| /*===---- __clang_hip_math.h - Device-side HIP math support ----------------=== |
| * |
| * Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
| * See https://llvm.org/LICENSE.txt for license information. |
| * SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
| * |
| *===-----------------------------------------------------------------------=== |
| */ |
| #ifndef __CLANG_HIP_MATH_H__ |
| #define __CLANG_HIP_MATH_H__ |
| |
| #if !defined(__HIP__) && !defined(__OPENMP_AMDGCN__) |
| #error "This file is for HIP and OpenMP AMDGCN device compilation only." |
| #endif |
| |
| #if !defined(__HIPCC_RTC__) |
| #if defined(__cplusplus) |
| #include <algorithm> |
| #endif |
| #include <limits.h> |
| #include <stdint.h> |
| #ifdef __OPENMP_AMDGCN__ |
| #include <omp.h> |
| #endif |
| #endif // !defined(__HIPCC_RTC__) |
| |
| #pragma push_macro("__DEVICE__") |
| |
| #ifdef __OPENMP_AMDGCN__ |
| #define __DEVICE__ static inline __attribute__((always_inline, nothrow)) |
| #else |
| #define __DEVICE__ static __device__ inline __attribute__((always_inline)) |
| #endif |
| |
| // A few functions return bool type starting only in C++11. |
| #pragma push_macro("__RETURN_TYPE") |
| #ifdef __OPENMP_AMDGCN__ |
| #define __RETURN_TYPE int |
| #else |
| #if defined(__cplusplus) |
| #define __RETURN_TYPE bool |
| #else |
| #define __RETURN_TYPE int |
| #endif |
| #endif // __OPENMP_AMDGCN__ |
| |
| #if defined (__cplusplus) && __cplusplus < 201103L |
| // emulate static_assert on type sizes |
| template<bool> |
| struct __compare_result{}; |
| template<> |
| struct __compare_result<true> { |
| static const __device__ bool valid; |
| }; |
| |
| __DEVICE__ |
| void __suppress_unused_warning(bool b){}; |
| template <unsigned int S, unsigned int T> |
| __DEVICE__ void __static_assert_equal_size() { |
| __suppress_unused_warning(__compare_result<S == T>::valid); |
| } |
| |
| #define __static_assert_type_size_equal(A, B) \ |
| __static_assert_equal_size<A,B>() |
| |
| #else |
| #define __static_assert_type_size_equal(A,B) \ |
| static_assert((A) == (B), "") |
| |
| #endif |
| |
| __DEVICE__ |
| uint64_t __make_mantissa_base8(const char *__tagp) { |
| uint64_t __r = 0; |
| while (__tagp) { |
| char __tmp = *__tagp; |
| |
| if (__tmp >= '0' && __tmp <= '7') |
| __r = (__r * 8u) + __tmp - '0'; |
| else |
| return 0; |
| |
| ++__tagp; |
| } |
| |
| return __r; |
| } |
| |
| __DEVICE__ |
| uint64_t __make_mantissa_base10(const char *__tagp) { |
| uint64_t __r = 0; |
| while (__tagp) { |
| char __tmp = *__tagp; |
| |
| if (__tmp >= '0' && __tmp <= '9') |
| __r = (__r * 10u) + __tmp - '0'; |
| else |
| return 0; |
| |
| ++__tagp; |
| } |
| |
| return __r; |
| } |
| |
| __DEVICE__ |
| uint64_t __make_mantissa_base16(const char *__tagp) { |
| uint64_t __r = 0; |
| while (__tagp) { |
| char __tmp = *__tagp; |
| |
| if (__tmp >= '0' && __tmp <= '9') |
| __r = (__r * 16u) + __tmp - '0'; |
| else if (__tmp >= 'a' && __tmp <= 'f') |
| __r = (__r * 16u) + __tmp - 'a' + 10; |
| else if (__tmp >= 'A' && __tmp <= 'F') |
| __r = (__r * 16u) + __tmp - 'A' + 10; |
| else |
| return 0; |
| |
| ++__tagp; |
| } |
| |
| return __r; |
| } |
| |
| __DEVICE__ |
| uint64_t __make_mantissa(const char *__tagp) { |
| if (!__tagp) |
| return 0u; |
| |
| if (*__tagp == '0') { |
| ++__tagp; |
| |
| if (*__tagp == 'x' || *__tagp == 'X') |
| return __make_mantissa_base16(__tagp); |
| else |
| return __make_mantissa_base8(__tagp); |
| } |
| |
| return __make_mantissa_base10(__tagp); |
| } |
| |
| // BEGIN FLOAT |
| #if defined(__cplusplus) |
| __DEVICE__ |
| int abs(int __x) { |
| int __sgn = __x >> (sizeof(int) * CHAR_BIT - 1); |
| return (__x ^ __sgn) - __sgn; |
| } |
| __DEVICE__ |
| long labs(long __x) { |
| long __sgn = __x >> (sizeof(long) * CHAR_BIT - 1); |
| return (__x ^ __sgn) - __sgn; |
| } |
| __DEVICE__ |
| long long llabs(long long __x) { |
| long long __sgn = __x >> (sizeof(long long) * CHAR_BIT - 1); |
| return (__x ^ __sgn) - __sgn; |
| } |
| #endif |
| |
| __DEVICE__ |
| float acosf(float __x) { return __ocml_acos_f32(__x); } |
| |
| __DEVICE__ |
| float acoshf(float __x) { return __ocml_acosh_f32(__x); } |
| |
| __DEVICE__ |
| float asinf(float __x) { return __ocml_asin_f32(__x); } |
| |
| __DEVICE__ |
| float asinhf(float __x) { return __ocml_asinh_f32(__x); } |
| |
| __DEVICE__ |
| float atan2f(float __x, float __y) { return __ocml_atan2_f32(__x, __y); } |
| |
| __DEVICE__ |
| float atanf(float __x) { return __ocml_atan_f32(__x); } |
| |
| __DEVICE__ |
| float atanhf(float __x) { return __ocml_atanh_f32(__x); } |
| |
| __DEVICE__ |
| float cbrtf(float __x) { return __ocml_cbrt_f32(__x); } |
| |
| __DEVICE__ |
| float ceilf(float __x) { return __ocml_ceil_f32(__x); } |
| |
| __DEVICE__ |
| float copysignf(float __x, float __y) { return __ocml_copysign_f32(__x, __y); } |
| |
| __DEVICE__ |
| float cosf(float __x) { return __ocml_cos_f32(__x); } |
| |
| __DEVICE__ |
| float coshf(float __x) { return __ocml_cosh_f32(__x); } |
| |
| __DEVICE__ |
| float cospif(float __x) { return __ocml_cospi_f32(__x); } |
| |
| __DEVICE__ |
| float cyl_bessel_i0f(float __x) { return __ocml_i0_f32(__x); } |
| |
| __DEVICE__ |
| float cyl_bessel_i1f(float __x) { return __ocml_i1_f32(__x); } |
| |
| __DEVICE__ |
| float erfcf(float __x) { return __ocml_erfc_f32(__x); } |
| |
| __DEVICE__ |
| float erfcinvf(float __x) { return __ocml_erfcinv_f32(__x); } |
| |
| __DEVICE__ |
| float erfcxf(float __x) { return __ocml_erfcx_f32(__x); } |
| |
| __DEVICE__ |
| float erff(float __x) { return __ocml_erf_f32(__x); } |
| |
| __DEVICE__ |
| float erfinvf(float __x) { return __ocml_erfinv_f32(__x); } |
| |
| __DEVICE__ |
| float exp10f(float __x) { return __ocml_exp10_f32(__x); } |
| |
| __DEVICE__ |
| float exp2f(float __x) { return __ocml_exp2_f32(__x); } |
| |
| __DEVICE__ |
| float expf(float __x) { return __ocml_exp_f32(__x); } |
| |
| __DEVICE__ |
| float expm1f(float __x) { return __ocml_expm1_f32(__x); } |
| |
| __DEVICE__ |
| float fabsf(float __x) { return __ocml_fabs_f32(__x); } |
| |
| __DEVICE__ |
| float fdimf(float __x, float __y) { return __ocml_fdim_f32(__x, __y); } |
| |
| __DEVICE__ |
| float fdividef(float __x, float __y) { return __x / __y; } |
| |
| __DEVICE__ |
| float floorf(float __x) { return __ocml_floor_f32(__x); } |
| |
| __DEVICE__ |
| float fmaf(float __x, float __y, float __z) { |
| return __ocml_fma_f32(__x, __y, __z); |
| } |
| |
| __DEVICE__ |
| float fmaxf(float __x, float __y) { return __ocml_fmax_f32(__x, __y); } |
| |
| __DEVICE__ |
| float fminf(float __x, float __y) { return __ocml_fmin_f32(__x, __y); } |
| |
| __DEVICE__ |
| float fmodf(float __x, float __y) { return __ocml_fmod_f32(__x, __y); } |
| |
| __DEVICE__ |
| float frexpf(float __x, int *__nptr) { |
| int __tmp; |
| #ifdef __OPENMP_AMDGCN__ |
| #pragma omp allocate(__tmp) allocator(omp_thread_mem_alloc) |
| #endif |
| float __r = |
| __ocml_frexp_f32(__x, (__attribute__((address_space(5))) int *)&__tmp); |
| *__nptr = __tmp; |
| |
| return __r; |
| } |
| |
| __DEVICE__ |
| float hypotf(float __x, float __y) { return __ocml_hypot_f32(__x, __y); } |
| |
| __DEVICE__ |
| int ilogbf(float __x) { return __ocml_ilogb_f32(__x); } |
| |
| __DEVICE__ |
| __RETURN_TYPE __finitef(float __x) { return __ocml_isfinite_f32(__x); } |
| |
| __DEVICE__ |
| __RETURN_TYPE __isinff(float __x) { return __ocml_isinf_f32(__x); } |
| |
| __DEVICE__ |
| __RETURN_TYPE __isnanf(float __x) { return __ocml_isnan_f32(__x); } |
| |
| __DEVICE__ |
| float j0f(float __x) { return __ocml_j0_f32(__x); } |
| |
| __DEVICE__ |
| float j1f(float __x) { return __ocml_j1_f32(__x); } |
| |
| __DEVICE__ |
| float jnf(int __n, float __x) { // TODO: we could use Ahmes multiplication |
| // and the Miller & Brown algorithm |
| // for linear recurrences to get O(log n) steps, but it's unclear if |
| // it'd be beneficial in this case. |
| if (__n == 0) |
| return j0f(__x); |
| if (__n == 1) |
| return j1f(__x); |
| |
| float __x0 = j0f(__x); |
| float __x1 = j1f(__x); |
| for (int __i = 1; __i < __n; ++__i) { |
| float __x2 = (2 * __i) / __x * __x1 - __x0; |
| __x0 = __x1; |
| __x1 = __x2; |
| } |
| |
| return __x1; |
| } |
| |
| __DEVICE__ |
| float ldexpf(float __x, int __e) { return __ocml_ldexp_f32(__x, __e); } |
| |
| __DEVICE__ |
| float lgammaf(float __x) { return __ocml_lgamma_f32(__x); } |
| |
| __DEVICE__ |
| long long int llrintf(float __x) { return __ocml_rint_f32(__x); } |
| |
| __DEVICE__ |
| long long int llroundf(float __x) { return __ocml_round_f32(__x); } |
| |
| __DEVICE__ |
| float log10f(float __x) { return __ocml_log10_f32(__x); } |
| |
| __DEVICE__ |
| float log1pf(float __x) { return __ocml_log1p_f32(__x); } |
| |
| __DEVICE__ |
| float log2f(float __x) { return __ocml_log2_f32(__x); } |
| |
| __DEVICE__ |
| float logbf(float __x) { return __ocml_logb_f32(__x); } |
| |
| __DEVICE__ |
| float logf(float __x) { return __ocml_log_f32(__x); } |
| |
| __DEVICE__ |
| long int lrintf(float __x) { return __ocml_rint_f32(__x); } |
| |
| __DEVICE__ |
| long int lroundf(float __x) { return __ocml_round_f32(__x); } |
| |
| __DEVICE__ |
| float modff(float __x, float *__iptr) { |
| float __tmp; |
| #ifdef __OPENMP_AMDGCN__ |
| #pragma omp allocate(__tmp) allocator(omp_thread_mem_alloc) |
| #endif |
| float __r = |
| __ocml_modf_f32(__x, (__attribute__((address_space(5))) float *)&__tmp); |
| *__iptr = __tmp; |
| return __r; |
| } |
| |
| __DEVICE__ |
| float nanf(const char *__tagp) { |
| union { |
| float val; |
| struct ieee_float { |
| unsigned int mantissa : 22; |
| unsigned int quiet : 1; |
| unsigned int exponent : 8; |
| unsigned int sign : 1; |
| } bits; |
| } __tmp; |
| __static_assert_type_size_equal(sizeof(__tmp.val), sizeof(__tmp.bits)); |
| |
| __tmp.bits.sign = 0u; |
| __tmp.bits.exponent = ~0u; |
| __tmp.bits.quiet = 1u; |
| __tmp.bits.mantissa = __make_mantissa(__tagp); |
| |
| return __tmp.val; |
| } |
| |
| __DEVICE__ |
| float nearbyintf(float __x) { return __ocml_nearbyint_f32(__x); } |
| |
| __DEVICE__ |
| float nextafterf(float __x, float __y) { |
| return __ocml_nextafter_f32(__x, __y); |
| } |
| |
| __DEVICE__ |
| float norm3df(float __x, float __y, float __z) { |
| return __ocml_len3_f32(__x, __y, __z); |
| } |
| |
| __DEVICE__ |
| float norm4df(float __x, float __y, float __z, float __w) { |
| return __ocml_len4_f32(__x, __y, __z, __w); |
| } |
| |
| __DEVICE__ |
| float normcdff(float __x) { return __ocml_ncdf_f32(__x); } |
| |
| __DEVICE__ |
| float normcdfinvf(float __x) { return __ocml_ncdfinv_f32(__x); } |
| |
| __DEVICE__ |
| float normf(int __dim, |
| const float *__a) { // TODO: placeholder until OCML adds support. |
| float __r = 0; |
| while (__dim--) { |
| __r += __a[0] * __a[0]; |
| ++__a; |
| } |
| |
| return __ocml_sqrt_f32(__r); |
| } |
| |
| __DEVICE__ |
| float powf(float __x, float __y) { return __ocml_pow_f32(__x, __y); } |
| |
| __DEVICE__ |
| float powif(float __x, int __y) { return __ocml_pown_f32(__x, __y); } |
| |
| __DEVICE__ |
| float rcbrtf(float __x) { return __ocml_rcbrt_f32(__x); } |
| |
| __DEVICE__ |
| float remainderf(float __x, float __y) { |
| return __ocml_remainder_f32(__x, __y); |
| } |
| |
| __DEVICE__ |
| float remquof(float __x, float __y, int *__quo) { |
| int __tmp; |
| #ifdef __OPENMP_AMDGCN__ |
| #pragma omp allocate(__tmp) allocator(omp_thread_mem_alloc) |
| #endif |
| float __r = __ocml_remquo_f32( |
| __x, __y, (__attribute__((address_space(5))) int *)&__tmp); |
| *__quo = __tmp; |
| |
| return __r; |
| } |
| |
| __DEVICE__ |
| float rhypotf(float __x, float __y) { return __ocml_rhypot_f32(__x, __y); } |
| |
| __DEVICE__ |
| float rintf(float __x) { return __ocml_rint_f32(__x); } |
| |
| __DEVICE__ |
| float rnorm3df(float __x, float __y, float __z) { |
| return __ocml_rlen3_f32(__x, __y, __z); |
| } |
| |
| __DEVICE__ |
| float rnorm4df(float __x, float __y, float __z, float __w) { |
| return __ocml_rlen4_f32(__x, __y, __z, __w); |
| } |
| |
| __DEVICE__ |
| float rnormf(int __dim, |
| const float *__a) { // TODO: placeholder until OCML adds support. |
| float __r = 0; |
| while (__dim--) { |
| __r += __a[0] * __a[0]; |
| ++__a; |
| } |
| |
| return __ocml_rsqrt_f32(__r); |
| } |
| |
| __DEVICE__ |
| float roundf(float __x) { return __ocml_round_f32(__x); } |
| |
| __DEVICE__ |
| float rsqrtf(float __x) { return __ocml_rsqrt_f32(__x); } |
| |
| __DEVICE__ |
| float scalblnf(float __x, long int __n) { |
| return (__n < INT_MAX) ? __ocml_scalbn_f32(__x, __n) |
| : __ocml_scalb_f32(__x, __n); |
| } |
| |
| __DEVICE__ |
| float scalbnf(float __x, int __n) { return __ocml_scalbn_f32(__x, __n); } |
| |
| __DEVICE__ |
| __RETURN_TYPE __signbitf(float __x) { return __ocml_signbit_f32(__x); } |
| |
| __DEVICE__ |
| void sincosf(float __x, float *__sinptr, float *__cosptr) { |
| float __tmp; |
| #ifdef __OPENMP_AMDGCN__ |
| #pragma omp allocate(__tmp) allocator(omp_thread_mem_alloc) |
| #endif |
| *__sinptr = |
| __ocml_sincos_f32(__x, (__attribute__((address_space(5))) float *)&__tmp); |
| *__cosptr = __tmp; |
| } |
| |
| __DEVICE__ |
| void sincospif(float __x, float *__sinptr, float *__cosptr) { |
| float __tmp; |
| #ifdef __OPENMP_AMDGCN__ |
| #pragma omp allocate(__tmp) allocator(omp_thread_mem_alloc) |
| #endif |
| *__sinptr = __ocml_sincospi_f32( |
| __x, (__attribute__((address_space(5))) float *)&__tmp); |
| *__cosptr = __tmp; |
| } |
| |
| __DEVICE__ |
| float sinf(float __x) { return __ocml_sin_f32(__x); } |
| |
| __DEVICE__ |
| float sinhf(float __x) { return __ocml_sinh_f32(__x); } |
| |
| __DEVICE__ |
| float sinpif(float __x) { return __ocml_sinpi_f32(__x); } |
| |
| __DEVICE__ |
| float sqrtf(float __x) { return __ocml_sqrt_f32(__x); } |
| |
| __DEVICE__ |
| float tanf(float __x) { return __ocml_tan_f32(__x); } |
| |
| __DEVICE__ |
| float tanhf(float __x) { return __ocml_tanh_f32(__x); } |
| |
| __DEVICE__ |
| float tgammaf(float __x) { return __ocml_tgamma_f32(__x); } |
| |
| __DEVICE__ |
| float truncf(float __x) { return __ocml_trunc_f32(__x); } |
| |
| __DEVICE__ |
| float y0f(float __x) { return __ocml_y0_f32(__x); } |
| |
| __DEVICE__ |
| float y1f(float __x) { return __ocml_y1_f32(__x); } |
| |
| __DEVICE__ |
| float ynf(int __n, float __x) { // TODO: we could use Ahmes multiplication |
| // and the Miller & Brown algorithm |
| // for linear recurrences to get O(log n) steps, but it's unclear if |
| // it'd be beneficial in this case. Placeholder until OCML adds |
| // support. |
| if (__n == 0) |
| return y0f(__x); |
| if (__n == 1) |
| return y1f(__x); |
| |
| float __x0 = y0f(__x); |
| float __x1 = y1f(__x); |
| for (int __i = 1; __i < __n; ++__i) { |
| float __x2 = (2 * __i) / __x * __x1 - __x0; |
| __x0 = __x1; |
| __x1 = __x2; |
| } |
| |
| return __x1; |
| } |
| |
| // BEGIN INTRINSICS |
| |
| __DEVICE__ |
| float __cosf(float __x) { return __ocml_native_cos_f32(__x); } |
| |
| __DEVICE__ |
| float __exp10f(float __x) { return __ocml_native_exp10_f32(__x); } |
| |
| __DEVICE__ |
| float __expf(float __x) { return __ocml_native_exp_f32(__x); } |
| |
| #if defined OCML_BASIC_ROUNDED_OPERATIONS |
| __DEVICE__ |
| float __fadd_rd(float __x, float __y) { return __ocml_add_rtn_f32(__x, __y); } |
| __DEVICE__ |
| float __fadd_rn(float __x, float __y) { return __ocml_add_rte_f32(__x, __y); } |
| __DEVICE__ |
| float __fadd_ru(float __x, float __y) { return __ocml_add_rtp_f32(__x, __y); } |
| __DEVICE__ |
| float __fadd_rz(float __x, float __y) { return __ocml_add_rtz_f32(__x, __y); } |
| #else |
| __DEVICE__ |
| float __fadd_rn(float __x, float __y) { return __x + __y; } |
| #endif |
| |
| #if defined OCML_BASIC_ROUNDED_OPERATIONS |
| __DEVICE__ |
| float __fdiv_rd(float __x, float __y) { return __ocml_div_rtn_f32(__x, __y); } |
| __DEVICE__ |
| float __fdiv_rn(float __x, float __y) { return __ocml_div_rte_f32(__x, __y); } |
| __DEVICE__ |
| float __fdiv_ru(float __x, float __y) { return __ocml_div_rtp_f32(__x, __y); } |
| __DEVICE__ |
| float __fdiv_rz(float __x, float __y) { return __ocml_div_rtz_f32(__x, __y); } |
| #else |
| __DEVICE__ |
| float __fdiv_rn(float __x, float __y) { return __x / __y; } |
| #endif |
| |
| __DEVICE__ |
| float __fdividef(float __x, float __y) { return __x / __y; } |
| |
| #if defined OCML_BASIC_ROUNDED_OPERATIONS |
| __DEVICE__ |
| float __fmaf_rd(float __x, float __y, float __z) { |
| return __ocml_fma_rtn_f32(__x, __y, __z); |
| } |
| __DEVICE__ |
| float __fmaf_rn(float __x, float __y, float __z) { |
| return __ocml_fma_rte_f32(__x, __y, __z); |
| } |
| __DEVICE__ |
| float __fmaf_ru(float __x, float __y, float __z) { |
| return __ocml_fma_rtp_f32(__x, __y, __z); |
| } |
| __DEVICE__ |
| float __fmaf_rz(float __x, float __y, float __z) { |
| return __ocml_fma_rtz_f32(__x, __y, __z); |
| } |
| #else |
| __DEVICE__ |
| float __fmaf_rn(float __x, float __y, float __z) { |
| return __ocml_fma_f32(__x, __y, __z); |
| } |
| #endif |
| |
| #if defined OCML_BASIC_ROUNDED_OPERATIONS |
| __DEVICE__ |
| float __fmul_rd(float __x, float __y) { return __ocml_mul_rtn_f32(__x, __y); } |
| __DEVICE__ |
| float __fmul_rn(float __x, float __y) { return __ocml_mul_rte_f32(__x, __y); } |
| __DEVICE__ |
| float __fmul_ru(float __x, float __y) { return __ocml_mul_rtp_f32(__x, __y); } |
| __DEVICE__ |
| float __fmul_rz(float __x, float __y) { return __ocml_mul_rtz_f32(__x, __y); } |
| #else |
| __DEVICE__ |
| float __fmul_rn(float __x, float __y) { return __x * __y; } |
| #endif |
| |
| #if defined OCML_BASIC_ROUNDED_OPERATIONS |
| __DEVICE__ |
| float __frcp_rd(float __x) { return __ocml_div_rtn_f32(1.0f, __x); } |
| __DEVICE__ |
| float __frcp_rn(float __x) { return __ocml_div_rte_f32(1.0f, __x); } |
| __DEVICE__ |
| float __frcp_ru(float __x) { return __ocml_div_rtp_f32(1.0f, __x); } |
| __DEVICE__ |
| float __frcp_rz(float __x) { return __ocml_div_rtz_f32(1.0f, __x); } |
| #else |
| __DEVICE__ |
| float __frcp_rn(float __x) { return 1.0f / __x; } |
| #endif |
| |
| __DEVICE__ |
| float __frsqrt_rn(float __x) { return __llvm_amdgcn_rsq_f32(__x); } |
| |
| #if defined OCML_BASIC_ROUNDED_OPERATIONS |
| __DEVICE__ |
| float __fsqrt_rd(float __x) { return __ocml_sqrt_rtn_f32(__x); } |
| __DEVICE__ |
| float __fsqrt_rn(float __x) { return __ocml_sqrt_rte_f32(__x); } |
| __DEVICE__ |
| float __fsqrt_ru(float __x) { return __ocml_sqrt_rtp_f32(__x); } |
| __DEVICE__ |
| float __fsqrt_rz(float __x) { return __ocml_sqrt_rtz_f32(__x); } |
| #else |
| __DEVICE__ |
| float __fsqrt_rn(float __x) { return __ocml_native_sqrt_f32(__x); } |
| #endif |
| |
| #if defined OCML_BASIC_ROUNDED_OPERATIONS |
| __DEVICE__ |
| float __fsub_rd(float __x, float __y) { return __ocml_sub_rtn_f32(__x, __y); } |
| __DEVICE__ |
| float __fsub_rn(float __x, float __y) { return __ocml_sub_rte_f32(__x, __y); } |
| __DEVICE__ |
| float __fsub_ru(float __x, float __y) { return __ocml_sub_rtp_f32(__x, __y); } |
| __DEVICE__ |
| float __fsub_rz(float __x, float __y) { return __ocml_sub_rtz_f32(__x, __y); } |
| #else |
| __DEVICE__ |
| float __fsub_rn(float __x, float __y) { return __x - __y; } |
| #endif |
| |
| __DEVICE__ |
| float __log10f(float __x) { return __ocml_native_log10_f32(__x); } |
| |
| __DEVICE__ |
| float __log2f(float __x) { return __ocml_native_log2_f32(__x); } |
| |
| __DEVICE__ |
| float __logf(float __x) { return __ocml_native_log_f32(__x); } |
| |
| __DEVICE__ |
| float __powf(float __x, float __y) { return __ocml_pow_f32(__x, __y); } |
| |
| __DEVICE__ |
| float __saturatef(float __x) { return (__x < 0) ? 0 : ((__x > 1) ? 1 : __x); } |
| |
| __DEVICE__ |
| void __sincosf(float __x, float *__sinptr, float *__cosptr) { |
| *__sinptr = __ocml_native_sin_f32(__x); |
| *__cosptr = __ocml_native_cos_f32(__x); |
| } |
| |
| __DEVICE__ |
| float __sinf(float __x) { return __ocml_native_sin_f32(__x); } |
| |
| __DEVICE__ |
| float __tanf(float __x) { return __ocml_tan_f32(__x); } |
| // END INTRINSICS |
| // END FLOAT |
| |
| // BEGIN DOUBLE |
| __DEVICE__ |
| double acos(double __x) { return __ocml_acos_f64(__x); } |
| |
| __DEVICE__ |
| double acosh(double __x) { return __ocml_acosh_f64(__x); } |
| |
| __DEVICE__ |
| double asin(double __x) { return __ocml_asin_f64(__x); } |
| |
| __DEVICE__ |
| double asinh(double __x) { return __ocml_asinh_f64(__x); } |
| |
| __DEVICE__ |
| double atan(double __x) { return __ocml_atan_f64(__x); } |
| |
| __DEVICE__ |
| double atan2(double __x, double __y) { return __ocml_atan2_f64(__x, __y); } |
| |
| __DEVICE__ |
| double atanh(double __x) { return __ocml_atanh_f64(__x); } |
| |
| __DEVICE__ |
| double cbrt(double __x) { return __ocml_cbrt_f64(__x); } |
| |
| __DEVICE__ |
| double ceil(double __x) { return __ocml_ceil_f64(__x); } |
| |
| __DEVICE__ |
| double copysign(double __x, double __y) { |
| return __ocml_copysign_f64(__x, __y); |
| } |
| |
| __DEVICE__ |
| double cos(double __x) { return __ocml_cos_f64(__x); } |
| |
| __DEVICE__ |
| double cosh(double __x) { return __ocml_cosh_f64(__x); } |
| |
| __DEVICE__ |
| double cospi(double __x) { return __ocml_cospi_f64(__x); } |
| |
| __DEVICE__ |
| double cyl_bessel_i0(double __x) { return __ocml_i0_f64(__x); } |
| |
| __DEVICE__ |
| double cyl_bessel_i1(double __x) { return __ocml_i1_f64(__x); } |
| |
| __DEVICE__ |
| double erf(double __x) { return __ocml_erf_f64(__x); } |
| |
| __DEVICE__ |
| double erfc(double __x) { return __ocml_erfc_f64(__x); } |
| |
| __DEVICE__ |
| double erfcinv(double __x) { return __ocml_erfcinv_f64(__x); } |
| |
| __DEVICE__ |
| double erfcx(double __x) { return __ocml_erfcx_f64(__x); } |
| |
| __DEVICE__ |
| double erfinv(double __x) { return __ocml_erfinv_f64(__x); } |
| |
| __DEVICE__ |
| double exp(double __x) { return __ocml_exp_f64(__x); } |
| |
| __DEVICE__ |
| double exp10(double __x) { return __ocml_exp10_f64(__x); } |
| |
| __DEVICE__ |
| double exp2(double __x) { return __ocml_exp2_f64(__x); } |
| |
| __DEVICE__ |
| double expm1(double __x) { return __ocml_expm1_f64(__x); } |
| |
| __DEVICE__ |
| double fabs(double __x) { return __ocml_fabs_f64(__x); } |
| |
| __DEVICE__ |
| double fdim(double __x, double __y) { return __ocml_fdim_f64(__x, __y); } |
| |
| __DEVICE__ |
| double floor(double __x) { return __ocml_floor_f64(__x); } |
| |
| __DEVICE__ |
| double fma(double __x, double __y, double __z) { |
| return __ocml_fma_f64(__x, __y, __z); |
| } |
| |
| __DEVICE__ |
| double fmax(double __x, double __y) { return __ocml_fmax_f64(__x, __y); } |
| |
| __DEVICE__ |
| double fmin(double __x, double __y) { return __ocml_fmin_f64(__x, __y); } |
| |
| __DEVICE__ |
| double fmod(double __x, double __y) { return __ocml_fmod_f64(__x, __y); } |
| |
| __DEVICE__ |
| double frexp(double __x, int *__nptr) { |
| int __tmp; |
| #ifdef __OPENMP_AMDGCN__ |
| #pragma omp allocate(__tmp) allocator(omp_thread_mem_alloc) |
| #endif |
| double __r = |
| __ocml_frexp_f64(__x, (__attribute__((address_space(5))) int *)&__tmp); |
| *__nptr = __tmp; |
| return __r; |
| } |
| |
| __DEVICE__ |
| double hypot(double __x, double __y) { return __ocml_hypot_f64(__x, __y); } |
| |
| __DEVICE__ |
| int ilogb(double __x) { return __ocml_ilogb_f64(__x); } |
| |
| __DEVICE__ |
| __RETURN_TYPE __finite(double __x) { return __ocml_isfinite_f64(__x); } |
| |
| __DEVICE__ |
| __RETURN_TYPE __isinf(double __x) { return __ocml_isinf_f64(__x); } |
| |
| __DEVICE__ |
| __RETURN_TYPE __isnan(double __x) { return __ocml_isnan_f64(__x); } |
| |
| __DEVICE__ |
| double j0(double __x) { return __ocml_j0_f64(__x); } |
| |
| __DEVICE__ |
| double j1(double __x) { return __ocml_j1_f64(__x); } |
| |
| __DEVICE__ |
| double jn(int __n, double __x) { // TODO: we could use Ahmes multiplication |
| // and the Miller & Brown algorithm |
| // for linear recurrences to get O(log n) steps, but it's unclear if |
| // it'd be beneficial in this case. Placeholder until OCML adds |
| // support. |
| if (__n == 0) |
| return j0(__x); |
| if (__n == 1) |
| return j1(__x); |
| |
| double __x0 = j0(__x); |
| double __x1 = j1(__x); |
| for (int __i = 1; __i < __n; ++__i) { |
| double __x2 = (2 * __i) / __x * __x1 - __x0; |
| __x0 = __x1; |
| __x1 = __x2; |
| } |
| return __x1; |
| } |
| |
| __DEVICE__ |
| double ldexp(double __x, int __e) { return __ocml_ldexp_f64(__x, __e); } |
| |
| __DEVICE__ |
| double lgamma(double __x) { return __ocml_lgamma_f64(__x); } |
| |
| __DEVICE__ |
| long long int llrint(double __x) { return __ocml_rint_f64(__x); } |
| |
| __DEVICE__ |
| long long int llround(double __x) { return __ocml_round_f64(__x); } |
| |
| __DEVICE__ |
| double log(double __x) { return __ocml_log_f64(__x); } |
| |
| __DEVICE__ |
| double log10(double __x) { return __ocml_log10_f64(__x); } |
| |
| __DEVICE__ |
| double log1p(double __x) { return __ocml_log1p_f64(__x); } |
| |
| __DEVICE__ |
| double log2(double __x) { return __ocml_log2_f64(__x); } |
| |
| __DEVICE__ |
| double logb(double __x) { return __ocml_logb_f64(__x); } |
| |
| __DEVICE__ |
| long int lrint(double __x) { return __ocml_rint_f64(__x); } |
| |
| __DEVICE__ |
| long int lround(double __x) { return __ocml_round_f64(__x); } |
| |
| __DEVICE__ |
| double modf(double __x, double *__iptr) { |
| double __tmp; |
| #ifdef __OPENMP_AMDGCN__ |
| #pragma omp allocate(__tmp) allocator(omp_thread_mem_alloc) |
| #endif |
| double __r = |
| __ocml_modf_f64(__x, (__attribute__((address_space(5))) double *)&__tmp); |
| *__iptr = __tmp; |
| |
| return __r; |
| } |
| |
| __DEVICE__ |
| double nan(const char *__tagp) { |
| #if !_WIN32 |
| union { |
| double val; |
| struct ieee_double { |
| uint64_t mantissa : 51; |
| uint32_t quiet : 1; |
| uint32_t exponent : 11; |
| uint32_t sign : 1; |
| } bits; |
| } __tmp; |
| __static_assert_type_size_equal(sizeof(__tmp.val), sizeof(__tmp.bits)); |
| |
| __tmp.bits.sign = 0u; |
| __tmp.bits.exponent = ~0u; |
| __tmp.bits.quiet = 1u; |
| __tmp.bits.mantissa = __make_mantissa(__tagp); |
| |
| return __tmp.val; |
| #else |
| __static_assert_type_size_equal(sizeof(uint64_t), sizeof(double)); |
| uint64_t __val = __make_mantissa(__tagp); |
| __val |= 0xFFF << 51; |
| return *reinterpret_cast<double *>(&__val); |
| #endif |
| } |
| |
| __DEVICE__ |
| double nearbyint(double __x) { return __ocml_nearbyint_f64(__x); } |
| |
| __DEVICE__ |
| double nextafter(double __x, double __y) { |
| return __ocml_nextafter_f64(__x, __y); |
| } |
| |
| __DEVICE__ |
| double norm(int __dim, |
| const double *__a) { // TODO: placeholder until OCML adds support. |
| double __r = 0; |
| while (__dim--) { |
| __r += __a[0] * __a[0]; |
| ++__a; |
| } |
| |
| return __ocml_sqrt_f64(__r); |
| } |
| |
| __DEVICE__ |
| double norm3d(double __x, double __y, double __z) { |
| return __ocml_len3_f64(__x, __y, __z); |
| } |
| |
| __DEVICE__ |
| double norm4d(double __x, double __y, double __z, double __w) { |
| return __ocml_len4_f64(__x, __y, __z, __w); |
| } |
| |
| __DEVICE__ |
| double normcdf(double __x) { return __ocml_ncdf_f64(__x); } |
| |
| __DEVICE__ |
| double normcdfinv(double __x) { return __ocml_ncdfinv_f64(__x); } |
| |
| __DEVICE__ |
| double pow(double __x, double __y) { return __ocml_pow_f64(__x, __y); } |
| |
| __DEVICE__ |
| double powi(double __x, int __y) { return __ocml_pown_f64(__x, __y); } |
| |
| __DEVICE__ |
| double rcbrt(double __x) { return __ocml_rcbrt_f64(__x); } |
| |
| __DEVICE__ |
| double remainder(double __x, double __y) { |
| return __ocml_remainder_f64(__x, __y); |
| } |
| |
| __DEVICE__ |
| double remquo(double __x, double __y, int *__quo) { |
| int __tmp; |
| #ifdef __OPENMP_AMDGCN__ |
| #pragma omp allocate(__tmp) allocator(omp_thread_mem_alloc) |
| #endif |
| double __r = __ocml_remquo_f64( |
| __x, __y, (__attribute__((address_space(5))) int *)&__tmp); |
| *__quo = __tmp; |
| |
| return __r; |
| } |
| |
| __DEVICE__ |
| double rhypot(double __x, double __y) { return __ocml_rhypot_f64(__x, __y); } |
| |
| __DEVICE__ |
| double rint(double __x) { return __ocml_rint_f64(__x); } |
| |
| __DEVICE__ |
| double rnorm(int __dim, |
| const double *__a) { // TODO: placeholder until OCML adds support. |
| double __r = 0; |
| while (__dim--) { |
| __r += __a[0] * __a[0]; |
| ++__a; |
| } |
| |
| return __ocml_rsqrt_f64(__r); |
| } |
| |
| __DEVICE__ |
| double rnorm3d(double __x, double __y, double __z) { |
| return __ocml_rlen3_f64(__x, __y, __z); |
| } |
| |
| __DEVICE__ |
| double rnorm4d(double __x, double __y, double __z, double __w) { |
| return __ocml_rlen4_f64(__x, __y, __z, __w); |
| } |
| |
| __DEVICE__ |
| double round(double __x) { return __ocml_round_f64(__x); } |
| |
| __DEVICE__ |
| double rsqrt(double __x) { return __ocml_rsqrt_f64(__x); } |
| |
| __DEVICE__ |
| double scalbln(double __x, long int __n) { |
| return (__n < INT_MAX) ? __ocml_scalbn_f64(__x, __n) |
| : __ocml_scalb_f64(__x, __n); |
| } |
| __DEVICE__ |
| double scalbn(double __x, int __n) { return __ocml_scalbn_f64(__x, __n); } |
| |
| __DEVICE__ |
| __RETURN_TYPE __signbit(double __x) { return __ocml_signbit_f64(__x); } |
| |
| __DEVICE__ |
| double sin(double __x) { return __ocml_sin_f64(__x); } |
| |
| __DEVICE__ |
| void sincos(double __x, double *__sinptr, double *__cosptr) { |
| double __tmp; |
| #ifdef __OPENMP_AMDGCN__ |
| #pragma omp allocate(__tmp) allocator(omp_thread_mem_alloc) |
| #endif |
| *__sinptr = __ocml_sincos_f64( |
| __x, (__attribute__((address_space(5))) double *)&__tmp); |
| *__cosptr = __tmp; |
| } |
| |
| __DEVICE__ |
| void sincospi(double __x, double *__sinptr, double *__cosptr) { |
| double __tmp; |
| #ifdef __OPENMP_AMDGCN__ |
| #pragma omp allocate(__tmp) allocator(omp_thread_mem_alloc) |
| #endif |
| *__sinptr = __ocml_sincospi_f64( |
| __x, (__attribute__((address_space(5))) double *)&__tmp); |
| *__cosptr = __tmp; |
| } |
| |
| __DEVICE__ |
| double sinh(double __x) { return __ocml_sinh_f64(__x); } |
| |
| __DEVICE__ |
| double sinpi(double __x) { return __ocml_sinpi_f64(__x); } |
| |
| __DEVICE__ |
| double sqrt(double __x) { return __ocml_sqrt_f64(__x); } |
| |
| __DEVICE__ |
| double tan(double __x) { return __ocml_tan_f64(__x); } |
| |
| __DEVICE__ |
| double tanh(double __x) { return __ocml_tanh_f64(__x); } |
| |
| __DEVICE__ |
| double tgamma(double __x) { return __ocml_tgamma_f64(__x); } |
| |
| __DEVICE__ |
| double trunc(double __x) { return __ocml_trunc_f64(__x); } |
| |
| __DEVICE__ |
| double y0(double __x) { return __ocml_y0_f64(__x); } |
| |
| __DEVICE__ |
| double y1(double __x) { return __ocml_y1_f64(__x); } |
| |
| __DEVICE__ |
| double yn(int __n, double __x) { // TODO: we could use Ahmes multiplication |
| // and the Miller & Brown algorithm |
| // for linear recurrences to get O(log n) steps, but it's unclear if |
| // it'd be beneficial in this case. Placeholder until OCML adds |
| // support. |
| if (__n == 0) |
| return y0(__x); |
| if (__n == 1) |
| return y1(__x); |
| |
| double __x0 = y0(__x); |
| double __x1 = y1(__x); |
| for (int __i = 1; __i < __n; ++__i) { |
| double __x2 = (2 * __i) / __x * __x1 - __x0; |
| __x0 = __x1; |
| __x1 = __x2; |
| } |
| |
| return __x1; |
| } |
| |
| // BEGIN INTRINSICS |
| #if defined OCML_BASIC_ROUNDED_OPERATIONS |
| __DEVICE__ |
| double __dadd_rd(double __x, double __y) { |
| return __ocml_add_rtn_f64(__x, __y); |
| } |
| __DEVICE__ |
| double __dadd_rn(double __x, double __y) { |
| return __ocml_add_rte_f64(__x, __y); |
| } |
| __DEVICE__ |
| double __dadd_ru(double __x, double __y) { |
| return __ocml_add_rtp_f64(__x, __y); |
| } |
| __DEVICE__ |
| double __dadd_rz(double __x, double __y) { |
| return __ocml_add_rtz_f64(__x, __y); |
| } |
| #else |
| __DEVICE__ |
| double __dadd_rn(double __x, double __y) { return __x + __y; } |
| #endif |
| |
| #if defined OCML_BASIC_ROUNDED_OPERATIONS |
| __DEVICE__ |
| double __ddiv_rd(double __x, double __y) { |
| return __ocml_div_rtn_f64(__x, __y); |
| } |
| __DEVICE__ |
| double __ddiv_rn(double __x, double __y) { |
| return __ocml_div_rte_f64(__x, __y); |
| } |
| __DEVICE__ |
| double __ddiv_ru(double __x, double __y) { |
| return __ocml_div_rtp_f64(__x, __y); |
| } |
| __DEVICE__ |
| double __ddiv_rz(double __x, double __y) { |
| return __ocml_div_rtz_f64(__x, __y); |
| } |
| #else |
| __DEVICE__ |
| double __ddiv_rn(double __x, double __y) { return __x / __y; } |
| #endif |
| |
| #if defined OCML_BASIC_ROUNDED_OPERATIONS |
| __DEVICE__ |
| double __dmul_rd(double __x, double __y) { |
| return __ocml_mul_rtn_f64(__x, __y); |
| } |
| __DEVICE__ |
| double __dmul_rn(double __x, double __y) { |
| return __ocml_mul_rte_f64(__x, __y); |
| } |
| __DEVICE__ |
| double __dmul_ru(double __x, double __y) { |
| return __ocml_mul_rtp_f64(__x, __y); |
| } |
| __DEVICE__ |
| double __dmul_rz(double __x, double __y) { |
| return __ocml_mul_rtz_f64(__x, __y); |
| } |
| #else |
| __DEVICE__ |
| double __dmul_rn(double __x, double __y) { return __x * __y; } |
| #endif |
| |
| #if defined OCML_BASIC_ROUNDED_OPERATIONS |
| __DEVICE__ |
| double __drcp_rd(double __x) { return __ocml_div_rtn_f64(1.0, __x); } |
| __DEVICE__ |
| double __drcp_rn(double __x) { return __ocml_div_rte_f64(1.0, __x); } |
| __DEVICE__ |
| double __drcp_ru(double __x) { return __ocml_div_rtp_f64(1.0, __x); } |
| __DEVICE__ |
| double __drcp_rz(double __x) { return __ocml_div_rtz_f64(1.0, __x); } |
| #else |
| __DEVICE__ |
| double __drcp_rn(double __x) { return 1.0 / __x; } |
| #endif |
| |
| #if defined OCML_BASIC_ROUNDED_OPERATIONS |
| __DEVICE__ |
| double __dsqrt_rd(double __x) { return __ocml_sqrt_rtn_f64(__x); } |
| __DEVICE__ |
| double __dsqrt_rn(double __x) { return __ocml_sqrt_rte_f64(__x); } |
| __DEVICE__ |
| double __dsqrt_ru(double __x) { return __ocml_sqrt_rtp_f64(__x); } |
| __DEVICE__ |
| double __dsqrt_rz(double __x) { return __ocml_sqrt_rtz_f64(__x); } |
| #else |
| __DEVICE__ |
| double __dsqrt_rn(double __x) { return __ocml_sqrt_f64(__x); } |
| #endif |
| |
| #if defined OCML_BASIC_ROUNDED_OPERATIONS |
| __DEVICE__ |
| double __dsub_rd(double __x, double __y) { |
| return __ocml_sub_rtn_f64(__x, __y); |
| } |
| __DEVICE__ |
| double __dsub_rn(double __x, double __y) { |
| return __ocml_sub_rte_f64(__x, __y); |
| } |
| __DEVICE__ |
| double __dsub_ru(double __x, double __y) { |
| return __ocml_sub_rtp_f64(__x, __y); |
| } |
| __DEVICE__ |
| double __dsub_rz(double __x, double __y) { |
| return __ocml_sub_rtz_f64(__x, __y); |
| } |
| #else |
| __DEVICE__ |
| double __dsub_rn(double __x, double __y) { return __x - __y; } |
| #endif |
| |
| #if defined OCML_BASIC_ROUNDED_OPERATIONS |
| __DEVICE__ |
| double __fma_rd(double __x, double __y, double __z) { |
| return __ocml_fma_rtn_f64(__x, __y, __z); |
| } |
| __DEVICE__ |
| double __fma_rn(double __x, double __y, double __z) { |
| return __ocml_fma_rte_f64(__x, __y, __z); |
| } |
| __DEVICE__ |
| double __fma_ru(double __x, double __y, double __z) { |
| return __ocml_fma_rtp_f64(__x, __y, __z); |
| } |
| __DEVICE__ |
| double __fma_rz(double __x, double __y, double __z) { |
| return __ocml_fma_rtz_f64(__x, __y, __z); |
| } |
| #else |
| __DEVICE__ |
| double __fma_rn(double __x, double __y, double __z) { |
| return __ocml_fma_f64(__x, __y, __z); |
| } |
| #endif |
| // END INTRINSICS |
| // END DOUBLE |
| |
| // C only macros |
| #if !defined(__cplusplus) && __STDC_VERSION__ >= 201112L |
| #define isfinite(__x) _Generic((__x), float : __finitef, double : __finite)(__x) |
| #define isinf(__x) _Generic((__x), float : __isinff, double : __isinf)(__x) |
| #define isnan(__x) _Generic((__x), float : __isnanf, double : __isnan)(__x) |
| #define signbit(__x) \ |
| _Generic((__x), float : __signbitf, double : __signbit)(__x) |
| #endif // !defined(__cplusplus) && __STDC_VERSION__ >= 201112L |
| |
| #if defined(__cplusplus) |
| template <class T> __DEVICE__ T min(T __arg1, T __arg2) { |
| return (__arg1 < __arg2) ? __arg1 : __arg2; |
| } |
| |
| template <class T> __DEVICE__ T max(T __arg1, T __arg2) { |
| return (__arg1 > __arg2) ? __arg1 : __arg2; |
| } |
| |
| __DEVICE__ int min(int __arg1, int __arg2) { |
| return (__arg1 < __arg2) ? __arg1 : __arg2; |
| } |
| __DEVICE__ int max(int __arg1, int __arg2) { |
| return (__arg1 > __arg2) ? __arg1 : __arg2; |
| } |
| |
| __DEVICE__ |
| float max(float __x, float __y) { return fmaxf(__x, __y); } |
| |
| __DEVICE__ |
| double max(double __x, double __y) { return fmax(__x, __y); } |
| |
| __DEVICE__ |
| float min(float __x, float __y) { return fminf(__x, __y); } |
| |
| __DEVICE__ |
| double min(double __x, double __y) { return fmin(__x, __y); } |
| |
| #if !defined(__HIPCC_RTC__) && !defined(__OPENMP_AMDGCN__) |
| __host__ inline static int min(int __arg1, int __arg2) { |
| return std::min(__arg1, __arg2); |
| } |
| |
| __host__ inline static int max(int __arg1, int __arg2) { |
| return std::max(__arg1, __arg2); |
| } |
| #endif // !defined(__HIPCC_RTC__) && !defined(__OPENMP_AMDGCN__) |
| #endif |
| |
| #pragma pop_macro("__DEVICE__") |
| #pragma pop_macro("__RETURN_TYPE") |
| |
| #endif // __CLANG_HIP_MATH_H__ |