| //===------ CGGPUBuiltin.cpp - Codegen for GPU builtins -------------------===// |
| // |
| // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
| // See https://llvm.org/LICENSE.txt for license information. |
| // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
| // |
| //===----------------------------------------------------------------------===// |
| // |
| // Generates code for built-in GPU calls which are not runtime-specific. |
| // (Runtime-specific codegen lives in programming model specific files.) |
| // |
| //===----------------------------------------------------------------------===// |
| |
| #include "CodeGenFunction.h" |
| #include "clang/Basic/Builtins.h" |
| #include "llvm/IR/DataLayout.h" |
| #include "llvm/IR/Instruction.h" |
| #include "llvm/Support/MathExtras.h" |
| #include "llvm/Transforms/Utils/AMDGPUEmitPrintf.h" |
| |
| using namespace clang; |
| using namespace CodeGen; |
| |
| namespace { |
| llvm::Function *GetVprintfDeclaration(llvm::Module &M) { |
| llvm::Type *ArgTypes[] = {llvm::Type::getInt8PtrTy(M.getContext()), |
| llvm::Type::getInt8PtrTy(M.getContext())}; |
| llvm::FunctionType *VprintfFuncType = llvm::FunctionType::get( |
| llvm::Type::getInt32Ty(M.getContext()), ArgTypes, false); |
| |
| if (auto *F = M.getFunction("vprintf")) { |
| // Our CUDA system header declares vprintf with the right signature, so |
| // nobody else should have been able to declare vprintf with a bogus |
| // signature. |
| assert(F->getFunctionType() == VprintfFuncType); |
| return F; |
| } |
| |
| // vprintf doesn't already exist; create a declaration and insert it into the |
| // module. |
| return llvm::Function::Create( |
| VprintfFuncType, llvm::GlobalVariable::ExternalLinkage, "vprintf", &M); |
| } |
| |
| llvm::Function *GetOpenMPVprintfDeclaration(CodeGenModule &CGM) { |
| const char *Name = "__llvm_omp_vprintf"; |
| llvm::Module &M = CGM.getModule(); |
| llvm::Type *ArgTypes[] = {llvm::Type::getInt8PtrTy(M.getContext()), |
| llvm::Type::getInt8PtrTy(M.getContext()), |
| llvm::Type::getInt32Ty(M.getContext())}; |
| llvm::FunctionType *VprintfFuncType = llvm::FunctionType::get( |
| llvm::Type::getInt32Ty(M.getContext()), ArgTypes, false); |
| |
| if (auto *F = M.getFunction(Name)) { |
| if (F->getFunctionType() != VprintfFuncType) { |
| CGM.Error(SourceLocation(), |
| "Invalid type declaration for __llvm_omp_vprintf"); |
| return nullptr; |
| } |
| return F; |
| } |
| |
| return llvm::Function::Create( |
| VprintfFuncType, llvm::GlobalVariable::ExternalLinkage, Name, &M); |
| } |
| |
| // Transforms a call to printf into a call to the NVPTX vprintf syscall (which |
| // isn't particularly special; it's invoked just like a regular function). |
| // vprintf takes two args: A format string, and a pointer to a buffer containing |
| // the varargs. |
| // |
| // For example, the call |
| // |
| // printf("format string", arg1, arg2, arg3); |
| // |
| // is converted into something resembling |
| // |
| // struct Tmp { |
| // Arg1 a1; |
| // Arg2 a2; |
| // Arg3 a3; |
| // }; |
| // char* buf = alloca(sizeof(Tmp)); |
| // *(Tmp*)buf = {a1, a2, a3}; |
| // vprintf("format string", buf); |
| // |
| // buf is aligned to the max of {alignof(Arg1), ...}. Furthermore, each of the |
| // args is itself aligned to its preferred alignment. |
| // |
| // Note that by the time this function runs, E's args have already undergone the |
| // standard C vararg promotion (short -> int, float -> double, etc.). |
| |
| std::pair<llvm::Value *, llvm::TypeSize> |
| packArgsIntoNVPTXFormatBuffer(CodeGenFunction *CGF, const CallArgList &Args) { |
| const llvm::DataLayout &DL = CGF->CGM.getDataLayout(); |
| llvm::LLVMContext &Ctx = CGF->CGM.getLLVMContext(); |
| CGBuilderTy &Builder = CGF->Builder; |
| |
| // Construct and fill the args buffer that we'll pass to vprintf. |
| if (Args.size() <= 1) { |
| // If there are no args, pass a null pointer and size 0 |
| llvm::Value * BufferPtr = llvm::ConstantPointerNull::get(llvm::Type::getInt8PtrTy(Ctx)); |
| return {BufferPtr, llvm::TypeSize::Fixed(0)}; |
| } else { |
| llvm::SmallVector<llvm::Type *, 8> ArgTypes; |
| for (unsigned I = 1, NumArgs = Args.size(); I < NumArgs; ++I) |
| ArgTypes.push_back(Args[I].getRValue(*CGF).getScalarVal()->getType()); |
| |
| // Using llvm::StructType is correct only because printf doesn't accept |
| // aggregates. If we had to handle aggregates here, we'd have to manually |
| // compute the offsets within the alloca -- we wouldn't be able to assume |
| // that the alignment of the llvm type was the same as the alignment of the |
| // clang type. |
| llvm::Type *AllocaTy = llvm::StructType::create(ArgTypes, "printf_args"); |
| llvm::Value *Alloca = CGF->CreateTempAlloca(AllocaTy); |
| |
| for (unsigned I = 1, NumArgs = Args.size(); I < NumArgs; ++I) { |
| llvm::Value *P = Builder.CreateStructGEP(AllocaTy, Alloca, I - 1); |
| llvm::Value *Arg = Args[I].getRValue(*CGF).getScalarVal(); |
| Builder.CreateAlignedStore(Arg, P, DL.getPrefTypeAlign(Arg->getType())); |
| } |
| llvm::Value *BufferPtr = |
| Builder.CreatePointerCast(Alloca, llvm::Type::getInt8PtrTy(Ctx)); |
| return {BufferPtr, DL.getTypeAllocSize(AllocaTy)}; |
| } |
| } |
| |
| bool containsNonScalarVarargs(CodeGenFunction *CGF, CallArgList Args) { |
| return llvm::any_of(llvm::drop_begin(Args), [&](const CallArg &A) { |
| return !A.getRValue(*CGF).isScalar(); |
| }); |
| } |
| |
| RValue EmitDevicePrintfCallExpr(const CallExpr *E, CodeGenFunction *CGF, |
| llvm::Function *Decl, bool WithSizeArg) { |
| CodeGenModule &CGM = CGF->CGM; |
| CGBuilderTy &Builder = CGF->Builder; |
| assert(E->getBuiltinCallee() == Builtin::BIprintf); |
| assert(E->getNumArgs() >= 1); // printf always has at least one arg. |
| |
| // Uses the same format as nvptx for the argument packing, but also passes |
| // an i32 for the total size of the passed pointer |
| CallArgList Args; |
| CGF->EmitCallArgs(Args, |
| E->getDirectCallee()->getType()->getAs<FunctionProtoType>(), |
| E->arguments(), E->getDirectCallee(), |
| /* ParamsToSkip = */ 0); |
| |
| // We don't know how to emit non-scalar varargs. |
| if (containsNonScalarVarargs(CGF, Args)) { |
| CGM.ErrorUnsupported(E, "non-scalar arg to printf"); |
| return RValue::get(llvm::ConstantInt::get(CGF->IntTy, 0)); |
| } |
| |
| auto r = packArgsIntoNVPTXFormatBuffer(CGF, Args); |
| llvm::Value *BufferPtr = r.first; |
| |
| llvm::SmallVector<llvm::Value *, 3> Vec = { |
| Args[0].getRValue(*CGF).getScalarVal(), BufferPtr}; |
| if (WithSizeArg) { |
| // Passing > 32bit of data as a local alloca doesn't work for nvptx or |
| // amdgpu |
| llvm::Constant *Size = |
| llvm::ConstantInt::get(llvm::Type::getInt32Ty(CGM.getLLVMContext()), |
| static_cast<uint32_t>(r.second.getFixedSize())); |
| |
| Vec.push_back(Size); |
| } |
| return RValue::get(Builder.CreateCall(Decl, Vec)); |
| } |
| } // namespace |
| |
| RValue CodeGenFunction::EmitNVPTXDevicePrintfCallExpr(const CallExpr *E) { |
| assert(getTarget().getTriple().isNVPTX()); |
| return EmitDevicePrintfCallExpr( |
| E, this, GetVprintfDeclaration(CGM.getModule()), false); |
| } |
| |
| RValue CodeGenFunction::EmitAMDGPUDevicePrintfCallExpr(const CallExpr *E) { |
| assert(getTarget().getTriple().getArch() == llvm::Triple::amdgcn); |
| assert(E->getBuiltinCallee() == Builtin::BIprintf || |
| E->getBuiltinCallee() == Builtin::BI__builtin_printf); |
| assert(E->getNumArgs() >= 1); // printf always has at least one arg. |
| |
| CallArgList CallArgs; |
| EmitCallArgs(CallArgs, |
| E->getDirectCallee()->getType()->getAs<FunctionProtoType>(), |
| E->arguments(), E->getDirectCallee(), |
| /* ParamsToSkip = */ 0); |
| |
| SmallVector<llvm::Value *, 8> Args; |
| for (auto A : CallArgs) { |
| // We don't know how to emit non-scalar varargs. |
| if (!A.getRValue(*this).isScalar()) { |
| CGM.ErrorUnsupported(E, "non-scalar arg to printf"); |
| return RValue::get(llvm::ConstantInt::get(IntTy, -1)); |
| } |
| |
| llvm::Value *Arg = A.getRValue(*this).getScalarVal(); |
| Args.push_back(Arg); |
| } |
| |
| llvm::IRBuilder<> IRB(Builder.GetInsertBlock(), Builder.GetInsertPoint()); |
| IRB.SetCurrentDebugLocation(Builder.getCurrentDebugLocation()); |
| auto Printf = llvm::emitAMDGPUPrintfCall(IRB, Args); |
| Builder.SetInsertPoint(IRB.GetInsertBlock(), IRB.GetInsertPoint()); |
| return RValue::get(Printf); |
| } |
| |
| RValue CodeGenFunction::EmitOpenMPDevicePrintfCallExpr(const CallExpr *E) { |
| assert(getTarget().getTriple().isNVPTX() || |
| getTarget().getTriple().isAMDGCN()); |
| return EmitDevicePrintfCallExpr(E, this, GetOpenMPVprintfDeclaration(CGM), |
| true); |
| } |