| //===----- CGCUDANV.cpp - Interface to NVIDIA CUDA Runtime ----------------===// |
| // |
| // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
| // See https://llvm.org/LICENSE.txt for license information. |
| // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
| // |
| //===----------------------------------------------------------------------===// |
| // |
| // This provides a class for CUDA code generation targeting the NVIDIA CUDA |
| // runtime library. |
| // |
| //===----------------------------------------------------------------------===// |
| |
| #include "CGCUDARuntime.h" |
| #include "CGCXXABI.h" |
| #include "CodeGenFunction.h" |
| #include "CodeGenModule.h" |
| #include "clang/AST/Decl.h" |
| #include "clang/Basic/Cuda.h" |
| #include "clang/CodeGen/CodeGenABITypes.h" |
| #include "clang/CodeGen/ConstantInitBuilder.h" |
| #include "llvm/IR/BasicBlock.h" |
| #include "llvm/IR/Constants.h" |
| #include "llvm/IR/DerivedTypes.h" |
| #include "llvm/IR/ReplaceConstant.h" |
| #include "llvm/Support/Format.h" |
| |
| using namespace clang; |
| using namespace CodeGen; |
| |
| namespace { |
| constexpr unsigned CudaFatMagic = 0x466243b1; |
| constexpr unsigned HIPFatMagic = 0x48495046; // "HIPF" |
| |
| class CGNVCUDARuntime : public CGCUDARuntime { |
| |
| private: |
| llvm::IntegerType *IntTy, *SizeTy; |
| llvm::Type *VoidTy; |
| llvm::PointerType *CharPtrTy, *VoidPtrTy, *VoidPtrPtrTy; |
| |
| /// Convenience reference to LLVM Context |
| llvm::LLVMContext &Context; |
| /// Convenience reference to the current module |
| llvm::Module &TheModule; |
| /// Keeps track of kernel launch stubs and handles emitted in this module |
| struct KernelInfo { |
| llvm::Function *Kernel; // stub function to help launch kernel |
| const Decl *D; |
| }; |
| llvm::SmallVector<KernelInfo, 16> EmittedKernels; |
| // Map a device stub function to a symbol for identifying kernel in host code. |
| // For CUDA, the symbol for identifying the kernel is the same as the device |
| // stub function. For HIP, they are different. |
| llvm::DenseMap<llvm::Function *, llvm::GlobalValue *> KernelHandles; |
| // Map a kernel handle to the kernel stub. |
| llvm::DenseMap<llvm::GlobalValue *, llvm::Function *> KernelStubs; |
| struct VarInfo { |
| llvm::GlobalVariable *Var; |
| const VarDecl *D; |
| DeviceVarFlags Flags; |
| }; |
| llvm::SmallVector<VarInfo, 16> DeviceVars; |
| /// Keeps track of variable containing handle of GPU binary. Populated by |
| /// ModuleCtorFunction() and used to create corresponding cleanup calls in |
| /// ModuleDtorFunction() |
| llvm::GlobalVariable *GpuBinaryHandle = nullptr; |
| /// Whether we generate relocatable device code. |
| bool RelocatableDeviceCode; |
| /// Mangle context for device. |
| std::unique_ptr<MangleContext> DeviceMC; |
| |
| llvm::FunctionCallee getSetupArgumentFn() const; |
| llvm::FunctionCallee getLaunchFn() const; |
| |
| llvm::FunctionType *getRegisterGlobalsFnTy() const; |
| llvm::FunctionType *getCallbackFnTy() const; |
| llvm::FunctionType *getRegisterLinkedBinaryFnTy() const; |
| std::string addPrefixToName(StringRef FuncName) const; |
| std::string addUnderscoredPrefixToName(StringRef FuncName) const; |
| |
| /// Creates a function to register all kernel stubs generated in this module. |
| llvm::Function *makeRegisterGlobalsFn(); |
| |
| /// Helper function that generates a constant string and returns a pointer to |
| /// the start of the string. The result of this function can be used anywhere |
| /// where the C code specifies const char*. |
| llvm::Constant *makeConstantString(const std::string &Str, |
| const std::string &Name = "", |
| const std::string &SectionName = "", |
| unsigned Alignment = 0) { |
| llvm::Constant *Zeros[] = {llvm::ConstantInt::get(SizeTy, 0), |
| llvm::ConstantInt::get(SizeTy, 0)}; |
| auto ConstStr = CGM.GetAddrOfConstantCString(Str, Name.c_str()); |
| llvm::GlobalVariable *GV = |
| cast<llvm::GlobalVariable>(ConstStr.getPointer()); |
| if (!SectionName.empty()) { |
| GV->setSection(SectionName); |
| // Mark the address as used which make sure that this section isn't |
| // merged and we will really have it in the object file. |
| GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::None); |
| } |
| if (Alignment) |
| GV->setAlignment(llvm::Align(Alignment)); |
| |
| return llvm::ConstantExpr::getGetElementPtr(ConstStr.getElementType(), |
| ConstStr.getPointer(), Zeros); |
| } |
| |
| /// Helper function that generates an empty dummy function returning void. |
| llvm::Function *makeDummyFunction(llvm::FunctionType *FnTy) { |
| assert(FnTy->getReturnType()->isVoidTy() && |
| "Can only generate dummy functions returning void!"); |
| llvm::Function *DummyFunc = llvm::Function::Create( |
| FnTy, llvm::GlobalValue::InternalLinkage, "dummy", &TheModule); |
| |
| llvm::BasicBlock *DummyBlock = |
| llvm::BasicBlock::Create(Context, "", DummyFunc); |
| CGBuilderTy FuncBuilder(CGM, Context); |
| FuncBuilder.SetInsertPoint(DummyBlock); |
| FuncBuilder.CreateRetVoid(); |
| |
| return DummyFunc; |
| } |
| |
| void emitDeviceStubBodyLegacy(CodeGenFunction &CGF, FunctionArgList &Args); |
| void emitDeviceStubBodyNew(CodeGenFunction &CGF, FunctionArgList &Args); |
| std::string getDeviceSideName(const NamedDecl *ND) override; |
| |
| void registerDeviceVar(const VarDecl *VD, llvm::GlobalVariable &Var, |
| bool Extern, bool Constant) { |
| DeviceVars.push_back({&Var, |
| VD, |
| {DeviceVarFlags::Variable, Extern, Constant, |
| VD->hasAttr<HIPManagedAttr>(), |
| /*Normalized*/ false, 0}}); |
| } |
| void registerDeviceSurf(const VarDecl *VD, llvm::GlobalVariable &Var, |
| bool Extern, int Type) { |
| DeviceVars.push_back({&Var, |
| VD, |
| {DeviceVarFlags::Surface, Extern, /*Constant*/ false, |
| /*Managed*/ false, |
| /*Normalized*/ false, Type}}); |
| } |
| void registerDeviceTex(const VarDecl *VD, llvm::GlobalVariable &Var, |
| bool Extern, int Type, bool Normalized) { |
| DeviceVars.push_back({&Var, |
| VD, |
| {DeviceVarFlags::Texture, Extern, /*Constant*/ false, |
| /*Managed*/ false, Normalized, Type}}); |
| } |
| |
| /// Creates module constructor function |
| llvm::Function *makeModuleCtorFunction(); |
| /// Creates module destructor function |
| llvm::Function *makeModuleDtorFunction(); |
| /// Transform managed variables for device compilation. |
| void transformManagedVars(); |
| |
| public: |
| CGNVCUDARuntime(CodeGenModule &CGM); |
| |
| llvm::GlobalValue *getKernelHandle(llvm::Function *F, GlobalDecl GD) override; |
| llvm::Function *getKernelStub(llvm::GlobalValue *Handle) override { |
| auto Loc = KernelStubs.find(Handle); |
| assert(Loc != KernelStubs.end()); |
| return Loc->second; |
| } |
| void emitDeviceStub(CodeGenFunction &CGF, FunctionArgList &Args) override; |
| void handleVarRegistration(const VarDecl *VD, |
| llvm::GlobalVariable &Var) override; |
| void |
| internalizeDeviceSideVar(const VarDecl *D, |
| llvm::GlobalValue::LinkageTypes &Linkage) override; |
| |
| llvm::Function *finalizeModule() override; |
| }; |
| |
| } // end anonymous namespace |
| |
| std::string CGNVCUDARuntime::addPrefixToName(StringRef FuncName) const { |
| if (CGM.getLangOpts().HIP) |
| return ((Twine("hip") + Twine(FuncName)).str()); |
| return ((Twine("cuda") + Twine(FuncName)).str()); |
| } |
| std::string |
| CGNVCUDARuntime::addUnderscoredPrefixToName(StringRef FuncName) const { |
| if (CGM.getLangOpts().HIP) |
| return ((Twine("__hip") + Twine(FuncName)).str()); |
| return ((Twine("__cuda") + Twine(FuncName)).str()); |
| } |
| |
| static std::unique_ptr<MangleContext> InitDeviceMC(CodeGenModule &CGM) { |
| // If the host and device have different C++ ABIs, mark it as the device |
| // mangle context so that the mangling needs to retrieve the additional |
| // device lambda mangling number instead of the regular host one. |
| if (CGM.getContext().getAuxTargetInfo() && |
| CGM.getContext().getTargetInfo().getCXXABI().isMicrosoft() && |
| CGM.getContext().getAuxTargetInfo()->getCXXABI().isItaniumFamily()) { |
| return std::unique_ptr<MangleContext>( |
| CGM.getContext().createDeviceMangleContext( |
| *CGM.getContext().getAuxTargetInfo())); |
| } |
| |
| return std::unique_ptr<MangleContext>(CGM.getContext().createMangleContext( |
| CGM.getContext().getAuxTargetInfo())); |
| } |
| |
| CGNVCUDARuntime::CGNVCUDARuntime(CodeGenModule &CGM) |
| : CGCUDARuntime(CGM), Context(CGM.getLLVMContext()), |
| TheModule(CGM.getModule()), |
| RelocatableDeviceCode(CGM.getLangOpts().GPURelocatableDeviceCode), |
| DeviceMC(InitDeviceMC(CGM)) { |
| CodeGen::CodeGenTypes &Types = CGM.getTypes(); |
| ASTContext &Ctx = CGM.getContext(); |
| |
| IntTy = CGM.IntTy; |
| SizeTy = CGM.SizeTy; |
| VoidTy = CGM.VoidTy; |
| |
| CharPtrTy = llvm::PointerType::getUnqual(Types.ConvertType(Ctx.CharTy)); |
| VoidPtrTy = cast<llvm::PointerType>(Types.ConvertType(Ctx.VoidPtrTy)); |
| VoidPtrPtrTy = VoidPtrTy->getPointerTo(); |
| } |
| |
| llvm::FunctionCallee CGNVCUDARuntime::getSetupArgumentFn() const { |
| // cudaError_t cudaSetupArgument(void *, size_t, size_t) |
| llvm::Type *Params[] = {VoidPtrTy, SizeTy, SizeTy}; |
| return CGM.CreateRuntimeFunction( |
| llvm::FunctionType::get(IntTy, Params, false), |
| addPrefixToName("SetupArgument")); |
| } |
| |
| llvm::FunctionCallee CGNVCUDARuntime::getLaunchFn() const { |
| if (CGM.getLangOpts().HIP) { |
| // hipError_t hipLaunchByPtr(char *); |
| return CGM.CreateRuntimeFunction( |
| llvm::FunctionType::get(IntTy, CharPtrTy, false), "hipLaunchByPtr"); |
| } |
| // cudaError_t cudaLaunch(char *); |
| return CGM.CreateRuntimeFunction( |
| llvm::FunctionType::get(IntTy, CharPtrTy, false), "cudaLaunch"); |
| } |
| |
| llvm::FunctionType *CGNVCUDARuntime::getRegisterGlobalsFnTy() const { |
| return llvm::FunctionType::get(VoidTy, VoidPtrPtrTy, false); |
| } |
| |
| llvm::FunctionType *CGNVCUDARuntime::getCallbackFnTy() const { |
| return llvm::FunctionType::get(VoidTy, VoidPtrTy, false); |
| } |
| |
| llvm::FunctionType *CGNVCUDARuntime::getRegisterLinkedBinaryFnTy() const { |
| auto *CallbackFnTy = getCallbackFnTy(); |
| auto *RegisterGlobalsFnTy = getRegisterGlobalsFnTy(); |
| llvm::Type *Params[] = {RegisterGlobalsFnTy->getPointerTo(), VoidPtrTy, |
| VoidPtrTy, CallbackFnTy->getPointerTo()}; |
| return llvm::FunctionType::get(VoidTy, Params, false); |
| } |
| |
| std::string CGNVCUDARuntime::getDeviceSideName(const NamedDecl *ND) { |
| GlobalDecl GD; |
| // D could be either a kernel or a variable. |
| if (auto *FD = dyn_cast<FunctionDecl>(ND)) |
| GD = GlobalDecl(FD, KernelReferenceKind::Kernel); |
| else |
| GD = GlobalDecl(ND); |
| std::string DeviceSideName; |
| MangleContext *MC; |
| if (CGM.getLangOpts().CUDAIsDevice) |
| MC = &CGM.getCXXABI().getMangleContext(); |
| else |
| MC = DeviceMC.get(); |
| if (MC->shouldMangleDeclName(ND)) { |
| SmallString<256> Buffer; |
| llvm::raw_svector_ostream Out(Buffer); |
| MC->mangleName(GD, Out); |
| DeviceSideName = std::string(Out.str()); |
| } else |
| DeviceSideName = std::string(ND->getIdentifier()->getName()); |
| |
| // Make unique name for device side static file-scope variable for HIP. |
| if (CGM.getContext().shouldExternalizeStaticVar(ND) && |
| CGM.getLangOpts().GPURelocatableDeviceCode && |
| !CGM.getLangOpts().CUID.empty()) { |
| SmallString<256> Buffer; |
| llvm::raw_svector_ostream Out(Buffer); |
| Out << DeviceSideName; |
| CGM.printPostfixForExternalizedStaticVar(Out); |
| DeviceSideName = std::string(Out.str()); |
| } |
| return DeviceSideName; |
| } |
| |
| void CGNVCUDARuntime::emitDeviceStub(CodeGenFunction &CGF, |
| FunctionArgList &Args) { |
| EmittedKernels.push_back({CGF.CurFn, CGF.CurFuncDecl}); |
| if (auto *GV = dyn_cast<llvm::GlobalVariable>(KernelHandles[CGF.CurFn])) { |
| GV->setLinkage(CGF.CurFn->getLinkage()); |
| GV->setInitializer(CGF.CurFn); |
| } |
| if (CudaFeatureEnabled(CGM.getTarget().getSDKVersion(), |
| CudaFeature::CUDA_USES_NEW_LAUNCH) || |
| (CGF.getLangOpts().HIP && CGF.getLangOpts().HIPUseNewLaunchAPI)) |
| emitDeviceStubBodyNew(CGF, Args); |
| else |
| emitDeviceStubBodyLegacy(CGF, Args); |
| } |
| |
| // CUDA 9.0+ uses new way to launch kernels. Parameters are packed in a local |
| // array and kernels are launched using cudaLaunchKernel(). |
| void CGNVCUDARuntime::emitDeviceStubBodyNew(CodeGenFunction &CGF, |
| FunctionArgList &Args) { |
| // Build the shadow stack entry at the very start of the function. |
| |
| // Calculate amount of space we will need for all arguments. If we have no |
| // args, allocate a single pointer so we still have a valid pointer to the |
| // argument array that we can pass to runtime, even if it will be unused. |
| Address KernelArgs = CGF.CreateTempAlloca( |
| VoidPtrTy, CharUnits::fromQuantity(16), "kernel_args", |
| llvm::ConstantInt::get(SizeTy, std::max<size_t>(1, Args.size()))); |
| // Store pointers to the arguments in a locally allocated launch_args. |
| for (unsigned i = 0; i < Args.size(); ++i) { |
| llvm::Value* VarPtr = CGF.GetAddrOfLocalVar(Args[i]).getPointer(); |
| llvm::Value *VoidVarPtr = CGF.Builder.CreatePointerCast(VarPtr, VoidPtrTy); |
| CGF.Builder.CreateDefaultAlignedStore( |
| VoidVarPtr, |
| CGF.Builder.CreateConstGEP1_32(VoidPtrTy, KernelArgs.getPointer(), i)); |
| } |
| |
| llvm::BasicBlock *EndBlock = CGF.createBasicBlock("setup.end"); |
| |
| // Lookup cudaLaunchKernel/hipLaunchKernel function. |
| // cudaError_t cudaLaunchKernel(const void *func, dim3 gridDim, dim3 blockDim, |
| // void **args, size_t sharedMem, |
| // cudaStream_t stream); |
| // hipError_t hipLaunchKernel(const void *func, dim3 gridDim, dim3 blockDim, |
| // void **args, size_t sharedMem, |
| // hipStream_t stream); |
| TranslationUnitDecl *TUDecl = CGM.getContext().getTranslationUnitDecl(); |
| DeclContext *DC = TranslationUnitDecl::castToDeclContext(TUDecl); |
| auto LaunchKernelName = addPrefixToName("LaunchKernel"); |
| IdentifierInfo &cudaLaunchKernelII = |
| CGM.getContext().Idents.get(LaunchKernelName); |
| FunctionDecl *cudaLaunchKernelFD = nullptr; |
| for (auto *Result : DC->lookup(&cudaLaunchKernelII)) { |
| if (FunctionDecl *FD = dyn_cast<FunctionDecl>(Result)) |
| cudaLaunchKernelFD = FD; |
| } |
| |
| if (cudaLaunchKernelFD == nullptr) { |
| CGM.Error(CGF.CurFuncDecl->getLocation(), |
| "Can't find declaration for " + LaunchKernelName); |
| return; |
| } |
| // Create temporary dim3 grid_dim, block_dim. |
| ParmVarDecl *GridDimParam = cudaLaunchKernelFD->getParamDecl(1); |
| QualType Dim3Ty = GridDimParam->getType(); |
| Address GridDim = |
| CGF.CreateMemTemp(Dim3Ty, CharUnits::fromQuantity(8), "grid_dim"); |
| Address BlockDim = |
| CGF.CreateMemTemp(Dim3Ty, CharUnits::fromQuantity(8), "block_dim"); |
| Address ShmemSize = |
| CGF.CreateTempAlloca(SizeTy, CGM.getSizeAlign(), "shmem_size"); |
| Address Stream = |
| CGF.CreateTempAlloca(VoidPtrTy, CGM.getPointerAlign(), "stream"); |
| llvm::FunctionCallee cudaPopConfigFn = CGM.CreateRuntimeFunction( |
| llvm::FunctionType::get(IntTy, |
| {/*gridDim=*/GridDim.getType(), |
| /*blockDim=*/BlockDim.getType(), |
| /*ShmemSize=*/ShmemSize.getType(), |
| /*Stream=*/Stream.getType()}, |
| /*isVarArg=*/false), |
| addUnderscoredPrefixToName("PopCallConfiguration")); |
| |
| CGF.EmitRuntimeCallOrInvoke(cudaPopConfigFn, |
| {GridDim.getPointer(), BlockDim.getPointer(), |
| ShmemSize.getPointer(), Stream.getPointer()}); |
| |
| // Emit the call to cudaLaunch |
| llvm::Value *Kernel = |
| CGF.Builder.CreatePointerCast(KernelHandles[CGF.CurFn], VoidPtrTy); |
| CallArgList LaunchKernelArgs; |
| LaunchKernelArgs.add(RValue::get(Kernel), |
| cudaLaunchKernelFD->getParamDecl(0)->getType()); |
| LaunchKernelArgs.add(RValue::getAggregate(GridDim), Dim3Ty); |
| LaunchKernelArgs.add(RValue::getAggregate(BlockDim), Dim3Ty); |
| LaunchKernelArgs.add(RValue::get(KernelArgs.getPointer()), |
| cudaLaunchKernelFD->getParamDecl(3)->getType()); |
| LaunchKernelArgs.add(RValue::get(CGF.Builder.CreateLoad(ShmemSize)), |
| cudaLaunchKernelFD->getParamDecl(4)->getType()); |
| LaunchKernelArgs.add(RValue::get(CGF.Builder.CreateLoad(Stream)), |
| cudaLaunchKernelFD->getParamDecl(5)->getType()); |
| |
| QualType QT = cudaLaunchKernelFD->getType(); |
| QualType CQT = QT.getCanonicalType(); |
| llvm::Type *Ty = CGM.getTypes().ConvertType(CQT); |
| llvm::FunctionType *FTy = cast<llvm::FunctionType>(Ty); |
| |
| const CGFunctionInfo &FI = |
| CGM.getTypes().arrangeFunctionDeclaration(cudaLaunchKernelFD); |
| llvm::FunctionCallee cudaLaunchKernelFn = |
| CGM.CreateRuntimeFunction(FTy, LaunchKernelName); |
| CGF.EmitCall(FI, CGCallee::forDirect(cudaLaunchKernelFn), ReturnValueSlot(), |
| LaunchKernelArgs); |
| CGF.EmitBranch(EndBlock); |
| |
| CGF.EmitBlock(EndBlock); |
| } |
| |
| void CGNVCUDARuntime::emitDeviceStubBodyLegacy(CodeGenFunction &CGF, |
| FunctionArgList &Args) { |
| // Emit a call to cudaSetupArgument for each arg in Args. |
| llvm::FunctionCallee cudaSetupArgFn = getSetupArgumentFn(); |
| llvm::BasicBlock *EndBlock = CGF.createBasicBlock("setup.end"); |
| CharUnits Offset = CharUnits::Zero(); |
| for (const VarDecl *A : Args) { |
| auto TInfo = CGM.getContext().getTypeInfoInChars(A->getType()); |
| Offset = Offset.alignTo(TInfo.Align); |
| llvm::Value *Args[] = { |
| CGF.Builder.CreatePointerCast(CGF.GetAddrOfLocalVar(A).getPointer(), |
| VoidPtrTy), |
| llvm::ConstantInt::get(SizeTy, TInfo.Width.getQuantity()), |
| llvm::ConstantInt::get(SizeTy, Offset.getQuantity()), |
| }; |
| llvm::CallBase *CB = CGF.EmitRuntimeCallOrInvoke(cudaSetupArgFn, Args); |
| llvm::Constant *Zero = llvm::ConstantInt::get(IntTy, 0); |
| llvm::Value *CBZero = CGF.Builder.CreateICmpEQ(CB, Zero); |
| llvm::BasicBlock *NextBlock = CGF.createBasicBlock("setup.next"); |
| CGF.Builder.CreateCondBr(CBZero, NextBlock, EndBlock); |
| CGF.EmitBlock(NextBlock); |
| Offset += TInfo.Width; |
| } |
| |
| // Emit the call to cudaLaunch |
| llvm::FunctionCallee cudaLaunchFn = getLaunchFn(); |
| llvm::Value *Arg = |
| CGF.Builder.CreatePointerCast(KernelHandles[CGF.CurFn], CharPtrTy); |
| CGF.EmitRuntimeCallOrInvoke(cudaLaunchFn, Arg); |
| CGF.EmitBranch(EndBlock); |
| |
| CGF.EmitBlock(EndBlock); |
| } |
| |
| // Replace the original variable Var with the address loaded from variable |
| // ManagedVar populated by HIP runtime. |
| static void replaceManagedVar(llvm::GlobalVariable *Var, |
| llvm::GlobalVariable *ManagedVar) { |
| SmallVector<SmallVector<llvm::User *, 8>, 8> WorkList; |
| for (auto &&VarUse : Var->uses()) { |
| WorkList.push_back({VarUse.getUser()}); |
| } |
| while (!WorkList.empty()) { |
| auto &&WorkItem = WorkList.pop_back_val(); |
| auto *U = WorkItem.back(); |
| if (isa<llvm::ConstantExpr>(U)) { |
| for (auto &&UU : U->uses()) { |
| WorkItem.push_back(UU.getUser()); |
| WorkList.push_back(WorkItem); |
| WorkItem.pop_back(); |
| } |
| continue; |
| } |
| if (auto *I = dyn_cast<llvm::Instruction>(U)) { |
| llvm::Value *OldV = Var; |
| llvm::Instruction *NewV = |
| new llvm::LoadInst(Var->getType(), ManagedVar, "ld.managed", false, |
| llvm::Align(Var->getAlignment()), I); |
| WorkItem.pop_back(); |
| // Replace constant expressions directly or indirectly using the managed |
| // variable with instructions. |
| for (auto &&Op : WorkItem) { |
| auto *CE = cast<llvm::ConstantExpr>(Op); |
| auto *NewInst = CE->getAsInstruction(I); |
| NewInst->replaceUsesOfWith(OldV, NewV); |
| OldV = CE; |
| NewV = NewInst; |
| } |
| I->replaceUsesOfWith(OldV, NewV); |
| } else { |
| llvm_unreachable("Invalid use of managed variable"); |
| } |
| } |
| } |
| |
| /// Creates a function that sets up state on the host side for CUDA objects that |
| /// have a presence on both the host and device sides. Specifically, registers |
| /// the host side of kernel functions and device global variables with the CUDA |
| /// runtime. |
| /// \code |
| /// void __cuda_register_globals(void** GpuBinaryHandle) { |
| /// __cudaRegisterFunction(GpuBinaryHandle,Kernel0,...); |
| /// ... |
| /// __cudaRegisterFunction(GpuBinaryHandle,KernelM,...); |
| /// __cudaRegisterVar(GpuBinaryHandle, GlobalVar0, ...); |
| /// ... |
| /// __cudaRegisterVar(GpuBinaryHandle, GlobalVarN, ...); |
| /// } |
| /// \endcode |
| llvm::Function *CGNVCUDARuntime::makeRegisterGlobalsFn() { |
| // No need to register anything |
| if (EmittedKernels.empty() && DeviceVars.empty()) |
| return nullptr; |
| |
| llvm::Function *RegisterKernelsFunc = llvm::Function::Create( |
| getRegisterGlobalsFnTy(), llvm::GlobalValue::InternalLinkage, |
| addUnderscoredPrefixToName("_register_globals"), &TheModule); |
| llvm::BasicBlock *EntryBB = |
| llvm::BasicBlock::Create(Context, "entry", RegisterKernelsFunc); |
| CGBuilderTy Builder(CGM, Context); |
| Builder.SetInsertPoint(EntryBB); |
| |
| // void __cudaRegisterFunction(void **, const char *, char *, const char *, |
| // int, uint3*, uint3*, dim3*, dim3*, int*) |
| llvm::Type *RegisterFuncParams[] = { |
| VoidPtrPtrTy, CharPtrTy, CharPtrTy, CharPtrTy, IntTy, |
| VoidPtrTy, VoidPtrTy, VoidPtrTy, VoidPtrTy, IntTy->getPointerTo()}; |
| llvm::FunctionCallee RegisterFunc = CGM.CreateRuntimeFunction( |
| llvm::FunctionType::get(IntTy, RegisterFuncParams, false), |
| addUnderscoredPrefixToName("RegisterFunction")); |
| |
| // Extract GpuBinaryHandle passed as the first argument passed to |
| // __cuda_register_globals() and generate __cudaRegisterFunction() call for |
| // each emitted kernel. |
| llvm::Argument &GpuBinaryHandlePtr = *RegisterKernelsFunc->arg_begin(); |
| for (auto &&I : EmittedKernels) { |
| llvm::Constant *KernelName = |
| makeConstantString(getDeviceSideName(cast<NamedDecl>(I.D))); |
| llvm::Constant *NullPtr = llvm::ConstantPointerNull::get(VoidPtrTy); |
| llvm::Value *Args[] = { |
| &GpuBinaryHandlePtr, |
| Builder.CreateBitCast(KernelHandles[I.Kernel], VoidPtrTy), |
| KernelName, |
| KernelName, |
| llvm::ConstantInt::get(IntTy, -1), |
| NullPtr, |
| NullPtr, |
| NullPtr, |
| NullPtr, |
| llvm::ConstantPointerNull::get(IntTy->getPointerTo())}; |
| Builder.CreateCall(RegisterFunc, Args); |
| } |
| |
| llvm::Type *VarSizeTy = IntTy; |
| // For HIP or CUDA 9.0+, device variable size is type of `size_t`. |
| if (CGM.getLangOpts().HIP || |
| ToCudaVersion(CGM.getTarget().getSDKVersion()) >= CudaVersion::CUDA_90) |
| VarSizeTy = SizeTy; |
| |
| // void __cudaRegisterVar(void **, char *, char *, const char *, |
| // int, int, int, int) |
| llvm::Type *RegisterVarParams[] = {VoidPtrPtrTy, CharPtrTy, CharPtrTy, |
| CharPtrTy, IntTy, VarSizeTy, |
| IntTy, IntTy}; |
| llvm::FunctionCallee RegisterVar = CGM.CreateRuntimeFunction( |
| llvm::FunctionType::get(VoidTy, RegisterVarParams, false), |
| addUnderscoredPrefixToName("RegisterVar")); |
| // void __hipRegisterManagedVar(void **, char *, char *, const char *, |
| // size_t, unsigned) |
| llvm::Type *RegisterManagedVarParams[] = {VoidPtrPtrTy, CharPtrTy, CharPtrTy, |
| CharPtrTy, VarSizeTy, IntTy}; |
| llvm::FunctionCallee RegisterManagedVar = CGM.CreateRuntimeFunction( |
| llvm::FunctionType::get(VoidTy, RegisterManagedVarParams, false), |
| addUnderscoredPrefixToName("RegisterManagedVar")); |
| // void __cudaRegisterSurface(void **, const struct surfaceReference *, |
| // const void **, const char *, int, int); |
| llvm::FunctionCallee RegisterSurf = CGM.CreateRuntimeFunction( |
| llvm::FunctionType::get( |
| VoidTy, {VoidPtrPtrTy, VoidPtrTy, CharPtrTy, CharPtrTy, IntTy, IntTy}, |
| false), |
| addUnderscoredPrefixToName("RegisterSurface")); |
| // void __cudaRegisterTexture(void **, const struct textureReference *, |
| // const void **, const char *, int, int, int) |
| llvm::FunctionCallee RegisterTex = CGM.CreateRuntimeFunction( |
| llvm::FunctionType::get( |
| VoidTy, |
| {VoidPtrPtrTy, VoidPtrTy, CharPtrTy, CharPtrTy, IntTy, IntTy, IntTy}, |
| false), |
| addUnderscoredPrefixToName("RegisterTexture")); |
| for (auto &&Info : DeviceVars) { |
| llvm::GlobalVariable *Var = Info.Var; |
| assert((!Var->isDeclaration() || Info.Flags.isManaged()) && |
| "External variables should not show up here, except HIP managed " |
| "variables"); |
| llvm::Constant *VarName = makeConstantString(getDeviceSideName(Info.D)); |
| switch (Info.Flags.getKind()) { |
| case DeviceVarFlags::Variable: { |
| uint64_t VarSize = |
| CGM.getDataLayout().getTypeAllocSize(Var->getValueType()); |
| if (Info.Flags.isManaged()) { |
| auto *ManagedVar = new llvm::GlobalVariable( |
| CGM.getModule(), Var->getType(), |
| /*isConstant=*/false, Var->getLinkage(), |
| /*Init=*/Var->isDeclaration() |
| ? nullptr |
| : llvm::ConstantPointerNull::get(Var->getType()), |
| /*Name=*/"", /*InsertBefore=*/nullptr, |
| llvm::GlobalVariable::NotThreadLocal); |
| ManagedVar->setDSOLocal(Var->isDSOLocal()); |
| ManagedVar->setVisibility(Var->getVisibility()); |
| ManagedVar->setExternallyInitialized(true); |
| ManagedVar->takeName(Var); |
| Var->setName(Twine(ManagedVar->getName() + ".managed")); |
| replaceManagedVar(Var, ManagedVar); |
| llvm::Value *Args[] = { |
| &GpuBinaryHandlePtr, |
| Builder.CreateBitCast(ManagedVar, VoidPtrTy), |
| Builder.CreateBitCast(Var, VoidPtrTy), |
| VarName, |
| llvm::ConstantInt::get(VarSizeTy, VarSize), |
| llvm::ConstantInt::get(IntTy, Var->getAlignment())}; |
| if (!Var->isDeclaration()) |
| Builder.CreateCall(RegisterManagedVar, Args); |
| } else { |
| llvm::Value *Args[] = { |
| &GpuBinaryHandlePtr, |
| Builder.CreateBitCast(Var, VoidPtrTy), |
| VarName, |
| VarName, |
| llvm::ConstantInt::get(IntTy, Info.Flags.isExtern()), |
| llvm::ConstantInt::get(VarSizeTy, VarSize), |
| llvm::ConstantInt::get(IntTy, Info.Flags.isConstant()), |
| llvm::ConstantInt::get(IntTy, 0)}; |
| Builder.CreateCall(RegisterVar, Args); |
| } |
| break; |
| } |
| case DeviceVarFlags::Surface: |
| Builder.CreateCall( |
| RegisterSurf, |
| {&GpuBinaryHandlePtr, Builder.CreateBitCast(Var, VoidPtrTy), VarName, |
| VarName, llvm::ConstantInt::get(IntTy, Info.Flags.getSurfTexType()), |
| llvm::ConstantInt::get(IntTy, Info.Flags.isExtern())}); |
| break; |
| case DeviceVarFlags::Texture: |
| Builder.CreateCall( |
| RegisterTex, |
| {&GpuBinaryHandlePtr, Builder.CreateBitCast(Var, VoidPtrTy), VarName, |
| VarName, llvm::ConstantInt::get(IntTy, Info.Flags.getSurfTexType()), |
| llvm::ConstantInt::get(IntTy, Info.Flags.isNormalized()), |
| llvm::ConstantInt::get(IntTy, Info.Flags.isExtern())}); |
| break; |
| } |
| } |
| |
| Builder.CreateRetVoid(); |
| return RegisterKernelsFunc; |
| } |
| |
| /// Creates a global constructor function for the module: |
| /// |
| /// For CUDA: |
| /// \code |
| /// void __cuda_module_ctor(void*) { |
| /// Handle = __cudaRegisterFatBinary(GpuBinaryBlob); |
| /// __cuda_register_globals(Handle); |
| /// } |
| /// \endcode |
| /// |
| /// For HIP: |
| /// \code |
| /// void __hip_module_ctor(void*) { |
| /// if (__hip_gpubin_handle == 0) { |
| /// __hip_gpubin_handle = __hipRegisterFatBinary(GpuBinaryBlob); |
| /// __hip_register_globals(__hip_gpubin_handle); |
| /// } |
| /// } |
| /// \endcode |
| llvm::Function *CGNVCUDARuntime::makeModuleCtorFunction() { |
| bool IsHIP = CGM.getLangOpts().HIP; |
| bool IsCUDA = CGM.getLangOpts().CUDA; |
| // No need to generate ctors/dtors if there is no GPU binary. |
| StringRef CudaGpuBinaryFileName = CGM.getCodeGenOpts().CudaGpuBinaryFileName; |
| if (CudaGpuBinaryFileName.empty() && !IsHIP) |
| return nullptr; |
| if ((IsHIP || (IsCUDA && !RelocatableDeviceCode)) && EmittedKernels.empty() && |
| DeviceVars.empty()) |
| return nullptr; |
| |
| // void __{cuda|hip}_register_globals(void* handle); |
| llvm::Function *RegisterGlobalsFunc = makeRegisterGlobalsFn(); |
| // We always need a function to pass in as callback. Create a dummy |
| // implementation if we don't need to register anything. |
| if (RelocatableDeviceCode && !RegisterGlobalsFunc) |
| RegisterGlobalsFunc = makeDummyFunction(getRegisterGlobalsFnTy()); |
| |
| // void ** __{cuda|hip}RegisterFatBinary(void *); |
| llvm::FunctionCallee RegisterFatbinFunc = CGM.CreateRuntimeFunction( |
| llvm::FunctionType::get(VoidPtrPtrTy, VoidPtrTy, false), |
| addUnderscoredPrefixToName("RegisterFatBinary")); |
| // struct { int magic, int version, void * gpu_binary, void * dont_care }; |
| llvm::StructType *FatbinWrapperTy = |
| llvm::StructType::get(IntTy, IntTy, VoidPtrTy, VoidPtrTy); |
| |
| // Register GPU binary with the CUDA runtime, store returned handle in a |
| // global variable and save a reference in GpuBinaryHandle to be cleaned up |
| // in destructor on exit. Then associate all known kernels with the GPU binary |
| // handle so CUDA runtime can figure out what to call on the GPU side. |
| std::unique_ptr<llvm::MemoryBuffer> CudaGpuBinary = nullptr; |
| if (!CudaGpuBinaryFileName.empty()) { |
| llvm::ErrorOr<std::unique_ptr<llvm::MemoryBuffer>> CudaGpuBinaryOrErr = |
| llvm::MemoryBuffer::getFileOrSTDIN(CudaGpuBinaryFileName); |
| if (std::error_code EC = CudaGpuBinaryOrErr.getError()) { |
| CGM.getDiags().Report(diag::err_cannot_open_file) |
| << CudaGpuBinaryFileName << EC.message(); |
| return nullptr; |
| } |
| CudaGpuBinary = std::move(CudaGpuBinaryOrErr.get()); |
| } |
| |
| llvm::Function *ModuleCtorFunc = llvm::Function::Create( |
| llvm::FunctionType::get(VoidTy, VoidPtrTy, false), |
| llvm::GlobalValue::InternalLinkage, |
| addUnderscoredPrefixToName("_module_ctor"), &TheModule); |
| llvm::BasicBlock *CtorEntryBB = |
| llvm::BasicBlock::Create(Context, "entry", ModuleCtorFunc); |
| CGBuilderTy CtorBuilder(CGM, Context); |
| |
| CtorBuilder.SetInsertPoint(CtorEntryBB); |
| |
| const char *FatbinConstantName; |
| const char *FatbinSectionName; |
| const char *ModuleIDSectionName; |
| StringRef ModuleIDPrefix; |
| llvm::Constant *FatBinStr; |
| unsigned FatMagic; |
| if (IsHIP) { |
| FatbinConstantName = ".hip_fatbin"; |
| FatbinSectionName = ".hipFatBinSegment"; |
| |
| ModuleIDSectionName = "__hip_module_id"; |
| ModuleIDPrefix = "__hip_"; |
| |
| if (CudaGpuBinary) { |
| // If fatbin is available from early finalization, create a string |
| // literal containing the fat binary loaded from the given file. |
| const unsigned HIPCodeObjectAlign = 4096; |
| FatBinStr = |
| makeConstantString(std::string(CudaGpuBinary->getBuffer()), "", |
| FatbinConstantName, HIPCodeObjectAlign); |
| } else { |
| // If fatbin is not available, create an external symbol |
| // __hip_fatbin in section .hip_fatbin. The external symbol is supposed |
| // to contain the fat binary but will be populated somewhere else, |
| // e.g. by lld through link script. |
| FatBinStr = new llvm::GlobalVariable( |
| CGM.getModule(), CGM.Int8Ty, |
| /*isConstant=*/true, llvm::GlobalValue::ExternalLinkage, nullptr, |
| "__hip_fatbin", nullptr, |
| llvm::GlobalVariable::NotThreadLocal); |
| cast<llvm::GlobalVariable>(FatBinStr)->setSection(FatbinConstantName); |
| } |
| |
| FatMagic = HIPFatMagic; |
| } else { |
| if (RelocatableDeviceCode) |
| FatbinConstantName = CGM.getTriple().isMacOSX() |
| ? "__NV_CUDA,__nv_relfatbin" |
| : "__nv_relfatbin"; |
| else |
| FatbinConstantName = |
| CGM.getTriple().isMacOSX() ? "__NV_CUDA,__nv_fatbin" : ".nv_fatbin"; |
| // NVIDIA's cuobjdump looks for fatbins in this section. |
| FatbinSectionName = |
| CGM.getTriple().isMacOSX() ? "__NV_CUDA,__fatbin" : ".nvFatBinSegment"; |
| |
| ModuleIDSectionName = CGM.getTriple().isMacOSX() |
| ? "__NV_CUDA,__nv_module_id" |
| : "__nv_module_id"; |
| ModuleIDPrefix = "__nv_"; |
| |
| // For CUDA, create a string literal containing the fat binary loaded from |
| // the given file. |
| FatBinStr = makeConstantString(std::string(CudaGpuBinary->getBuffer()), "", |
| FatbinConstantName, 8); |
| FatMagic = CudaFatMagic; |
| } |
| |
| // Create initialized wrapper structure that points to the loaded GPU binary |
| ConstantInitBuilder Builder(CGM); |
| auto Values = Builder.beginStruct(FatbinWrapperTy); |
| // Fatbin wrapper magic. |
| Values.addInt(IntTy, FatMagic); |
| // Fatbin version. |
| Values.addInt(IntTy, 1); |
| // Data. |
| Values.add(FatBinStr); |
| // Unused in fatbin v1. |
| Values.add(llvm::ConstantPointerNull::get(VoidPtrTy)); |
| llvm::GlobalVariable *FatbinWrapper = Values.finishAndCreateGlobal( |
| addUnderscoredPrefixToName("_fatbin_wrapper"), CGM.getPointerAlign(), |
| /*constant*/ true); |
| FatbinWrapper->setSection(FatbinSectionName); |
| |
| // There is only one HIP fat binary per linked module, however there are |
| // multiple constructor functions. Make sure the fat binary is registered |
| // only once. The constructor functions are executed by the dynamic loader |
| // before the program gains control. The dynamic loader cannot execute the |
| // constructor functions concurrently since doing that would not guarantee |
| // thread safety of the loaded program. Therefore we can assume sequential |
| // execution of constructor functions here. |
| if (IsHIP) { |
| auto Linkage = CudaGpuBinary ? llvm::GlobalValue::InternalLinkage : |
| llvm::GlobalValue::LinkOnceAnyLinkage; |
| llvm::BasicBlock *IfBlock = |
| llvm::BasicBlock::Create(Context, "if", ModuleCtorFunc); |
| llvm::BasicBlock *ExitBlock = |
| llvm::BasicBlock::Create(Context, "exit", ModuleCtorFunc); |
| // The name, size, and initialization pattern of this variable is part |
| // of HIP ABI. |
| GpuBinaryHandle = new llvm::GlobalVariable( |
| TheModule, VoidPtrPtrTy, /*isConstant=*/false, |
| Linkage, |
| /*Initializer=*/llvm::ConstantPointerNull::get(VoidPtrPtrTy), |
| "__hip_gpubin_handle"); |
| GpuBinaryHandle->setAlignment(CGM.getPointerAlign().getAsAlign()); |
| // Prevent the weak symbol in different shared libraries being merged. |
| if (Linkage != llvm::GlobalValue::InternalLinkage) |
| GpuBinaryHandle->setVisibility(llvm::GlobalValue::HiddenVisibility); |
| Address GpuBinaryAddr( |
| GpuBinaryHandle, |
| CharUnits::fromQuantity(GpuBinaryHandle->getAlignment())); |
| { |
| auto *HandleValue = CtorBuilder.CreateLoad(GpuBinaryAddr); |
| llvm::Constant *Zero = |
| llvm::Constant::getNullValue(HandleValue->getType()); |
| llvm::Value *EQZero = CtorBuilder.CreateICmpEQ(HandleValue, Zero); |
| CtorBuilder.CreateCondBr(EQZero, IfBlock, ExitBlock); |
| } |
| { |
| CtorBuilder.SetInsertPoint(IfBlock); |
| // GpuBinaryHandle = __hipRegisterFatBinary(&FatbinWrapper); |
| llvm::CallInst *RegisterFatbinCall = CtorBuilder.CreateCall( |
| RegisterFatbinFunc, |
| CtorBuilder.CreateBitCast(FatbinWrapper, VoidPtrTy)); |
| CtorBuilder.CreateStore(RegisterFatbinCall, GpuBinaryAddr); |
| CtorBuilder.CreateBr(ExitBlock); |
| } |
| { |
| CtorBuilder.SetInsertPoint(ExitBlock); |
| // Call __hip_register_globals(GpuBinaryHandle); |
| if (RegisterGlobalsFunc) { |
| auto *HandleValue = CtorBuilder.CreateLoad(GpuBinaryAddr); |
| CtorBuilder.CreateCall(RegisterGlobalsFunc, HandleValue); |
| } |
| } |
| } else if (!RelocatableDeviceCode) { |
| // Register binary with CUDA runtime. This is substantially different in |
| // default mode vs. separate compilation! |
| // GpuBinaryHandle = __cudaRegisterFatBinary(&FatbinWrapper); |
| llvm::CallInst *RegisterFatbinCall = CtorBuilder.CreateCall( |
| RegisterFatbinFunc, |
| CtorBuilder.CreateBitCast(FatbinWrapper, VoidPtrTy)); |
| GpuBinaryHandle = new llvm::GlobalVariable( |
| TheModule, VoidPtrPtrTy, false, llvm::GlobalValue::InternalLinkage, |
| llvm::ConstantPointerNull::get(VoidPtrPtrTy), "__cuda_gpubin_handle"); |
| GpuBinaryHandle->setAlignment(CGM.getPointerAlign().getAsAlign()); |
| CtorBuilder.CreateAlignedStore(RegisterFatbinCall, GpuBinaryHandle, |
| CGM.getPointerAlign()); |
| |
| // Call __cuda_register_globals(GpuBinaryHandle); |
| if (RegisterGlobalsFunc) |
| CtorBuilder.CreateCall(RegisterGlobalsFunc, RegisterFatbinCall); |
| |
| // Call __cudaRegisterFatBinaryEnd(Handle) if this CUDA version needs it. |
| if (CudaFeatureEnabled(CGM.getTarget().getSDKVersion(), |
| CudaFeature::CUDA_USES_FATBIN_REGISTER_END)) { |
| // void __cudaRegisterFatBinaryEnd(void **); |
| llvm::FunctionCallee RegisterFatbinEndFunc = CGM.CreateRuntimeFunction( |
| llvm::FunctionType::get(VoidTy, VoidPtrPtrTy, false), |
| "__cudaRegisterFatBinaryEnd"); |
| CtorBuilder.CreateCall(RegisterFatbinEndFunc, RegisterFatbinCall); |
| } |
| } else { |
| // Generate a unique module ID. |
| SmallString<64> ModuleID; |
| llvm::raw_svector_ostream OS(ModuleID); |
| OS << ModuleIDPrefix << llvm::format("%" PRIx64, FatbinWrapper->getGUID()); |
| llvm::Constant *ModuleIDConstant = makeConstantString( |
| std::string(ModuleID.str()), "", ModuleIDSectionName, 32); |
| |
| // Create an alias for the FatbinWrapper that nvcc will look for. |
| llvm::GlobalAlias::create(llvm::GlobalValue::ExternalLinkage, |
| Twine("__fatbinwrap") + ModuleID, FatbinWrapper); |
| |
| // void __cudaRegisterLinkedBinary%ModuleID%(void (*)(void *), void *, |
| // void *, void (*)(void **)) |
| SmallString<128> RegisterLinkedBinaryName("__cudaRegisterLinkedBinary"); |
| RegisterLinkedBinaryName += ModuleID; |
| llvm::FunctionCallee RegisterLinkedBinaryFunc = CGM.CreateRuntimeFunction( |
| getRegisterLinkedBinaryFnTy(), RegisterLinkedBinaryName); |
| |
| assert(RegisterGlobalsFunc && "Expecting at least dummy function!"); |
| llvm::Value *Args[] = {RegisterGlobalsFunc, |
| CtorBuilder.CreateBitCast(FatbinWrapper, VoidPtrTy), |
| ModuleIDConstant, |
| makeDummyFunction(getCallbackFnTy())}; |
| CtorBuilder.CreateCall(RegisterLinkedBinaryFunc, Args); |
| } |
| |
| // Create destructor and register it with atexit() the way NVCC does it. Doing |
| // it during regular destructor phase worked in CUDA before 9.2 but results in |
| // double-free in 9.2. |
| if (llvm::Function *CleanupFn = makeModuleDtorFunction()) { |
| // extern "C" int atexit(void (*f)(void)); |
| llvm::FunctionType *AtExitTy = |
| llvm::FunctionType::get(IntTy, CleanupFn->getType(), false); |
| llvm::FunctionCallee AtExitFunc = |
| CGM.CreateRuntimeFunction(AtExitTy, "atexit", llvm::AttributeList(), |
| /*Local=*/true); |
| CtorBuilder.CreateCall(AtExitFunc, CleanupFn); |
| } |
| |
| CtorBuilder.CreateRetVoid(); |
| return ModuleCtorFunc; |
| } |
| |
| /// Creates a global destructor function that unregisters the GPU code blob |
| /// registered by constructor. |
| /// |
| /// For CUDA: |
| /// \code |
| /// void __cuda_module_dtor(void*) { |
| /// __cudaUnregisterFatBinary(Handle); |
| /// } |
| /// \endcode |
| /// |
| /// For HIP: |
| /// \code |
| /// void __hip_module_dtor(void*) { |
| /// if (__hip_gpubin_handle) { |
| /// __hipUnregisterFatBinary(__hip_gpubin_handle); |
| /// __hip_gpubin_handle = 0; |
| /// } |
| /// } |
| /// \endcode |
| llvm::Function *CGNVCUDARuntime::makeModuleDtorFunction() { |
| // No need for destructor if we don't have a handle to unregister. |
| if (!GpuBinaryHandle) |
| return nullptr; |
| |
| // void __cudaUnregisterFatBinary(void ** handle); |
| llvm::FunctionCallee UnregisterFatbinFunc = CGM.CreateRuntimeFunction( |
| llvm::FunctionType::get(VoidTy, VoidPtrPtrTy, false), |
| addUnderscoredPrefixToName("UnregisterFatBinary")); |
| |
| llvm::Function *ModuleDtorFunc = llvm::Function::Create( |
| llvm::FunctionType::get(VoidTy, VoidPtrTy, false), |
| llvm::GlobalValue::InternalLinkage, |
| addUnderscoredPrefixToName("_module_dtor"), &TheModule); |
| |
| llvm::BasicBlock *DtorEntryBB = |
| llvm::BasicBlock::Create(Context, "entry", ModuleDtorFunc); |
| CGBuilderTy DtorBuilder(CGM, Context); |
| DtorBuilder.SetInsertPoint(DtorEntryBB); |
| |
| Address GpuBinaryAddr(GpuBinaryHandle, CharUnits::fromQuantity( |
| GpuBinaryHandle->getAlignment())); |
| auto *HandleValue = DtorBuilder.CreateLoad(GpuBinaryAddr); |
| // There is only one HIP fat binary per linked module, however there are |
| // multiple destructor functions. Make sure the fat binary is unregistered |
| // only once. |
| if (CGM.getLangOpts().HIP) { |
| llvm::BasicBlock *IfBlock = |
| llvm::BasicBlock::Create(Context, "if", ModuleDtorFunc); |
| llvm::BasicBlock *ExitBlock = |
| llvm::BasicBlock::Create(Context, "exit", ModuleDtorFunc); |
| llvm::Constant *Zero = llvm::Constant::getNullValue(HandleValue->getType()); |
| llvm::Value *NEZero = DtorBuilder.CreateICmpNE(HandleValue, Zero); |
| DtorBuilder.CreateCondBr(NEZero, IfBlock, ExitBlock); |
| |
| DtorBuilder.SetInsertPoint(IfBlock); |
| DtorBuilder.CreateCall(UnregisterFatbinFunc, HandleValue); |
| DtorBuilder.CreateStore(Zero, GpuBinaryAddr); |
| DtorBuilder.CreateBr(ExitBlock); |
| |
| DtorBuilder.SetInsertPoint(ExitBlock); |
| } else { |
| DtorBuilder.CreateCall(UnregisterFatbinFunc, HandleValue); |
| } |
| DtorBuilder.CreateRetVoid(); |
| return ModuleDtorFunc; |
| } |
| |
| CGCUDARuntime *CodeGen::CreateNVCUDARuntime(CodeGenModule &CGM) { |
| return new CGNVCUDARuntime(CGM); |
| } |
| |
| void CGNVCUDARuntime::internalizeDeviceSideVar( |
| const VarDecl *D, llvm::GlobalValue::LinkageTypes &Linkage) { |
| // For -fno-gpu-rdc, host-side shadows of external declarations of device-side |
| // global variables become internal definitions. These have to be internal in |
| // order to prevent name conflicts with global host variables with the same |
| // name in a different TUs. |
| // |
| // For -fgpu-rdc, the shadow variables should not be internalized because |
| // they may be accessed by different TU. |
| if (CGM.getLangOpts().GPURelocatableDeviceCode) |
| return; |
| |
| // __shared__ variables are odd. Shadows do get created, but |
| // they are not registered with the CUDA runtime, so they |
| // can't really be used to access their device-side |
| // counterparts. It's not clear yet whether it's nvcc's bug or |
| // a feature, but we've got to do the same for compatibility. |
| if (D->hasAttr<CUDADeviceAttr>() || D->hasAttr<CUDAConstantAttr>() || |
| D->hasAttr<CUDASharedAttr>() || |
| D->getType()->isCUDADeviceBuiltinSurfaceType() || |
| D->getType()->isCUDADeviceBuiltinTextureType()) { |
| Linkage = llvm::GlobalValue::InternalLinkage; |
| } |
| } |
| |
| void CGNVCUDARuntime::handleVarRegistration(const VarDecl *D, |
| llvm::GlobalVariable &GV) { |
| if (D->hasAttr<CUDADeviceAttr>() || D->hasAttr<CUDAConstantAttr>()) { |
| // Shadow variables and their properties must be registered with CUDA |
| // runtime. Skip Extern global variables, which will be registered in |
| // the TU where they are defined. |
| // |
| // Don't register a C++17 inline variable. The local symbol can be |
| // discarded and referencing a discarded local symbol from outside the |
| // comdat (__cuda_register_globals) is disallowed by the ELF spec. |
| // |
| // HIP managed variables need to be always recorded in device and host |
| // compilations for transformation. |
| // |
| // HIP managed variables and variables in CUDADeviceVarODRUsedByHost are |
| // added to llvm.compiler-used, therefore they are safe to be registered. |
| if ((!D->hasExternalStorage() && !D->isInline()) || |
| CGM.getContext().CUDADeviceVarODRUsedByHost.contains(D) || |
| D->hasAttr<HIPManagedAttr>()) { |
| registerDeviceVar(D, GV, !D->hasDefinition(), |
| D->hasAttr<CUDAConstantAttr>()); |
| } |
| } else if (D->getType()->isCUDADeviceBuiltinSurfaceType() || |
| D->getType()->isCUDADeviceBuiltinTextureType()) { |
| // Builtin surfaces and textures and their template arguments are |
| // also registered with CUDA runtime. |
| const auto *TD = cast<ClassTemplateSpecializationDecl>( |
| D->getType()->castAs<RecordType>()->getDecl()); |
| const TemplateArgumentList &Args = TD->getTemplateArgs(); |
| if (TD->hasAttr<CUDADeviceBuiltinSurfaceTypeAttr>()) { |
| assert(Args.size() == 2 && |
| "Unexpected number of template arguments of CUDA device " |
| "builtin surface type."); |
| auto SurfType = Args[1].getAsIntegral(); |
| if (!D->hasExternalStorage()) |
| registerDeviceSurf(D, GV, !D->hasDefinition(), SurfType.getSExtValue()); |
| } else { |
| assert(Args.size() == 3 && |
| "Unexpected number of template arguments of CUDA device " |
| "builtin texture type."); |
| auto TexType = Args[1].getAsIntegral(); |
| auto Normalized = Args[2].getAsIntegral(); |
| if (!D->hasExternalStorage()) |
| registerDeviceTex(D, GV, !D->hasDefinition(), TexType.getSExtValue(), |
| Normalized.getZExtValue()); |
| } |
| } |
| } |
| |
| // Transform managed variables to pointers to managed variables in device code. |
| // Each use of the original managed variable is replaced by a load from the |
| // transformed managed variable. The transformed managed variable contains |
| // the address of managed memory which will be allocated by the runtime. |
| void CGNVCUDARuntime::transformManagedVars() { |
| for (auto &&Info : DeviceVars) { |
| llvm::GlobalVariable *Var = Info.Var; |
| if (Info.Flags.getKind() == DeviceVarFlags::Variable && |
| Info.Flags.isManaged()) { |
| auto *ManagedVar = new llvm::GlobalVariable( |
| CGM.getModule(), Var->getType(), |
| /*isConstant=*/false, Var->getLinkage(), |
| /*Init=*/Var->isDeclaration() |
| ? nullptr |
| : llvm::ConstantPointerNull::get(Var->getType()), |
| /*Name=*/"", /*InsertBefore=*/nullptr, |
| llvm::GlobalVariable::NotThreadLocal, |
| CGM.getContext().getTargetAddressSpace(LangAS::cuda_device)); |
| ManagedVar->setDSOLocal(Var->isDSOLocal()); |
| ManagedVar->setVisibility(Var->getVisibility()); |
| ManagedVar->setExternallyInitialized(true); |
| replaceManagedVar(Var, ManagedVar); |
| ManagedVar->takeName(Var); |
| Var->setName(Twine(ManagedVar->getName()) + ".managed"); |
| // Keep managed variables even if they are not used in device code since |
| // they need to be allocated by the runtime. |
| if (!Var->isDeclaration()) { |
| assert(!ManagedVar->isDeclaration()); |
| CGM.addCompilerUsedGlobal(Var); |
| CGM.addCompilerUsedGlobal(ManagedVar); |
| } |
| } |
| } |
| } |
| |
| // Returns module constructor to be added. |
| llvm::Function *CGNVCUDARuntime::finalizeModule() { |
| if (CGM.getLangOpts().CUDAIsDevice) { |
| transformManagedVars(); |
| |
| // Mark ODR-used device variables as compiler used to prevent it from being |
| // eliminated by optimization. This is necessary for device variables |
| // ODR-used by host functions. Sema correctly marks them as ODR-used no |
| // matter whether they are ODR-used by device or host functions. |
| // |
| // We do not need to do this if the variable has used attribute since it |
| // has already been added. |
| // |
| // Static device variables have been externalized at this point, therefore |
| // variables with LLVM private or internal linkage need not be added. |
| for (auto &&Info : DeviceVars) { |
| auto Kind = Info.Flags.getKind(); |
| if (!Info.Var->isDeclaration() && |
| !llvm::GlobalValue::isLocalLinkage(Info.Var->getLinkage()) && |
| (Kind == DeviceVarFlags::Variable || |
| Kind == DeviceVarFlags::Surface || |
| Kind == DeviceVarFlags::Texture) && |
| Info.D->isUsed() && !Info.D->hasAttr<UsedAttr>()) { |
| CGM.addCompilerUsedGlobal(Info.Var); |
| } |
| } |
| return nullptr; |
| } |
| return makeModuleCtorFunction(); |
| } |
| |
| llvm::GlobalValue *CGNVCUDARuntime::getKernelHandle(llvm::Function *F, |
| GlobalDecl GD) { |
| auto Loc = KernelHandles.find(F); |
| if (Loc != KernelHandles.end()) |
| return Loc->second; |
| |
| if (!CGM.getLangOpts().HIP) { |
| KernelHandles[F] = F; |
| KernelStubs[F] = F; |
| return F; |
| } |
| |
| auto *Var = new llvm::GlobalVariable( |
| TheModule, F->getType(), /*isConstant=*/true, F->getLinkage(), |
| /*Initializer=*/nullptr, |
| CGM.getMangledName( |
| GD.getWithKernelReferenceKind(KernelReferenceKind::Kernel))); |
| Var->setAlignment(CGM.getPointerAlign().getAsAlign()); |
| Var->setDSOLocal(F->isDSOLocal()); |
| Var->setVisibility(F->getVisibility()); |
| CGM.maybeSetTrivialComdat(*GD.getDecl(), *Var); |
| KernelHandles[F] = Var; |
| KernelStubs[Var] = F; |
| return Var; |
| } |