbbrev>();
Abbrev->Add(BitCodeAbbrevOp(SUBMODULE_TEXTUAL_HEADER));
Abbrev->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Blob)); // Name
unsigned TextualHeaderAbbrev = Stream.EmitAbbrev(std::move(Abbrev));
Abbrev = std::make_shared<BitCodeAbbrev>();
Abbrev->Add(BitCodeAbbrevOp(SUBMODULE_PRIVATE_HEADER));
Abbrev->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Blob)); // Name
unsigned PrivateHeaderAbbrev = Stream.EmitAbbrev(std::move(Abbrev));
Abbrev = std::make_shared<BitCodeAbbrev>();
Abbrev->Add(BitCodeAbbrevOp(SUBMODULE_PRIVATE_TEXTUAL_HEADER));
Abbrev->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Blob)); // Name
unsigned PrivateTextualHeaderAbbrev = Stream.EmitAbbrev(std::move(Abbrev));
Abbrev = std::make_shared<BitCodeAbbrev>();
Abbrev->Add(BitCodeAbbrevOp(SUBMODULE_LINK_LIBRARY));
Abbrev->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // IsFramework
Abbrev->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Blob)); // Name
unsigned LinkLibraryAbbrev = Stream.EmitAbbrev(std::move(Abbrev));
Abbrev = std::make_shared<BitCodeAbbrev>();
Abbrev->Add(BitCodeAbbrevOp(SUBMODULE_CONFIG_MACRO));
Abbrev->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Blob)); // Macro name
unsigned ConfigMacroAbbrev = Stream.EmitAbbrev(std::move(Abbrev));
<