| /*===--- __clang_cuda_texture_intrinsics.h - Device-side texture support ---=== |
| * |
| * Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
| * See https://llvm.org/LICENSE.txt for license information. |
| * SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
| * |
| *===-----------------------------------------------------------------------=== |
| * |
| * This header provides in-header implmentations for NVCC's built-in |
| * __nv_tex_surf_handler() which is used by CUDA's texture-related headers. The |
| * built-in is unusual as it's actually a set of function overloads that use the |
| * first string literal argument as one of the overload parameters. |
| */ |
| #ifndef __CLANG_CUDA_TEXTURE_INTRINSICS_H__ |
| #define __CLANG_CUDA_TEXTURE_INTRINSICS_H__ |
| #ifndef __CUDA__ |
| #error "This file is for CUDA compilation only." |
| #endif |
| |
| // __nv_tex_surf_handler() provided by this header as a macro. |
| #define __nv_tex_surf_handler(__op, __ptr, ...) \ |
| ::__cuda_tex::__tex_fetch< \ |
| ::__cuda_tex::__Tag<::__cuda_tex::__tex_op_hash(__op)>>(__ptr, \ |
| __VA_ARGS__) |
| |
| #pragma push_macro("__ASM_OUT") |
| #pragma push_macro("__ASM_OUTP") |
| #pragma push_macro("__Args") |
| #pragma push_macro("__ID") |
| #pragma push_macro("__IDV") |
| #pragma push_macro("__IMPL_2DGATHER") |
| #pragma push_macro("__IMPL_ALIAS") |
| #pragma push_macro("__IMPL_ALIASI") |
| #pragma push_macro("__IMPL_F1") |
| #pragma push_macro("__IMPL_F3") |
| #pragma push_macro("__IMPL_F3N") |
| #pragma push_macro("__IMPL_F3S") |
| #pragma push_macro("__IMPL_S") |
| #pragma push_macro("__IMPL_S3") |
| #pragma push_macro("__IMPL_S3I") |
| #pragma push_macro("__IMPL_S3N") |
| #pragma push_macro("__IMPL_S3NI") |
| #pragma push_macro("__IMPL_S3S") |
| #pragma push_macro("__IMPL_S3SI") |
| #pragma push_macro("__IMPL_SI") |
| #pragma push_macro("__L") |
| #pragma push_macro("__STRIP_PARENS") |
| |
| // Put all functions into anonymous namespace so they have internal linkage. |
| // The device-only function here must be internal in order to avoid ODR |
| // violations in case they are used from the files compiled with |
| // -fgpu-rdc. E.g. a library and an app using it may be built with a different |
| // version of this header file. |
| namespace { |
| |
| // Put the implmentation into its own namespace so we don't pollute the TU. |
| namespace __cuda_tex { |
| |
| // First, we need a perfect hash function and a few constexpr helper functions |
| // for converting a string literal into a numeric value which can be used to |
| // parametrize a template. We can not use string literals for that as that would |
| // require C++20. |
| // |
| // The hash function was generated with 'gperf' and then manually converted into |
| // its constexpr equivalent. |
| // |
| // NOTE: the perfect hashing scheme comes with inherent self-test. If the hash |
| // function has a collision for any of the texture operations, the compilation |
| // will fail due to an attempt to redefine a tag with the same value. If the |
| // header compiles, then the hash function is good enough for the job. |
| |
| constexpr int __tex_len(const char *s) { |
| return (s[0] == 0) ? 0 |
| : (s[1] == 0) ? 1 |
| : (s[2] == 0) ? 2 |
| : (s[3] == 0) ? 3 |
| : (s[4] == 0) ? 4 |
| : (s[5] == 0) ? 5 |
| : (s[6] == 0) ? 6 |
| : (s[7] == 0) ? 7 |
| : (s[8] == 0) ? 8 |
| : (s[9] == 0) ? 9 |
| : (s[10] == 0) ? 10 |
| : (s[11] == 0) ? 11 |
| : (s[12] == 0) ? 12 |
| : (s[13] == 0) ? 13 |
| : (s[14] == 0) ? 14 |
| : (s[15] == 0) ? 15 |
| : (s[16] == 0) ? 16 |
| : (s[17] == 0) ? 17 |
| : (s[18] == 0) ? 18 |
| : (s[19] == 0) ? 19 |
| : (s[20] == 0) ? 20 |
| : (s[21] == 0) ? 21 |
| : (s[22] == 0) ? 22 |
| : (s[23] == 0) ? 23 |
| : (s[24] == 0) ? 24 |
| : (s[25] == 0) ? 25 |
| : (s[26] == 0) ? 26 |
| : (s[27] == 0) ? 27 |
| : (s[28] == 0) ? 28 |
| : (s[29] == 0) ? 29 |
| : (s[30] == 0) ? 30 |
| : (s[31] == 0) ? 31 |
| : 32; |
| } |
| |
| constexpr int __tex_hash_map(int c) { |
| return (c == 49) ? 10 |
| : (c == 50) ? 0 |
| : (c == 51) ? 100 |
| : (c == 52) ? 30 |
| : (c == 67) ? 10 |
| : (c == 68) ? 0 |
| : (c == 69) ? 25 |
| : (c == 72) ? 70 |
| : (c == 77) ? 0 |
| : (c == 96) ? 44 |
| : (c == 99) ? 10 |
| : (c == 100) ? 5 |
| : (c == 101) ? 60 |
| : (c == 102) ? 40 |
| : (c == 103) ? 70 |
| : (c == 104) ? 25 |
| : (c == 112) ? 0 |
| : (c == 114) ? 45 |
| : (c == 117) ? 5 |
| : (c == 118) ? 85 |
| : (c == 120) ? 20 |
| : 225; |
| } |
| |
| constexpr int __tex_op_hash(const char *str) { |
| return __tex_len(str) + __tex_hash_map(str[7] + 1) + __tex_hash_map(str[6]) + |
| __tex_hash_map(str[5]) + __tex_hash_map(str[__tex_len(str) - 1]); |
| } |
| |
| // Tag type to identify particular texture operation. |
| template <int N> struct __Tag; |
| #define __ID(__op) __Tag<__tex_op_hash(__op)> |
| // Tags for variants of particular operation. E.g. tex2Dgather can translate |
| // into 4 different instructions. |
| #define __IDV(__op, __variant) \ |
| __Tag<10000 + __tex_op_hash(__op) * 100 + __variant> |
| |
| // Helper classes for figuring out key data types for derived types. |
| // E.g. char2 has __base_t = char, __fetch_t = char4 |
| template <class> struct __TypeInfoT; |
| // Type info for the fundamental types. |
| template <> struct __TypeInfoT<float> { |
| using __base_t = float; |
| using __fetch_t = float4; |
| }; |
| template <> struct __TypeInfoT<char> { |
| using __base_t = char; |
| using __fetch_t = int4; |
| }; |
| template <> struct __TypeInfoT<signed char> { |
| using __base_t = signed char; |
| using __fetch_t = int4; |
| }; |
| template <> struct __TypeInfoT<unsigned char> { |
| using __base_t = unsigned char; |
| using __fetch_t = uint4; |
| }; |
| template <> struct __TypeInfoT<short> { |
| using __base_t = short; |
| using __fetch_t = int4; |
| }; |
| template <> struct __TypeInfoT<unsigned short> { |
| using __base_t = unsigned short; |
| using __fetch_t = uint4; |
| }; |
| template <> struct __TypeInfoT<int> { |
| using __base_t = int; |
| using __fetch_t = int4; |
| }; |
| template <> struct __TypeInfoT<unsigned int> { |
| using __base_t = unsigned int; |
| using __fetch_t = uint4; |
| }; |
| |
| // Derived base/fetch types for N-element vectors. |
| template <class __T> struct __TypeInfoT { |
| using __base_t = decltype(__T::x); |
| using __fetch_t = typename __TypeInfoT<__base_t>::__fetch_t; |
| }; |
| |
| // Classes that implement specific texture ops. |
| template <class __op> struct __tex_fetch_v4; |
| |
| // Helper macros to strip parens from a macro argument. |
| #define __Args(...) __VA_ARGS__ |
| #define __STRIP_PARENS(__X) __X |
| #define __L(__X) __STRIP_PARENS(__Args __X) |
| |
| // Construct inline assembly output args. |
| // Results are stored in a temp var __r. |
| // isResident bool is pointed to by __ir |
| // Asm args for return values. It's a 4-element vector |
| #define __ASM_OUT(__t) \ |
| ("=" __t(__r.x), "=" __t(__r.y), "=" __t(__r.z), "=" __t(__r.w)) |
| // .. possibly combined with a predicate. |
| #define __ASM_OUTP(__t) (__L(__ASM_OUT(__t)), "=h"(*__ir)) |
| |
| // Implements a single variant of texture fetch instruction. |
| #define __IMPL_F1(__rt, __dt, __args, __asm_op, __asm_outs, __asm_args) \ |
| template <> \ |
| __device__ __rt __run<__dt>(cudaTextureObject_t __obj, __L(__args)) { \ |
| __rt __r; \ |
| asm(__asm_op : __L(__asm_outs) : "l"(__obj), __L(__asm_args)); \ |
| return __r; \ |
| } |
| |
| // Implements texture fetch instructions for int4/uint4/float4 data types. |
| #define __IMPL_F3(__args, __asm_op, __ctype, __asm_op_args, __asm_args) \ |
| __IMPL_F1(int4, int4, __args, __asm_op ".s32." __ctype "\t" __asm_op_args, \ |
| __ASM_OUT("r"), __asm_args) \ |
| __IMPL_F1(uint4, uint4, __args, __asm_op ".u32." __ctype "\t" __asm_op_args, \ |
| __ASM_OUT("r"), __asm_args) \ |
| __IMPL_F1(float4, float4, __args, \ |
| __asm_op ".f32." __ctype "\t" __asm_op_args, __ASM_OUT("f"), \ |
| __asm_args) |
| // Implements 'sparse' texture fetch instructions for int4/uint4/float4 data |
| // types. Similar to above, but returns a boolean 'isPresent' value in addition |
| // to texture data, |
| #define __IMPL_F3S(__args, __asm_op, __ctype, __asm_op_args, __asm_args) \ |
| __IMPL_F1(int4, int4, __args, __asm_op ".s32." __ctype "\t" __asm_op_args, \ |
| __ASM_OUTP("r"), __asm_args) \ |
| __IMPL_F1(uint4, uint4, __args, __asm_op ".u32." __ctype "\t" __asm_op_args, \ |
| __ASM_OUTP("r"), __asm_args) \ |
| __IMPL_F1(float4, float4, __args, \ |
| __asm_op ".f32." __ctype "\t" __asm_op_args, __ASM_OUTP("f"), \ |
| __asm_args) |
| |
| // Similar to F3, but for integer data which is returned as normalized floats. |
| // Only instantiates fetch functions for int4/uint4. |
| #define __IMPL_F3N(__args, __asm_op, __ctype, __asm_op_args, __asm_args) \ |
| __IMPL_F1(float4, int4, __args, __asm_op ".s32." __ctype "\t" __asm_op_args, \ |
| __ASM_OUT("r"), __asm_args) \ |
| __IMPL_F1(float4, uint4, __args, \ |
| __asm_op ".u32." __ctype "\t" __asm_op_args, __ASM_OUT("r"), \ |
| __asm_args) |
| |
| // Instantiates __tex_fetch_v4 with regular fetch functions. |
| #define __IMPL_S3I(__op, __args, __asm_op, __ctype, __asm_op_args, __asm_args) \ |
| template <> struct __tex_fetch_v4<__op> { \ |
| template <class T> \ |
| __device__ static T __run(cudaTextureObject_t __obj, __L(__args)); \ |
| __IMPL_F3(__args, __asm_op, __ctype, __asm_op_args, __asm_args) \ |
| } |
| |
| // Same, but for sparse ops. Only available on sm_60+ |
| #if !defined(__CUDA_ARCH__) || (__CUDA_ARCH__ >= 600) |
| #define __IMPL_S3SI(__op, __args, __asm_op, __ctype, __asm_op_args, \ |
| __asm_args) \ |
| template <> struct __tex_fetch_v4<__op> { \ |
| template <class T> \ |
| __device__ static T __run(cudaTextureObject_t __obj, __L(__args)); \ |
| __IMPL_F3S(__args, __asm_op, __ctype, __asm_op_args, __asm_args) \ |
| } |
| #else |
| #define __IMPL_S3SI(__op, __args, __asm_op, __ctype, __asm_op_args, __asm_args) |
| #endif |
| |
| // Same, but for normalized float ops. |
| #define __IMPL_S3NI(__op, __args, __asm_op, __ctype, __asm_op_args, \ |
| __asm_args) \ |
| template <> struct __tex_fetch_v4<__op> { \ |
| template <class T> \ |
| __device__ static float4 __run(cudaTextureObject_t __obj, __L(__args)); \ |
| __IMPL_F3N(__args, __asm_op, __ctype, __asm_op_args, __asm_args) \ |
| } |
| |
| // Regular and normalized float ops share a lot of similarities. This macro |
| // instantiates both variants -- normal for __op and normalized for __opn. |
| #define __IMPL_SI(__op, __opn, __args, __asm_op, __ctype, __asm_op_args, \ |
| __asm_args) \ |
| __IMPL_S3I(__op, __args, __asm_op, __ctype, __asm_op_args, __asm_args); \ |
| __IMPL_S3NI(__opn, __args, __asm_op, __ctype, __asm_op_args, __asm_args) |
| |
| // Convenience macros which converts string literal __op into a __Tag, |
| #define __IMPL_S3(__op, __args, __asm_op, __ctype, __asm_op_args, __asm_args) \ |
| __IMPL_S3I(__ID(__op), __args, __asm_op, __ctype, __asm_op_args, __asm_args) |
| #define __IMPL_S3S(__op, __args, __asm_op, __ctype, __asm_op_args, __asm_args) \ |
| __IMPL_S3SI(__ID(__op), __args, __asm_op, __ctype, __asm_op_args, __asm_args) |
| #define __IMPL_S3N(__op, __args, __asm_op, __ctype, __asm_op_args, __asm_args) \ |
| __IMPL_S3NI(__ID(__op), __args, __asm_op, __ctype, __asm_op_args, __asm_args) |
| #define __IMPL_S(__op, __opn, __args, __asm_op, __ctype, __asm_op_args, \ |
| __asm_args) \ |
| __IMPL_SI(__ID(__op), __ID(__opn), __args, __asm_op, __ctype, __asm_op_args, \ |
| __asm_args) |
| |
| // CUDA headers have some 'legacy' texture oprerations that duplicate |
| // functionality. So, we just inherit it, instead of refining a copy. |
| #define __IMPL_ALIASI(__op, __opn) \ |
| template <> struct __tex_fetch_v4<__op> : __tex_fetch_v4<__opn> {} |
| #define __IMPL_ALIAS(__op, __opn) __IMPL_ALIASI(__ID(__op), __ID(__opn)) |
| |
| // Now we can instantiate everything we need for each specific texture fetch |
| // variant. |
| __IMPL_S("__tex1D_v2", "__tex1D_rmnf_v2", (float __x), "tex.1d.v4", "f32", |
| "{%0, %1, %2, %3}, [%4, {%5}];", ("f"(__x))); |
| __IMPL_S("__tex1Dfetch_v2", "__tex1Dfetch_rmnf_v2", (int __x), "tex.1d.v4", |
| "s32", "{%0, %1, %2, %3}, [%4, {%5}];", ("r"(__x))); |
| __IMPL_ALIAS("__itex1D", "__tex1D_v2"); |
| __IMPL_ALIAS("__itex1Dfetch", "__tex1Dfetch_v2"); |
| |
| __IMPL_S("__tex1DGrad_v2", "__tex1DGrad_rmnf_v2", |
| (float __x, float __dPdx, float __dPdy), "tex.grad.1d.v4", "f32", |
| "{%0, %1, %2, %3}, [%4, {%5}], {%6}, {%7};", |
| ("f"(__x), "f"(__dPdx), "f"(__dPdy))); |
| __IMPL_ALIAS("__itex1DGrad", "__tex1DGrad_v2"); |
| |
| __IMPL_S("__tex1DLayered_v2", "__tex1DLayered_rmnf_v2", |
| (float __x, int __layer), "tex.a1d.v4", "f32", |
| "{%0, %1, %2, %3}, [%4, {%5, %6}];", ("r"(__layer), "f"(__x))); |
| __IMPL_ALIAS("__itex1DLayered", "__tex1DLayered_v2"); |
| |
| __IMPL_S("__tex1DLayeredGrad_v2", "__tex1DLayeredGrad_rmnf_v2", |
| (float __x, int __layer, float __dPdx, float __dPdy), |
| "tex.grad.a1d.v4", "f32", |
| "{%0, %1, %2, %3}, [%4, {%5, %6}], {%7}, {%8};", |
| ("r"(__layer), "f"(__x), "f"(__dPdx), "f"(__dPdy))); |
| __IMPL_ALIAS("__itex1DLayeredGrad", "__tex1DLayeredGrad_v2"); |
| |
| __IMPL_S("__tex1DLayeredLod_v2", "__tex1DLayeredLod_rmnf_v2", |
| (float __x, int __layer, float __level), "tex.level.a1d.v4", "f32", |
| "{%0, %1, %2, %3}, [%4, {%5, %6}], %7;", |
| ("r"(__layer), "f"(__x), "f"(__level))); |
| __IMPL_ALIAS("__itex1DLayeredLod", "__tex1DLayeredLod_v2"); |
| |
| __IMPL_S("__tex1DLod_v2", "__tex1DLod_rmnf_v2", (float __x, float __level), |
| "tex.level.1d.v4", "f32", "{%0, %1, %2, %3}, [%4, {%5}], %6;", |
| ("f"(__x), "f"(__level))); |
| __IMPL_ALIAS("__itex1DLod", "__tex1DLod_v2"); |
| |
| // 2D |
| __IMPL_S("__tex2D_v2", "__tex2D_rmnf_v2", (float __x, float __y), "tex.2d.v4", |
| "f32", "{%0, %1, %2, %3}, [%4, {%5, %6}];", ("f"(__x), "f"(__y))); |
| __IMPL_ALIAS("__itex2D", "__tex2D_v2"); |
| |
| __IMPL_S3S("__itex2D_sparse", (float __x, float __y, unsigned char *__ir), |
| "{.reg .pred %%p0;\n\t" |
| "tex.2d.v4", |
| "f32", |
| "{%0, %1, %2, %3}|%%p0, [%5, {%6, %7}];\n\t" |
| " selp.u16 %4, 1, 0, %%p0; }", |
| ("f"(__x), "f"(__y))); |
| |
| __IMPL_S("__tex2DGrad_v2", "__tex2DGrad_rmnf_v2", |
| (float __x, float __y, const float2 *__dPdx, const float2 *__dPdy), |
| "tex.grad.2d.v4", "f32", |
| "{%0, %1, %2, %3}, [%4, {%5, %6}], {%7, %8}, {%9, %10};", |
| ("f"(__x), "f"(__y), "f"(__dPdx->x), "f"(__dPdx->y), "f"(__dPdy->x), |
| "f"(__dPdy->y))); |
| __IMPL_ALIAS("__itex2DGrad_v2", "__tex2DGrad_v2"); |
| |
| __IMPL_S3S("__itex2DGrad_sparse", |
| (float __x, float __y, const float2 *__dPdx, const float2 *__dPdy, |
| unsigned char *__ir), |
| "{.reg .pred %%p0;\n\t" |
| "tex.grad.2d.v4", |
| "f32", |
| "{%0, %1, %2, %3}|%%p0, [%5, {%6, %7}], {%8, %9}, {%10, %11};\n\t" |
| "selp.u16 %4, 1, 0, %%p0; }", |
| ("f"(__x), "f"(__y), "f"(__dPdx->x), "f"(__dPdx->y), "f"(__dPdy->x), |
| "f"(__dPdy->y))); |
| |
| __IMPL_S("__tex2DLayered_v2", "__tex2DLayered_rmnf_v2", |
| (float __x, float __y, int __layer), "tex.a2d.v4", "f32", |
| "{%0, %1, %2, %3}, [%4, {%5, %6, %7, %7}];", |
| ("r"(__layer), "f"(__x), "f"(__y))); |
| __IMPL_ALIAS("__itex2DLayered", "__tex2DLayered_v2"); |
| |
| __IMPL_S3S("__itex2DLayered_sparse", |
| (float __x, float __y, int __layer, unsigned char *__ir), |
| "{.reg .pred %%p0;\n\t" |
| "tex.a2d.v4", |
| "f32", |
| "{%0, %1, %2, %3}|%%p0, [%5, {%6, %7, %8, %8}];\n\t" |
| "selp.u16 %4, 1, 0, %%p0; }", |
| ("r"(__layer), "f"(__x), "f"(__y))); |
| |
| __IMPL_S("__tex2DLayeredGrad_v2", "__tex2DLayeredGrad_rmnf_v2", |
| (float __x, float __y, int __layer, const float2 *__dPdx, |
| const float2 *__dPdy), |
| "tex.grad.a2d.v4", "f32", |
| "{%0, %1, %2, %3}, [%4, {%5, %6, %7, %7}], {%8, %9}, {%10, %11};", |
| ("r"(__layer), "f"(__x), "f"(__y), "f"(__dPdx->x), "f"(__dPdx->y), |
| "f"(__dPdy->x), "f"(__dPdy->y))); |
| __IMPL_ALIAS("__itex2DLayeredGrad_v2", "__tex2DLayeredGrad_v2"); |
| |
| __IMPL_S3S( |
| "__itex2DLayeredGrad_sparse", |
| (float __x, float __y, int __layer, const float2 *__dPdx, |
| const float2 *__dPdy, unsigned char *__ir), |
| "{.reg .pred %%p0;\n\t" |
| "tex.grad.a2d.v4", |
| "f32", |
| "{%0, %1, %2, %3}|%%p0, [%5, {%6, %7, %8, %8}], {%9, %10}, {%11, %12};\n\t" |
| "selp.u16 %4, 1, 0, %%p0; }", |
| ("r"(__layer), "f"(__x), "f"(__y), "f"(__dPdx->x), "f"(__dPdx->y), |
| "f"(__dPdy->x), "f"(__dPdy->y))); |
| |
| __IMPL_S("__tex2DLayeredLod_v2", "__tex2DLayeredLod_rmnf_v2", |
| (float __x, float __y, int __layer, float __level), "tex.level.a2d.v4", |
| "f32", "{%0, %1, %2, %3}, [%4, {%5, %6, %7, %7}], %8;", |
| ("r"(__layer), "f"(__x), "f"(__y), "f"(__level))); |
| __IMPL_ALIAS("__itex2DLayeredLod", "__tex2DLayeredLod_v2"); |
| |
| __IMPL_S3S("__itex2DLayeredLod_sparse", |
| (float __x, float __y, int __layer, float __level, |
| unsigned char *__ir), |
| "{.reg .pred %%p0;\n\t" |
| "tex.level.a2d.v4", |
| "f32", |
| "{%0, %1, %2, %3}|%%p0, [%5, {%6, %7, %8, %8}], %9;\n\t" |
| "selp.u16 %4, 1, 0, %%p0; }", |
| ("r"(__layer), "f"(__x), "f"(__y), "f"(__level))); |
| |
| __IMPL_S("__tex2DLod_v2", "__tex2DLod_rmnf_v2", |
| (float __x, float __y, float __level), "tex.level.2d.v4", "f32", |
| "{%0, %1, %2, %3}, [%4, {%5, %6}], %7;", |
| ("f"(__x), "f"(__y), "f"(__level))); |
| __IMPL_ALIAS("__itex2DLod", "__tex2DLod_v2"); |
| |
| __IMPL_S3S("__itex2DLod_sparse", |
| (float __x, float __y, float __level, unsigned char *__ir), |
| "{.reg .pred %%p0;\n\t" |
| "tex.level.2d.v4", |
| "f32", |
| "{%0, %1, %2, %3}|%%p0, [%5, {%6, %7}], %8;\n\t" |
| "selp.u16 %4, 1, 0, %%p0; }", |
| ("f"(__x), "f"(__y), "f"(__level))); |
| |
| // 2D gather is special. Unlike other variants that translate into exactly one |
| // asm instruction, it uses one of the four different instructions selected by |
| // __comp. We implement each instruction variant separately, and dispatch the |
| // right one from the manually implemented 'umbrella' fetch. |
| #define __IMPL_2DGATHER(variant, instr) \ |
| __IMPL_SI(__IDV("__tex2Dgather_v2", variant), \ |
| __IDV("__tex2Dgather_rmnf_v2", variant), \ |
| (float __x, float __y, int __comp), instr, "f32", \ |
| "{%0, %1, %2, %3}, [%4, {%5, %6}];", ("f"(__x), "f"(__y))); \ |
| __IMPL_ALIASI(__IDV("__itex2Dgather", variant), \ |
| __IDV("__tex2Dgather_v2", variant)); \ |
| __IMPL_S3SI(__IDV("__itex2Dgather_sparse", variant), \ |
| (float __x, float __y, unsigned char *__ir, int __comp), \ |
| "{.reg .pred %%p0;\n\t" instr, "f32", \ |
| "{%0, %1, %2, %3}|%%p0, [%5, {%6, %7}];\n\t" \ |
| "selp.u16 %4, 1, 0, %%p0; }", \ |
| ("f"(__x), "f"(__y))); |
| __IMPL_2DGATHER(0, "tld4.r.2d.v4"); |
| __IMPL_2DGATHER(1, "tld4.g.2d.v4"); |
| __IMPL_2DGATHER(2, "tld4.b.2d.v4"); |
| __IMPL_2DGATHER(3, "tld4.a.2d.v4"); |
| |
| // Umbrella dispatcher -- calls into specific 2Dgather variant. |
| template <> struct __tex_fetch_v4<__ID("__tex2Dgather_v2")> { |
| template <class __T> |
| __device__ static __T __run(cudaTextureObject_t __obj, float __x, float __y, |
| int __comp) { |
| switch (__comp) { |
| case 0: |
| return __tex_fetch_v4<__IDV("__tex2Dgather_v2", 0)>::__run<__T>( |
| __obj, __x, __y, __comp); |
| case 1: |
| return __tex_fetch_v4<__IDV("__tex2Dgather_v2", 1)>::__run<__T>( |
| __obj, __x, __y, __comp); |
| case 2: |
| return __tex_fetch_v4<__IDV("__tex2Dgather_v2", 2)>::__run<__T>( |
| __obj, __x, __y, __comp); |
| case 3: |
| return __tex_fetch_v4<__IDV("__tex2Dgather_v2", 3)>::__run<__T>( |
| __obj, __x, __y, __comp); |
| } |
| } |
| }; |
| __IMPL_ALIAS("__itex2Dgather", "__tex2Dgather_v2"); |
| |
| template <> struct __tex_fetch_v4<__ID("__tex2Dgather_rmnf_v2")> { |
| template <class __T> |
| __device__ static float4 __run(cudaTextureObject_t __obj, float __x, |
| float __y, int __comp) { |
| switch (__comp) { |
| case 0: |
| return __tex_fetch_v4<__IDV("__tex2Dgather_rmnf_v2", 0)>::__run<__T>( |
| __obj, __x, __y, __comp); |
| case 1: |
| return __tex_fetch_v4<__IDV("__tex2Dgather_rmnf_v2", 1)>::__run<__T>( |
| __obj, __x, __y, __comp); |
| case 2: |
| return __tex_fetch_v4<__IDV("__tex2Dgather_rmnf_v2", 2)>::__run<__T>( |
| __obj, __x, __y, __comp); |
| case 3: |
| return __tex_fetch_v4<__IDV("__tex2Dgather_rmnf_v2", 3)>::__run<__T>( |
| __obj, __x, __y, __comp); |
| } |
| } |
| }; |
| |
| #if !defined(__CUDA_ARCH__) || (__CUDA_ARCH__ >= 600) |
| template <> struct __tex_fetch_v4<__ID("__itex2Dgather_sparse")> { |
| template <class __T> |
| __device__ static __T __run(cudaTextureObject_t __obj, float __x, float __y, |
| unsigned char *__ir, int __comp) { |
| switch (__comp) { |
| case 0: |
| return __tex_fetch_v4<__IDV("__itex2Dgather_sparse", 0)>::__run<__T>( |
| __obj, __x, __y, __ir, __comp); |
| case 1: |
| return __tex_fetch_v4<__IDV("__itex2Dgather_sparse", 1)>::__run<__T>( |
| __obj, __x, __y, __ir, __comp); |
| case 2: |
| return __tex_fetch_v4<__IDV("__itex2Dgather_sparse", 2)>::__run<__T>( |
| __obj, __x, __y, __ir, __comp); |
| case 3: |
| return __tex_fetch_v4<__IDV("__itex2Dgather_sparse", 3)>::__run<__T>( |
| __obj, __x, __y, __ir, __comp); |
| } |
| } |
| }; |
| #endif |
| |
| // 3D |
| __IMPL_S("__tex3D_v2", "__tex3D_rmnf_v2", (float __x, float __y, float __z), |
| "tex.3d.v4", "f32", "{%0, %1, %2, %3}, [%4, {%5, %6, %7, %7}];", |
| ("f"(__x), "f"(__y), "f"(__z))); |
| __IMPL_ALIAS("__itex3D", "__tex3D_v2"); |
| |
| __IMPL_S3S("__itex3D_sparse", |
| (float __x, float __y, float __z, unsigned char *__ir), |
| "{.reg .pred %%p0;\n\t" |
| "tex.3d.v4", |
| "f32", |
| "{%0, %1, %2, %3}|%%p0, [%5, {%6, %7, %8, %8}];\n\t" |
| "selp.u16 %4, 1, 0, %%p0; }", |
| ("f"(__x), "f"(__y), "f"(__z))); |
| |
| __IMPL_S("__tex3DGrad_v2", "__tex3DGrad_rmnf_v2", |
| (float __x, float __y, float __z, const float4 *__dPdx, |
| const float4 *__dPdy), |
| "tex.grad.3d.v4", "f32", |
| "{%0, %1, %2, %3}, [%4, {%5, %6, %7, %7}], " |
| "{%8, %9, %10, %10}, {%11, %12, %13, %13};", |
| ("f"(__x), "f"(__y), "f"(__z), "f"(__dPdx->x), "f"(__dPdx->y), |
| "f"(__dPdx->z), "f"(__dPdy->x), "f"(__dPdy->y), "f"(__dPdy->z))); |
| __IMPL_ALIAS("__itex3DGrad_v2", "__tex3DGrad_v2"); |
| |
| __IMPL_S3S("__itex3DGrad_sparse", |
| (float __x, float __y, float __z, const float4 *__dPdx, |
| const float4 *__dPdy, unsigned char *__ir), |
| "{.reg .pred %%p0;\n\t" |
| "tex.grad.3d.v4", |
| "f32", |
| "{%0, %1, %2, %3}|%%p0, [%5, {%6, %7, %8, %8}], " |
| "{%9, %10, %11, %11}, {%12, %13, %14, %14};\n\t" |
| "selp.u16 %4, 1, 0, %%p0; }", |
| ("f"(__x), "f"(__y), "f"(__z), "f"(__dPdx->x), "f"(__dPdx->y), |
| "f"(__dPdx->z), "f"(__dPdy->x), "f"(__dPdy->y), "f"(__dPdy->z))); |
| |
| __IMPL_S("__tex3DLod_v2", "__tex3DLod_rmnf_v2", |
| (float __x, float __y, float __z, float __level), "tex.level.3d.v4", |
| "f32", "{%0, %1, %2, %3}, [%4, {%5, %6, %7, %7}], %8;", |
| ("f"(__x), "f"(__y), "f"(__z), "f"(__level))); |
| __IMPL_ALIAS("__itex3DLod", "__tex3DLod_v2"); |
| |
| __IMPL_S3S("__itex3DLod_sparse", |
| (float __x, float __y, float __z, float __level, |
| unsigned char *__ir), |
| "{.reg .pred %%p0;\n\t" |
| "tex.level.3d.v4", |
| "f32", |
| "{%0, %1, %2, %3}|%%p0, [%5, {%6, %7, %8, %8}], %9;\n\t" |
| "selp.u16 %4, 1, 0, %%p0; }", |
| ("f"(__x), "f"(__y), "f"(__z), "f"(__level))); |
| |
| // Cubemap |
| __IMPL_S("__texCubemap_v2", "__texCubemap_rmnf_v2", |
| (float __x, float __y, float __z), "tex.cube.v4", "f32", |
| "{%0, %1, %2, %3}, [%4, {%5, %6, %7, %7}];", |
| ("f"(__x), "f"(__y), "f"(__z))); |
| __IMPL_ALIAS("__itexCubemap", "__texCubemap_v2"); |
| |
| __IMPL_S3S("__itexCubemap_sparse", |
| (float __x, float __y, float __z, unsigned char *__ir), |
| "{.reg .pred %%p0;\n\t" |
| "tex.cube.v4", |
| "f32", |
| "{%0, %1, %2, %3}|%%p0, [%5, {%6, %7, %8, %8}];\n\t" |
| "selp.u16 %4, 1, 0, %%p0; }", |
| ("f"(__x), "f"(__y), "f"(__z))); |
| |
| __IMPL_S("__texCubemapGrad_v2", "__texCubemapGrad_rmnf_v2", |
| (float __x, float __y, float __z, const float4 *__dPdx, |
| const float4 *__dPdy), |
| "tex.grad.cube.v4", "f32", |
| "{%0, %1, %2, %3}, [%4, {%5, %6, %7, %7}], " |
| "{%8, %9, %10, %10}, {%11, %12, %13, %13};", |
| ("f"(__x), "f"(__y), "f"(__z), "f"(__dPdx->x), "f"(__dPdx->y), |
| "f"(__dPdx->z), "f"(__dPdy->x), "f"(__dPdy->y), "f"(__dPdy->z))); |
| __IMPL_ALIAS("__itexCubemapGrad_v2", "__texCubemapGrad_v2"); |
| |
| __IMPL_S("__texCubemapLayered_v2", "__texCubemapLayered_rmnf_v2", |
| (float __x, float __y, float __z, int __layer), "tex.acube.v4", "f32", |
| "{%0, %1, %2, %3}, [%4, {%5, %6, %7, %8}];", |
| ("r"(__layer), "f"(__x), "f"(__y), "f"(__z))); |
| __IMPL_ALIAS("__itexCubemapLayered", "__texCubemapLayered_v2"); |
| |
| __IMPL_S("__texCubemapLayeredGrad_v2", "__texCubemapLayeredGrad_rmnf_v2", |
| (float __x, float __y, float __z, int __layer, const float4 *__dPdx, |
| const float4 *__dPdy), |
| "tex.grad.acube.v4", "f32", |
| "{%0, %1, %2, %3}, [%4, {%5, %6, %7, %8}], " |
| "{%9, %10, %11, %11}, {%12, %13, %14, %14};", |
| ("r"(__layer), "f"(__x), "f"(__y), "f"(__z), "f"(__dPdx->x), |
| "f"(__dPdx->y), "f"(__dPdx->z), "f"(__dPdy->x), "f"(__dPdy->y), |
| "f"(__dPdy->z))); |
| __IMPL_ALIAS("__itexCubemapLayeredGrad_v2", "__texCubemapLayeredGrad_v2"); |
| |
| __IMPL_S("__texCubemapLayeredLod_v2", "__texCubemapLayeredLod_rmnf_v2", |
| (float __x, float __y, float __z, int __layer, float __level), |
| "tex.level.acube.v4", "f32", |
| "{%0, %1, %2, %3}, [%4, {%5, %6, %7, %8}], %9;", |
| ("r"(__layer), "f"(__x), "f"(__y), "f"(__z), "f"(__level))); |
| __IMPL_ALIAS("__itexCubemapLayeredLod", "__texCubemapLayeredLod_v2"); |
| |
| __IMPL_S("__texCubemapLod_v2", "__texCubemapLod_rmnf_v2", |
| (float __x, float __y, float __z, float __level), "tex.level.cube.v4", |
| "f32", "{%0, %1, %2, %3}, [%4, {%5, %6, %7, %7}], %8;", |
| ("f"(__x), "f"(__y), "f"(__z), "f"(__level))); |
| __IMPL_ALIAS("__itexCubemapLod", "__texCubemapLod_v2"); |
| |
| // Helper class for extracting slice of data from V4 fetch results. |
| template <class __DestT, class __SrcT> struct __convert { |
| template <int __NElements = sizeof(__DestT) / |
| sizeof(typename __TypeInfoT<__DestT>::__base_t)> |
| __device__ static __DestT __run(__SrcT __v); |
| template <> __device__ static __DestT __run<1>(__SrcT __v) { return {__v.x}; } |
| template <> __device__ static __DestT __run<2>(__SrcT __v) { |
| return {__v.x, __v.y}; |
| } |
| template <> __device__ static __DestT __run<3>(__SrcT __v) { |
| return {__v.x, __v.y, __v.z}; |
| } |
| template <> __device__ static __DestT __run<4>(__SrcT __v) { |
| return {__v.x, __v.y, __v.z, __v.w}; |
| } |
| }; |
| |
| // These are the top-level function overloads the __nv_tex_surf_handler expands |
| // to. Each overload deals with one of the several ways __nv_tex_surf_handler |
| // is called by CUDA headers. In the end, each of the overloads does the same |
| // job -- it figures out which `__tex_fetch_v4::run` variant should be used to |
| // fetch texture data and which `__convert::run` is needed to convert it into |
| // appropriate return type. |
| |
| // __nv_tex_surf_handler("__tex...", &ret, cudaTextureObject_t handle, args...); |
| // Data type and return type are based on ret. |
| template <class __op, class __T, class... __Args> |
| __device__ static void __tex_fetch(__T *__ptr, cudaTextureObject_t __handle, |
| __Args... __args) { |
| using __FetchT = typename __TypeInfoT<__T>::__fetch_t; |
| *__ptr = __convert<__T, __FetchT>::__run( |
| __tex_fetch_v4<__op>::template __run<__FetchT>(__handle, __args...)); |
| } |
| |
| // texture<> objects get magically converted into a texture reference. However, |
| // there's no way to convert them to cudaTextureObject_t on C++ level. So, we |
| // cheat a bit and use inline assembly to do it. It costs us an extra register |
| // and a move, but that is easy for ptxas to optimize away. |
| template <class __T> |
| __device__ cudaTextureObject_t __tex_handle_to_obj(__T __handle) { |
| cudaTextureObject_t __obj; |
| asm("mov.b64 %0, %1; " : "=l"(__obj) : "l"(__handle)); |
| return __obj; |
| } |
| |
| // __nv_tex_surf_handler ("__tex...", &ret, textureReference, args...); |
| // Data type and return type is based on ret. |
| template <class __op, class __T, class __HandleT, class... __Args> |
| __device__ static void __tex_fetch(__T *__ptr, __HandleT __handle, |
| __Args... __args) { |
| using __FetchT = typename __TypeInfoT<__T>::__fetch_t; |
| *__ptr = __convert<__T, __FetchT>::__run( |
| __tex_fetch_v4<__op>::template __run<__FetchT>( |
| __tex_handle_to_obj(__handle), __args...)); |
| } |
| |
| // __nv_tex_surf_handler ("__tex...", &type_dummy, &ret, texture<...>, args...); |
| // cudaReadModeNormalizedFloat fetches always return float4. |
| template <class __op, class __DataT, class __RetT, int __TexT, class... __Args> |
| __device__ static void |
| __tex_fetch(__DataT *, __RetT *__ptr, |
| texture<__DataT, __TexT, cudaReadModeNormalizedFloat> __handle, |
| __Args... __args) { |
| using __FetchT = typename __TypeInfoT<__DataT>::__fetch_t; |
| *__ptr = __convert<__RetT, float4>::__run( |
| __tex_fetch_v4<__op>::template __run<__FetchT>( |
| __tex_handle_to_obj(__handle), __args...)); |
| } |
| |
| // __nv_tex_surf_handler ("__tex...", &type_dummy, &ret, texture<...>, args...); |
| // For cudaReadModeElementType fetch return type is based on type_dummy. |
| template <class __op, class __DataT, class __RetT, int __TexT, class... __Args> |
| __device__ static void |
| __tex_fetch(__DataT *, __RetT *__ptr, |
| texture<__DataT, __TexT, cudaReadModeElementType> __handle, |
| __Args... __args) { |
| using __FetchT = typename __TypeInfoT<__DataT>::__fetch_t; |
| *__ptr = __convert<__RetT, __FetchT>::__run( |
| __tex_fetch_v4<__op>::template __run<__FetchT>( |
| __tex_handle_to_obj(__handle), __args...)); |
| } |
| } // namespace __cuda_tex |
| } // namespace |
| #pragma pop_macro("__ASM_OUT") |
| #pragma pop_macro("__ASM_OUTP") |
| #pragma pop_macro("__Args") |
| #pragma pop_macro("__ID") |
| #pragma pop_macro("__IDV") |
| #pragma pop_macro("__IMPL_2DGATHER") |
| #pragma pop_macro("__IMPL_ALIAS") |
| #pragma pop_macro("__IMPL_ALIASI") |
| #pragma pop_macro("__IMPL_F1") |
| #pragma pop_macro("__IMPL_F3") |
| #pragma pop_macro("__IMPL_F3N") |
| #pragma pop_macro("__IMPL_F3S") |
| #pragma pop_macro("__IMPL_S") |
| #pragma pop_macro("__IMPL_S3") |
| #pragma pop_macro("__IMPL_S3I") |
| #pragma pop_macro("__IMPL_S3N") |
| #pragma pop_macro("__IMPL_S3NI") |
| #pragma pop_macro("__IMPL_S3S") |
| #pragma pop_macro("__IMPL_S3SI") |
| #pragma pop_macro("__IMPL_SI") |
| #pragma pop_macro("__L") |
| #pragma pop_macro("__STRIP_PARENS") |
| #endif // __CLANG_CUDA_TEXTURE_INTRINSICS_H__ |