blob: af651e6f44b7c19772e2cebe545d09eb613e8038 [file] [log] [blame]
//===--- CGDebugInfo.cpp - Emit Debug Information for a Module ------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This coordinates the debug information generation while generating code.
//
//===----------------------------------------------------------------------===//
#include "CGDebugInfo.h"
#include "CGBlocks.h"
#include "CGCXXABI.h"
#include "CGObjCRuntime.h"
#include "CGRecordLayout.h"
#include "CodeGenFunction.h"
#include "CodeGenModule.h"
#include "ConstantEmitter.h"
#include "clang/AST/ASTContext.h"
#include "clang/AST/Attr.h"
#include "clang/AST/DeclFriend.h"
#include "clang/AST/DeclObjC.h"
#include "clang/AST/DeclTemplate.h"
#include "clang/AST/Expr.h"
#include "clang/AST/RecordLayout.h"
#include "clang/AST/RecursiveASTVisitor.h"
#include "clang/Basic/CodeGenOptions.h"
#include "clang/Basic/FileManager.h"
#include "clang/Basic/SourceManager.h"
#include "clang/Basic/Version.h"
#include "clang/Frontend/FrontendOptions.h"
#include "clang/Lex/HeaderSearchOptions.h"
#include "clang/Lex/ModuleMap.h"
#include "clang/Lex/PreprocessorOptions.h"
#include "llvm/ADT/DenseSet.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/ADT/StringExtras.h"
#include "llvm/IR/Constants.h"
#include "llvm/IR/DataLayout.h"
#include "llvm/IR/DerivedTypes.h"
#include "llvm/IR/Instructions.h"
#include "llvm/IR/Intrinsics.h"
#include "llvm/IR/Metadata.h"
#include "llvm/IR/Module.h"
#include "llvm/Support/FileSystem.h"
#include "llvm/Support/MD5.h"
#include "llvm/Support/Path.h"
#include "llvm/Support/TimeProfiler.h"
using namespace clang;
using namespace clang::CodeGen;
static uint32_t getTypeAlignIfRequired(const Type *Ty, const ASTContext &Ctx) {
auto TI = Ctx.getTypeInfo(Ty);
return TI.isAlignRequired() ? TI.Align : 0;
}
static uint32_t getTypeAlignIfRequired(QualType Ty, const ASTContext &Ctx) {
return getTypeAlignIfRequired(Ty.getTypePtr(), Ctx);
}
static uint32_t getDeclAlignIfRequired(const Decl *D, const ASTContext &Ctx) {
return D->hasAttr<AlignedAttr>() ? D->getMaxAlignment() : 0;
}
CGDebugInfo::CGDebugInfo(CodeGenModule &CGM)
: CGM(CGM), DebugKind(CGM.getCodeGenOpts().getDebugInfo()),
DebugTypeExtRefs(CGM.getCodeGenOpts().DebugTypeExtRefs),
DBuilder(CGM.getModule()) {
for (const auto &KV : CGM.getCodeGenOpts().DebugPrefixMap)
DebugPrefixMap[KV.first] = KV.second;
CreateCompileUnit();
}
CGDebugInfo::~CGDebugInfo() {
assert(LexicalBlockStack.empty() &&
"Region stack mismatch, stack not empty!");
}
ApplyDebugLocation::ApplyDebugLocation(CodeGenFunction &CGF,
SourceLocation TemporaryLocation)
: CGF(&CGF) {
init(TemporaryLocation);
}
ApplyDebugLocation::ApplyDebugLocation(CodeGenFunction &CGF,
bool DefaultToEmpty,
SourceLocation TemporaryLocation)
: CGF(&CGF) {
init(TemporaryLocation, DefaultToEmpty);
}
void ApplyDebugLocation::init(SourceLocation TemporaryLocation,
bool DefaultToEmpty) {
auto *DI = CGF->getDebugInfo();
if (!DI) {
CGF = nullptr;
return;
}
OriginalLocation = CGF->Builder.getCurrentDebugLocation();
if (OriginalLocation && !DI->CGM.getExpressionLocationsEnabled())
return;
if (TemporaryLocation.isValid()) {
DI->EmitLocation(CGF->Builder, TemporaryLocation);
return;
}
if (DefaultToEmpty) {
CGF->Builder.SetCurrentDebugLocation(llvm::DebugLoc());
return;
}
// Construct a location that has a valid scope, but no line info.
assert(!DI->LexicalBlockStack.empty());
CGF->Builder.SetCurrentDebugLocation(
llvm::DILocation::get(DI->LexicalBlockStack.back()->getContext(), 0, 0,
DI->LexicalBlockStack.back(), DI->getInlinedAt()));
}
ApplyDebugLocation::ApplyDebugLocation(CodeGenFunction &CGF, const Expr *E)
: CGF(&CGF) {
init(E->getExprLoc());
}
ApplyDebugLocation::ApplyDebugLocation(CodeGenFunction &CGF, llvm::DebugLoc Loc)
: CGF(&CGF) {
if (!CGF.getDebugInfo()) {
this->CGF = nullptr;
return;
}
OriginalLocation = CGF.Builder.getCurrentDebugLocation();
if (Loc)
CGF.Builder.SetCurrentDebugLocation(std::move(Loc));
}
ApplyDebugLocation::~ApplyDebugLocation() {
// Query CGF so the location isn't overwritten when location updates are
// temporarily disabled (for C++ default function arguments)
if (CGF)
CGF->Builder.SetCurrentDebugLocation(std::move(OriginalLocation));
}
ApplyInlineDebugLocation::ApplyInlineDebugLocation(CodeGenFunction &CGF,
GlobalDecl InlinedFn)
: CGF(&CGF) {
if (!CGF.getDebugInfo()) {
this->CGF = nullptr;
return;
}
auto &DI = *CGF.getDebugInfo();
SavedLocation = DI.getLocation();
assert((DI.getInlinedAt() ==
CGF.Builder.getCurrentDebugLocation()->getInlinedAt()) &&
"CGDebugInfo and IRBuilder are out of sync");
DI.EmitInlineFunctionStart(CGF.Builder, InlinedFn);
}
ApplyInlineDebugLocation::~ApplyInlineDebugLocation() {
if (!CGF)
return;
auto &DI = *CGF->getDebugInfo();
DI.EmitInlineFunctionEnd(CGF->Builder);
DI.EmitLocation(CGF->Builder, SavedLocation);
}
void CGDebugInfo::setLocation(SourceLocation Loc) {
// If the new location isn't valid return.
if (Loc.isInvalid())
return;
CurLoc = CGM.getContext().getSourceManager().getExpansionLoc(Loc);
// If we've changed files in the middle of a lexical scope go ahead
// and create a new lexical scope with file node if it's different
// from the one in the scope.
if (LexicalBlockStack.empty())
return;
SourceManager &SM = CGM.getContext().getSourceManager();
auto *Scope = cast<llvm::DIScope>(LexicalBlockStack.back());
PresumedLoc PCLoc = SM.getPresumedLoc(CurLoc);
if (PCLoc.isInvalid() || Scope->getFile() == getOrCreateFile(CurLoc))
return;
if (auto *LBF = dyn_cast<llvm::DILexicalBlockFile>(Scope)) {
LexicalBlockStack.pop_back();
LexicalBlockStack.emplace_back(DBuilder.createLexicalBlockFile(
LBF->getScope(), getOrCreateFile(CurLoc)));
} else if (isa<llvm::DILexicalBlock>(Scope) ||
isa<llvm::DISubprogram>(Scope)) {
LexicalBlockStack.pop_back();
LexicalBlockStack.emplace_back(
DBuilder.createLexicalBlockFile(Scope, getOrCreateFile(CurLoc)));
}
}
llvm::DIScope *CGDebugInfo::getDeclContextDescriptor(const Decl *D) {
llvm::DIScope *Mod = getParentModuleOrNull(D);
return getContextDescriptor(cast<Decl>(D->getDeclContext()),
Mod ? Mod : TheCU);
}
llvm::DIScope *CGDebugInfo::getContextDescriptor(const Decl *Context,
llvm::DIScope *Default) {
if (!Context)
return Default;
auto I = RegionMap.find(Context);
if (I != RegionMap.end()) {
llvm::Metadata *V = I->second;
return dyn_cast_or_null<llvm::DIScope>(V);
}
// Check namespace.
if (const auto *NSDecl = dyn_cast<NamespaceDecl>(Context))
return getOrCreateNamespace(NSDecl);
if (const auto *RDecl = dyn_cast<RecordDecl>(Context))
if (!RDecl->isDependentType())
return getOrCreateType(CGM.getContext().getTypeDeclType(RDecl),
TheCU->getFile());
return Default;
}
PrintingPolicy CGDebugInfo::getPrintingPolicy() const {
PrintingPolicy PP = CGM.getContext().getPrintingPolicy();
// If we're emitting codeview, it's important to try to match MSVC's naming so
// that visualizers written for MSVC will trigger for our class names. In
// particular, we can't have spaces between arguments of standard templates
// like basic_string and vector, but we must have spaces between consecutive
// angle brackets that close nested template argument lists.
if (CGM.getCodeGenOpts().EmitCodeView) {
PP.MSVCFormatting = true;
PP.SplitTemplateClosers = true;
} else {
// For DWARF, printing rules are underspecified.
// SplitTemplateClosers yields better interop with GCC and GDB (PR46052).
PP.SplitTemplateClosers = true;
}
PP.SuppressInlineNamespace = false;
PP.PrintCanonicalTypes = true;
PP.UsePreferredNames = false;
PP.AlwaysIncludeTypeForTemplateArgument = true;
// Apply -fdebug-prefix-map.
PP.Callbacks = &PrintCB;
return PP;
}
StringRef CGDebugInfo::getFunctionName(const FunctionDecl *FD) {
return internString(GetName(FD));
}
StringRef CGDebugInfo::getObjCMethodName(const ObjCMethodDecl *OMD) {
SmallString<256> MethodName;
llvm::raw_svector_ostream OS(MethodName);
OS << (OMD->isInstanceMethod() ? '-' : '+') << '[';
const DeclContext *DC = OMD->getDeclContext();
if (const auto *OID = dyn_cast<ObjCImplementationDecl>(DC)) {
OS << OID->getName();
} else if (const auto *OID = dyn_cast<ObjCInterfaceDecl>(DC)) {
OS << OID->getName();
} else if (const auto *OC = dyn_cast<ObjCCategoryDecl>(DC)) {
if (OC->IsClassExtension()) {
OS << OC->getClassInterface()->getName();
} else {
OS << OC->getIdentifier()->getNameStart() << '('
<< OC->getIdentifier()->getNameStart() << ')';
}
} else if (const auto *OCD = dyn_cast<ObjCCategoryImplDecl>(DC)) {
OS << OCD->getClassInterface()->getName() << '(' << OCD->getName() << ')';
}
OS << ' ' << OMD->getSelector().getAsString() << ']';
return internString(OS.str());
}
StringRef CGDebugInfo::getSelectorName(Selector S) {
return internString(S.getAsString());
}
StringRef CGDebugInfo::getClassName(const RecordDecl *RD) {
if (isa<ClassTemplateSpecializationDecl>(RD)) {
// Copy this name on the side and use its reference.
return internString(GetName(RD));
}
// quick optimization to avoid having to intern strings that are already
// stored reliably elsewhere
if (const IdentifierInfo *II = RD->getIdentifier())
return II->getName();
// The CodeView printer in LLVM wants to see the names of unnamed types
// because they need to have a unique identifier.
// These names are used to reconstruct the fully qualified type names.
if (CGM.getCodeGenOpts().EmitCodeView) {
if (const TypedefNameDecl *D = RD->getTypedefNameForAnonDecl()) {
assert(RD->getDeclContext() == D->getDeclContext() &&
"Typedef should not be in another decl context!");
assert(D->getDeclName().getAsIdentifierInfo() &&
"Typedef was not named!");
return D->getDeclName().getAsIdentifierInfo()->getName();
}
if (CGM.getLangOpts().CPlusPlus) {
StringRef Name;
ASTContext &Context = CGM.getContext();
if (const DeclaratorDecl *DD = Context.getDeclaratorForUnnamedTagDecl(RD))
// Anonymous types without a name for linkage purposes have their
// declarator mangled in if they have one.
Name = DD->getName();
else if (const TypedefNameDecl *TND =
Context.getTypedefNameForUnnamedTagDecl(RD))
// Anonymous types without a name for linkage purposes have their
// associate typedef mangled in if they have one.
Name = TND->getName();
// Give lambdas a display name based on their name mangling.
if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD))
if (CXXRD->isLambda())
return internString(
CGM.getCXXABI().getMangleContext().getLambdaString(CXXRD));
if (!Name.empty()) {
SmallString<256> UnnamedType("<unnamed-type-");
UnnamedType += Name;
UnnamedType += '>';
return internString(UnnamedType);
}
}
}
return StringRef();
}
Optional<llvm::DIFile::ChecksumKind>
CGDebugInfo::computeChecksum(FileID FID, SmallString<32> &Checksum) const {
Checksum.clear();
if (!CGM.getCodeGenOpts().EmitCodeView &&
CGM.getCodeGenOpts().DwarfVersion < 5)
return None;
SourceManager &SM = CGM.getContext().getSourceManager();
Optional<llvm::MemoryBufferRef> MemBuffer = SM.getBufferOrNone(FID);
if (!MemBuffer)
return None;
llvm::MD5 Hash;
llvm::MD5::MD5Result Result;
Hash.update(MemBuffer->getBuffer());
Hash.final(Result);
Hash.stringifyResult(Result, Checksum);
return llvm::DIFile::CSK_MD5;
}
Optional<StringRef> CGDebugInfo::getSource(const SourceManager &SM,
FileID FID) {
if (!CGM.getCodeGenOpts().EmbedSource)
return None;
bool SourceInvalid = false;
StringRef Source = SM.getBufferData(FID, &SourceInvalid);
if (SourceInvalid)
return None;
return Source;
}
llvm::DIFile *CGDebugInfo::getOrCreateFile(SourceLocation Loc) {
SourceManager &SM = CGM.getContext().getSourceManager();
StringRef FileName;
FileID FID;
if (Loc.isInvalid()) {
// The DIFile used by the CU is distinct from the main source file. Call
// createFile() below for canonicalization if the source file was specified
// with an absolute path.
FileName = TheCU->getFile()->getFilename();
} else {
PresumedLoc PLoc = SM.getPresumedLoc(Loc);
FileName = PLoc.getFilename();
if (FileName.empty()) {
FileName = TheCU->getFile()->getFilename();
} else {
FileName = PLoc.getFilename();
}
FID = PLoc.getFileID();
}
// Cache the results.
auto It = DIFileCache.find(FileName.data());
if (It != DIFileCache.end()) {
// Verify that the information still exists.
if (llvm::Metadata *V = It->second)
return cast<llvm::DIFile>(V);
}
SmallString<32> Checksum;
Optional<llvm::DIFile::ChecksumKind> CSKind = computeChecksum(FID, Checksum);
Optional<llvm::DIFile::ChecksumInfo<StringRef>> CSInfo;
if (CSKind)
CSInfo.emplace(*CSKind, Checksum);
return createFile(FileName, CSInfo, getSource(SM, SM.getFileID(Loc)));
}
llvm::DIFile *
CGDebugInfo::createFile(StringRef FileName,
Optional<llvm::DIFile::ChecksumInfo<StringRef>> CSInfo,
Optional<StringRef> Source) {
StringRef Dir;
StringRef File;
std::string RemappedFile = remapDIPath(FileName);
std::string CurDir = remapDIPath(getCurrentDirname());
SmallString<128> DirBuf;
SmallString<128> FileBuf;
if (llvm::sys::path::is_absolute(RemappedFile)) {
// Strip the common prefix (if it is more than just "/") from current
// directory and FileName for a more space-efficient encoding.
auto FileIt = llvm::sys::path::begin(RemappedFile);
auto FileE = llvm::sys::path::end(RemappedFile);
auto CurDirIt = llvm::sys::path::begin(CurDir);
auto CurDirE = llvm::sys::path::end(CurDir);
for (; CurDirIt != CurDirE && *CurDirIt == *FileIt; ++CurDirIt, ++FileIt)
llvm::sys::path::append(DirBuf, *CurDirIt);
if (std::distance(llvm::sys::path::begin(CurDir), CurDirIt) == 1) {
// Don't strip the common prefix if it is only the root "/"
// since that would make LLVM diagnostic locations confusing.
Dir = {};
File = RemappedFile;
} else {
for (; FileIt != FileE; ++FileIt)
llvm::sys::path::append(FileBuf, *FileIt);
Dir = DirBuf;
File = FileBuf;
}
} else {
Dir = CurDir;
File = RemappedFile;
}
llvm::DIFile *F = DBuilder.createFile(File, Dir, CSInfo, Source);
DIFileCache[FileName.data()].reset(F);
return F;
}
std::string CGDebugInfo::remapDIPath(StringRef Path) const {
if (DebugPrefixMap.empty())
return Path.str();
SmallString<256> P = Path;
for (const auto &Entry : DebugPrefixMap)
if (llvm::sys::path::replace_path_prefix(P, Entry.first, Entry.second))
break;
return P.str().str();
}
unsigned CGDebugInfo::getLineNumber(SourceLocation Loc) {
if (Loc.isInvalid())
return 0;
SourceManager &SM = CGM.getContext().getSourceManager();
return SM.getPresumedLoc(Loc).getLine();
}
unsigned CGDebugInfo::getColumnNumber(SourceLocation Loc, bool Force) {
// We may not want column information at all.
if (!Force && !CGM.getCodeGenOpts().DebugColumnInfo)
return 0;
// If the location is invalid then use the current column.
if (Loc.isInvalid() && CurLoc.isInvalid())
return 0;
SourceManager &SM = CGM.getContext().getSourceManager();
PresumedLoc PLoc = SM.getPresumedLoc(Loc.isValid() ? Loc : CurLoc);
return PLoc.isValid() ? PLoc.getColumn() : 0;
}
StringRef CGDebugInfo::getCurrentDirname() {
if (!CGM.getCodeGenOpts().DebugCompilationDir.empty())
return CGM.getCodeGenOpts().DebugCompilationDir;
if (!CWDName.empty())
return CWDName;
SmallString<256> CWD;
llvm::sys::fs::current_path(CWD);
return CWDName = internString(CWD);
}
void CGDebugInfo::CreateCompileUnit() {
SmallString<32> Checksum;
Optional<llvm::DIFile::ChecksumKind> CSKind;
Optional<llvm::DIFile::ChecksumInfo<StringRef>> CSInfo;
// Should we be asking the SourceManager for the main file name, instead of
// accepting it as an argument? This just causes the main file name to
// mismatch with source locations and create extra lexical scopes or
// mismatched debug info (a CU with a DW_AT_file of "-", because that's what
// the driver passed, but functions/other things have DW_AT_file of "<stdin>"
// because that's what the SourceManager says)
// Get absolute path name.
SourceManager &SM = CGM.getContext().getSourceManager();
std::string MainFileName = CGM.getCodeGenOpts().MainFileName;
if (MainFileName.empty())
MainFileName = "<stdin>";
// The main file name provided via the "-main-file-name" option contains just
// the file name itself with no path information. This file name may have had
// a relative path, so we look into the actual file entry for the main
// file to determine the real absolute path for the file.
std::string MainFileDir;
if (const FileEntry *MainFile = SM.getFileEntryForID(SM.getMainFileID())) {
MainFileDir = std::string(MainFile->getDir()->getName());
if (!llvm::sys::path::is_absolute(MainFileName)) {
llvm::SmallString<1024> MainFileDirSS(MainFileDir);
llvm::sys::path::append(MainFileDirSS, MainFileName);
MainFileName =
std::string(llvm::sys::path::remove_leading_dotslash(MainFileDirSS));
}
// If the main file name provided is identical to the input file name, and
// if the input file is a preprocessed source, use the module name for
// debug info. The module name comes from the name specified in the first
// linemarker if the input is a preprocessed source.
if (MainFile->getName() == MainFileName &&
FrontendOptions::getInputKindForExtension(
MainFile->getName().rsplit('.').second)
.isPreprocessed())
MainFileName = CGM.getModule().getName().str();
CSKind = computeChecksum(SM.getMainFileID(), Checksum);
}
llvm::dwarf::SourceLanguage LangTag;
const LangOptions &LO = CGM.getLangOpts();
if (LO.CPlusPlus) {
if (LO.ObjC)
LangTag = llvm::dwarf::DW_LANG_ObjC_plus_plus;
else if (LO.CPlusPlus14 && (!CGM.getCodeGenOpts().DebugStrictDwarf ||
CGM.getCodeGenOpts().DwarfVersion >= 5))
LangTag = llvm::dwarf::DW_LANG_C_plus_plus_14;
else if (LO.CPlusPlus11 && (!CGM.getCodeGenOpts().DebugStrictDwarf ||
CGM.getCodeGenOpts().DwarfVersion >= 5))
LangTag = llvm::dwarf::DW_LANG_C_plus_plus_11;
else
LangTag = llvm::dwarf::DW_LANG_C_plus_plus;
} else if (LO.ObjC) {
LangTag = llvm::dwarf::DW_LANG_ObjC;
} else if (LO.OpenCL && (!CGM.getCodeGenOpts().DebugStrictDwarf ||
CGM.getCodeGenOpts().DwarfVersion >= 5)) {
LangTag = llvm::dwarf::DW_LANG_OpenCL;
} else if (LO.RenderScript) {
LangTag = llvm::dwarf::DW_LANG_GOOGLE_RenderScript;
} else if (LO.C99) {
LangTag = llvm::dwarf::DW_LANG_C99;
} else {
LangTag = llvm::dwarf::DW_LANG_C89;
}
std::string Producer = getClangFullVersion();
// Figure out which version of the ObjC runtime we have.
unsigned RuntimeVers = 0;
if (LO.ObjC)
RuntimeVers = LO.ObjCRuntime.isNonFragile() ? 2 : 1;
llvm::DICompileUnit::DebugEmissionKind EmissionKind;
switch (DebugKind) {
case codegenoptions::NoDebugInfo:
case codegenoptions::LocTrackingOnly:
EmissionKind = llvm::DICompileUnit::NoDebug;
break;
case codegenoptions::DebugLineTablesOnly:
EmissionKind = llvm::DICompileUnit::LineTablesOnly;
break;
case codegenoptions::DebugDirectivesOnly:
EmissionKind = llvm::DICompileUnit::DebugDirectivesOnly;
break;
case codegenoptions::DebugInfoConstructor:
case codegenoptions::LimitedDebugInfo:
case codegenoptions::FullDebugInfo:
case codegenoptions::UnusedTypeInfo:
EmissionKind = llvm::DICompileUnit::FullDebug;
break;
}
uint64_t DwoId = 0;
auto &CGOpts = CGM.getCodeGenOpts();
// The DIFile used by the CU is distinct from the main source
// file. Its directory part specifies what becomes the
// DW_AT_comp_dir (the compilation directory), even if the source
// file was specified with an absolute path.
if (CSKind)
CSInfo.emplace(*CSKind, Checksum);
llvm::DIFile *CUFile = DBuilder.createFile(
remapDIPath(MainFileName), remapDIPath(getCurrentDirname()), CSInfo,
getSource(SM, SM.getMainFileID()));
StringRef Sysroot, SDK;
if (CGM.getCodeGenOpts().getDebuggerTuning() == llvm::DebuggerKind::LLDB) {
Sysroot = CGM.getHeaderSearchOpts().Sysroot;
auto B = llvm::sys::path::rbegin(Sysroot);
auto E = llvm::sys::path::rend(Sysroot);
auto It = std::find_if(B, E, [](auto SDK) { return SDK.endswith(".sdk"); });
if (It != E)
SDK = *It;
}
// Create new compile unit.
TheCU = DBuilder.createCompileUnit(
LangTag, CUFile, CGOpts.EmitVersionIdentMetadata ? Producer : "",
LO.Optimize || CGOpts.PrepareForLTO || CGOpts.PrepareForThinLTO,
CGOpts.DwarfDebugFlags, RuntimeVers, CGOpts.SplitDwarfFile, EmissionKind,
DwoId, CGOpts.SplitDwarfInlining, CGOpts.DebugInfoForProfiling,
CGM.getTarget().getTriple().isNVPTX()
? llvm::DICompileUnit::DebugNameTableKind::None
: static_cast<llvm::DICompileUnit::DebugNameTableKind>(
CGOpts.DebugNameTable),
CGOpts.DebugRangesBaseAddress, remapDIPath(Sysroot), SDK);
}
llvm::DIType *CGDebugInfo::CreateType(const BuiltinType *BT) {
llvm::dwarf::TypeKind Encoding;
StringRef BTName;
switch (BT->getKind()) {
#define BUILTIN_TYPE(Id, SingletonId)
#define PLACEHOLDER_TYPE(Id, SingletonId) case BuiltinType::Id:
#include "clang/AST/BuiltinTypes.def"
case BuiltinType::Dependent:
llvm_unreachable("Unexpected builtin type");
case BuiltinType::NullPtr:
return DBuilder.createNullPtrType();
case BuiltinType::Void:
return nullptr;
case BuiltinType::ObjCClass:
if (!ClassTy)
ClassTy =
DBuilder.createForwardDecl(llvm::dwarf::DW_TAG_structure_type,
"objc_class", TheCU, TheCU->getFile(), 0);
return ClassTy;
case BuiltinType::ObjCId: {
// typedef struct objc_class *Class;
// typedef struct objc_object {
// Class isa;
// } *id;
if (ObjTy)
return ObjTy;
if (!ClassTy)
ClassTy =
DBuilder.createForwardDecl(llvm::dwarf::DW_TAG_structure_type,
"objc_class", TheCU, TheCU->getFile(), 0);
unsigned Size = CGM.getContext().getTypeSize(CGM.getContext().VoidPtrTy);
auto *ISATy = DBuilder.createPointerType(ClassTy, Size);
ObjTy = DBuilder.createStructType(TheCU, "objc_object", TheCU->getFile(), 0,
0, 0, llvm::DINode::FlagZero, nullptr,
llvm::DINodeArray());
DBuilder.replaceArrays(
ObjTy, DBuilder.getOrCreateArray(&*DBuilder.createMemberType(
ObjTy, "isa", TheCU->getFile(), 0, Size, 0, 0,
llvm::DINode::FlagZero, ISATy)));
return ObjTy;
}
case BuiltinType::ObjCSel: {
if (!SelTy)
SelTy = DBuilder.createForwardDecl(llvm::dwarf::DW_TAG_structure_type,
"objc_selector", TheCU,
TheCU->getFile(), 0);
return SelTy;
}
#define IMAGE_TYPE(ImgType, Id, SingletonId, Access, Suffix) \
case BuiltinType::Id: \
return getOrCreateStructPtrType("opencl_" #ImgType "_" #Suffix "_t", \
SingletonId);
#include "clang/Basic/OpenCLImageTypes.def"
case BuiltinType::OCLSampler:
return getOrCreateStructPtrType("opencl_sampler_t", OCLSamplerDITy);
case BuiltinType::OCLEvent:
return getOrCreateStructPtrType("opencl_event_t", OCLEventDITy);
case BuiltinType::OCLClkEvent:
return getOrCreateStructPtrType("opencl_clk_event_t", OCLClkEventDITy);
case BuiltinType::OCLQueue:
return getOrCreateStructPtrType("opencl_queue_t", OCLQueueDITy);
case BuiltinType::OCLReserveID:
return getOrCreateStructPtrType("opencl_reserve_id_t", OCLReserveIDDITy);
#define EXT_OPAQUE_TYPE(ExtType, Id, Ext) \
case BuiltinType::Id: \
return getOrCreateStructPtrType("opencl_" #ExtType, Id##Ty);
#include "clang/Basic/OpenCLExtensionTypes.def"
#define SVE_TYPE(Name, Id, SingletonId) case BuiltinType::Id:
#include "clang/Basic/AArch64SVEACLETypes.def"
{
ASTContext::BuiltinVectorTypeInfo Info =
CGM.getContext().getBuiltinVectorTypeInfo(BT);
unsigned NumElemsPerVG = (Info.EC.getKnownMinValue() * Info.NumVectors) / 2;
// Debuggers can't extract 1bit from a vector, so will display a
// bitpattern for svbool_t instead.
if (Info.ElementType == CGM.getContext().BoolTy) {
NumElemsPerVG /= 8;
Info.ElementType = CGM.getContext().UnsignedCharTy;
}
auto *LowerBound =
llvm::ConstantAsMetadata::get(llvm::ConstantInt::getSigned(
llvm::Type::getInt64Ty(CGM.getLLVMContext()), 0));
SmallVector<int64_t, 9> Expr(
{llvm::dwarf::DW_OP_constu, NumElemsPerVG, llvm::dwarf::DW_OP_bregx,
/* AArch64::VG */ 46, 0, llvm::dwarf::DW_OP_mul,
llvm::dwarf::DW_OP_constu, 1, llvm::dwarf::DW_OP_minus});
auto *UpperBound = DBuilder.createExpression(Expr);
llvm::Metadata *Subscript = DBuilder.getOrCreateSubrange(
/*count*/ nullptr, LowerBound, UpperBound, /*stride*/ nullptr);
llvm::DINodeArray SubscriptArray = DBuilder.getOrCreateArray(Subscript);
llvm::DIType *ElemTy =
getOrCreateType(Info.ElementType, TheCU->getFile());
auto Align = getTypeAlignIfRequired(BT, CGM.getContext());
return DBuilder.createVectorType(/*Size*/ 0, Align, ElemTy,
SubscriptArray);
}
// It doesn't make sense to generate debug info for PowerPC MMA vector types.
// So we return a safe type here to avoid generating an error.
#define PPC_VECTOR_TYPE(Name, Id, size) \
case BuiltinType::Id:
#include "clang/Basic/PPCTypes.def"
return CreateType(cast<const BuiltinType>(CGM.getContext().IntTy));
#define RVV_TYPE(Name, Id, SingletonId) case BuiltinType::Id:
#include "clang/Basic/RISCVVTypes.def"
{
ASTContext::BuiltinVectorTypeInfo Info =
CGM.getContext().getBuiltinVectorTypeInfo(BT);
unsigned ElementCount = Info.EC.getKnownMinValue();
unsigned SEW = CGM.getContext().getTypeSize(Info.ElementType);
bool Fractional = false;
unsigned LMUL;
unsigned FixedSize = ElementCount * SEW;
if (Info.ElementType == CGM.getContext().BoolTy) {
// Mask type only occupies one vector register.
LMUL = 1;
} else if (FixedSize < 64) {
// In RVV scalable vector types, we encode 64 bits in the fixed part.
Fractional = true;
LMUL = 64 / FixedSize;
} else {
LMUL = FixedSize / 64;
}
// Element count = (VLENB / SEW) x LMUL
SmallVector<int64_t, 9> Expr(
// The DW_OP_bregx operation has two operands: a register which is
// specified by an unsigned LEB128 number, followed by a signed LEB128
// offset.
{llvm::dwarf::DW_OP_bregx, // Read the contents of a register.
4096 + 0xC22, // RISC-V VLENB CSR register.
0, // Offset for DW_OP_bregx. It is dummy here.
llvm::dwarf::DW_OP_constu,
SEW / 8, // SEW is in bits.
llvm::dwarf::DW_OP_div, llvm::dwarf::DW_OP_constu, LMUL});
if (Fractional)
Expr.push_back(llvm::dwarf::DW_OP_div);
else
Expr.push_back(llvm::dwarf::DW_OP_mul);
auto *LowerBound =
llvm::ConstantAsMetadata::get(llvm::ConstantInt::getSigned(
llvm::Type::getInt64Ty(CGM.getLLVMContext()), 0));
auto *UpperBound = DBuilder.createExpression(Expr);
llvm::Metadata *Subscript = DBuilder.getOrCreateSubrange(
/*count*/ nullptr, LowerBound, UpperBound, /*stride*/ nullptr);
llvm::DINodeArray SubscriptArray = DBuilder.getOrCreateArray(Subscript);
llvm::DIType *ElemTy =
getOrCreateType(Info.ElementType, TheCU->getFile());
auto Align = getTypeAlignIfRequired(BT, CGM.getContext());
return DBuilder.createVectorType(/*Size=*/0, Align, ElemTy,
SubscriptArray);
}
case BuiltinType::UChar:
case BuiltinType::Char_U:
Encoding = llvm::dwarf::DW_ATE_unsigned_char;
break;
case BuiltinType::Char_S:
case BuiltinType::SChar:
Encoding = llvm::dwarf::DW_ATE_signed_char;
break;
case BuiltinType::Char8:
case BuiltinType::Char16:
case BuiltinType::Char32:
Encoding = llvm::dwarf::DW_ATE_UTF;
break;
case BuiltinType::UShort:
case BuiltinType::UInt:
case BuiltinType::UInt128:
case BuiltinType::ULong:
case BuiltinType::WChar_U:
case BuiltinType::ULongLong:
Encoding = llvm::dwarf::DW_ATE_unsigned;
break;
case BuiltinType::Short:
case BuiltinType::Int:
case BuiltinType::Int128:
case BuiltinType::Long:
case BuiltinType::WChar_S:
case BuiltinType::LongLong:
Encoding = llvm::dwarf::DW_ATE_signed;
break;
case BuiltinType::Bool:
Encoding = llvm::dwarf::DW_ATE_boolean;
break;
case BuiltinType::Half:
case BuiltinType::Float:
case BuiltinType::LongDouble:
case BuiltinType::Float16:
case BuiltinType::BFloat16:
case BuiltinType::Float128:
case BuiltinType::Double:
case BuiltinType::Ibm128:
// FIXME: For targets where long double, __ibm128 and __float128 have the
// same size, they are currently indistinguishable in the debugger without
// some special treatment. However, there is currently no consensus on
// encoding and this should be updated once a DWARF encoding exists for
// distinct floating point types of the same size.
Encoding = llvm::dwarf::DW_ATE_float;
break;
case BuiltinType::ShortAccum:
case BuiltinType::Accum:
case BuiltinType::LongAccum:
case BuiltinType::ShortFract:
case BuiltinType::Fract:
case BuiltinType::LongFract:
case BuiltinType::SatShortFract:
case BuiltinType::SatFract:
case BuiltinType::SatLongFract:
case BuiltinType::SatShortAccum:
case BuiltinType::SatAccum:
case BuiltinType::SatLongAccum:
Encoding = llvm::dwarf::DW_ATE_signed_fixed;
break;
case BuiltinType::UShortAccum:
case BuiltinType::UAccum:
case BuiltinType::ULongAccum:
case BuiltinType::UShortFract:
case BuiltinType::UFract:
case BuiltinType::ULongFract:
case BuiltinType::SatUShortAccum:
case BuiltinType::SatUAccum:
case BuiltinType::SatULongAccum:
case BuiltinType::SatUShortFract:
case BuiltinType::SatUFract:
case BuiltinType::SatULongFract:
Encoding = llvm::dwarf::DW_ATE_unsigned_fixed;
break;
}
BTName = BT->getName(CGM.getLangOpts());
// Bit size and offset of the type.
uint64_t Size = CGM.getContext().getTypeSize(BT);
return DBuilder.createBasicType(BTName, Size, Encoding);
}
llvm::DIType *CGDebugInfo::CreateType(const AutoType *Ty) {
return DBuilder.createUnspecifiedType("auto");
}
llvm::DIType *CGDebugInfo::CreateType(const ExtIntType *Ty) {
StringRef Name = Ty->isUnsigned() ? "unsigned _ExtInt" : "_ExtInt";
llvm::dwarf::TypeKind Encoding = Ty->isUnsigned()
? llvm::dwarf::DW_ATE_unsigned
: llvm::dwarf::DW_ATE_signed;
return DBuilder.createBasicType(Name, CGM.getContext().getTypeSize(Ty),
Encoding);
}
llvm::DIType *CGDebugInfo::CreateType(const ComplexType *Ty) {
// Bit size and offset of the type.
llvm::dwarf::TypeKind Encoding = llvm::dwarf::DW_ATE_complex_float;
if (Ty->isComplexIntegerType())
Encoding = llvm::dwarf::DW_ATE_lo_user;
uint64_t Size = CGM.getContext().getTypeSize(Ty);
return DBuilder.createBasicType("complex", Size, Encoding);
}
static void stripUnusedQualifiers(Qualifiers &Q) {
// Ignore these qualifiers for now.
Q.removeObjCGCAttr();
Q.removeAddressSpace();
Q.removeObjCLifetime();
Q.removeUnaligned();
}
static llvm::dwarf::Tag getNextQualifier(Qualifiers &Q) {
if (Q.hasConst()) {
Q.removeConst();
return llvm::dwarf::DW_TAG_const_type;
}
if (Q.hasVolatile()) {
Q.removeVolatile();
return llvm::dwarf::DW_TAG_volatile_type;
}
if (Q.hasRestrict()) {
Q.removeRestrict();
return llvm::dwarf::DW_TAG_restrict_type;
}
return (llvm::dwarf::Tag)0;
}
// Strip MacroQualifiedTypeLoc and AttributedTypeLoc
// as their corresponding types will be ignored
// during code generation. Stripping them allows
// to maintain proper TypeLoc for a given type
// during code generation.
static TypeLoc StripMacroAttributed(TypeLoc TL) {
if (!TL)
return TL;
while (true) {
if (auto MTL = TL.getAs<MacroQualifiedTypeLoc>())
TL = MTL.getInnerLoc();
else if (auto ATL = TL.getAs<AttributedTypeLoc>())
TL = ATL.getModifiedLoc();
else
break;
}
return TL;
}
llvm::DIType *CGDebugInfo::CreateQualifiedType(QualType Ty, llvm::DIFile *Unit,
TypeLoc TL) {
QualifierCollector Qc;
const Type *T = Qc.strip(Ty);
stripUnusedQualifiers(Qc);
// We will create one Derived type for one qualifier and recurse to handle any
// additional ones.
llvm::dwarf::Tag Tag = getNextQualifier(Qc);
if (!Tag) {
assert(Qc.empty() && "Unknown type qualifier for debug info");
return getOrCreateType(QualType(T, 0), Unit);
}
QualType NextTy = Qc.apply(CGM.getContext(), T);
TypeLoc NextTL;
if (NextTy.hasQualifiers())
NextTL = TL;
else if (TL) {
if (auto QTL = TL.getAs<QualifiedTypeLoc>())
NextTL = StripMacroAttributed(QTL.getNextTypeLoc());
}
auto *FromTy = getOrCreateType(NextTy, Unit, NextTL);
// No need to fill in the Name, Line, Size, Alignment, Offset in case of
// CVR derived types.
return DBuilder.createQualifiedType(Tag, FromTy);
}
llvm::DIType *CGDebugInfo::CreateQualifiedType(const FunctionProtoType *F,
llvm::DIFile *Unit) {
FunctionProtoType::ExtProtoInfo EPI = F->getExtProtoInfo();
Qualifiers &Q = EPI.TypeQuals;
stripUnusedQualifiers(Q);
// We will create one Derived type for one qualifier and recurse to handle any
// additional ones.
llvm::dwarf::Tag Tag = getNextQualifier(Q);
if (!Tag) {
assert(Q.empty() && "Unknown type qualifier for debug info");
return nullptr;
}
auto *FromTy =
getOrCreateType(CGM.getContext().getFunctionType(F->getReturnType(),
F->getParamTypes(), EPI),
Unit);
// No need to fill in the Name, Line, Size, Alignment, Offset in case of
// CVR derived types.
return DBuilder.createQualifiedType(Tag, FromTy);
}
llvm::DIType *CGDebugInfo::CreateType(const ObjCObjectPointerType *Ty,
llvm::DIFile *Unit) {
// The frontend treats 'id' as a typedef to an ObjCObjectType,
// whereas 'id<protocol>' is treated as an ObjCPointerType. For the
// debug info, we want to emit 'id' in both cases.
if (Ty->isObjCQualifiedIdType())
return getOrCreateType(CGM.getContext().getObjCIdType(), Unit);
return CreatePointerLikeType(llvm::dwarf::DW_TAG_pointer_type, Ty,
Ty->getPointeeType(), Unit);
}
llvm::DIType *CGDebugInfo::CreateType(const PointerType *Ty, llvm::DIFile *Unit,
TypeLoc TL) {
return CreatePointerLikeType(llvm::dwarf::DW_TAG_pointer_type, Ty,
Ty->getPointeeType(), Unit, TL);
}
/// \return whether a C++ mangling exists for the type defined by TD.
static bool hasCXXMangling(const TagDecl *TD, llvm::DICompileUnit *TheCU) {
switch (TheCU->getSourceLanguage()) {
case llvm::dwarf::DW_LANG_C_plus_plus:
case llvm::dwarf::DW_LANG_C_plus_plus_11:
case llvm::dwarf::DW_LANG_C_plus_plus_14:
return true;
case llvm::dwarf::DW_LANG_ObjC_plus_plus:
return isa<CXXRecordDecl>(TD) || isa<EnumDecl>(TD);
default:
return false;
}
}
// Determines if the debug info for this tag declaration needs a type
// identifier. The purpose of the unique identifier is to deduplicate type
// information for identical types across TUs. Because of the C++ one definition
// rule (ODR), it is valid to assume that the type is defined the same way in
// every TU and its debug info is equivalent.
//
// C does not have the ODR, and it is common for codebases to contain multiple
// different definitions of a struct with the same name in different TUs.
// Therefore, if the type doesn't have a C++ mangling, don't give it an
// identifer. Type information in C is smaller and simpler than C++ type
// information, so the increase in debug info size is negligible.
//
// If the type is not externally visible, it should be unique to the current TU,
// and should not need an identifier to participate in type deduplication.
// However, when emitting CodeView, the format internally uses these
// unique type name identifers for references between debug info. For example,
// the method of a class in an anonymous namespace uses the identifer to refer
// to its parent class. The Microsoft C++ ABI attempts to provide unique names
// for such types, so when emitting CodeView, always use identifiers for C++
// types. This may create problems when attempting to emit CodeView when the MS
// C++ ABI is not in use.
static bool needsTypeIdentifier(const TagDecl *TD, CodeGenModule &CGM,
llvm::DICompileUnit *TheCU) {
// We only add a type identifier for types with C++ name mangling.
if (!hasCXXMangling(TD, TheCU))
return false;
// Externally visible types with C++ mangling need a type identifier.
if (TD->isExternallyVisible())
return true;
// CodeView types with C++ mangling need a type identifier.
if (CGM.getCodeGenOpts().EmitCodeView)
return true;
return false;
}
// Returns a unique type identifier string if one exists, or an empty string.
static SmallString<256> getTypeIdentifier(const TagType *Ty, CodeGenModule &CGM,
llvm::DICompileUnit *TheCU) {
SmallString<256> Identifier;
const TagDecl *TD = Ty->getDecl();
if (!needsTypeIdentifier(TD, CGM, TheCU))
return Identifier;
if (const auto *RD = dyn_cast<CXXRecordDecl>(TD))
if (RD->getDefinition())
if (RD->isDynamicClass() &&
CGM.getVTableLinkage(RD) == llvm::GlobalValue::ExternalLinkage)
return Identifier;
// TODO: This is using the RTTI name. Is there a better way to get
// a unique string for a type?
llvm::raw_svector_ostream Out(Identifier);
CGM.getCXXABI().getMangleContext().mangleCXXRTTIName(QualType(Ty, 0), Out);
return Identifier;
}
/// \return the appropriate DWARF tag for a composite type.
static llvm::dwarf::Tag getTagForRecord(const RecordDecl *RD) {
llvm::dwarf::Tag Tag;
if (RD->isStruct() || RD->isInterface())
Tag = llvm::dwarf::DW_TAG_structure_type;
else if (RD->isUnion())
Tag = llvm::dwarf::DW_TAG_union_type;
else {
// FIXME: This could be a struct type giving a default visibility different
// than C++ class type, but needs llvm metadata changes first.
assert(RD->isClass());
Tag = llvm::dwarf::DW_TAG_class_type;
}
return Tag;
}
llvm::DICompositeType *
CGDebugInfo::getOrCreateRecordFwdDecl(const RecordType *Ty,
llvm::DIScope *Ctx) {
const RecordDecl *RD = Ty->getDecl();
if (llvm::DIType *T = getTypeOrNull(CGM.getContext().getRecordType(RD)))
return cast<llvm::DICompositeType>(T);
llvm::DIFile *DefUnit = getOrCreateFile(RD->getLocation());
const unsigned Line =
getLineNumber(RD->getLocation().isValid() ? RD->getLocation() : CurLoc);
StringRef RDName = getClassName(RD);
uint64_t Size = 0;
uint32_t Align = 0;
const RecordDecl *D = RD->getDefinition();
if (D && D->isCompleteDefinition())
Size = CGM.getContext().getTypeSize(Ty);
llvm::DINode::DIFlags Flags = llvm::DINode::FlagFwdDecl;
// Add flag to nontrivial forward declarations. To be consistent with MSVC,
// add the flag if a record has no definition because we don't know whether
// it will be trivial or not.
if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD))
if (!CXXRD->hasDefinition() ||
(CXXRD->hasDefinition() && !CXXRD->isTrivial()))
Flags |= llvm::DINode::FlagNonTrivial;
// Create the type.
SmallString<256> Identifier;
// Don't include a linkage name in line tables only.
if (CGM.getCodeGenOpts().hasReducedDebugInfo())
Identifier = getTypeIdentifier(Ty, CGM, TheCU);
llvm::DICompositeType *RetTy = DBuilder.createReplaceableCompositeType(
getTagForRecord(RD), RDName, Ctx, DefUnit, Line, 0, Size, Align, Flags,
Identifier);
if (CGM.getCodeGenOpts().DebugFwdTemplateParams)
if (auto *TSpecial = dyn_cast<ClassTemplateSpecializationDecl>(RD))
DBuilder.replaceArrays(RetTy, llvm::DINodeArray(),
CollectCXXTemplateParams(TSpecial, DefUnit));
ReplaceMap.emplace_back(
std::piecewise_construct, std::make_tuple(Ty),
std::make_tuple(static_cast<llvm::Metadata *>(RetTy)));
return RetTy;
}
llvm::DIType *CGDebugInfo::CreatePointerLikeType(llvm::dwarf::Tag Tag,
const Type *Ty,
QualType PointeeTy,
llvm::DIFile *Unit,
TypeLoc TL) {
// Bit size, align and offset of the type.
// Size is always the size of a pointer. We can't use getTypeSize here
// because that does not return the correct value for references.
unsigned AddressSpace = CGM.getContext().getTargetAddressSpace(PointeeTy);
uint64_t Size = CGM.getTarget().getPointerWidth(AddressSpace);
auto Align = getTypeAlignIfRequired(Ty, CGM.getContext());
Optional<unsigned> DWARFAddressSpace =
CGM.getTarget().getDWARFAddressSpace(AddressSpace);
llvm::DINodeArray Annotations = nullptr;
TypeLoc NextTL;
if (TL) {
SmallVector<llvm::Metadata *, 4> Annots;
NextTL = TL.getNextTypeLoc();
if (NextTL) {
// Traverse all MacroQualifiedTypeLoc, QualifiedTypeLoc and
// AttributedTypeLoc type locations so we can collect
// BTFTypeTag attributes for this pointer.
while (true) {
if (auto MTL = NextTL.getAs<MacroQualifiedTypeLoc>()) {
NextTL = MTL.getInnerLoc();
} else if (auto QTL = NextTL.getAs<QualifiedTypeLoc>()) {
NextTL = QTL.getNextTypeLoc();
} else if (auto ATL = NextTL.getAs<AttributedTypeLoc>()) {
if (const auto *A = ATL.getAttrAs<BTFTypeTagAttr>()) {
StringRef BTFTypeTag = A->getBTFTypeTag();
if (!BTFTypeTag.empty()) {
llvm::Metadata *Ops[2] = {
llvm::MDString::get(CGM.getLLVMContext(),
StringRef("btf_type_tag")),
llvm::MDString::get(CGM.getLLVMContext(), BTFTypeTag)};
Annots.insert(Annots.begin(),
llvm::MDNode::get(CGM.getLLVMContext(), Ops));
}
}
NextTL = ATL.getModifiedLoc();
} else {
break;
}
}
}
NextTL = StripMacroAttributed(TL.getNextTypeLoc());
if (Annots.size() > 0)
Annotations = DBuilder.getOrCreateArray(Annots);
}
if (Tag == llvm::dwarf::DW_TAG_reference_type ||
Tag == llvm::dwarf::DW_TAG_rvalue_reference_type)
return DBuilder.createReferenceType(Tag, getOrCreateType(PointeeTy, Unit),
Size, Align, DWARFAddressSpace);
else
return DBuilder.createPointerType(getOrCreateType(PointeeTy, Unit, NextTL),
Size, Align, DWARFAddressSpace,
StringRef(), Annotations);
}
llvm::DIType *CGDebugInfo::getOrCreateStructPtrType(StringRef Name,
llvm::DIType *&Cache) {
if (Cache)
return Cache;
Cache = DBuilder.createForwardDecl(llvm::dwarf::DW_TAG_structure_type, Name,
TheCU, TheCU->getFile(), 0);
unsigned Size = CGM.getContext().getTypeSize(CGM.getContext().VoidPtrTy);
Cache = DBuilder.createPointerType(Cache, Size);
return Cache;
}
uint64_t CGDebugInfo::collectDefaultElementTypesForBlockPointer(
const BlockPointerType *Ty, llvm::DIFile *Unit, llvm::DIDerivedType *DescTy,
unsigned LineNo, SmallVectorImpl<llvm::Metadata *> &EltTys) {
QualType FType;
// Advanced by calls to CreateMemberType in increments of FType, then
// returned as the overall size of the default elements.
uint64_t FieldOffset = 0;
// Blocks in OpenCL have unique constraints which make the standard fields
// redundant while requiring size and align fields for enqueue_kernel. See
// initializeForBlockHeader in CGBlocks.cpp
if (CGM.getLangOpts().OpenCL) {
FType = CGM.getContext().IntTy;
EltTys.push_back(CreateMemberType(Unit, FType, "__size", &FieldOffset));
EltTys.push_back(CreateMemberType(Unit, FType, "__align", &FieldOffset));
} else {
FType = CGM.getContext().getPointerType(CGM.getContext().VoidTy);
EltTys.push_back(CreateMemberType(Unit, FType, "__isa", &FieldOffset));
FType = CGM.getContext().IntTy;
EltTys.push_back(CreateMemberType(Unit, FType, "__flags", &FieldOffset));
EltTys.push_back(CreateMemberType(Unit, FType, "__reserved", &FieldOffset));
FType = CGM.getContext().getPointerType(Ty->getPointeeType());
EltTys.push_back(CreateMemberType(Unit, FType, "__FuncPtr", &FieldOffset));
FType = CGM.getContext().getPointerType(CGM.getContext().VoidTy);
uint64_t FieldSize = CGM.getContext().getTypeSize(Ty);
uint32_t FieldAlign = CGM.getContext().getTypeAlign(Ty);
EltTys.push_back(DBuilder.createMemberType(
Unit, "__descriptor", nullptr, LineNo, FieldSize, FieldAlign,
FieldOffset, llvm::DINode::FlagZero, DescTy));
FieldOffset += FieldSize;
}
return FieldOffset;
}
llvm::DIType *CGDebugInfo::CreateType(const BlockPointerType *Ty,
llvm::DIFile *Unit) {
SmallVector<llvm::Metadata *, 8> EltTys;
QualType FType;
uint64_t FieldOffset;
llvm::DINodeArray Elements;
FieldOffset = 0;
FType = CGM.getContext().UnsignedLongTy;
EltTys.push_back(CreateMemberType(Unit, FType, "reserved", &FieldOffset));
EltTys.push_back(CreateMemberType(Unit, FType, "Size", &FieldOffset));
Elements = DBuilder.getOrCreateArray(EltTys);
EltTys.clear();
llvm::DINode::DIFlags Flags = llvm::DINode::FlagAppleBlock;
auto *EltTy =
DBuilder.createStructType(Unit, "__block_descriptor", nullptr, 0,
FieldOffset, 0, Flags, nullptr, Elements);
// Bit size, align and offset of the type.
uint64_t Size = CGM.getContext().getTypeSize(Ty);
auto *DescTy = DBuilder.createPointerType(EltTy, Size);
FieldOffset = collectDefaultElementTypesForBlockPointer(Ty, Unit, DescTy,
0, EltTys);
Elements = DBuilder.getOrCreateArray(EltTys);
// The __block_literal_generic structs are marked with a special
// DW_AT_APPLE_BLOCK attribute and are an implementation detail only
// the debugger needs to know about. To allow type uniquing, emit
// them without a name or a location.
EltTy = DBuilder.createStructType(Unit, "", nullptr, 0, FieldOffset, 0,
Flags, nullptr, Elements);
return DBuilder.createPointerType(EltTy, Size);
}
llvm::DIType *CGDebugInfo::CreateType(const TemplateSpecializationType *Ty,
llvm::DIFile *Unit) {
assert(Ty->isTypeAlias());
llvm::DIType *Src = getOrCreateType(Ty->getAliasedType(), Unit);
auto *AliasDecl =
cast<TypeAliasTemplateDecl>(Ty->getTemplateName().getAsTemplateDecl())
->getTemplatedDecl();
if (AliasDecl->hasAttr<NoDebugAttr>())
return Src;
SmallString<128> NS;
llvm::raw_svector_ostream OS(NS);
Ty->getTemplateName().print(OS, getPrintingPolicy(),
TemplateName::Qualified::None);
printTemplateArgumentList(OS, Ty->template_arguments(), getPrintingPolicy());
SourceLocation Loc = AliasDecl->getLocation();
return DBuilder.createTypedef(Src, OS.str(), getOrCreateFile(Loc),
getLineNumber(Loc),
getDeclContextDescriptor(AliasDecl));
}
llvm::DIType *CGDebugInfo::CreateType(const TypedefType *Ty,
llvm::DIFile *Unit) {
TypeLoc TL;
if (const TypeSourceInfo *TSI = Ty->getDecl()->getTypeSourceInfo())
TL = TSI->getTypeLoc();
llvm::DIType *Underlying =
getOrCreateType(Ty->getDecl()->getUnderlyingType(), Unit, TL);
if (Ty->getDecl()->hasAttr<NoDebugAttr>())
return Underlying;
// We don't set size information, but do specify where the typedef was
// declared.
SourceLocation Loc = Ty->getDecl()->getLocation();
uint32_t Align = getDeclAlignIfRequired(Ty->getDecl(), CGM.getContext());
// Typedefs are derived from some other type.
llvm::DINodeArray Annotations = CollectBTFDeclTagAnnotations(Ty->getDecl());
return DBuilder.createTypedef(Underlying, Ty->getDecl()->getName(),
getOrCreateFile(Loc), getLineNumber(Loc),
getDeclContextDescriptor(Ty->getDecl()), Align,
Annotations);
}
static unsigned getDwarfCC(CallingConv CC) {
switch (CC) {
case CC_C:
// Avoid emitting DW_AT_calling_convention if the C convention was used.
return 0;
case CC_X86StdCall:
return llvm::dwarf::DW_CC_BORLAND_stdcall;
case CC_X86FastCall:
return llvm::dwarf::DW_CC_BORLAND_msfastcall;
case CC_X86ThisCall:
return llvm::dwarf::DW_CC_BORLAND_thiscall;
case CC_X86VectorCall:
return llvm::dwarf::DW_CC_LLVM_vectorcall;
case CC_X86Pascal:
return llvm::dwarf::DW_CC_BORLAND_pascal;
case CC_Win64:
return llvm::dwarf::DW_CC_LLVM_Win64;
case CC_X86_64SysV:
return llvm::dwarf::DW_CC_LLVM_X86_64SysV;
case CC_AAPCS:
case CC_AArch64VectorCall:
return llvm::dwarf::DW_CC_LLVM_AAPCS;
case CC_AAPCS_VFP:
return llvm::dwarf::DW_CC_LLVM_AAPCS_VFP;
case CC_IntelOclBicc:
return llvm::dwarf::DW_CC_LLVM_IntelOclBicc;
case CC_SpirFunction:
return llvm::dwarf::DW_CC_LLVM_SpirFunction;
case CC_OpenCLKernel:
return llvm::dwarf::DW_CC_LLVM_OpenCLKernel;
case CC_Swift:
return llvm::dwarf::DW_CC_LLVM_Swift;
case CC_SwiftAsync:
// [FIXME: swiftasynccc] Update to SwiftAsync once LLVM support lands.
return llvm::dwarf::DW_CC_LLVM_Swift;
case CC_PreserveMost:
return llvm::dwarf::DW_CC_LLVM_PreserveMost;
case CC_PreserveAll:
return llvm::dwarf::DW_CC_LLVM_PreserveAll;
case CC_X86RegCall:
return llvm::dwarf::DW_CC_LLVM_X86RegCall;
}
return 0;
}
static llvm::DINode::DIFlags getRefFlags(const FunctionProtoType *Func) {
llvm::DINode::DIFlags Flags = llvm::DINode::FlagZero;
if (Func->getExtProtoInfo().RefQualifier == RQ_LValue)
Flags |= llvm::DINode::FlagLValueReference;
if (Func->getExtProtoInfo().RefQualifier == RQ_RValue)
Flags |= llvm::DINode::FlagRValueReference;
return Flags;
}
llvm::DIType *CGDebugInfo::CreateType(const FunctionType *Ty,
llvm::DIFile *Unit, TypeLoc TL) {
const auto *FPT = dyn_cast<FunctionProtoType>(Ty);
if (FPT) {
if (llvm::DIType *QTy = CreateQualifiedType(FPT, Unit))
return QTy;
}
// Create the type without any qualifiers
SmallVector<llvm::Metadata *, 16> EltTys;
// Add the result type at least.
TypeLoc RetTL;
if (TL) {
if (auto FTL = TL.getAs<FunctionTypeLoc>())
RetTL = FTL.getReturnLoc();
}
EltTys.push_back(getOrCreateType(Ty->getReturnType(), Unit, RetTL));
llvm::DINode::DIFlags Flags = llvm::DINode::FlagZero;
// Set up remainder of arguments if there is a prototype.
// otherwise emit it as a variadic function.
if (!FPT) {
EltTys.push_back(DBuilder.createUnspecifiedParameter());
} else {
Flags = getRefFlags(FPT);
bool DoneWithTL = false;
if (TL) {
if (auto FTL = TL.getAs<FunctionTypeLoc>()) {
DoneWithTL = true;
unsigned Idx = 0;
unsigned FTL_NumParams = FTL.getNumParams();
for (const QualType &ParamType : FPT->param_types()) {
TypeLoc ParamTL;
if (Idx < FTL_NumParams) {
if (ParmVarDecl *Param = FTL.getParam(Idx)) {
if (const TypeSourceInfo *TSI = Param->getTypeSourceInfo())
ParamTL = TSI->getTypeLoc();
}
}
EltTys.push_back(getOrCreateType(ParamType, Unit, ParamTL));
Idx++;
}
}
}
if (!DoneWithTL) {
for (const QualType &ParamType : FPT->param_types())
EltTys.push_back(getOrCreateType(ParamType, Unit));
}
if (FPT->isVariadic())
EltTys.push_back(DBuilder.createUnspecifiedParameter());
}
llvm::DITypeRefArray EltTypeArray = DBuilder.getOrCreateTypeArray(EltTys);
llvm::DIType *F = DBuilder.createSubroutineType(
EltTypeArray, Flags, getDwarfCC(Ty->getCallConv()));
return F;
}
/// Convert an AccessSpecifier into the corresponding DINode flag.
/// As an optimization, return 0 if the access specifier equals the
/// default for the containing type.
static llvm::DINode::DIFlags getAccessFlag(AccessSpecifier Access,
const RecordDecl *RD) {
AccessSpecifier Default = clang::AS_none;
if (RD && RD->isClass())
Default = clang::AS_private;
else if (RD && (RD->isStruct() || RD->isUnion()))
Default = clang::AS_public;
if (Access == Default)
return llvm::DINode::FlagZero;
switch (Access) {
case clang::AS_private:
return llvm::DINode::FlagPrivate;
case clang::AS_protected:
return llvm::DINode::FlagProtected;
case clang::AS_public:
return llvm::DINode::FlagPublic;
case clang::AS_none:
return llvm::DINode::FlagZero;
}
llvm_unreachable("unexpected access enumerator");
}
llvm::DIType *CGDebugInfo::createBitFieldType(const FieldDecl *BitFieldDecl,
llvm::DIScope *RecordTy,
const RecordDecl *RD) {
StringRef Name = BitFieldDecl->getName();
QualType Ty = BitFieldDecl->getType();
SourceLocation Loc = BitFieldDecl->getLocation();
llvm::DIFile *VUnit = getOrCreateFile(Loc);
llvm::DIType *DebugType = getOrCreateType(Ty, VUnit);
// Get the location for the field.
llvm::DIFile *File = getOrCreateFile(Loc);
unsigned Line = getLineNumber(Loc);
const CGBitFieldInfo &BitFieldInfo =
CGM.getTypes().getCGRecordLayout(RD).getBitFieldInfo(BitFieldDecl);
uint64_t SizeInBits = BitFieldInfo.Size;
assert(SizeInBits > 0 && "found named 0-width bitfield");
uint64_t StorageOffsetInBits =
CGM.getContext().toBits(BitFieldInfo.StorageOffset);
uint64_t Offset = BitFieldInfo.Offset;
// The bit offsets for big endian machines are reversed for big
// endian target, compensate for that as the DIDerivedType requires
// un-reversed offsets.
if (CGM.getDataLayout().isBigEndian())
Offset = BitFieldInfo.StorageSize - BitFieldInfo.Size - Offset;
uint64_t OffsetInBits = StorageOffsetInBits + Offset;
llvm::DINode::DIFlags Flags = getAccessFlag(BitFieldDecl->getAccess(), RD);
llvm::DINodeArray Annotations = CollectBTFDeclTagAnnotations(BitFieldDecl);
return DBuilder.createBitFieldMemberType(
RecordTy, Name, File, Line, SizeInBits, OffsetInBits, StorageOffsetInBits,
Flags, DebugType, Annotations);
}
llvm::DIType *
CGDebugInfo::createFieldType(StringRef name, QualType type, SourceLocation loc,
AccessSpecifier AS, uint64_t offsetInBits,
uint32_t AlignInBits, llvm::DIFile *tunit,
llvm::DIScope *scope, const RecordDecl *RD,
llvm::DINodeArray Annotations, TypeLoc TL) {
llvm::DIType *debugType = getOrCreateType(type, tunit, TL);
// Get the location for the field.
llvm::DIFile *file = getOrCreateFile(loc);
const unsigned line = getLineNumber(loc.isValid() ? loc : CurLoc);
uint64_t SizeInBits = 0;
auto Align = AlignInBits;
if (!type->isIncompleteArrayType()) {
TypeInfo TI = CGM.getContext().getTypeInfo(type);
SizeInBits = TI.Width;
if (!Align)
Align = getTypeAlignIfRequired(type, CGM.getContext());
}
llvm::DINode::DIFlags flags = getAccessFlag(AS, RD);
return DBuilder.createMemberType(scope, name, file, line, SizeInBits, Align,
offsetInBits, flags, debugType, Annotations);
}
void CGDebugInfo::CollectRecordLambdaFields(
const CXXRecordDecl *CXXDecl, SmallVectorImpl<llvm::Metadata *> &elements,
llvm::DIType *RecordTy) {
// For C++11 Lambdas a Field will be the same as a Capture, but the Capture
// has the name and the location of the variable so we should iterate over
// both concurrently.
const ASTRecordLayout &layout = CGM.getContext().getASTRecordLayout(CXXDecl);
RecordDecl::field_iterator Field = CXXDecl->field_begin();
unsigned fieldno = 0;
for (CXXRecordDecl::capture_const_iterator I = CXXDecl->captures_begin(),
E = CXXDecl->captures_end();
I != E; ++I, ++Field, ++fieldno) {
const LambdaCapture &C = *I;
if (C.capturesVariable()) {
SourceLocation Loc = C.getLocation();
assert(!Field->isBitField() && "lambdas don't have bitfield members!");
VarDecl *V = C.getCapturedVar();
StringRef VName = V->getName();
llvm::DIFile *VUnit = getOrCreateFile(Loc);
auto Align = getDeclAlignIfRequired(V, CGM.getContext());
llvm::DIType *FieldType = createFieldType(
VName, Field->getType(), Loc, Field->getAccess(),
layout.getFieldOffset(fieldno), Align, VUnit, RecordTy, CXXDecl);
elements.push_back(FieldType);
} else if (C.capturesThis()) {
// TODO: Need to handle 'this' in some way by probably renaming the
// this of the lambda class and having a field member of 'this' or
// by using AT_object_pointer for the function and having that be
// used as 'this' for semantic references.
FieldDecl *f = *Field;
llvm::DIFile *VUnit = getOrCreateFile(f->getLocation());
QualType type = f->getType();
llvm::DIType *fieldType = createFieldType(
"this", type, f->getLocation(), f->getAccess(),
layout.getFieldOffset(fieldno), VUnit, RecordTy, CXXDecl);
elements.push_back(fieldType);
}
}
}
llvm::DIDerivedType *
CGDebugInfo::CreateRecordStaticField(const VarDecl *Var, llvm::DIType *RecordTy,
const RecordDecl *RD) {
// Create the descriptor for the static variable, with or without
// constant initializers.
Var = Var->getCanonicalDecl();
llvm::DIFile *VUnit = getOrCreateFile(Var->getLocation());
llvm::DIType *VTy = getOrCreateType(Var->getType(), VUnit);
unsigned LineNumber = getLineNumber(Var->getLocation());
StringRef VName = Var->getName();
llvm::Constant *C = nullptr;
if (Var->getInit()) {
const APValue *Value = Var->evaluateValue();
if (Value) {
if (Value->isInt())
C = llvm::ConstantInt::get(CGM.getLLVMContext(), Value->getInt());
if (Value->isFloat())
C = llvm::ConstantFP::get(CGM.getLLVMContext(), Value->getFloat());
}
}
llvm::DINode::DIFlags Flags = getAccessFlag(Var->getAccess(), RD);
auto Align = getDeclAlignIfRequired(Var, CGM.getContext());
llvm::DIDerivedType *GV = DBuilder.createStaticMemberType(
RecordTy, VName, VUnit, LineNumber, VTy, Flags, C, Align);
StaticDataMemberCache[Var->getCanonicalDecl()].reset(GV);
return GV;
}
void CGDebugInfo::CollectRecordNormalField(
const FieldDecl *field, uint64_t OffsetInBits, llvm::DIFile *tunit,
SmallVectorImpl<llvm::Metadata *> &elements, llvm::DIType *RecordTy,
const RecordDecl *RD) {
StringRef name = field->getName();
QualType type = field->getType();
// Ignore unnamed fields unless they're anonymous structs/unions.
if (name.empty() && !type->isRecordType())
return;
llvm::DIType *FieldType;
if (field->isBitField()) {
FieldType = createBitFieldType(field, RecordTy, RD);
} else {
auto Align = getDeclAlignIfRequired(field, CGM.getContext());
llvm::DINodeArray Annotations = CollectBTFDeclTagAnnotations(field);
TypeLoc TL;
if (const TypeSourceInfo *TSI = field->getTypeSourceInfo())
TL = TSI->getTypeLoc();
FieldType = createFieldType(name, type, field->getLocation(),
field->getAccess(), OffsetInBits, Align, tunit,
RecordTy, RD, Annotations, TL);
}
elements.push_back(FieldType);
}
void CGDebugInfo::CollectRecordNestedType(
const TypeDecl *TD, SmallVectorImpl<llvm::Metadata *> &elements) {
QualType Ty = CGM.getContext().getTypeDeclType(TD);
// Injected class names are not considered nested records.
if (isa<InjectedClassNameType>(Ty))
return;
SourceLocation Loc = TD->getLocation();
llvm::DIType *nestedType = getOrCreateType(Ty, getOrCreateFile(Loc));
elements.push_back(nestedType);
}
void CGDebugInfo::CollectRecordFields(
const RecordDecl *record, llvm::DIFile *tunit,
SmallVectorImpl<llvm::Metadata *> &elements,
llvm::DICompositeType *RecordTy) {
const auto *CXXDecl = dyn_cast<CXXRecordDecl>(record);
if (CXXDecl && CXXDecl->isLambda())
CollectRecordLambdaFields(CXXDecl, elements, RecordTy);
else {
const ASTRecordLayout &layout = CGM.getContext().getASTRecordLayout(record);
// Field number for non-static fields.
unsigned fieldNo = 0;
// Static and non-static members should appear in the same order as
// the corresponding declarations in the source program.
for (const auto *I : record->decls())
if (const auto *V = dyn_cast<VarDecl>(I)) {
if (V->hasAttr<NoDebugAttr>())
continue;
// Skip variable template specializations when emitting CodeView. MSVC
// doesn't emit them.
if (CGM.getCodeGenOpts().EmitCodeView &&
isa<VarTemplateSpecializationDecl>(V))
continue;
if (isa<VarTemplatePartialSpecializationDecl>(V))
continue;
// Reuse the existing static member declaration if one exists
auto MI = StaticDataMemberCache.find(V->getCanonicalDecl());
if (MI != StaticDataMemberCache.end()) {
assert(MI->second &&
"Static data member declaration should still exist");
elements.push_back(MI->second);
} else {
auto Field = CreateRecordStaticField(V, RecordTy, record);
elements.push_back(Field);
}
} else if (const auto *field = dyn_cast<FieldDecl>(I)) {
CollectRecordNormalField(field, layout.getFieldOffset(fieldNo), tunit,
elements, RecordTy, record);
// Bump field number for next field.
++fieldNo;
} else if (CGM.getCodeGenOpts().EmitCodeView) {
// Debug info for nested types is included in the member list only for
// CodeView.
if (const auto *nestedType = dyn_cast<TypeDecl>(I))
if (!nestedType->isImplicit() &&
nestedType->getDeclContext() == record)
CollectRecordNestedType(nestedType, elements);
}
}
}
llvm::DISubroutineType *
CGDebugInfo::getOrCreateMethodType(const CXXMethodDecl *Method,
llvm::DIFile *Unit, bool decl) {
const FunctionProtoType *Func = Method->getType()->getAs<FunctionProtoType>();
if (Method->isStatic())
return cast_or_null<llvm::DISubroutineType>(
getOrCreateType(QualType(Func, 0), Unit));
return getOrCreateInstanceMethodType(Method->getThisType(), Func, Unit, decl);
}
llvm::DISubroutineType *
CGDebugInfo::getOrCreateInstanceMethodType(QualType ThisPtr,
const FunctionProtoType *Func,
llvm::DIFile *Unit, bool decl) {
FunctionProtoType::ExtProtoInfo EPI = Func->getExtProtoInfo();
Qualifiers &Qc = EPI.TypeQuals;
Qc.removeConst();
Qc.removeVolatile();
Qc.removeRestrict();
Qc.removeUnaligned();
// Keep the removed qualifiers in sync with
// CreateQualifiedType(const FunctionPrototype*, DIFile *Unit)
// On a 'real' member function type, these qualifiers are carried on the type
// of the first parameter, not as separate DW_TAG_const_type (etc) decorator
// tags around them. (But, in the raw function types with qualifiers, they have
// to use wrapper types.)
// Add "this" pointer.
const auto *OriginalFunc = cast<llvm::DISubroutineType>(
getOrCreateType(CGM.getContext().getFunctionType(
Func->getReturnType(), Func->getParamTypes(), EPI),
Unit));
llvm::DITypeRefArray Args = OriginalFunc->getTypeArray();
assert(Args.size() && "Invalid number of arguments!");
SmallVector<llvm::Metadata *, 16> Elts;
// First element is always return type. For 'void' functions it is NULL.
QualType temp = Func->getReturnType();
if (temp->getTypeClass() == Type::Auto && decl)
Elts.push_back(CreateType(cast<AutoType>(temp)));
else
Elts.push_back(Args[0]);
// "this" pointer is always first argument.
const CXXRecordDecl *RD = ThisPtr->getPointeeCXXRecordDecl();
if (isa<ClassTemplateSpecializationDecl>(RD)) {
// Create pointer type directly in this case.
const PointerType *ThisPtrTy = cast<PointerType>(ThisPtr);
QualType PointeeTy = ThisPtrTy->getPointeeType();
unsigned AS = CGM.getContext().getTargetAddressSpace(PointeeTy);
uint64_t Size = CGM.getTarget().getPointerWidth(AS);
auto Align = getTypeAlignIfRequired(ThisPtrTy, CGM.getContext());
llvm::DIType *PointeeType = getOrCreateType(PointeeTy, Unit);
llvm::DIType *ThisPtrType =
DBuilder.createPointerType(PointeeType, Size, Align);
TypeCache[ThisPtr.getAsOpaquePtr()].reset(ThisPtrType);
// TODO: This and the artificial type below are misleading, the
// types aren't artificial the argument is, but the current
// metadata doesn't represent that.
ThisPtrType = DBuilder.createObjectPointerType(ThisPtrType);
Elts.push_back(ThisPtrType);
} else {
llvm::DIType *ThisPtrType = getOrCreateType(ThisPtr, Unit);
TypeCache[ThisPtr.getAsOpaquePtr()].reset(ThisPtrType);
ThisPtrType = DBuilder.createObjectPointerType(ThisPtrType);
Elts.push_back(ThisPtrType);
}
// Copy rest of the arguments.
for (unsigned i = 1, e = Args.size(); i != e; ++i)
Elts.push_back(Args[i]);
llvm::DITypeRefArray EltTypeArray = DBuilder.getOrCreateTypeArray(Elts);
return DBuilder.createSubroutineType(EltTypeArray, OriginalFunc->getFlags(),
getDwarfCC(Func->getCallConv()));
}
/// isFunctionLocalClass - Return true if CXXRecordDecl is defined
/// inside a function.
static bool isFunctionLocalClass(const CXXRecordDecl *RD) {
if (const auto *NRD = dyn_cast<CXXRecordDecl>(RD->getDeclContext()))
return isFunctionLocalClass(NRD);
if (isa<FunctionDecl>(RD->getDeclContext()))
return true;
return false;
}
llvm::DISubprogram *CGDebugInfo::CreateCXXMemberFunction(
const CXXMethodDecl *Method, llvm::DIFile *Unit, llvm::DIType *RecordTy) {
bool IsCtorOrDtor =
isa<CXXConstructorDecl>(Method) || isa<CXXDestructorDecl>(Method);
StringRef MethodName = getFunctionName(Method);
llvm::DISubroutineType *MethodTy = getOrCreateMethodType(Method, Unit, true);
// Since a single ctor/dtor corresponds to multiple functions, it doesn't
// make sense to give a single ctor/dtor a linkage name.
StringRef MethodLinkageName;
// FIXME: 'isFunctionLocalClass' seems like an arbitrary/unintentional
// property to use here. It may've been intended to model "is non-external
// type" but misses cases of non-function-local but non-external classes such
// as those in anonymous namespaces as well as the reverse - external types
// that are function local, such as those in (non-local) inline functions.
if (!IsCtorOrDtor && !isFunctionLocalClass(Method->getParent()))
MethodLinkageName = CGM.getMangledName(Method);
// Get the location for the method.
llvm::DIFile *MethodDefUnit = nullptr;
unsigned MethodLine = 0;
if (!Method->isImplicit()) {
MethodDefUnit = getOrCreateFile(Method->getLocation());
MethodLine = getLineNumber(Method->getLocation());
}
// Collect virtual method info.
llvm::DIType *ContainingType = nullptr;
unsigned VIndex = 0;
llvm::DINode::DIFlags Flags = llvm::DINode::FlagZero;
llvm::DISubprogram::DISPFlags SPFlags = llvm::DISubprogram::SPFlagZero;
int ThisAdjustment = 0;
if (Method->isVirtual()) {
if (Method->isPure())
SPFlags |= llvm::DISubprogram::SPFlagPureVirtual;
else
SPFlags |= llvm::DISubprogram::SPFlagVirtual;
if (CGM.getTarget().getCXXABI().isItaniumFamily()) {
// It doesn't make sense to give a virtual destructor a vtable index,
// since a single destructor has two entries in the vtable.
if (!isa<CXXDestructorDecl>(Method))
VIndex = CGM.getItaniumVTableContext().getMethodVTableIndex(Method);
} else {
// Emit MS ABI vftable information. There is only one entry for the
// deleting dtor.
const auto *DD = dyn_cast<CXXDestructorDecl>(Method);
GlobalDecl GD = DD ? GlobalDecl(DD, Dtor_Deleting) : GlobalDecl(Method);
MethodVFTableLocation ML =
CGM.getMicrosoftVTableContext().getMethodVFTableLocation(GD);
VIndex = ML.Index;
// CodeView only records the vftable offset in the class that introduces
// the virtual method. This is possible because, unlike Itanium, the MS
// C++ ABI does not include all virtual methods from non-primary bases in
// the vtable for the most derived class. For example, if C inherits from
// A and B, C's primary vftable will not include B's virtual methods.
if (Method->size_overridden_methods() == 0)
Flags |= llvm::DINode::FlagIntroducedVirtual;
// The 'this' adjustment accounts for both the virtual and non-virtual
// portions of the adjustment. Presumably the debugger only uses it when
// it knows the dynamic type of an object.
ThisAdjustment = CGM.getCXXABI()
.getVirtualFunctionPrologueThisAdjustment(GD)
.getQuantity();
}
ContainingType = RecordTy;
}
// We're checking for deleted C++ special member functions
// [Ctors,Dtors, Copy/Move]
auto checkAttrDeleted = [&](const auto *Method) {
if (Method->getCanonicalDecl()->isDeleted())
SPFlags |= llvm::DISubprogram::SPFlagDeleted;
};
switch (Method->getKind()) {
case Decl::CXXConstructor:
case Decl::CXXDestructor:
checkAttrDeleted(Method);
break;
case Decl::CXXMethod:
if (Method->isCopyAssignmentOperator() ||
Method->isMoveAssignmentOperator())
checkAttrDeleted(Method);
break;
default:
break;
}
if (Method->isNoReturn())
Flags |= llvm::DINode::FlagNoReturn;
if (Method->isStatic())
Flags |= llvm::DINode::FlagStaticMember;
if (Method->isImplicit())
Flags |= llvm::DINode::FlagArtificial;
Flags |= getAccessFlag(Method->getAccess(), Method->getParent());
if (const auto *CXXC = dyn_cast<CXXConstructorDecl>(Method)) {
if (CXXC->isExplicit())
Flags |= llvm::DINode::FlagExplicit;
} else if (const auto *CXXC = dyn_cast<CXXConversionDecl>(Method)) {
if (CXXC->isExplicit())
Flags |= llvm::DINode::FlagExplicit;
}
if (Method->hasPrototype())
Flags |= llvm::DINode::FlagPrototyped;
if (Method->getRefQualifier() == RQ_LValue)
Flags |= llvm::DINode::FlagLValueReference;
if (Method->getRefQualifier() == RQ_RValue)
Flags |= llvm::DINode::FlagRValueReference;
if (!Method->isExternallyVisible())
SPFlags |= llvm::DISubprogram::SPFlagLocalToUnit;
if (CGM.getLangOpts().Optimize)
SPFlags |= llvm::DISubprogram::SPFlagOptimized;
// In this debug mode, emit type info for a class when its constructor type
// info is emitted.
if (DebugKind == codegenoptions::DebugInfoConstructor)
if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(Method))
completeUnusedClass(*CD->getParent());
llvm::DINodeArray TParamsArray = CollectFunctionTemplateParams(Method, Unit);
llvm::DISubprogram *SP = DBuilder.createMethod(
RecordTy, MethodName, MethodLinkageName, MethodDefUnit, MethodLine,
MethodTy, VIndex, ThisAdjustment, ContainingType, Flags, SPFlags,
TParamsArray.get());
SPCache[Method->getCanonicalDecl()].reset(SP);
return SP;
}
void CGDebugInfo::CollectCXXMemberFunctions(
const CXXRecordDecl *RD, llvm::DIFile *Unit,
SmallVectorImpl<llvm::Metadata *> &EltTys, llvm::DIType *RecordTy) {
// Since we want more than just the individual member decls if we
// have templated functions iterate over every declaration to gather
// the functions.
for (const auto *I : RD->decls()) {
const auto *Method = dyn_cast<CXXMethodDecl>(I);
// If the member is implicit, don't add it to the member list. This avoids
// the member being added to type units by LLVM, while still allowing it
// to be emitted into the type declaration/reference inside the compile
// unit.
// Ditto 'nodebug' methods, for consistency with CodeGenFunction.cpp.
// FIXME: Handle Using(Shadow?)Decls here to create
// DW_TAG_imported_declarations inside the class for base decls brought into
// derived classes. GDB doesn't seem to notice/leverage these when I tried
// it, so I'm not rushing to fix this. (GCC seems to produce them, if
// referenced)
if (!Method || Method->isImplicit() || Method->hasAttr<NoDebugAttr>())
continue;
if (Method->getType()->castAs<FunctionProtoType>()->getContainedAutoType())
continue;
// Reuse the existing member function declaration if it exists.
// It may be associated with the declaration of the type & should be
// reused as we're building the definition.
//
// This situation can arise in the vtable-based debug info reduction where
// implicit members are emitted in a non-vtable TU.
auto MI = SPCache.find(Method->getCanonicalDecl());
EltTys.push_back(MI == SPCache.end()
? CreateCXXMemberFunction(Method, Unit, RecordTy)
: static_cast<llvm::Metadata *>(MI->second));
}
}
void CGDebugInfo::CollectCXXBases(const CXXRecordDecl *RD, llvm::DIFile *Unit,
SmallVectorImpl<llvm::Metadata *> &EltTys,
llvm::DIType *RecordTy) {
llvm::DenseSet<CanonicalDeclPtr<const CXXRecordDecl>> SeenTypes;
CollectCXXBasesAux(RD, Unit, EltTys, RecordTy, RD->bases(), SeenTypes,
llvm::DINode::FlagZero);
// If we are generating CodeView debug info, we also need to emit records for
// indirect virtual base classes.
if (CGM.getCodeGenOpts().EmitCodeView) {
CollectCXXBasesAux(RD, Unit, EltTys, RecordTy, RD->vbases(), SeenTypes,
llvm::DINode::FlagIndirectVirtualBase);
}
}
void CGDebugInfo::CollectCXXBasesAux(
const CXXRecordDecl *RD, llvm::DIFile *Unit,
SmallVectorImpl<llvm::Metadata *> &EltTys, llvm::DIType *RecordTy,
const CXXRecordDecl::base_class_const_range &Bases,
llvm::DenseSet<CanonicalDeclPtr<const CXXRecordDecl>> &SeenTypes,
llvm::DINode::DIFlags StartingFlags) {
const ASTRecordLayout &RL = CGM.getContext().getASTRecordLayout(RD);
for (const auto &BI : Bases) {
const auto *Base =
cast<CXXRecordDecl>(BI.getType()->castAs<RecordType>()->getDecl());
if (!SeenTypes.insert(Base).second)
continue;
auto *BaseTy = getOrCreateType(BI.getType(), Unit);
llvm::DINode::DIFlags BFlags = StartingFlags;
uint64_t BaseOffset;
uint32_t VBPtrOffset = 0;
if (BI.isVirtual()) {
if (CGM.getTarget().getCXXABI().isItaniumFamily()) {
// virtual base offset offset is -ve. The code generator emits dwarf
// expression where it expects +ve number.
BaseOffset = 0 - CGM.getItaniumVTableContext()
.getVirtualBaseOffsetOffset(RD, Base)
.getQuantity();
} else {
// In the MS ABI, store the vbtable offset, which is analogous to the
// vbase offset offset in Itanium.
BaseOffset =
4 * CGM.getMicrosoftVTableContext().getVBTableIndex(RD, Base);
VBPtrOffset = CGM.getContext()
.getASTRecordLayout(RD)
.getVBPtrOffset()
.getQuantity();
}
BFlags |= llvm::DINode::FlagVirtual;
} else
BaseOffset = CGM.getContext().toBits(RL.getBaseClassOffset(Base));
// FIXME: Inconsistent units for BaseOffset. It is in bytes when
// BI->isVirtual() and bits when not.
BFlags |= getAccessFlag(BI.getAccessSpecifier(), RD);
llvm::DIType *DTy = DBuilder.createInheritance(RecordTy, BaseTy, BaseOffset,
VBPtrOffset, BFlags);
EltTys.push_back(DTy);
}
}
llvm::DINodeArray
CGDebugInfo::CollectTemplateParams(Optional<TemplateArgs> OArgs,
llvm::DIFile *Unit) {
if (!OArgs)
return llvm::DINodeArray();
TemplateArgs &Args = *OArgs;
SmallVector<llvm::Metadata *, 16> TemplateParams;
for (unsigned i = 0, e = Args.Args.size(); i != e; ++i) {
const TemplateArgument &TA = Args.Args[i];
StringRef Name;
bool defaultParameter = false;
if (Args.TList)
Name = Args.TList->getParam(i)->getName();
switch (TA.getKind()) {
case TemplateArgument::Type: {
llvm::DIType *TTy = getOrCreateType(TA.getAsType(), Unit);
if (Args.TList)
if (auto *templateType =
dyn_cast_or_null<TemplateTypeParmDecl>(Args.TList->getParam(i)))
if (templateType->hasDefaultArgument())
defaultParameter =
templateType->getDefaultArgument() == TA.getAsType();
TemplateParams.push_back(DBuilder.createTemplateTypeParameter(
TheCU, Name, TTy, defaultParameter));
} break;
case TemplateArgument::Integral: {
llvm::DIType *TTy = getOrCreateType(TA.getIntegralType(), Unit);
if (Args.TList && CGM.getCodeGenOpts().DwarfVersion >= 5)
if (auto *templateType = dyn_cast_or_null<NonTypeTemplateParmDecl>(
Args.TList->getParam(i)))
if (templateType->hasDefaultArgument() &&
!templateType->getDefaultArgument()->isValueDependent())
defaultParameter = llvm::APSInt::isSameValue(
templateType->getDefaultArgument()->EvaluateKnownConstInt(
CGM.getContext()),
TA.getAsIntegral());
TemplateParams.push_back(DBuilder.createTemplateValueParameter(
TheCU, Name, TTy, defaultParameter,
llvm::ConstantInt::get(CGM.getLLVMContext(), TA.getAsIntegral())));
} break;
case TemplateArgument::Declaration: {
const ValueDecl *D = TA.getAsDecl();
QualType T = TA.getParamTypeForDecl().getDesugaredType(CGM.getContext());
llvm::DIType *TTy = getOrCreateType(T, Unit);
llvm::Constant *V = nullptr;
// Skip retrieve the value if that template parameter has cuda device
// attribute, i.e. that value is not available at the host side.
if (!CGM.getLangOpts().CUDA || CGM.getLangOpts().CUDAIsDevice ||
!D->hasAttr<CUDADeviceAttr>()) {
const CXXMethodDecl *MD;
// Variable pointer template parameters have a value that is the address
// of the variable.
if (const auto *VD = dyn_cast<VarDecl>(D))
V = CGM.GetAddrOfGlobalVar(VD);
// Member function pointers have special support for building them,
// though this is currently unsupported in LLVM CodeGen.
else if ((MD = dyn_cast<CXXMethodDecl>(D)) && MD->isInstance())
V = CGM.getCXXABI().EmitMemberFunctionPointer(MD);
else if (const auto *FD = dyn_cast<FunctionDecl>(D))
V = CGM.GetAddrOfFunction(FD);
// Member data pointers have special handling too to compute the fixed
// offset within the object.
else if (const auto *MPT =
dyn_cast<MemberPointerType>(T.getTypePtr())) {
// These five lines (& possibly the above member function pointer
// handling) might be able to be refactored to use similar code in
// CodeGenModule::getMemberPointerConstant
uint64_t fieldOffset = CGM.getContext().getFieldOffset(D);
CharUnits chars =
CGM.getContext().toCharUnitsFromBits((int64_t)fieldOffset);
V = CGM.getCXXABI().EmitMemberDataPointer(MPT, chars);
} else if (const auto *GD = dyn_cast<MSGuidDecl>(D)) {
V = CGM.GetAddrOfMSGuidDecl(GD).getPointer();
} else if (const auto *TPO = dyn_cast<TemplateParamObjectDecl>(D)) {
if (T->isRecordType())
V = ConstantEmitter(CGM).emitAbstract(
SourceLocation(), TPO->getValue(), TPO->getType());
else
V = CGM.GetAddrOfTemplateParamObject(TPO).getPointer();
}
assert(V && "Failed to find template parameter pointer");
V = V->stripPointerCasts();
}
TemplateParams.push_back(DBuilder.createTemplateValueParameter(
TheCU, Name, TTy, defaultParameter, cast_or_null<llvm::Constant>(V)));
} break;
case TemplateArgument::NullPtr: {
QualType T = TA.getNullPtrType();
llvm::DIType *TTy = getOrCreateType(T, Unit);
llvm::Constant *V = nullptr;
// Special case member data pointer null values since they're actually -1
// instead of zero.
if (const auto *MPT = dyn_cast<MemberPointerType>(T.getTypePtr()))
// But treat member function pointers as simple zero integers because
// it's easier than having a special case in LLVM's CodeGen. If LLVM
// CodeGen grows handling for values of non-null member function
// pointers then perhaps we could remove this special case and rely on
// EmitNullMemberPointer for member function pointers.
if (MPT->isMemberDataPointer())
V = CGM.getCXXABI().EmitNullMemberPointer(MPT);
if (!V)
V = llvm::ConstantInt::get(CGM.Int8Ty, 0);
TemplateParams.push_back(DBuilder.createTemplateValueParameter(
TheCU, Name, TTy, defaultParameter, V));
} break;
case TemplateArgument::Template: {
std::string QualName;
llvm::raw_string_ostream OS(QualName);
TA.getAsTemplate().getAsTemplateDecl()->printQualifiedName(
OS, getPrintingPolicy());
TemplateParams.push_back(DBuilder.createTemplateTemplateParameter(
TheCU, Name, nullptr, OS.str()));
break;
}
case TemplateArgument::Pack:
TemplateParams.push_back(DBuilder.createTemplateParameterPack(
TheCU, Name, nullptr,
CollectTemplateParams({{nullptr, TA.getPackAsArray()}}, Unit)));
break;
case TemplateArgument::Expression: {
const Expr *E = TA.getAsExpr();
QualType T = E->getType();
if (E->isGLValue())
T = CGM.getContext().getLValueReferenceType(T);
llvm::Constant *V = ConstantEmitter(CGM).emitAbstract(E, T);
assert(V && "Expression in template argument isn't constant");
llvm::DIType *TTy = getOrCreateType(T, Unit);
TemplateParams.push_back(DBuilder.createTemplateValueParameter(
TheCU, Name, TTy, defaultParameter, V->stripPointerCasts()));
} break;
// And the following should never occur:
case TemplateArgument::TemplateExpansion:
case TemplateArgument::Null:
llvm_unreachable(
"These argument types shouldn't exist in concrete types");
}
}
return DBuilder.getOrCreateArray(TemplateParams);
}
Optional<CGDebugInfo::TemplateArgs>
CGDebugInfo::GetTemplateArgs(const FunctionDecl *FD) const {
if (FD->getTemplatedKind() ==
FunctionDecl::TK_FunctionTemplateSpecialization) {
const TemplateParameterList *TList = FD->getTemplateSpecializationInfo()
->getTemplate()
->getTemplateParameters();
return {{TList, FD->getTemplateSpecializationArgs()->asArray()}};
}
return None;
}
Optional<CGDebugInfo::TemplateArgs>
CGDebugInfo::GetTemplateArgs(const VarDecl *VD) const {
// Always get the full list of parameters, not just the ones from the
// specialization. A partial specialization may have fewer parameters than
// there are arguments.
auto *TS = dyn_cast<VarTemplateSpecializationDecl>(VD);
if (!TS)
return None;
VarTemplateDecl *T = TS->getSpecializedTemplate();
const TemplateParameterList *TList = T->getTemplateParameters();
auto TA = TS->getTemplateArgs().asArray();
return {{TList, TA}};
}
Optional<CGDebugInfo::TemplateArgs>
CGDebugInfo::GetTemplateArgs(const RecordDecl *RD) const {
if (auto *TSpecial = dyn_cast<ClassTemplateSpecializationDecl>(RD)) {
// Always get the full list of parameters, not just the ones from the
// specialization. A partial specialization may have fewer parameters than
// there are arguments.
TemplateParameterList *TPList =
TSpecial->getSpecializedTemplate()->getTemplateParameters();
const TemplateArgumentList &TAList = TSpecial->getTemplateArgs();
return {{TPList, TAList.asArray()}};
}
return None;
}
llvm::DINodeArray
CGDebugInfo::CollectFunctionTemplateParams(const FunctionDecl *FD,
llvm::DIFile *Unit) {
return CollectTemplateParams(GetTemplateArgs(FD), Unit);
}
llvm::DINodeArray CGDebugInfo::CollectVarTemplateParams(const VarDecl *VL,
llvm::DIFile *Unit) {
return CollectTemplateParams(GetTemplateArgs(VL), Unit);
}
llvm::DINodeArray CGDebugInfo::CollectCXXTemplateParams(const RecordDecl *RD,
llvm::DIFile *Unit) {
return CollectTemplateParams(GetTemplateArgs(RD), Unit);
}
llvm::DINodeArray CGDebugInfo::CollectBTFDeclTagAnnotations(const Decl *D) {
if (!D->hasAttr<BTFDeclTagAttr>())
return nullptr;
SmallVector<llvm::Metadata *, 4> Annotations;
for (const auto *I : D->specific_attrs<BTFDeclTagAttr>()) {
llvm::Metadata *Ops[2] = {
llvm::MDString::get(CGM.getLLVMContext(), StringRef("btf_decl_tag")),
llvm::MDString::get(CGM.getLLVMContext(), I->getBTFDeclTag())};
Annotations.push_back(llvm::MDNode::get(CGM.getLLVMContext(), Ops));
}
return DBuilder.getOrCreateArray(Annotations);
}
llvm::DIType *CGDebugInfo::getOrCreateVTablePtrType(llvm::DIFile *Unit) {
if (VTablePtrType)
return VTablePtrType;
ASTContext &Context = CGM.getContext();
/* Function type */
llvm::Metadata *STy = getOrCreateType(Context.IntTy, Unit);
llvm::DITypeRefArray SElements = DBuilder.getOrCreateTypeArray(STy);
llvm::DIType *SubTy = DBuilder.createSubroutineType(SElements);
unsigned Size = Context.getTypeSize(Context.VoidPtrTy);
unsigned VtblPtrAddressSpace = CGM.getTarget().getVtblPtrAddressSpace();
Optional<unsigned> DWARFAddressSpace =
CGM.getTarget().getDWARFAddressSpace(VtblPtrAddressSpace);
llvm::DIType *vtbl_ptr_type = DBuilder.createPointerType(
SubTy, Size, 0, DWARFAddressSpace, "__vtbl_ptr_type");
VTablePtrType = DBuilder.createPointerType(vtbl_ptr_type, Size);
return VTablePtrType;
}
StringRef CGDebugInfo::getVTableName(const CXXRecordDecl *RD) {
// Copy the gdb compatible name on the side and use its reference.
return internString("_vptr$", RD->getNameAsString());
}
StringRef CGDebugInfo::getDynamicInitializerName(const VarDecl *VD,
DynamicInitKind StubKind,
llvm::Function *InitFn) {
// If we're not emitting codeview, use the mangled name. For Itanium, this is
// arbitrary.
if (!CGM.getCodeGenOpts().EmitCodeView ||
StubKind == DynamicInitKind::GlobalArrayDestructor)
return InitFn->getName();
// Print the normal qualified name for the variable, then break off the last
// NNS, and add the appropriate other text. Clang always prints the global
// variable name without template arguments, so we can use rsplit("::") and
// then recombine the pieces.
SmallString<128> QualifiedGV;
StringRef Quals;
StringRef GVName;
{
llvm::raw_svector_ostream OS(QualifiedGV);
VD->printQualifiedName(OS, getPrintingPolicy());
std::tie(Quals, GVName) = OS.str().rsplit("::");
if (GVName.empty())
std::swap(Quals, GVName);
}
SmallString<128> InitName;
llvm::raw_svector_ostream OS(InitName);
if (!Quals.empty())
OS << Quals << "::";
switch (StubKind) {
case DynamicInitKind::NoStub:
case DynamicInitKind::GlobalArrayDestructor:
llvm_unreachable("not an initializer");
case DynamicInitKind::Initializer:
OS << "`dynamic initializer for '";
break;
case DynamicInitKind::AtExit:
OS << "`dynamic atexit destructor for '";
break;
}
OS << GVName;
// Add any template specialization args.
if (const auto *VTpl = dyn_cast<VarTemplateSpecializationDecl>(VD)) {
printTemplateArgumentList(OS, VTpl->getTemplateArgs().asArray(),
getPrintingPolicy());
}
OS << '\'';
return internString(OS.str());
}
void CGDebugInfo::CollectVTableInfo(const CXXRecordDecl *RD, llvm::DIFile *Unit,
SmallVectorImpl<llvm::Metadata *> &EltTys) {
// If this class is not dynamic then there is not any vtable info to collect.
if (!RD->isDynamicClass())
return;
// Don't emit any vtable shape or vptr info if this class doesn't have an
// extendable vfptr. This can happen if the class doesn't have virtual
// methods, or in the MS ABI if those virtual methods only come from virtually
// inherited bases.
const ASTRecordLayout &RL = CGM.getContext().getASTRecordLayout(RD);
if (!RL.hasExtendableVFPtr())
return;
// CodeView needs to know how large the vtable of every dynamic class is, so
// emit a special named pointer type into the element list. The vptr type
// points to this type as well.
llvm::DIType *VPtrTy = nullptr;
bool NeedVTableShape = CGM.getCodeGenOpts().EmitCodeView &&
CGM.getTarget().getCXXABI().isMicrosoft();
if (NeedVTableShape) {
uint64_t PtrWidth =
CGM.getContext().getTypeSize(CGM.getContext().VoidPtrTy);
const VTableLayout &VFTLayout =
CGM.getMicrosoftVTableContext().getVFTableLayout(RD, CharUnits::Zero());
unsigned VSlotCount =
VFTLayout.vtable_components().size() - CGM.getLangOpts().RTTIData;
unsigned VTableWidth = PtrWidth * VSlotCount;
unsigned VtblPtrAddressSpace = CGM.getTarget().getVtblPtrAddressSpace();
Optional<unsigned> DWARFAddressSpace =
CGM.getTarget().getDWARFAddressSpace(VtblPtrAddressSpace);
// Create a very wide void* type and insert it directly in the element list.
llvm::DIType *VTableType = DBuilder.createPointerType(
nullptr, VTableWidth, 0, DWARFAddressSpace, "__vtbl_ptr_type");
EltTys.push_back(VTableType);
// The vptr is a pointer to this special vtable type.
VPtrTy = DBuilder.createPointerType(VTableType, PtrWidth);
}
// If there is a primary base then the artificial vptr member lives there.
if (RL.getPrimaryBase())
return;
if (!VPtrTy)
VPtrTy = getOrCreateVTablePtrType(Unit);
unsigned Size = CGM.getContext().getTypeSize(CGM.getContext().VoidPtrTy);
llvm::DIType *VPtrMember =
DBuilder.createMemberType(Unit, getVTableName(RD), Unit, 0, Size, 0, 0,
llvm::DINode::FlagArtificial, VPtrTy);
EltTys.push_back(VPtrMember);
}
llvm::DIType *CGDebugInfo::getOrCreateRecordType(QualType RTy,
SourceLocation Loc) {
assert(CGM.getCodeGenOpts().hasReducedDebugInfo());
llvm::DIType *T = getOrCreateType(RTy, getOrCreateFile(Loc));
return T;
}
llvm::DIType *CGDebugInfo::getOrCreateInterfaceType(QualType D,
SourceLocation Loc) {
return getOrCreateStandaloneType(D, Loc);
}
llvm::DIType *CGDebugInfo::getOrCreateStandaloneType(QualType D,
SourceLocation Loc) {
assert(CGM.getCodeGenOpts().hasReducedDebugInfo());
assert(!D.isNull() && "null type");
llvm::DIType *T = getOrCreateType(D, getOrCreateFile(Loc));
assert(T && "could not create debug info for type");
RetainedTypes.push_back(D.getAsOpaquePtr());
return T;
}
void CGDebugInfo::addHeapAllocSiteMetadata(llvm::CallBase *CI,
QualType AllocatedTy,
SourceLocation Loc) {
if (CGM.getCodeGenOpts().getDebugInfo() <=
codegenoptions::DebugLineTablesOnly)
return;
llvm::MDNode *node;
if (AllocatedTy->isVoidType())
node = llvm::MDNode::get(CGM.getLLVMContext(), None);
else
node = getOrCreateType(AllocatedTy, getOrCreateFile(Loc));
CI->setMetadata("heapallocsite", node);
}
void CGDebugInfo::completeType(const EnumDecl *ED) {
if (DebugKind <= codegenoptions::DebugLineTablesOnly)
return;
QualType Ty = CGM.getContext().getEnumType(ED);
void *TyPtr = Ty.getAsOpaquePtr();
auto I = TypeCache.find(TyPtr);
if (I == TypeCache.end() || !cast<llvm::DIType>(I->second)->isForwardDecl())
return;
llvm::DIType *Res = CreateTypeDefinition(Ty->castAs<EnumType>());
assert(!Res->isForwardDecl());
TypeCache[TyPtr].reset(Res);
}
void CGDebugInfo::completeType(const RecordDecl *RD) {
if (DebugKind > codegenoptions::LimitedDebugInfo ||
!CGM.getLangOpts().CPlusPlus)
completeRequiredType(RD);
}
/// Return true if the class or any of its methods are marked dllimport.
static bool isClassOrMethodDLLImport(const CXXRecordDecl *RD) {
if (RD->hasAttr<DLLImportAttr>())
return true;
for (const CXXMethodDecl *MD : RD->methods())
if (MD->hasAttr<DLLImportAttr>())
return true;
return false;
}
/// Does a type definition exist in an imported clang module?
static bool isDefinedInClangModule(const RecordDecl *RD) {
// Only definitions that where imported from an AST file come from a module.
if (!RD || !RD->isFromASTFile())
return false;
// Anonymous entities cannot be addressed. Treat them as not from module.
if (!RD->isExternallyVisible() && RD->getName().empty())
return false;
if (auto *CXXDecl = dyn_cast<CXXRecordDecl>(RD)) {
if (!CXXDecl->isCompleteDefinition())
return false;
// Check wether RD is a template.
auto TemplateKind = CXXDecl->getTemplateSpecializationKind();
if (TemplateKind != TSK_Undeclared) {
// Unfortunately getOwningModule() isn't accurate enough to find the
// owning module of a ClassTemplateSpecializationDecl that is inside a
// namespace spanning multiple modules.
bool Explicit = false;
if (auto *TD = dyn_cast<ClassTemplateSpecializationDecl>(CXXDecl))
Explicit = TD->isExplicitInstantiationOrSpecialization();
if (!Explicit && CXXDecl->getEnclosingNamespaceContext())
return false;
// This is a template, check the origin of the first member.
if (CXXDecl->field_begin() == CXXDecl->field_end())
return TemplateKind == TSK_ExplicitInstantiationDeclaration;
if (!CXXDecl->field_begin()->isFromASTFile())
return false;
}
}
return true;
}
void CGDebugInfo::completeClassData(const RecordDecl *RD) {
if (auto *CXXRD = dyn_cast<CXXRecordDecl>(RD))
if (CXXRD->isDynamicClass() &&
CGM.getVTableLinkage(CXXRD) ==
llvm::GlobalValue::AvailableExternallyLinkage &&
!isClassOrMethodDLLImport(CXXRD))
return;
if (DebugTypeExtRefs && isDefinedInClangModule(RD->getDefinition()))
return;
completeClass(RD);
}
void CGDebugInfo::completeClass(const RecordDecl *RD) {
if (DebugKind <= codegenoptions::DebugLineTablesOnly)
return;
QualType Ty = CGM.getContext().getRecordType(RD);
void *TyPtr = Ty.getAsOpaquePtr();
auto I = TypeCache.find(TyPtr);
if (I != TypeCache.end() && !cast<llvm::DIType>(I->second)->isForwardDecl())
return;
llvm::DIType *Res = CreateTypeDefinition(Ty->castAs<RecordType>());
assert(!Res->isForwardDecl());
TypeCache[TyPtr].reset(Res);
}
static bool hasExplicitMemberDefinition(CXXRecordDecl::method_iterator I,
CXXRecordDecl::method_iterator End) {
for (CXXMethodDecl *MD : llvm::make_range(I, End))
if (FunctionDecl *Tmpl = MD->getInstantiatedFromMemberFunction())
if (!Tmpl->isImplicit() && Tmpl->isThisDeclarationADefinition() &&
!MD->getMemberSpecializationInfo()->isExplicitSpecialization())
return true;
return false;
}
static bool canUseCtorHoming(const CXXRecordDecl *RD) {
// Constructor homing can be used for classes that cannnot be constructed
// without emitting code for one of their constructors. This is classes that
// don't have trivial or constexpr constructors, or can be created from
// aggregate initialization. Also skip lambda objects because they don't call
// constructors.
// Skip this optimization if the class or any of its methods are marked
// dllimport.
if (isClassOrMethodDLLImport(RD))
return false;
return !RD->isLambda() && !RD->isAggregate() &&
!RD->hasTrivialDefaultConstructor() &&
!RD->hasConstexprNonCopyMoveConstructor();
}
static bool shouldOmitDefinition(codegenoptions::DebugInfoKind DebugKind,
bool DebugTypeExtRefs, const RecordDecl *RD,
const LangOptions &LangOpts) {
if (DebugTypeExtRefs && isDefinedInClangModule(RD->getDefinition()))
return true;
if (auto *ES = RD->getASTContext().getExternalSource())
if (ES->hasExternalDefinitions(RD) == ExternalASTSource::EK_Always)
return true;
// Only emit forward declarations in line tables only to keep debug info size
// small. This only applies to CodeView, since we don't emit types in DWARF
// line tables only.
if (DebugKind == codegenoptions::DebugLineTablesOnly)
return true;
if (DebugKind > codegenoptions::LimitedDebugInfo ||
RD->hasAttr<StandaloneDebugAttr>())
return false;
if (!LangOpts.CPlusPlus)
return false;
if (!RD->isCompleteDefinitionRequired())
return true;