| //===--- CGRecordLayoutBuilder.cpp - CGRecordLayout builder ----*- C++ -*-===// |
| // |
| // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
| // See https://llvm.org/LICENSE.txt for license information. |
| // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
| // |
| //===----------------------------------------------------------------------===// |
| // |
| // Builder implementation for CGRecordLayout objects. |
| // |
| //===----------------------------------------------------------------------===// |
| |
| #include "CGRecordLayout.h" |
| #include "CGCXXABI.h" |
| #include "CodeGenTypes.h" |
| #include "clang/AST/ASTContext.h" |
| #include "clang/AST/Attr.h" |
| #include "clang/AST/CXXInheritance.h" |
| #include "clang/AST/DeclCXX.h" |
| #include "clang/AST/Expr.h" |
| #include "clang/AST/RecordLayout.h" |
| #include "clang/Basic/CodeGenOptions.h" |
| #include "llvm/IR/DataLayout.h" |
| #include "llvm/IR/DerivedTypes.h" |
| #include "llvm/IR/Type.h" |
| #include "llvm/Support/Debug.h" |
| #include "llvm/Support/MathExtras.h" |
| #include "llvm/Support/raw_ostream.h" |
| using namespace clang; |
| using namespace CodeGen; |
| |
| namespace { |
| /// The CGRecordLowering is responsible for lowering an ASTRecordLayout to an |
| /// llvm::Type. Some of the lowering is straightforward, some is not. Here we |
| /// detail some of the complexities and weirdnesses here. |
| /// * LLVM does not have unions - Unions can, in theory be represented by any |
| /// llvm::Type with correct size. We choose a field via a specific heuristic |
| /// and add padding if necessary. |
| /// * LLVM does not have bitfields - Bitfields are collected into contiguous |
| /// runs and allocated as a single storage type for the run. ASTRecordLayout |
| /// contains enough information to determine where the runs break. Microsoft |
| /// and Itanium follow different rules and use different codepaths. |
| /// * It is desired that, when possible, bitfields use the appropriate iN type |
| /// when lowered to llvm types. For example unsigned x : 24 gets lowered to |
| /// i24. This isn't always possible because i24 has storage size of 32 bit |
| /// and if it is possible to use that extra byte of padding we must use |
| /// [i8 x 3] instead of i24. The function clipTailPadding does this. |
| /// C++ examples that require clipping: |
| /// struct { int a : 24; char b; }; // a must be clipped, b goes at offset 3 |
| /// struct A { int a : 24; }; // a must be clipped because a struct like B |
| // could exist: struct B : A { char b; }; // b goes at offset 3 |
| /// * Clang ignores 0 sized bitfields and 0 sized bases but *not* zero sized |
| /// fields. The existing asserts suggest that LLVM assumes that *every* field |
| /// has an underlying storage type. Therefore empty structures containing |
| /// zero sized subobjects such as empty records or zero sized arrays still get |
| /// a zero sized (empty struct) storage type. |
| /// * Clang reads the complete type rather than the base type when generating |
| /// code to access fields. Bitfields in tail position with tail padding may |
| /// be clipped in the base class but not the complete class (we may discover |
| /// that the tail padding is not used in the complete class.) However, |
| /// because LLVM reads from the complete type it can generate incorrect code |
| /// if we do not clip the tail padding off of the bitfield in the complete |
| /// layout. This introduces a somewhat awkward extra unnecessary clip stage. |
| /// The location of the clip is stored internally as a sentinel of type |
| /// SCISSOR. If LLVM were updated to read base types (which it probably |
| /// should because locations of things such as VBases are bogus in the llvm |
| /// type anyway) then we could eliminate the SCISSOR. |
| /// * Itanium allows nearly empty primary virtual bases. These bases don't get |
| /// get their own storage because they're laid out as part of another base |
| /// or at the beginning of the structure. Determining if a VBase actually |
| /// gets storage awkwardly involves a walk of all bases. |
| /// * VFPtrs and VBPtrs do *not* make a record NotZeroInitializable. |
| struct CGRecordLowering { |
| // MemberInfo is a helper structure that contains information about a record |
| // member. In additional to the standard member types, there exists a |
| // sentinel member type that ensures correct rounding. |
| struct MemberInfo { |
| CharUnits Offset; |
| enum InfoKind { VFPtr, VBPtr, Field, Base, VBase, Scissor } Kind; |
| llvm::Type *Data; |
| union { |
| const FieldDecl *FD; |
| const CXXRecordDecl *RD; |
| }; |
| MemberInfo(CharUnits Offset, InfoKind Kind, llvm::Type *Data, |
| const FieldDecl *FD = nullptr) |
| : Offset(Offset), Kind(Kind), Data(Data), FD(FD) {} |
| MemberInfo(CharUnits Offset, InfoKind Kind, llvm::Type *Data, |
| const CXXRecordDecl *RD) |
| : Offset(Offset), Kind(Kind), Data(Data), RD(RD) {} |
| // MemberInfos are sorted so we define a < operator. |
| bool operator <(const MemberInfo& a) const { return Offset < a.Offset; } |
| }; |
| // The constructor. |
| CGRecordLowering(CodeGenTypes &Types, const RecordDecl *D, bool Packed); |
| // Short helper routines. |
| /// Constructs a MemberInfo instance from an offset and llvm::Type *. |
| MemberInfo StorageInfo(CharUnits Offset, llvm::Type *Data) { |
| return MemberInfo(Offset, MemberInfo::Field, Data); |
| } |
| |
| /// The Microsoft bitfield layout rule allocates discrete storage |
| /// units of the field's formal type and only combines adjacent |
| /// fields of the same formal type. We want to emit a layout with |
| /// these discrete storage units instead of combining them into a |
| /// continuous run. |
| bool isDiscreteBitFieldABI() { |
| return Context.getTargetInfo().getCXXABI().isMicrosoft() || |
| D->isMsStruct(Context); |
| } |
| |
| /// Helper function to check if we are targeting AAPCS. |
| bool isAAPCS() const { |
| return Context.getTargetInfo().getABI().startswith("aapcs"); |
| } |
| |
| /// Helper function to check if the target machine is BigEndian. |
| bool isBE() const { return Context.getTargetInfo().isBigEndian(); } |
| |
| /// The Itanium base layout rule allows virtual bases to overlap |
| /// other bases, which complicates layout in specific ways. |
| /// |
| /// Note specifically that the ms_struct attribute doesn't change this. |
| bool isOverlappingVBaseABI() { |
| return !Context.getTargetInfo().getCXXABI().isMicrosoft(); |
| } |
| |
| /// Wraps llvm::Type::getIntNTy with some implicit arguments. |
| llvm::Type *getIntNType(uint64_t NumBits) { |
| unsigned AlignedBits = llvm::alignTo(NumBits, Context.getCharWidth()); |
| return llvm::Type::getIntNTy(Types.getLLVMContext(), AlignedBits); |
| } |
| /// Get the LLVM type sized as one character unit. |
| llvm::Type *getCharType() { |
| return llvm::Type::getIntNTy(Types.getLLVMContext(), |
| Context.getCharWidth()); |
| } |
| /// Gets an llvm type of size NumChars and alignment 1. |
| llvm::Type *getByteArrayType(CharUnits NumChars) { |
| assert(!NumChars.isZero() && "Empty byte arrays aren't allowed."); |
| llvm::Type *Type = getCharType(); |
| return NumChars == CharUnits::One() ? Type : |
| (llvm::Type *)llvm::ArrayType::get(Type, NumChars.getQuantity()); |
| } |
| /// Gets the storage type for a field decl and handles storage |
| /// for itanium bitfields that are smaller than their declared type. |
| llvm::Type *getStorageType(const FieldDecl *FD) { |
| llvm::Type *Type = Types.ConvertTypeForMem(FD->getType()); |
| if (!FD->isBitField()) return Type; |
| if (isDiscreteBitFieldABI()) return Type; |
| return getIntNType(std::min(FD->getBitWidthValue(Context), |
| (unsigned)Context.toBits(getSize(Type)))); |
| } |
| /// Gets the llvm Basesubobject type from a CXXRecordDecl. |
| llvm::Type *getStorageType(const CXXRecordDecl *RD) { |
| return Types.getCGRecordLayout(RD).getBaseSubobjectLLVMType(); |
| } |
| CharUnits bitsToCharUnits(uint64_t BitOffset) { |
| return Context.toCharUnitsFromBits(BitOffset); |
| } |
| CharUnits getSize(llvm::Type *Type) { |
| return CharUnits::fromQuantity(DataLayout.getTypeAllocSize(Type)); |
| } |
| CharUnits getAlignment(llvm::Type *Type) { |
| return CharUnits::fromQuantity(DataLayout.getABITypeAlignment(Type)); |
| } |
| bool isZeroInitializable(const FieldDecl *FD) { |
| return Types.isZeroInitializable(FD->getType()); |
| } |
| bool isZeroInitializable(const RecordDecl *RD) { |
| return Types.isZeroInitializable(RD); |
| } |
| void appendPaddingBytes(CharUnits Size) { |
| if (!Size.isZero()) |
| FieldTypes.push_back(getByteArrayType(Size)); |
| } |
| uint64_t getFieldBitOffset(const FieldDecl *FD) { |
| return Layout.getFieldOffset(FD->getFieldIndex()); |
| } |
| // Layout routines. |
| void setBitFieldInfo(const FieldDecl *FD, CharUnits StartOffset, |
| llvm::Type *StorageType); |
| /// Lowers an ASTRecordLayout to a llvm type. |
| void lower(bool NonVirtualBaseType); |
| void lowerUnion(); |
| void accumulateFields(); |
| void accumulateBitFields(RecordDecl::field_iterator Field, |
| RecordDecl::field_iterator FieldEnd); |
| void computeVolatileBitfields(); |
| void accumulateBases(); |
| void accumulateVPtrs(); |
| void accumulateVBases(); |
| /// Recursively searches all of the bases to find out if a vbase is |
| /// not the primary vbase of some base class. |
| bool hasOwnStorage(const CXXRecordDecl *Decl, const CXXRecordDecl *Query); |
| void calculateZeroInit(); |
| /// Lowers bitfield storage types to I8 arrays for bitfields with tail |
| /// padding that is or can potentially be used. |
| void clipTailPadding(); |
| /// Determines if we need a packed llvm struct. |
| void determinePacked(bool NVBaseType); |
| /// Inserts padding everywhere it's needed. |
| void insertPadding(); |
| /// Fills out the structures that are ultimately consumed. |
| void fillOutputFields(); |
| // Input memoization fields. |
| CodeGenTypes &Types; |
| const ASTContext &Context; |
| const RecordDecl *D; |
| const CXXRecordDecl *RD; |
| const ASTRecordLayout &Layout; |
| const llvm::DataLayout &DataLayout; |
| // Helpful intermediate data-structures. |
| std::vector<MemberInfo> Members; |
| // Output fields, consumed by CodeGenTypes::ComputeRecordLayout. |
| SmallVector<llvm::Type *, 16> FieldTypes; |
| llvm::DenseMap<const FieldDecl *, unsigned> Fields; |
| llvm::DenseMap<const FieldDecl *, CGBitFieldInfo> BitFields; |
| llvm::DenseMap<const CXXRecordDecl *, unsigned> NonVirtualBases; |
| llvm::DenseMap<const CXXRecordDecl *, unsigned> VirtualBases; |
| bool IsZeroInitializable : 1; |
| bool IsZeroInitializableAsBase : 1; |
| bool Packed : 1; |
| private: |
| CGRecordLowering(const CGRecordLowering &) = delete; |
| void operator =(const CGRecordLowering &) = delete; |
| }; |
| } // namespace { |
| |
| CGRecordLowering::CGRecordLowering(CodeGenTypes &Types, const RecordDecl *D, |
| bool Packed) |
| : Types(Types), Context(Types.getContext()), D(D), |
| RD(dyn_cast<CXXRecordDecl>(D)), |
| Layout(Types.getContext().getASTRecordLayout(D)), |
| DataLayout(Types.getDataLayout()), IsZeroInitializable(true), |
| IsZeroInitializableAsBase(true), Packed(Packed) {} |
| |
| void CGRecordLowering::setBitFieldInfo( |
| const FieldDecl *FD, CharUnits StartOffset, llvm::Type *StorageType) { |
| CGBitFieldInfo &Info = BitFields[FD->getCanonicalDecl()]; |
| Info.IsSigned = FD->getType()->isSignedIntegerOrEnumerationType(); |
| Info.Offset = (unsigned)(getFieldBitOffset(FD) - Context.toBits(StartOffset)); |
| Info.Size = FD->getBitWidthValue(Context); |
| Info.StorageSize = (unsigned)DataLayout.getTypeAllocSizeInBits(StorageType); |
| Info.StorageOffset = StartOffset; |
| if (Info.Size > Info.StorageSize) |
| Info.Size = Info.StorageSize; |
| // Reverse the bit offsets for big endian machines. Because we represent |
| // a bitfield as a single large integer load, we can imagine the bits |
| // counting from the most-significant-bit instead of the |
| // least-significant-bit. |
| if (DataLayout.isBigEndian()) |
| Info.Offset = Info.StorageSize - (Info.Offset + Info.Size); |
| |
| Info.VolatileStorageSize = 0; |
| Info.VolatileOffset = 0; |
| Info.VolatileStorageOffset = CharUnits::Zero(); |
| } |
| |
| void CGRecordLowering::lower(bool NVBaseType) { |
| // The lowering process implemented in this function takes a variety of |
| // carefully ordered phases. |
| // 1) Store all members (fields and bases) in a list and sort them by offset. |
| // 2) Add a 1-byte capstone member at the Size of the structure. |
| // 3) Clip bitfield storages members if their tail padding is or might be |
| // used by another field or base. The clipping process uses the capstone |
| // by treating it as another object that occurs after the record. |
| // 4) Determine if the llvm-struct requires packing. It's important that this |
| // phase occur after clipping, because clipping changes the llvm type. |
| // This phase reads the offset of the capstone when determining packedness |
| // and updates the alignment of the capstone to be equal of the alignment |
| // of the record after doing so. |
| // 5) Insert padding everywhere it is needed. This phase requires 'Packed' to |
| // have been computed and needs to know the alignment of the record in |
| // order to understand if explicit tail padding is needed. |
| // 6) Remove the capstone, we don't need it anymore. |
| // 7) Determine if this record can be zero-initialized. This phase could have |
| // been placed anywhere after phase 1. |
| // 8) Format the complete list of members in a way that can be consumed by |
| // CodeGenTypes::ComputeRecordLayout. |
| CharUnits Size = NVBaseType ? Layout.getNonVirtualSize() : Layout.getSize(); |
| if (D->isUnion()) { |
| lowerUnion(); |
| computeVolatileBitfields(); |
| return; |
| } |
| accumulateFields(); |
| // RD implies C++. |
| if (RD) { |
| accumulateVPtrs(); |
| accumulateBases(); |
| if (Members.empty()) { |
| appendPaddingBytes(Size); |
| computeVolatileBitfields(); |
| return; |
| } |
| if (!NVBaseType) |
| accumulateVBases(); |
| } |
| llvm::stable_sort(Members); |
| Members.push_back(StorageInfo(Size, getIntNType(8))); |
| clipTailPadding(); |
| determinePacked(NVBaseType); |
| insertPadding(); |
| Members.pop_back(); |
| calculateZeroInit(); |
| fillOutputFields(); |
| computeVolatileBitfields(); |
| } |
| |
| void CGRecordLowering::lowerUnion() { |
| CharUnits LayoutSize = Layout.getSize(); |
| llvm::Type *StorageType = nullptr; |
| bool SeenNamedMember = false; |
| // Iterate through the fields setting bitFieldInfo and the Fields array. Also |
| // locate the "most appropriate" storage type. The heuristic for finding the |
| // storage type isn't necessary, the first (non-0-length-bitfield) field's |
| // type would work fine and be simpler but would be different than what we've |
| // been doing and cause lit tests to change. |
| for (const auto *Field : D->fields()) { |
| if (Field->isBitField()) { |
| if (Field->isZeroLengthBitField(Context)) |
| continue; |
| llvm::Type *FieldType = getStorageType(Field); |
| if (LayoutSize < getSize(FieldType)) |
| FieldType = getByteArrayType(LayoutSize); |
| setBitFieldInfo(Field, CharUnits::Zero(), FieldType); |
| } |
| Fields[Field->getCanonicalDecl()] = 0; |
| llvm::Type *FieldType = getStorageType(Field); |
| // Compute zero-initializable status. |
| // This union might not be zero initialized: it may contain a pointer to |
| // data member which might have some exotic initialization sequence. |
| // If this is the case, then we aught not to try and come up with a "better" |
| // type, it might not be very easy to come up with a Constant which |
| // correctly initializes it. |
| if (!SeenNamedMember) { |
| SeenNamedMember = Field->getIdentifier(); |
| if (!SeenNamedMember) |
| if (const auto *FieldRD = Field->getType()->getAsRecordDecl()) |
| SeenNamedMember = FieldRD->findFirstNamedDataMember(); |
| if (SeenNamedMember && !isZeroInitializable(Field)) { |
| IsZeroInitializable = IsZeroInitializableAsBase = false; |
| StorageType = FieldType; |
| } |
| } |
| // Because our union isn't zero initializable, we won't be getting a better |
| // storage type. |
| if (!IsZeroInitializable) |
| continue; |
| // Conditionally update our storage type if we've got a new "better" one. |
| if (!StorageType || |
| getAlignment(FieldType) > getAlignment(StorageType) || |
| (getAlignment(FieldType) == getAlignment(StorageType) && |
| getSize(FieldType) > getSize(StorageType))) |
| StorageType = FieldType; |
| } |
| // If we have no storage type just pad to the appropriate size and return. |
| if (!StorageType) |
| return appendPaddingBytes(LayoutSize); |
| // If our storage size was bigger than our required size (can happen in the |
| // case of packed bitfields on Itanium) then just use an I8 array. |
| if (LayoutSize < getSize(StorageType)) |
| StorageType = getByteArrayType(LayoutSize); |
| FieldTypes.push_back(StorageType); |
| appendPaddingBytes(LayoutSize - getSize(StorageType)); |
| // Set packed if we need it. |
| if (LayoutSize % getAlignment(StorageType)) |
| Packed = true; |
| } |
| |
| void CGRecordLowering::accumulateFields() { |
| for (RecordDecl::field_iterator Field = D->field_begin(), |
| FieldEnd = D->field_end(); |
| Field != FieldEnd;) { |
| if (Field->isBitField()) { |
| RecordDecl::field_iterator Start = Field; |
| // Iterate to gather the list of bitfields. |
| for (++Field; Field != FieldEnd && Field->isBitField(); ++Field); |
| accumulateBitFields(Start, Field); |
| } else if (!Field->isZeroSize(Context)) { |
| Members.push_back(MemberInfo( |
| bitsToCharUnits(getFieldBitOffset(*Field)), MemberInfo::Field, |
| getStorageType(*Field), *Field)); |
| ++Field; |
| } else { |
| ++Field; |
| } |
| } |
| } |
| |
| void |
| CGRecordLowering::accumulateBitFields(RecordDecl::field_iterator Field, |
| RecordDecl::field_iterator FieldEnd) { |
| // Run stores the first element of the current run of bitfields. FieldEnd is |
| // used as a special value to note that we don't have a current run. A |
| // bitfield run is a contiguous collection of bitfields that can be stored in |
| // the same storage block. Zero-sized bitfields and bitfields that would |
| // cross an alignment boundary break a run and start a new one. |
| RecordDecl::field_iterator Run = FieldEnd; |
| // Tail is the offset of the first bit off the end of the current run. It's |
| // used to determine if the ASTRecordLayout is treating these two bitfields as |
| // contiguous. StartBitOffset is offset of the beginning of the Run. |
| uint64_t StartBitOffset, Tail = 0; |
| if (isDiscreteBitFieldABI()) { |
| for (; Field != FieldEnd; ++Field) { |
| uint64_t BitOffset = getFieldBitOffset(*Field); |
| // Zero-width bitfields end runs. |
| if (Field->isZeroLengthBitField(Context)) { |
| Run = FieldEnd; |
| continue; |
| } |
| llvm::Type *Type = |
| Types.ConvertTypeForMem(Field->getType(), /*ForBitFields=*/true); |
| // If we don't have a run yet, or don't live within the previous run's |
| // allocated storage then we allocate some storage and start a new run. |
| if (Run == FieldEnd || BitOffset >= Tail) { |
| Run = Field; |
| StartBitOffset = BitOffset; |
| Tail = StartBitOffset + DataLayout.getTypeAllocSizeInBits(Type); |
| // Add the storage member to the record. This must be added to the |
| // record before the bitfield members so that it gets laid out before |
| // the bitfields it contains get laid out. |
| Members.push_back(StorageInfo(bitsToCharUnits(StartBitOffset), Type)); |
| } |
| // Bitfields get the offset of their storage but come afterward and remain |
| // there after a stable sort. |
| Members.push_back(MemberInfo(bitsToCharUnits(StartBitOffset), |
| MemberInfo::Field, nullptr, *Field)); |
| } |
| return; |
| } |
| |
| // Check if OffsetInRecord (the size in bits of the current run) is better |
| // as a single field run. When OffsetInRecord has legal integer width, and |
| // its bitfield offset is naturally aligned, it is better to make the |
| // bitfield a separate storage component so as it can be accessed directly |
| // with lower cost. |
| auto IsBetterAsSingleFieldRun = [&](uint64_t OffsetInRecord, |
| uint64_t StartBitOffset) { |
| if (!Types.getCodeGenOpts().FineGrainedBitfieldAccesses) |
| return false; |
| if (OffsetInRecord < 8 || !llvm::isPowerOf2_64(OffsetInRecord) || |
| !DataLayout.fitsInLegalInteger(OffsetInRecord)) |
| return false; |
| // Make sure StartBitOffset is naturally aligned if it is treated as an |
| // IType integer. |
| if (StartBitOffset % |
| Context.toBits(getAlignment(getIntNType(OffsetInRecord))) != |
| 0) |
| return false; |
| return true; |
| }; |
| |
| // The start field is better as a single field run. |
| bool StartFieldAsSingleRun = false; |
| for (;;) { |
| // Check to see if we need to start a new run. |
| if (Run == FieldEnd) { |
| // If we're out of fields, return. |
| if (Field == FieldEnd) |
| break; |
| // Any non-zero-length bitfield can start a new run. |
| if (!Field->isZeroLengthBitField(Context)) { |
| Run = Field; |
| StartBitOffset = getFieldBitOffset(*Field); |
| Tail = StartBitOffset + Field->getBitWidthValue(Context); |
| StartFieldAsSingleRun = IsBetterAsSingleFieldRun(Tail - StartBitOffset, |
| StartBitOffset); |
| } |
| ++Field; |
| continue; |
| } |
| |
| // If the start field of a new run is better as a single run, or |
| // if current field (or consecutive fields) is better as a single run, or |
| // if current field has zero width bitfield and either |
| // UseZeroLengthBitfieldAlignment or UseBitFieldTypeAlignment is set to |
| // true, or |
| // if the offset of current field is inconsistent with the offset of |
| // previous field plus its offset, |
| // skip the block below and go ahead to emit the storage. |
| // Otherwise, try to add bitfields to the run. |
| if (!StartFieldAsSingleRun && Field != FieldEnd && |
| !IsBetterAsSingleFieldRun(Tail - StartBitOffset, StartBitOffset) && |
| (!Field->isZeroLengthBitField(Context) || |
| (!Context.getTargetInfo().useZeroLengthBitfieldAlignment() && |
| !Context.getTargetInfo().useBitFieldTypeAlignment())) && |
| Tail == getFieldBitOffset(*Field)) { |
| Tail += Field->getBitWidthValue(Context); |
| ++Field; |
| continue; |
| } |
| |
| // We've hit a break-point in the run and need to emit a storage field. |
| llvm::Type *Type = getIntNType(Tail - StartBitOffset); |
| // Add the storage member to the record and set the bitfield info for all of |
| // the bitfields in the run. Bitfields get the offset of their storage but |
| // come afterward and remain there after a stable sort. |
| Members.push_back(StorageInfo(bitsToCharUnits(StartBitOffset), Type)); |
| for (; Run != Field; ++Run) |
| Members.push_back(MemberInfo(bitsToCharUnits(StartBitOffset), |
| MemberInfo::Field, nullptr, *Run)); |
| Run = FieldEnd; |
| StartFieldAsSingleRun = false; |
| } |
| } |
| |
| void CGRecordLowering::accumulateBases() { |
| // If we've got a primary virtual base, we need to add it with the bases. |
| if (Layout.isPrimaryBaseVirtual()) { |
| const CXXRecordDecl *BaseDecl = Layout.getPrimaryBase(); |
| Members.push_back(MemberInfo(CharUnits::Zero(), MemberInfo::Base, |
| getStorageType(BaseDecl), BaseDecl)); |
| } |
| // Accumulate the non-virtual bases. |
| for (const auto &Base : RD->bases()) { |
| if (Base.isVirtual()) |
| continue; |
| |
| // Bases can be zero-sized even if not technically empty if they |
| // contain only a trailing array member. |
| const CXXRecordDecl *BaseDecl = Base.getType()->getAsCXXRecordDecl(); |
| if (!BaseDecl->isEmpty() && |
| !Context.getASTRecordLayout(BaseDecl).getNonVirtualSize().isZero()) |
| Members.push_back(MemberInfo(Layout.getBaseClassOffset(BaseDecl), |
| MemberInfo::Base, getStorageType(BaseDecl), BaseDecl)); |
| } |
| } |
| |
| /// The AAPCS that defines that, when possible, bit-fields should |
| /// be accessed using containers of the declared type width: |
| /// When a volatile bit-field is read, and its container does not overlap with |
| /// any non-bit-field member or any zero length bit-field member, its container |
| /// must be read exactly once using the access width appropriate to the type of |
| /// the container. When a volatile bit-field is written, and its container does |
| /// not overlap with any non-bit-field member or any zero-length bit-field |
| /// member, its container must be read exactly once and written exactly once |
| /// using the access width appropriate to the type of the container. The two |
| /// accesses are not atomic. |
| /// |
| /// Enforcing the width restriction can be disabled using |
| /// -fno-aapcs-bitfield-width. |
| void CGRecordLowering::computeVolatileBitfields() { |
| if (!isAAPCS() || !Types.getCodeGenOpts().AAPCSBitfieldWidth) |
| return; |
| |
| for (auto &I : BitFields) { |
| const FieldDecl *Field = I.first; |
| CGBitFieldInfo &Info = I.second; |
| llvm::Type *ResLTy = Types.ConvertTypeForMem(Field->getType()); |
| // If the record alignment is less than the type width, we can't enforce a |
| // aligned load, bail out. |
| if ((uint64_t)(Context.toBits(Layout.getAlignment())) < |
| ResLTy->getPrimitiveSizeInBits()) |
| continue; |
| // CGRecordLowering::setBitFieldInfo() pre-adjusts the bit-field offsets |
| // for big-endian targets, but it assumes a container of width |
| // Info.StorageSize. Since AAPCS uses a different container size (width |
| // of the type), we first undo that calculation here and redo it once |
| // the bit-field offset within the new container is calculated. |
| const unsigned OldOffset = |
| isBE() ? Info.StorageSize - (Info.Offset + Info.Size) : Info.Offset; |
| // Offset to the bit-field from the beginning of the struct. |
| const unsigned AbsoluteOffset = |
| Context.toBits(Info.StorageOffset) + OldOffset; |
| |
| // Container size is the width of the bit-field type. |
| const unsigned StorageSize = ResLTy->getPrimitiveSizeInBits(); |
| // Nothing to do if the access uses the desired |
| // container width and is naturally aligned. |
| if (Info.StorageSize == StorageSize && (OldOffset % StorageSize == 0)) |
| continue; |
| |
| // Offset within the container. |
| unsigned Offset = AbsoluteOffset & (StorageSize - 1); |
| // Bail out if an aligned load of the container cannot cover the entire |
| // bit-field. This can happen for example, if the bit-field is part of a |
| // packed struct. AAPCS does not define access rules for such cases, we let |
| // clang to follow its own rules. |
| if (Offset + Info.Size > StorageSize) |
| continue; |
| |
| // Re-adjust offsets for big-endian targets. |
| if (isBE()) |
| Offset = StorageSize - (Offset + Info.Size); |
| |
| const CharUnits StorageOffset = |
| Context.toCharUnitsFromBits(AbsoluteOffset & ~(StorageSize - 1)); |
| const CharUnits End = StorageOffset + |
| Context.toCharUnitsFromBits(StorageSize) - |
| CharUnits::One(); |
| |
| const ASTRecordLayout &Layout = |
| Context.getASTRecordLayout(Field->getParent()); |
| // If we access outside memory outside the record, than bail out. |
| const CharUnits RecordSize = Layout.getSize(); |
| if (End >= RecordSize) |
| continue; |
| |
| // Bail out if performing this load would access non-bit-fields members. |
| bool Conflict = false; |
| for (const auto *F : D->fields()) { |
| // Allow sized bit-fields overlaps. |
| if (F->isBitField() && !F->isZeroLengthBitField(Context)) |
| continue; |
| |
| const CharUnits FOffset = Context.toCharUnitsFromBits( |
| Layout.getFieldOffset(F->getFieldIndex())); |
| |
| // As C11 defines, a zero sized bit-field defines a barrier, so |
| // fields after and before it should be race condition free. |
| // The AAPCS acknowledges it and imposes no restritions when the |
| // natural container overlaps a zero-length bit-field. |
| if (F->isZeroLengthBitField(Context)) { |
| if (End > FOffset && StorageOffset < FOffset) { |
| Conflict = true; |
| break; |
| } |
| } |
| |
| const CharUnits FEnd = |
| FOffset + |
| Context.toCharUnitsFromBits( |
| Types.ConvertTypeForMem(F->getType())->getPrimitiveSizeInBits()) - |
| CharUnits::One(); |
| // If no overlap, continue. |
| if (End < FOffset || FEnd < StorageOffset) |
| continue; |
| |
| // The desired load overlaps a non-bit-field member, bail out. |
| Conflict = true; |
| break; |
| } |
| |
| if (Conflict) |
| continue; |
| // Write the new bit-field access parameters. |
| // As the storage offset now is defined as the number of elements from the |
| // start of the structure, we should divide the Offset by the element size. |
| Info.VolatileStorageOffset = |
| StorageOffset / Context.toCharUnitsFromBits(StorageSize).getQuantity(); |
| Info.VolatileStorageSize = StorageSize; |
| Info.VolatileOffset = Offset; |
| } |
| } |
| |
| void CGRecordLowering::accumulateVPtrs() { |
| if (Layout.hasOwnVFPtr()) |
| Members.push_back(MemberInfo(CharUnits::Zero(), MemberInfo::VFPtr, |
| llvm::FunctionType::get(getIntNType(32), /*isVarArg=*/true)-> |
| getPointerTo()->getPointerTo())); |
| if (Layout.hasOwnVBPtr()) |
| Members.push_back(MemberInfo(Layout.getVBPtrOffset(), MemberInfo::VBPtr, |
| llvm::Type::getInt32PtrTy(Types.getLLVMContext()))); |
| } |
| |
| void CGRecordLowering::accumulateVBases() { |
| CharUnits ScissorOffset = Layout.getNonVirtualSize(); |
| // In the itanium ABI, it's possible to place a vbase at a dsize that is |
| // smaller than the nvsize. Here we check to see if such a base is placed |
| // before the nvsize and set the scissor offset to that, instead of the |
| // nvsize. |
| if (isOverlappingVBaseABI()) |
| for (const auto &Base : RD->vbases()) { |
| const CXXRecordDecl *BaseDecl = Base.getType()->getAsCXXRecordDecl(); |
| if (BaseDecl->isEmpty()) |
| continue; |
| // If the vbase is a primary virtual base of some base, then it doesn't |
| // get its own storage location but instead lives inside of that base. |
| if (Context.isNearlyEmpty(BaseDecl) && !hasOwnStorage(RD, BaseDecl)) |
| continue; |
| ScissorOffset = std::min(ScissorOffset, |
| Layout.getVBaseClassOffset(BaseDecl)); |
| } |
| Members.push_back(MemberInfo(ScissorOffset, MemberInfo::Scissor, nullptr, |
| RD)); |
| for (const auto &Base : RD->vbases()) { |
| const CXXRecordDecl *BaseDecl = Base.getType()->getAsCXXRecordDecl(); |
| if (BaseDecl->isEmpty()) |
| continue; |
| CharUnits Offset = Layout.getVBaseClassOffset(BaseDecl); |
| // If the vbase is a primary virtual base of some base, then it doesn't |
| // get its own storage location but instead lives inside of that base. |
| if (isOverlappingVBaseABI() && |
| Context.isNearlyEmpty(BaseDecl) && |
| !hasOwnStorage(RD, BaseDecl)) { |
| Members.push_back(MemberInfo(Offset, MemberInfo::VBase, nullptr, |
| BaseDecl)); |
| continue; |
| } |
| // If we've got a vtordisp, add it as a storage type. |
| if (Layout.getVBaseOffsetsMap().find(BaseDecl)->second.hasVtorDisp()) |
| Members.push_back(StorageInfo(Offset - CharUnits::fromQuantity(4), |
| getIntNType(32))); |
| Members.push_back(MemberInfo(Offset, MemberInfo::VBase, |
| getStorageType(BaseDecl), BaseDecl)); |
| } |
| } |
| |
| bool CGRecordLowering::hasOwnStorage(const CXXRecordDecl *Decl, |
| const CXXRecordDecl *Query) { |
| const ASTRecordLayout &DeclLayout = Context.getASTRecordLayout(Decl); |
| if (DeclLayout.isPrimaryBaseVirtual() && DeclLayout.getPrimaryBase() == Query) |
| return false; |
| for (const auto &Base : Decl->bases()) |
| if (!hasOwnStorage(Base.getType()->getAsCXXRecordDecl(), Query)) |
| return false; |
| return true; |
| } |
| |
| void CGRecordLowering::calculateZeroInit() { |
| for (std::vector<MemberInfo>::const_iterator Member = Members.begin(), |
| MemberEnd = Members.end(); |
| IsZeroInitializableAsBase && Member != MemberEnd; ++Member) { |
| if (Member->Kind == MemberInfo::Field) { |
| if (!Member->FD || isZeroInitializable(Member->FD)) |
| continue; |
| IsZeroInitializable = IsZeroInitializableAsBase = false; |
| } else if (Member->Kind == MemberInfo::Base || |
| Member->Kind == MemberInfo::VBase) { |
| if (isZeroInitializable(Member->RD)) |
| continue; |
| IsZeroInitializable = false; |
| if (Member->Kind == MemberInfo::Base) |
| IsZeroInitializableAsBase = false; |
| } |
| } |
| } |
| |
| void CGRecordLowering::clipTailPadding() { |
| std::vector<MemberInfo>::iterator Prior = Members.begin(); |
| CharUnits Tail = getSize(Prior->Data); |
| for (std::vector<MemberInfo>::iterator Member = Prior + 1, |
| MemberEnd = Members.end(); |
| Member != MemberEnd; ++Member) { |
| // Only members with data and the scissor can cut into tail padding. |
| if (!Member->Data && Member->Kind != MemberInfo::Scissor) |
| continue; |
| if (Member->Offset < Tail) { |
| assert(Prior->Kind == MemberInfo::Field && |
| "Only storage fields have tail padding!"); |
| if (!Prior->FD || Prior->FD->isBitField()) |
| Prior->Data = getByteArrayType(bitsToCharUnits(llvm::alignTo( |
| cast<llvm::IntegerType>(Prior->Data)->getIntegerBitWidth(), 8))); |
| else { |
| assert(Prior->FD->hasAttr<NoUniqueAddressAttr>() && |
| "should not have reused this field's tail padding"); |
| Prior->Data = getByteArrayType( |
| Context.getTypeInfoDataSizeInChars(Prior->FD->getType()).Width); |
| } |
| } |
| if (Member->Data) |
| Prior = Member; |
| Tail = Prior->Offset + getSize(Prior->Data); |
| } |
| } |
| |
| void CGRecordLowering::determinePacked(bool NVBaseType) { |
| if (Packed) |
| return; |
| CharUnits Alignment = CharUnits::One(); |
| CharUnits NVAlignment = CharUnits::One(); |
| CharUnits NVSize = |
| !NVBaseType && RD ? Layout.getNonVirtualSize() : CharUnits::Zero(); |
| for (std::vector<MemberInfo>::const_iterator Member = Members.begin(), |
| MemberEnd = Members.end(); |
| Member != MemberEnd; ++Member) { |
| if (!Member->Data) |
| continue; |
| // If any member falls at an offset that it not a multiple of its alignment, |
| // then the entire record must be packed. |
| if (Member->Offset % getAlignment(Member->Data)) |
| Packed = true; |
| if (Member->Offset < NVSize) |
| NVAlignment = std::max(NVAlignment, getAlignment(Member->Data)); |
| Alignment = std::max(Alignment, getAlignment(Member->Data)); |
| } |
| // If the size of the record (the capstone's offset) is not a multiple of the |
| // record's alignment, it must be packed. |
| if (Members.back().Offset % Alignment) |
| Packed = true; |
| // If the non-virtual sub-object is not a multiple of the non-virtual |
| // sub-object's alignment, it must be packed. We cannot have a packed |
| // non-virtual sub-object and an unpacked complete object or vise versa. |
| if (NVSize % NVAlignment) |
| Packed = true; |
| // Update the alignment of the sentinel. |
| if (!Packed) |
| Members.back().Data = getIntNType(Context.toBits(Alignment)); |
| } |
| |
| void CGRecordLowering::insertPadding() { |
| std::vector<std::pair<CharUnits, CharUnits> > Padding; |
| CharUnits Size = CharUnits::Zero(); |
| for (std::vector<MemberInfo>::const_iterator Member = Members.begin(), |
| MemberEnd = Members.end(); |
| Member != MemberEnd; ++Member) { |
| if (!Member->Data) |
| continue; |
| CharUnits Offset = Member->Offset; |
| assert(Offset >= Size); |
| // Insert padding if we need to. |
| if (Offset != |
| Size.alignTo(Packed ? CharUnits::One() : getAlignment(Member->Data))) |
| Padding.push_back(std::make_pair(Size, Offset - Size)); |
| Size = Offset + getSize(Member->Data); |
| } |
| if (Padding.empty()) |
| return; |
| // Add the padding to the Members list and sort it. |
| for (std::vector<std::pair<CharUnits, CharUnits> >::const_iterator |
| Pad = Padding.begin(), PadEnd = Padding.end(); |
| Pad != PadEnd; ++Pad) |
| Members.push_back(StorageInfo(Pad->first, getByteArrayType(Pad->second))); |
| llvm::stable_sort(Members); |
| } |
| |
| void CGRecordLowering::fillOutputFields() { |
| for (std::vector<MemberInfo>::const_iterator Member = Members.begin(), |
| MemberEnd = Members.end(); |
| Member != MemberEnd; ++Member) { |
| if (Member->Data) |
| FieldTypes.push_back(Member->Data); |
| if (Member->Kind == MemberInfo::Field) { |
| if (Member->FD) |
| Fields[Member->FD->getCanonicalDecl()] = FieldTypes.size() - 1; |
| // A field without storage must be a bitfield. |
| if (!Member->Data) |
| setBitFieldInfo(Member->FD, Member->Offset, FieldTypes.back()); |
| } else if (Member->Kind == MemberInfo::Base) |
| NonVirtualBases[Member->RD] = FieldTypes.size() - 1; |
| else if (Member->Kind == MemberInfo::VBase) |
| VirtualBases[Member->RD] = FieldTypes.size() - 1; |
| } |
| } |
| |
| CGBitFieldInfo CGBitFieldInfo::MakeInfo(CodeGenTypes &Types, |
| const FieldDecl *FD, |
| uint64_t Offset, uint64_t Size, |
| uint64_t StorageSize, |
| CharUnits StorageOffset) { |
| // This function is vestigial from CGRecordLayoutBuilder days but is still |
| // used in GCObjCRuntime.cpp. That usage has a "fixme" attached to it that |
| // when addressed will allow for the removal of this function. |
| llvm::Type *Ty = Types.ConvertTypeForMem(FD->getType()); |
| CharUnits TypeSizeInBytes = |
| CharUnits::fromQuantity(Types.getDataLayout().getTypeAllocSize(Ty)); |
| uint64_t TypeSizeInBits = Types.getContext().toBits(TypeSizeInBytes); |
| |
| bool IsSigned = FD->getType()->isSignedIntegerOrEnumerationType(); |
| |
| if (Size > TypeSizeInBits) { |
| // We have a wide bit-field. The extra bits are only used for padding, so |
| // if we have a bitfield of type T, with size N: |
| // |
| // T t : N; |
| // |
| // We can just assume that it's: |
| // |
| // T t : sizeof(T); |
| // |
| Size = TypeSizeInBits; |
| } |
| |
| // Reverse the bit offsets for big endian machines. Because we represent |
| // a bitfield as a single large integer load, we can imagine the bits |
| // counting from the most-significant-bit instead of the |
| // least-significant-bit. |
| if (Types.getDataLayout().isBigEndian()) { |
| Offset = StorageSize - (Offset + Size); |
| } |
| |
| return CGBitFieldInfo(Offset, Size, IsSigned, StorageSize, StorageOffset); |
| } |
| |
| std::unique_ptr<CGRecordLayout> |
| CodeGenTypes::ComputeRecordLayout(const RecordDecl *D, llvm::StructType *Ty) { |
| CGRecordLowering Builder(*this, D, /*Packed=*/false); |
| |
| Builder.lower(/*NonVirtualBaseType=*/false); |
| |
| // If we're in C++, compute the base subobject type. |
| llvm::StructType *BaseTy = nullptr; |
| if (isa<CXXRecordDecl>(D) && !D->isUnion() && !D->hasAttr<FinalAttr>()) { |
| BaseTy = Ty; |
| if (Builder.Layout.getNonVirtualSize() != Builder.Layout.getSize()) { |
| CGRecordLowering BaseBuilder(*this, D, /*Packed=*/Builder.Packed); |
| BaseBuilder.lower(/*NonVirtualBaseType=*/true); |
| BaseTy = llvm::StructType::create( |
| getLLVMContext(), BaseBuilder.FieldTypes, "", BaseBuilder.Packed); |
| addRecordTypeName(D, BaseTy, ".base"); |
| // BaseTy and Ty must agree on their packedness for getLLVMFieldNo to work |
| // on both of them with the same index. |
| assert(Builder.Packed == BaseBuilder.Packed && |
| "Non-virtual and complete types must agree on packedness"); |
| } |
| } |
| |
| // Fill in the struct *after* computing the base type. Filling in the body |
| // signifies that the type is no longer opaque and record layout is complete, |
| // but we may need to recursively layout D while laying D out as a base type. |
| Ty->setBody(Builder.FieldTypes, Builder.Packed); |
| |
| auto RL = std::make_unique<CGRecordLayout>( |
| Ty, BaseTy, (bool)Builder.IsZeroInitializable, |
| (bool)Builder.IsZeroInitializableAsBase); |
| |
| RL->NonVirtualBases.swap(Builder.NonVirtualBases); |
| RL->CompleteObjectVirtualBases.swap(Builder.VirtualBases); |
| |
| // Add all the field numbers. |
| RL->FieldInfo.swap(Builder.Fields); |
| |
| // Add bitfield info. |
| RL->BitFields.swap(Builder.BitFields); |
| |
| // Dump the layout, if requested. |
| if (getContext().getLangOpts().DumpRecordLayouts) { |
| llvm::outs() << "\n*** Dumping IRgen Record Layout\n"; |
| llvm::outs() << "Record: "; |
| D->dump(llvm::outs()); |
| llvm::outs() << "\nLayout: "; |
| RL->print(llvm::outs()); |
| } |
| |
| #ifndef NDEBUG |
| // Verify that the computed LLVM struct size matches the AST layout size. |
| const ASTRecordLayout &Layout = getContext().getASTRecordLayout(D); |
| |
| uint64_t TypeSizeInBits = getContext().toBits(Layout.getSize()); |
| assert(TypeSizeInBits == getDataLayout().getTypeAllocSizeInBits(Ty) && |
| "Type size mismatch!"); |
| |
| if (BaseTy) { |
| CharUnits NonVirtualSize = Layout.getNonVirtualSize(); |
| |
| uint64_t AlignedNonVirtualTypeSizeInBits = |
| getContext().toBits(NonVirtualSize); |
| |
| assert(AlignedNonVirtualTypeSizeInBits == |
| getDataLayout().getTypeAllocSizeInBits(BaseTy) && |
| "Type size mismatch!"); |
| } |
| |
| // Verify that the LLVM and AST field offsets agree. |
| llvm::StructType *ST = RL->getLLVMType(); |
| const llvm::StructLayout *SL = getDataLayout().getStructLayout(ST); |
| |
| const ASTRecordLayout &AST_RL = getContext().getASTRecordLayout(D); |
| RecordDecl::field_iterator it = D->field_begin(); |
| for (unsigned i = 0, e = AST_RL.getFieldCount(); i != e; ++i, ++it) { |
| const FieldDecl *FD = *it; |
| |
| // Ignore zero-sized fields. |
| if (FD->isZeroSize(getContext())) |
| continue; |
| |
| // For non-bit-fields, just check that the LLVM struct offset matches the |
| // AST offset. |
| if (!FD->isBitField()) { |
| unsigned FieldNo = RL->getLLVMFieldNo(FD); |
| assert(AST_RL.getFieldOffset(i) == SL->getElementOffsetInBits(FieldNo) && |
| "Invalid field offset!"); |
| continue; |
| } |
| |
| // Ignore unnamed bit-fields. |
| if (!FD->getDeclName()) |
| continue; |
| |
| const CGBitFieldInfo &Info = RL->getBitFieldInfo(FD); |
| llvm::Type *ElementTy = ST->getTypeAtIndex(RL->getLLVMFieldNo(FD)); |
| |
| // Unions have overlapping elements dictating their layout, but for |
| // non-unions we can verify that this section of the layout is the exact |
| // expected size. |
| if (D->isUnion()) { |
| // For unions we verify that the start is zero and the size |
| // is in-bounds. However, on BE systems, the offset may be non-zero, but |
| // the size + offset should match the storage size in that case as it |
| // "starts" at the back. |
| if (getDataLayout().isBigEndian()) |
| assert(static_cast<unsigned>(Info.Offset + Info.Size) == |
| Info.StorageSize && |
| "Big endian union bitfield does not end at the back"); |
| else |
| assert(Info.Offset == 0 && |
| "Little endian union bitfield with a non-zero offset"); |
| assert(Info.StorageSize <= SL->getSizeInBits() && |
| "Union not large enough for bitfield storage"); |
| } else { |
| assert((Info.StorageSize == |
| getDataLayout().getTypeAllocSizeInBits(ElementTy) || |
| Info.VolatileStorageSize == |
| getDataLayout().getTypeAllocSizeInBits(ElementTy)) && |
| "Storage size does not match the element type size"); |
| } |
| assert(Info.Size > 0 && "Empty bitfield!"); |
| assert(static_cast<unsigned>(Info.Offset) + Info.Size <= Info.StorageSize && |
| "Bitfield outside of its allocated storage"); |
| } |
| #endif |
| |
| return RL; |
| } |
| |
| void CGRecordLayout::print(raw_ostream &OS) const { |
| OS << "<CGRecordLayout\n"; |
| OS << " LLVMType:" << *CompleteObjectType << "\n"; |
| if (BaseSubobjectType) |
| OS << " NonVirtualBaseLLVMType:" << *BaseSubobjectType << "\n"; |
| OS << " IsZeroInitializable:" << IsZeroInitializable << "\n"; |
| OS << " BitFields:[\n"; |
| |
| // Print bit-field infos in declaration order. |
| std::vector<std::pair<unsigned, const CGBitFieldInfo*> > BFIs; |
| for (llvm::DenseMap<const FieldDecl*, CGBitFieldInfo>::const_iterator |
| it = BitFields.begin(), ie = BitFields.end(); |
| it != ie; ++it) { |
| const RecordDecl *RD = it->first->getParent(); |
| unsigned Index = 0; |
| for (RecordDecl::field_iterator |
| it2 = RD->field_begin(); *it2 != it->first; ++it2) |
| ++Index; |
| BFIs.push_back(std::make_pair(Index, &it->second)); |
| } |
| llvm::array_pod_sort(BFIs.begin(), BFIs.end()); |
| for (unsigned i = 0, e = BFIs.size(); i != e; ++i) { |
| OS.indent(4); |
| BFIs[i].second->print(OS); |
| OS << "\n"; |
| } |
| |
| OS << "]>\n"; |
| } |
| |
| LLVM_DUMP_METHOD void CGRecordLayout::dump() const { |
| print(llvm::errs()); |
| } |
| |
| void CGBitFieldInfo::print(raw_ostream &OS) const { |
| OS << "<CGBitFieldInfo" |
| << " Offset:" << Offset << " Size:" << Size << " IsSigned:" << IsSigned |
| << " StorageSize:" << StorageSize |
| << " StorageOffset:" << StorageOffset.getQuantity() |
| << " VolatileOffset:" << VolatileOffset |
| << " VolatileStorageSize:" << VolatileStorageSize |
| << " VolatileStorageOffset:" << VolatileStorageOffset.getQuantity() << ">"; |
| } |
| |
| LLVM_DUMP_METHOD void CGBitFieldInfo::dump() const { |
| print(llvm::errs()); |
| } |