| //===--- ASTMatchFinder.cpp - Structural query framework ------------------===// |
| // |
| // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
| // See https://llvm.org/LICENSE.txt for license information. |
| // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
| // |
| //===----------------------------------------------------------------------===// |
| // |
| // Implements an algorithm to efficiently search for matches on AST nodes. |
| // Uses memoization to support recursive matches like HasDescendant. |
| // |
| // The general idea is to visit all AST nodes with a RecursiveASTVisitor, |
| // calling the Matches(...) method of each matcher we are running on each |
| // AST node. The matcher can recurse via the ASTMatchFinder interface. |
| // |
| //===----------------------------------------------------------------------===// |
| |
| #include "clang/ASTMatchers/ASTMatchFinder.h" |
| #include "clang/AST/ASTConsumer.h" |
| #include "clang/AST/ASTContext.h" |
| #include "clang/AST/RecursiveASTVisitor.h" |
| #include "llvm/ADT/DenseMap.h" |
| #include "llvm/ADT/StringMap.h" |
| #include "llvm/Support/Timer.h" |
| #include <deque> |
| #include <memory> |
| #include <set> |
| |
| namespace clang { |
| namespace ast_matchers { |
| namespace internal { |
| namespace { |
| |
| typedef MatchFinder::MatchCallback MatchCallback; |
| |
| // The maximum number of memoization entries to store. |
| // 10k has been experimentally found to give a good trade-off |
| // of performance vs. memory consumption by running matcher |
| // that match on every statement over a very large codebase. |
| // |
| // FIXME: Do some performance optimization in general and |
| // revisit this number; also, put up micro-benchmarks that we can |
| // optimize this on. |
| static const unsigned MaxMemoizationEntries = 10000; |
| |
| enum class MatchType { |
| Ancestors, |
| |
| Descendants, |
| Child, |
| }; |
| |
| // We use memoization to avoid running the same matcher on the same |
| // AST node twice. This struct is the key for looking up match |
| // result. It consists of an ID of the MatcherInterface (for |
| // identifying the matcher), a pointer to the AST node and the |
| // bound nodes before the matcher was executed. |
| // |
| // We currently only memoize on nodes whose pointers identify the |
| // nodes (\c Stmt and \c Decl, but not \c QualType or \c TypeLoc). |
| // For \c QualType and \c TypeLoc it is possible to implement |
| // generation of keys for each type. |
| // FIXME: Benchmark whether memoization of non-pointer typed nodes |
| // provides enough benefit for the additional amount of code. |
| struct MatchKey { |
| DynTypedMatcher::MatcherIDType MatcherID; |
| DynTypedNode Node; |
| BoundNodesTreeBuilder BoundNodes; |
| TraversalKind Traversal = TK_AsIs; |
| MatchType Type; |
| |
| bool operator<(const MatchKey &Other) const { |
| return std::tie(Traversal, Type, MatcherID, Node, BoundNodes) < |
| std::tie(Other.Traversal, Other.Type, Other.MatcherID, Other.Node, |
| Other.BoundNodes); |
| } |
| }; |
| |
| // Used to store the result of a match and possibly bound nodes. |
| struct MemoizedMatchResult { |
| bool ResultOfMatch; |
| BoundNodesTreeBuilder Nodes; |
| }; |
| |
| // A RecursiveASTVisitor that traverses all children or all descendants of |
| // a node. |
| class MatchChildASTVisitor |
| : public RecursiveASTVisitor<MatchChildASTVisitor> { |
| public: |
| typedef RecursiveASTVisitor<MatchChildASTVisitor> VisitorBase; |
| |
| // Creates an AST visitor that matches 'matcher' on all children or |
| // descendants of a traversed node. max_depth is the maximum depth |
| // to traverse: use 1 for matching the children and INT_MAX for |
| // matching the descendants. |
| MatchChildASTVisitor(const DynTypedMatcher *Matcher, ASTMatchFinder *Finder, |
| BoundNodesTreeBuilder *Builder, int MaxDepth, |
| bool IgnoreImplicitChildren, |
| ASTMatchFinder::BindKind Bind) |
| : Matcher(Matcher), Finder(Finder), Builder(Builder), CurrentDepth(0), |
| MaxDepth(MaxDepth), IgnoreImplicitChildren(IgnoreImplicitChildren), |
| Bind(Bind), Matches(false) {} |
| |
| // Returns true if a match is found in the subtree rooted at the |
| // given AST node. This is done via a set of mutually recursive |
| // functions. Here's how the recursion is done (the *wildcard can |
| // actually be Decl, Stmt, or Type): |
| // |
| // - Traverse(node) calls BaseTraverse(node) when it needs |
| // to visit the descendants of node. |
| // - BaseTraverse(node) then calls (via VisitorBase::Traverse*(node)) |
| // Traverse*(c) for each child c of 'node'. |
| // - Traverse*(c) in turn calls Traverse(c), completing the |
| // recursion. |
| bool findMatch(const DynTypedNode &DynNode) { |
| reset(); |
| if (const Decl *D = DynNode.get<Decl>()) |
| traverse(*D); |
| else if (const Stmt *S = DynNode.get<Stmt>()) |
| traverse(*S); |
| else if (const NestedNameSpecifier *NNS = |
| DynNode.get<NestedNameSpecifier>()) |
| traverse(*NNS); |
| else if (const NestedNameSpecifierLoc *NNSLoc = |
| DynNode.get<NestedNameSpecifierLoc>()) |
| traverse(*NNSLoc); |
| else if (const QualType *Q = DynNode.get<QualType>()) |
| traverse(*Q); |
| else if (const TypeLoc *T = DynNode.get<TypeLoc>()) |
| traverse(*T); |
| else if (const auto *C = DynNode.get<CXXCtorInitializer>()) |
| traverse(*C); |
| else if (const TemplateArgumentLoc *TALoc = |
| DynNode.get<TemplateArgumentLoc>()) |
| traverse(*TALoc); |
| else if (const Attr *A = DynNode.get<Attr>()) |
| traverse(*A); |
| // FIXME: Add other base types after adding tests. |
| |
| // It's OK to always overwrite the bound nodes, as if there was |
| // no match in this recursive branch, the result set is empty |
| // anyway. |
| *Builder = ResultBindings; |
| |
| return Matches; |
| } |
| |
| // The following are overriding methods from the base visitor class. |
| // They are public only to allow CRTP to work. They are *not *part |
| // of the public API of this class. |
| bool TraverseDecl(Decl *DeclNode) { |
| |
| if (DeclNode && DeclNode->isImplicit() && |
| Finder->isTraversalIgnoringImplicitNodes()) |
| return baseTraverse(*DeclNode); |
| |
| ScopedIncrement ScopedDepth(&CurrentDepth); |
| return (DeclNode == nullptr) || traverse(*DeclNode); |
| } |
| |
| Stmt *getStmtToTraverse(Stmt *StmtNode) { |
| Stmt *StmtToTraverse = StmtNode; |
| if (auto *ExprNode = dyn_cast_or_null<Expr>(StmtNode)) { |
| auto *LambdaNode = dyn_cast_or_null<LambdaExpr>(StmtNode); |
| if (LambdaNode && Finder->isTraversalIgnoringImplicitNodes()) |
| StmtToTraverse = LambdaNode; |
| else |
| StmtToTraverse = |
| Finder->getASTContext().getParentMapContext().traverseIgnored( |
| ExprNode); |
| } |
| return StmtToTraverse; |
| } |
| |
| bool TraverseStmt(Stmt *StmtNode, DataRecursionQueue *Queue = nullptr) { |
| // If we need to keep track of the depth, we can't perform data recursion. |
| if (CurrentDepth == 0 || (CurrentDepth <= MaxDepth && MaxDepth < INT_MAX)) |
| Queue = nullptr; |
| |
| ScopedIncrement ScopedDepth(&CurrentDepth); |
| Stmt *StmtToTraverse = getStmtToTraverse(StmtNode); |
| if (!StmtToTraverse) |
| return true; |
| |
| if (IgnoreImplicitChildren && isa<CXXDefaultArgExpr>(StmtNode)) |
| return true; |
| |
| if (!match(*StmtToTraverse)) |
| return false; |
| return VisitorBase::TraverseStmt(StmtToTraverse, Queue); |
| } |
| // We assume that the QualType and the contained type are on the same |
| // hierarchy level. Thus, we try to match either of them. |
| bool TraverseType(QualType TypeNode) { |
| if (TypeNode.isNull()) |
| return true; |
| ScopedIncrement ScopedDepth(&CurrentDepth); |
| // Match the Type. |
| if (!match(*TypeNode)) |
| return false; |
| // The QualType is matched inside traverse. |
| return traverse(TypeNode); |
| } |
| // We assume that the TypeLoc, contained QualType and contained Type all are |
| // on the same hierarchy level. Thus, we try to match all of them. |
| bool TraverseTypeLoc(TypeLoc TypeLocNode) { |
| if (TypeLocNode.isNull()) |
| return true; |
| ScopedIncrement ScopedDepth(&CurrentDepth); |
| // Match the Type. |
| if (!match(*TypeLocNode.getType())) |
| return false; |
| // Match the QualType. |
| if (!match(TypeLocNode.getType())) |
| return false; |
| // The TypeLoc is matched inside traverse. |
| return traverse(TypeLocNode); |
| } |
| bool TraverseNestedNameSpecifier(NestedNameSpecifier *NNS) { |
| ScopedIncrement ScopedDepth(&CurrentDepth); |
| return (NNS == nullptr) || traverse(*NNS); |
| } |
| bool TraverseNestedNameSpecifierLoc(NestedNameSpecifierLoc NNS) { |
| if (!NNS) |
| return true; |
| ScopedIncrement ScopedDepth(&CurrentDepth); |
| if (!match(*NNS.getNestedNameSpecifier())) |
| return false; |
| return traverse(NNS); |
| } |
| bool TraverseConstructorInitializer(CXXCtorInitializer *CtorInit) { |
| if (!CtorInit) |
| return true; |
| ScopedIncrement ScopedDepth(&CurrentDepth); |
| return traverse(*CtorInit); |
| } |
| bool TraverseTemplateArgumentLoc(TemplateArgumentLoc TAL) { |
| ScopedIncrement ScopedDepth(&CurrentDepth); |
| return traverse(TAL); |
| } |
| bool TraverseCXXForRangeStmt(CXXForRangeStmt *Node) { |
| if (!Finder->isTraversalIgnoringImplicitNodes()) |
| return VisitorBase::TraverseCXXForRangeStmt(Node); |
| if (!Node) |
| return true; |
| ScopedIncrement ScopedDepth(&CurrentDepth); |
| if (auto *Init = Node->getInit()) |
| if (!traverse(*Init)) |
| return false; |
| if (!match(*Node->getLoopVariable())) |
| return false; |
| if (match(*Node->getRangeInit())) |
| if (!VisitorBase::TraverseStmt(Node->getRangeInit())) |
| return false; |
| if (!match(*Node->getBody())) |
| return false; |
| return VisitorBase::TraverseStmt(Node->getBody()); |
| } |
| bool TraverseCXXRewrittenBinaryOperator(CXXRewrittenBinaryOperator *Node) { |
| if (!Finder->isTraversalIgnoringImplicitNodes()) |
| return VisitorBase::TraverseCXXRewrittenBinaryOperator(Node); |
| if (!Node) |
| return true; |
| ScopedIncrement ScopedDepth(&CurrentDepth); |
| |
| return match(*Node->getLHS()) && match(*Node->getRHS()); |
| } |
| bool TraverseAttr(Attr *A) { |
| if (A == nullptr || |
| (A->isImplicit() && |
| Finder->getASTContext().getParentMapContext().getTraversalKind() == |
| TK_IgnoreUnlessSpelledInSource)) |
| return true; |
| ScopedIncrement ScopedDepth(&CurrentDepth); |
| return traverse(*A); |
| } |
| bool TraverseLambdaExpr(LambdaExpr *Node) { |
| if (!Finder->isTraversalIgnoringImplicitNodes()) |
| return VisitorBase::TraverseLambdaExpr(Node); |
| if (!Node) |
| return true; |
| ScopedIncrement ScopedDepth(&CurrentDepth); |
| |
| for (unsigned I = 0, N = Node->capture_size(); I != N; ++I) { |
| const auto *C = Node->capture_begin() + I; |
| if (!C->isExplicit()) |
| continue; |
| if (Node->isInitCapture(C) && !match(*C->getCapturedVar())) |
| return false; |
| if (!match(*Node->capture_init_begin()[I])) |
| return false; |
| } |
| |
| if (const auto *TPL = Node->getTemplateParameterList()) { |
| for (const auto *TP : *TPL) { |
| if (!match(*TP)) |
| return false; |
| } |
| } |
| |
| for (const auto *P : Node->getCallOperator()->parameters()) { |
| if (!match(*P)) |
| return false; |
| } |
| |
| if (!match(*Node->getBody())) |
| return false; |
| |
| return VisitorBase::TraverseStmt(Node->getBody()); |
| } |
| |
| bool shouldVisitTemplateInstantiations() const { return true; } |
| bool shouldVisitImplicitCode() const { return !IgnoreImplicitChildren; } |
| |
| private: |
| // Used for updating the depth during traversal. |
| struct ScopedIncrement { |
| explicit ScopedIncrement(int *Depth) : Depth(Depth) { ++(*Depth); } |
| ~ScopedIncrement() { --(*Depth); } |
| |
| private: |
| int *Depth; |
| }; |
| |
| // Resets the state of this object. |
| void reset() { |
| Matches = false; |
| CurrentDepth = 0; |
| } |
| |
| // Forwards the call to the corresponding Traverse*() method in the |
| // base visitor class. |
| bool baseTraverse(const Decl &DeclNode) { |
| return VisitorBase::TraverseDecl(const_cast<Decl*>(&DeclNode)); |
| } |
| bool baseTraverse(const Stmt &StmtNode) { |
| return VisitorBase::TraverseStmt(const_cast<Stmt*>(&StmtNode)); |
| } |
| bool baseTraverse(QualType TypeNode) { |
| return VisitorBase::TraverseType(TypeNode); |
| } |
| bool baseTraverse(TypeLoc TypeLocNode) { |
| return VisitorBase::TraverseTypeLoc(TypeLocNode); |
| } |
| bool baseTraverse(const NestedNameSpecifier &NNS) { |
| return VisitorBase::TraverseNestedNameSpecifier( |
| const_cast<NestedNameSpecifier*>(&NNS)); |
| } |
| bool baseTraverse(NestedNameSpecifierLoc NNS) { |
| return VisitorBase::TraverseNestedNameSpecifierLoc(NNS); |
| } |
| bool baseTraverse(const CXXCtorInitializer &CtorInit) { |
| return VisitorBase::TraverseConstructorInitializer( |
| const_cast<CXXCtorInitializer *>(&CtorInit)); |
| } |
| bool baseTraverse(TemplateArgumentLoc TAL) { |
| return VisitorBase::TraverseTemplateArgumentLoc(TAL); |
| } |
| bool baseTraverse(const Attr &AttrNode) { |
| return VisitorBase::TraverseAttr(const_cast<Attr *>(&AttrNode)); |
| } |
| |
| // Sets 'Matched' to true if 'Matcher' matches 'Node' and: |
| // 0 < CurrentDepth <= MaxDepth. |
| // |
| // Returns 'true' if traversal should continue after this function |
| // returns, i.e. if no match is found or 'Bind' is 'BK_All'. |
| template <typename T> |
| bool match(const T &Node) { |
| if (CurrentDepth == 0 || CurrentDepth > MaxDepth) { |
| return true; |
| } |
| if (Bind != ASTMatchFinder::BK_All) { |
| BoundNodesTreeBuilder RecursiveBuilder(*Builder); |
| if (Matcher->matches(DynTypedNode::create(Node), Finder, |
| &RecursiveBuilder)) { |
| Matches = true; |
| ResultBindings.addMatch(RecursiveBuilder); |
| return false; // Abort as soon as a match is found. |
| } |
| } else { |
| BoundNodesTreeBuilder RecursiveBuilder(*Builder); |
| if (Matcher->matches(DynTypedNode::create(Node), Finder, |
| &RecursiveBuilder)) { |
| // After the first match the matcher succeeds. |
| Matches = true; |
| ResultBindings.addMatch(RecursiveBuilder); |
| } |
| } |
| return true; |
| } |
| |
| // Traverses the subtree rooted at 'Node'; returns true if the |
| // traversal should continue after this function returns. |
| template <typename T> |
| bool traverse(const T &Node) { |
| static_assert(IsBaseType<T>::value, |
| "traverse can only be instantiated with base type"); |
| if (!match(Node)) |
| return false; |
| return baseTraverse(Node); |
| } |
| |
| const DynTypedMatcher *const Matcher; |
| ASTMatchFinder *const Finder; |
| BoundNodesTreeBuilder *const Builder; |
| BoundNodesTreeBuilder ResultBindings; |
| int CurrentDepth; |
| const int MaxDepth; |
| const bool IgnoreImplicitChildren; |
| const ASTMatchFinder::BindKind Bind; |
| bool Matches; |
| }; |
| |
| // Controls the outermost traversal of the AST and allows to match multiple |
| // matchers. |
| class MatchASTVisitor : public RecursiveASTVisitor<MatchASTVisitor>, |
| public ASTMatchFinder { |
| public: |
| MatchASTVisitor(const MatchFinder::MatchersByType *Matchers, |
| const MatchFinder::MatchFinderOptions &Options) |
| : Matchers(Matchers), Options(Options), ActiveASTContext(nullptr) {} |
| |
| ~MatchASTVisitor() override { |
| if (Options.CheckProfiling) { |
| Options.CheckProfiling->Records = std::move(TimeByBucket); |
| } |
| } |
| |
| void onStartOfTranslationUnit() { |
| const bool EnableCheckProfiling = Options.CheckProfiling.hasValue(); |
| TimeBucketRegion Timer; |
| for (MatchCallback *MC : Matchers->AllCallbacks) { |
| if (EnableCheckProfiling) |
| Timer.setBucket(&TimeByBucket[MC->getID()]); |
| MC->onStartOfTranslationUnit(); |
| } |
| } |
| |
| void onEndOfTranslationUnit() { |
| const bool EnableCheckProfiling = Options.CheckProfiling.hasValue(); |
| TimeBucketRegion Timer; |
| for (MatchCallback *MC : Matchers->AllCallbacks) { |
| if (EnableCheckProfiling) |
| Timer.setBucket(&TimeByBucket[MC->getID()]); |
| MC->onEndOfTranslationUnit(); |
| } |
| } |
| |
| void set_active_ast_context(ASTContext *NewActiveASTContext) { |
| ActiveASTContext = NewActiveASTContext; |
| } |
| |
| // The following Visit*() and Traverse*() functions "override" |
| // methods in RecursiveASTVisitor. |
| |
| bool VisitTypedefNameDecl(TypedefNameDecl *DeclNode) { |
| // When we see 'typedef A B', we add name 'B' to the set of names |
| // A's canonical type maps to. This is necessary for implementing |
| // isDerivedFrom(x) properly, where x can be the name of the base |
| // class or any of its aliases. |
| // |
| // In general, the is-alias-of (as defined by typedefs) relation |
| // is tree-shaped, as you can typedef a type more than once. For |
| // example, |
| // |
| // typedef A B; |
| // typedef A C; |
| // typedef C D; |
| // typedef C E; |
| // |
| // gives you |
| // |
| // A |
| // |- B |
| // `- C |
| // |- D |
| // `- E |
| // |
| // It is wrong to assume that the relation is a chain. A correct |
| // implementation of isDerivedFrom() needs to recognize that B and |
| // E are aliases, even though neither is a typedef of the other. |
| // Therefore, we cannot simply walk through one typedef chain to |
| // find out whether the type name matches. |
| const Type *TypeNode = DeclNode->getUnderlyingType().getTypePtr(); |
| const Type *CanonicalType = // root of the typedef tree |
| ActiveASTContext->getCanonicalType(TypeNode); |
| TypeAliases[CanonicalType].insert(DeclNode); |
| return true; |
| } |
| |
| bool VisitObjCCompatibleAliasDecl(ObjCCompatibleAliasDecl *CAD) { |
| const ObjCInterfaceDecl *InterfaceDecl = CAD->getClassInterface(); |
| CompatibleAliases[InterfaceDecl].insert(CAD); |
| return true; |
| } |
| |
| bool TraverseDecl(Decl *DeclNode); |
| bool TraverseStmt(Stmt *StmtNode, DataRecursionQueue *Queue = nullptr); |
| bool TraverseType(QualType TypeNode); |
| bool TraverseTypeLoc(TypeLoc TypeNode); |
| bool TraverseNestedNameSpecifier(NestedNameSpecifier *NNS); |
| bool TraverseNestedNameSpecifierLoc(NestedNameSpecifierLoc NNS); |
| bool TraverseConstructorInitializer(CXXCtorInitializer *CtorInit); |
| bool TraverseTemplateArgumentLoc(TemplateArgumentLoc TAL); |
| bool TraverseAttr(Attr *AttrNode); |
| |
| bool dataTraverseNode(Stmt *S, DataRecursionQueue *Queue) { |
| if (auto *RF = dyn_cast<CXXForRangeStmt>(S)) { |
| { |
| ASTNodeNotAsIsSourceScope RAII(this, true); |
| TraverseStmt(RF->getInit()); |
| // Don't traverse under the loop variable |
| match(*RF->getLoopVariable()); |
| TraverseStmt(RF->getRangeInit()); |
| } |
| { |
| ASTNodeNotSpelledInSourceScope RAII(this, true); |
| for (auto *SubStmt : RF->children()) { |
| if (SubStmt != RF->getBody()) |
| TraverseStmt(SubStmt); |
| } |
| } |
| TraverseStmt(RF->getBody()); |
| return true; |
| } else if (auto *RBO = dyn_cast<CXXRewrittenBinaryOperator>(S)) { |
| { |
| ASTNodeNotAsIsSourceScope RAII(this, true); |
| TraverseStmt(const_cast<Expr *>(RBO->getLHS())); |
| TraverseStmt(const_cast<Expr *>(RBO->getRHS())); |
| } |
| { |
| ASTNodeNotSpelledInSourceScope RAII(this, true); |
| for (auto *SubStmt : RBO->children()) { |
| TraverseStmt(SubStmt); |
| } |
| } |
| return true; |
| } else if (auto *LE = dyn_cast<LambdaExpr>(S)) { |
| for (auto I : llvm::zip(LE->captures(), LE->capture_inits())) { |
| auto C = std::get<0>(I); |
| ASTNodeNotSpelledInSourceScope RAII( |
| this, TraversingASTNodeNotSpelledInSource || !C.isExplicit()); |
| TraverseLambdaCapture(LE, &C, std::get<1>(I)); |
| } |
| |
| { |
| ASTNodeNotSpelledInSourceScope RAII(this, true); |
| TraverseDecl(LE->getLambdaClass()); |
| } |
| { |
| ASTNodeNotAsIsSourceScope RAII(this, true); |
| |
| // We need to poke around to find the bits that might be explicitly |
| // written. |
| TypeLoc TL = LE->getCallOperator()->getTypeSourceInfo()->getTypeLoc(); |
| FunctionProtoTypeLoc Proto = TL.getAsAdjusted<FunctionProtoTypeLoc>(); |
| |
| if (auto *TPL = LE->getTemplateParameterList()) { |
| for (NamedDecl *D : *TPL) { |
| TraverseDecl(D); |
| } |
| if (Expr *RequiresClause = TPL->getRequiresClause()) { |
| TraverseStmt(RequiresClause); |
| } |
| } |
| |
| if (LE->hasExplicitParameters()) { |
| // Visit parameters. |
| for (ParmVarDecl *Param : Proto.getParams()) |
| TraverseDecl(Param); |
| } |
| |
| const auto *T = Proto.getTypePtr(); |
| for (const auto &E : T->exceptions()) |
| TraverseType(E); |
| |
| if (Expr *NE = T->getNoexceptExpr()) |
| TraverseStmt(NE, Queue); |
| |
| if (LE->hasExplicitResultType()) |
| TraverseTypeLoc(Proto.getReturnLoc()); |
| TraverseStmt(LE->getTrailingRequiresClause()); |
| } |
| |
| TraverseStmt(LE->getBody()); |
| return true; |
| } |
| return RecursiveASTVisitor<MatchASTVisitor>::dataTraverseNode(S, Queue); |
| } |
| |
| // Matches children or descendants of 'Node' with 'BaseMatcher'. |
| bool memoizedMatchesRecursively(const DynTypedNode &Node, ASTContext &Ctx, |
| const DynTypedMatcher &Matcher, |
| BoundNodesTreeBuilder *Builder, int MaxDepth, |
| BindKind Bind) { |
| // For AST-nodes that don't have an identity, we can't memoize. |
| if (!Node.getMemoizationData() || !Builder->isComparable()) |
| return matchesRecursively(Node, Matcher, Builder, MaxDepth, Bind); |
| |
| MatchKey Key; |
| Key.MatcherID = Matcher.getID(); |
| Key.Node = Node; |
| // Note that we key on the bindings *before* the match. |
| Key.BoundNodes = *Builder; |
| Key.Traversal = Ctx.getParentMapContext().getTraversalKind(); |
| // Memoize result even doing a single-level match, it might be expensive. |
| Key.Type = MaxDepth == 1 ? MatchType::Child : MatchType::Descendants; |
| MemoizationMap::iterator I = ResultCache.find(Key); |
| if (I != ResultCache.end()) { |
| *Builder = I->second.Nodes; |
| return I->second.ResultOfMatch; |
| } |
| |
| MemoizedMatchResult Result; |
| Result.Nodes = *Builder; |
| Result.ResultOfMatch = |
| matchesRecursively(Node, Matcher, &Result.Nodes, MaxDepth, Bind); |
| |
| MemoizedMatchResult &CachedResult = ResultCache[Key]; |
| CachedResult = std::move(Result); |
| |
| *Builder = CachedResult.Nodes; |
| return CachedResult.ResultOfMatch; |
| } |
| |
| // Matches children or descendants of 'Node' with 'BaseMatcher'. |
| bool matchesRecursively(const DynTypedNode &Node, |
| const DynTypedMatcher &Matcher, |
| BoundNodesTreeBuilder *Builder, int MaxDepth, |
| BindKind Bind) { |
| bool ScopedTraversal = TraversingASTNodeNotSpelledInSource || |
| TraversingASTChildrenNotSpelledInSource; |
| |
| bool IgnoreImplicitChildren = false; |
| |
| if (isTraversalIgnoringImplicitNodes()) { |
| IgnoreImplicitChildren = true; |
| } |
| |
| ASTNodeNotSpelledInSourceScope RAII(this, ScopedTraversal); |
| |
| MatchChildASTVisitor Visitor(&Matcher, this, Builder, MaxDepth, |
| IgnoreImplicitChildren, Bind); |
| return Visitor.findMatch(Node); |
| } |
| |
| bool classIsDerivedFrom(const CXXRecordDecl *Declaration, |
| const Matcher<NamedDecl> &Base, |
| BoundNodesTreeBuilder *Builder, |
| bool Directly) override; |
| |
| bool objcClassIsDerivedFrom(const ObjCInterfaceDecl *Declaration, |
| const Matcher<NamedDecl> &Base, |
| BoundNodesTreeBuilder *Builder, |
| bool Directly) override; |
| |
| // Implements ASTMatchFinder::matchesChildOf. |
| bool matchesChildOf(const DynTypedNode &Node, ASTContext &Ctx, |
| const DynTypedMatcher &Matcher, |
| BoundNodesTreeBuilder *Builder, BindKind Bind) override { |
| if (ResultCache.size() > MaxMemoizationEntries) |
| ResultCache.clear(); |
| return memoizedMatchesRecursively(Node, Ctx, Matcher, Builder, 1, Bind); |
| } |
| // Implements ASTMatchFinder::matchesDescendantOf. |
| bool matchesDescendantOf(const DynTypedNode &Node, ASTContext &Ctx, |
| const DynTypedMatcher &Matcher, |
| BoundNodesTreeBuilder *Builder, |
| BindKind Bind) override { |
| if (ResultCache.size() > MaxMemoizationEntries) |
| ResultCache.clear(); |
| return memoizedMatchesRecursively(Node, Ctx, Matcher, Builder, INT_MAX, |
| Bind); |
| } |
| // Implements ASTMatchFinder::matchesAncestorOf. |
| bool matchesAncestorOf(const DynTypedNode &Node, ASTContext &Ctx, |
| const DynTypedMatcher &Matcher, |
| BoundNodesTreeBuilder *Builder, |
| AncestorMatchMode MatchMode) override { |
| // Reset the cache outside of the recursive call to make sure we |
| // don't invalidate any iterators. |
| if (ResultCache.size() > MaxMemoizationEntries) |
| ResultCache.clear(); |
| if (MatchMode == AncestorMatchMode::AMM_ParentOnly) |
| return matchesParentOf(Node, Matcher, Builder); |
| return matchesAnyAncestorOf(Node, Ctx, Matcher, Builder); |
| } |
| |
| // Matches all registered matchers on the given node and calls the |
| // result callback for every node that matches. |
| void match(const DynTypedNode &Node) { |
| // FIXME: Improve this with a switch or a visitor pattern. |
| if (auto *N = Node.get<Decl>()) { |
| match(*N); |
| } else if (auto *N = Node.get<Stmt>()) { |
| match(*N); |
| } else if (auto *N = Node.get<Type>()) { |
| match(*N); |
| } else if (auto *N = Node.get<QualType>()) { |
| match(*N); |
| } else if (auto *N = Node.get<NestedNameSpecifier>()) { |
| match(*N); |
| } else if (auto *N = Node.get<NestedNameSpecifierLoc>()) { |
| match(*N); |
| } else if (auto *N = Node.get<TypeLoc>()) { |
| match(*N); |
| } else if (auto *N = Node.get<CXXCtorInitializer>()) { |
| match(*N); |
| } else if (auto *N = Node.get<TemplateArgumentLoc>()) { |
| match(*N); |
| } else if (auto *N = Node.get<Attr>()) { |
| match(*N); |
| } |
| } |
| |
| template <typename T> void match(const T &Node) { |
| matchDispatch(&Node); |
| } |
| |
| // Implements ASTMatchFinder::getASTContext. |
| ASTContext &getASTContext() const override { return *ActiveASTContext; } |
| |
| bool shouldVisitTemplateInstantiations() const { return true; } |
| bool shouldVisitImplicitCode() const { return true; } |
| |
| // We visit the lambda body explicitly, so instruct the RAV |
| // to not visit it on our behalf too. |
| bool shouldVisitLambdaBody() const { return false; } |
| |
| bool IsMatchingInASTNodeNotSpelledInSource() const override { |
| return TraversingASTNodeNotSpelledInSource; |
| } |
| bool isMatchingChildrenNotSpelledInSource() const override { |
| return TraversingASTChildrenNotSpelledInSource; |
| } |
| void setMatchingChildrenNotSpelledInSource(bool Set) override { |
| TraversingASTChildrenNotSpelledInSource = Set; |
| } |
| |
| bool IsMatchingInASTNodeNotAsIs() const override { |
| return TraversingASTNodeNotAsIs; |
| } |
| |
| bool TraverseTemplateInstantiations(ClassTemplateDecl *D) { |
| ASTNodeNotSpelledInSourceScope RAII(this, true); |
| return RecursiveASTVisitor<MatchASTVisitor>::TraverseTemplateInstantiations( |
| D); |
| } |
| |
| bool TraverseTemplateInstantiations(VarTemplateDecl *D) { |
| ASTNodeNotSpelledInSourceScope RAII(this, true); |
| return RecursiveASTVisitor<MatchASTVisitor>::TraverseTemplateInstantiations( |
| D); |
| } |
| |
| bool TraverseTemplateInstantiations(FunctionTemplateDecl *D) { |
| ASTNodeNotSpelledInSourceScope RAII(this, true); |
| return RecursiveASTVisitor<MatchASTVisitor>::TraverseTemplateInstantiations( |
| D); |
| } |
| |
| private: |
| bool TraversingASTNodeNotSpelledInSource = false; |
| bool TraversingASTNodeNotAsIs = false; |
| bool TraversingASTChildrenNotSpelledInSource = false; |
| |
| struct ASTNodeNotSpelledInSourceScope { |
| ASTNodeNotSpelledInSourceScope(MatchASTVisitor *V, bool B) |
| : MV(V), MB(V->TraversingASTNodeNotSpelledInSource) { |
| V->TraversingASTNodeNotSpelledInSource = B; |
| } |
| ~ASTNodeNotSpelledInSourceScope() { |
| MV->TraversingASTNodeNotSpelledInSource = MB; |
| } |
| |
| private: |
| MatchASTVisitor *MV; |
| bool MB; |
| }; |
| |
| struct ASTNodeNotAsIsSourceScope { |
| ASTNodeNotAsIsSourceScope(MatchASTVisitor *V, bool B) |
| : MV(V), MB(V->TraversingASTNodeNotAsIs) { |
| V->TraversingASTNodeNotAsIs = B; |
| } |
| ~ASTNodeNotAsIsSourceScope() { MV->TraversingASTNodeNotAsIs = MB; } |
| |
| private: |
| MatchASTVisitor *MV; |
| bool MB; |
| }; |
| |
| class TimeBucketRegion { |
| public: |
| TimeBucketRegion() : Bucket(nullptr) {} |
| ~TimeBucketRegion() { setBucket(nullptr); } |
| |
| /// Start timing for \p NewBucket. |
| /// |
| /// If there was a bucket already set, it will finish the timing for that |
| /// other bucket. |
| /// \p NewBucket will be timed until the next call to \c setBucket() or |
| /// until the \c TimeBucketRegion is destroyed. |
| /// If \p NewBucket is the same as the currently timed bucket, this call |
| /// does nothing. |
| void setBucket(llvm::TimeRecord *NewBucket) { |
| if (Bucket != NewBucket) { |
| auto Now = llvm::TimeRecord::getCurrentTime(true); |
| if (Bucket) |
| *Bucket += Now; |
| if (NewBucket) |
| *NewBucket -= Now; |
| Bucket = NewBucket; |
| } |
| } |
| |
| private: |
| llvm::TimeRecord *Bucket; |
| }; |
| |
| /// Runs all the \p Matchers on \p Node. |
| /// |
| /// Used by \c matchDispatch() below. |
| template <typename T, typename MC> |
| void matchWithoutFilter(const T &Node, const MC &Matchers) { |
| const bool EnableCheckProfiling = Options.CheckProfiling.hasValue(); |
| TimeBucketRegion Timer; |
| for (const auto &MP : Matchers) { |
| if (EnableCheckProfiling) |
| Timer.setBucket(&TimeByBucket[MP.second->getID()]); |
| BoundNodesTreeBuilder Builder; |
| if (MP.first.matches(Node, this, &Builder)) { |
| MatchVisitor Visitor(ActiveASTContext, MP.second); |
| Builder.visitMatches(&Visitor); |
| } |
| } |
| } |
| |
| void matchWithFilter(const DynTypedNode &DynNode) { |
| auto Kind = DynNode.getNodeKind(); |
| auto it = MatcherFiltersMap.find(Kind); |
| const auto &Filter = |
| it != MatcherFiltersMap.end() ? it->second : getFilterForKind(Kind); |
| |
| if (Filter.empty()) |
| return; |
| |
| const bool EnableCheckProfiling = Options.CheckProfiling.hasValue(); |
| TimeBucketRegion Timer; |
| auto &Matchers = this->Matchers->DeclOrStmt; |
| for (unsigned short I : Filter) { |
| auto &MP = Matchers[I]; |
| if (EnableCheckProfiling) |
| Timer.setBucket(&TimeByBucket[MP.second->getID()]); |
| BoundNodesTreeBuilder Builder; |
| |
| { |
| TraversalKindScope RAII(getASTContext(), MP.first.getTraversalKind()); |
| if (getASTContext().getParentMapContext().traverseIgnored(DynNode) != |
| DynNode) |
| continue; |
| } |
| |
| if (MP.first.matches(DynNode, this, &Builder)) { |
| MatchVisitor Visitor(ActiveASTContext, MP.second); |
| Builder.visitMatches(&Visitor); |
| } |
| } |
| } |
| |
| const std::vector<unsigned short> &getFilterForKind(ASTNodeKind Kind) { |
| auto &Filter = MatcherFiltersMap[Kind]; |
| auto &Matchers = this->Matchers->DeclOrStmt; |
| assert((Matchers.size() < USHRT_MAX) && "Too many matchers."); |
| for (unsigned I = 0, E = Matchers.size(); I != E; ++I) { |
| if (Matchers[I].first.canMatchNodesOfKind(Kind)) { |
| Filter.push_back(I); |
| } |
| } |
| return Filter; |
| } |
| |
| /// @{ |
| /// Overloads to pair the different node types to their matchers. |
| void matchDispatch(const Decl *Node) { |
| return matchWithFilter(DynTypedNode::create(*Node)); |
| } |
| void matchDispatch(const Stmt *Node) { |
| return matchWithFilter(DynTypedNode::create(*Node)); |
| } |
| |
| void matchDispatch(const Type *Node) { |
| matchWithoutFilter(QualType(Node, 0), Matchers->Type); |
| } |
| void matchDispatch(const TypeLoc *Node) { |
| matchWithoutFilter(*Node, Matchers->TypeLoc); |
| } |
| void matchDispatch(const QualType *Node) { |
| matchWithoutFilter(*Node, Matchers->Type); |
| } |
| void matchDispatch(const NestedNameSpecifier *Node) { |
| matchWithoutFilter(*Node, Matchers->NestedNameSpecifier); |
| } |
| void matchDispatch(const NestedNameSpecifierLoc *Node) { |
| matchWithoutFilter(*Node, Matchers->NestedNameSpecifierLoc); |
| } |
| void matchDispatch(const CXXCtorInitializer *Node) { |
| matchWithoutFilter(*Node, Matchers->CtorInit); |
| } |
| void matchDispatch(const TemplateArgumentLoc *Node) { |
| matchWithoutFilter(*Node, Matchers->TemplateArgumentLoc); |
| } |
| void matchDispatch(const Attr *Node) { |
| matchWithoutFilter(*Node, Matchers->Attr); |
| } |
| void matchDispatch(const void *) { /* Do nothing. */ } |
| /// @} |
| |
| // Returns whether a direct parent of \p Node matches \p Matcher. |
| // Unlike matchesAnyAncestorOf there's no memoization: it doesn't save much. |
| bool matchesParentOf(const DynTypedNode &Node, const DynTypedMatcher &Matcher, |
| BoundNodesTreeBuilder *Builder) { |
| for (const auto &Parent : ActiveASTContext->getParents(Node)) { |
| BoundNodesTreeBuilder BuilderCopy = *Builder; |
| if (Matcher.matches(Parent, this, &BuilderCopy)) { |
| *Builder = std::move(BuilderCopy); |
| return true; |
| } |
| } |
| return false; |
| } |
| |
| // Returns whether an ancestor of \p Node matches \p Matcher. |
| // |
| // The order of matching (which can lead to different nodes being bound in |
| // case there are multiple matches) is breadth first search. |
| // |
| // To allow memoization in the very common case of having deeply nested |
| // expressions inside a template function, we first walk up the AST, memoizing |
| // the result of the match along the way, as long as there is only a single |
| // parent. |
| // |
| // Once there are multiple parents, the breadth first search order does not |
| // allow simple memoization on the ancestors. Thus, we only memoize as long |
| // as there is a single parent. |
| // |
| // We avoid a recursive implementation to prevent excessive stack use on |
| // very deep ASTs (similarly to RecursiveASTVisitor's data recursion). |
| bool matchesAnyAncestorOf(DynTypedNode Node, ASTContext &Ctx, |
| const DynTypedMatcher &Matcher, |
| BoundNodesTreeBuilder *Builder) { |
| |
| // Memoization keys that can be updated with the result. |
| // These are the memoizable nodes in the chain of unique parents, which |
| // terminates when a node has multiple parents, or matches, or is the root. |
| std::vector<MatchKey> Keys; |
| // When returning, update the memoization cache. |
| auto Finish = [&](bool Matched) { |
| for (const auto &Key : Keys) { |
| MemoizedMatchResult &CachedResult = ResultCache[Key]; |
| CachedResult.ResultOfMatch = Matched; |
| CachedResult.Nodes = *Builder; |
| } |
| return Matched; |
| }; |
| |
| // Loop while there's a single parent and we want to attempt memoization. |
| DynTypedNodeList Parents{ArrayRef<DynTypedNode>()}; // after loop: size != 1 |
| for (;;) { |
| // A cache key only makes sense if memoization is possible. |
| if (Builder->isComparable()) { |
| Keys.emplace_back(); |
| Keys.back().MatcherID = Matcher.getID(); |
| Keys.back().Node = Node; |
| Keys.back().BoundNodes = *Builder; |
| Keys.back().Traversal = Ctx.getParentMapContext().getTraversalKind(); |
| Keys.back().Type = MatchType::Ancestors; |
| |
| // Check the cache. |
| MemoizationMap::iterator I = ResultCache.find(Keys.back()); |
| if (I != ResultCache.end()) { |
| Keys.pop_back(); // Don't populate the cache for the matching node! |
| *Builder = I->second.Nodes; |
| return Finish(I->second.ResultOfMatch); |
| } |
| } |
| |
| Parents = ActiveASTContext->getParents(Node); |
| // Either no parents or multiple parents: leave chain+memoize mode and |
| // enter bfs+forgetful mode. |
| if (Parents.size() != 1) |
| break; |
| |
| // Check the next parent. |
| Node = *Parents.begin(); |
| BoundNodesTreeBuilder BuilderCopy = *Builder; |
| if (Matcher.matches(Node, this, &BuilderCopy)) { |
| *Builder = std::move(BuilderCopy); |
| return Finish(true); |
| } |
| } |
| // We reached the end of the chain. |
| |
| if (Parents.empty()) { |
| // Nodes may have no parents if: |
| // a) the node is the TranslationUnitDecl |
| // b) we have a limited traversal scope that excludes the parent edges |
| // c) there is a bug in the AST, and the node is not reachable |
| // Usually the traversal scope is the whole AST, which precludes b. |
| // Bugs are common enough that it's worthwhile asserting when we can. |
| #ifndef NDEBUG |
| if (!Node.get<TranslationUnitDecl>() && |
| /* Traversal scope is full AST if any of the bounds are the TU */ |
| llvm::any_of(ActiveASTContext->getTraversalScope(), [](Decl *D) { |
| return D->getKind() == Decl::TranslationUnit; |
| })) { |
| llvm::errs() << "Tried to match orphan node:\n"; |
| Node.dump(llvm::errs(), *ActiveASTContext); |
| llvm_unreachable("Parent map should be complete!"); |
| } |
| #endif |
| } else { |
| assert(Parents.size() > 1); |
| // BFS starting from the parents not yet considered. |
| // Memoization of newly visited nodes is not possible (but we still update |
| // results for the elements in the chain we found above). |
| std::deque<DynTypedNode> Queue(Parents.begin(), Parents.end()); |
| llvm::DenseSet<const void *> Visited; |
| while (!Queue.empty()) { |
| BoundNodesTreeBuilder BuilderCopy = *Builder; |
| if (Matcher.matches(Queue.front(), this, &BuilderCopy)) { |
| *Builder = std::move(BuilderCopy); |
| return Finish(true); |
| } |
| for (const auto &Parent : ActiveASTContext->getParents(Queue.front())) { |
| // Make sure we do not visit the same node twice. |
| // Otherwise, we'll visit the common ancestors as often as there |
| // are splits on the way down. |
| if (Visited.insert(Parent.getMemoizationData()).second) |
| Queue.push_back(Parent); |
| } |
| Queue.pop_front(); |
| } |
| } |
| return Finish(false); |
| } |
| |
| // Implements a BoundNodesTree::Visitor that calls a MatchCallback with |
| // the aggregated bound nodes for each match. |
| class MatchVisitor : public BoundNodesTreeBuilder::Visitor { |
| public: |
| MatchVisitor(ASTContext* Context, |
| MatchFinder::MatchCallback* Callback) |
| : Context(Context), |
| Callback(Callback) {} |
| |
| void visitMatch(const BoundNodes& BoundNodesView) override { |
| TraversalKindScope RAII(*Context, Callback->getCheckTraversalKind()); |
| Callback->run(MatchFinder::MatchResult(BoundNodesView, Context)); |
| } |
| |
| private: |
| ASTContext* Context; |
| MatchFinder::MatchCallback* Callback; |
| }; |
| |
| // Returns true if 'TypeNode' has an alias that matches the given matcher. |
| bool typeHasMatchingAlias(const Type *TypeNode, |
| const Matcher<NamedDecl> &Matcher, |
| BoundNodesTreeBuilder *Builder) { |
| const Type *const CanonicalType = |
| ActiveASTContext->getCanonicalType(TypeNode); |
| auto Aliases = TypeAliases.find(CanonicalType); |
| if (Aliases == TypeAliases.end()) |
| return false; |
| for (const TypedefNameDecl *Alias : Aliases->second) { |
| BoundNodesTreeBuilder Result(*Builder); |
| if (Matcher.matches(*Alias, this, &Result)) { |
| *Builder = std::move(Result); |
| return true; |
| } |
| } |
| return false; |
| } |
| |
| bool |
| objcClassHasMatchingCompatibilityAlias(const ObjCInterfaceDecl *InterfaceDecl, |
| const Matcher<NamedDecl> &Matcher, |
| BoundNodesTreeBuilder *Builder) { |
| auto Aliases = CompatibleAliases.find(InterfaceDecl); |
| if (Aliases == CompatibleAliases.end()) |
| return false; |
| for (const ObjCCompatibleAliasDecl *Alias : Aliases->second) { |
| BoundNodesTreeBuilder Result(*Builder); |
| if (Matcher.matches(*Alias, this, &Result)) { |
| *Builder = std::move(Result); |
| return true; |
| } |
| } |
| return false; |
| } |
| |
| /// Bucket to record map. |
| /// |
| /// Used to get the appropriate bucket for each matcher. |
| llvm::StringMap<llvm::TimeRecord> TimeByBucket; |
| |
| const MatchFinder::MatchersByType *Matchers; |
| |
| /// Filtered list of matcher indices for each matcher kind. |
| /// |
| /// \c Decl and \c Stmt toplevel matchers usually apply to a specific node |
| /// kind (and derived kinds) so it is a waste to try every matcher on every |
| /// node. |
| /// We precalculate a list of matchers that pass the toplevel restrict check. |
| llvm::DenseMap<ASTNodeKind, std::vector<unsigned short>> MatcherFiltersMap; |
| |
| const MatchFinder::MatchFinderOptions &Options; |
| ASTContext *ActiveASTContext; |
| |
| // Maps a canonical type to its TypedefDecls. |
| llvm::DenseMap<const Type*, std::set<const TypedefNameDecl*> > TypeAliases; |
| |
| // Maps an Objective-C interface to its ObjCCompatibleAliasDecls. |
| llvm::DenseMap<const ObjCInterfaceDecl *, |
| llvm::SmallPtrSet<const ObjCCompatibleAliasDecl *, 2>> |
| CompatibleAliases; |
| |
| // Maps (matcher, node) -> the match result for memoization. |
| typedef std::map<MatchKey, MemoizedMatchResult> MemoizationMap; |
| MemoizationMap ResultCache; |
| }; |
| |
| static CXXRecordDecl * |
| getAsCXXRecordDeclOrPrimaryTemplate(const Type *TypeNode) { |
| if (auto *RD = TypeNode->getAsCXXRecordDecl()) |
| return RD; |
| |
| // Find the innermost TemplateSpecializationType that isn't an alias template. |
| auto *TemplateType = TypeNode->getAs<TemplateSpecializationType>(); |
| while (TemplateType && TemplateType->isTypeAlias()) |
| TemplateType = |
| TemplateType->getAliasedType()->getAs<TemplateSpecializationType>(); |
| |
| // If this is the name of a (dependent) template specialization, use the |
| // definition of the template, even though it might be specialized later. |
| if (TemplateType) |
| if (auto *ClassTemplate = dyn_cast_or_null<ClassTemplateDecl>( |
| TemplateType->getTemplateName().getAsTemplateDecl())) |
| return ClassTemplate->getTemplatedDecl(); |
| |
| return nullptr; |
| } |
| |
| // Returns true if the given C++ class is directly or indirectly derived |
| // from a base type with the given name. A class is not considered to be |
| // derived from itself. |
| bool MatchASTVisitor::classIsDerivedFrom(const CXXRecordDecl *Declaration, |
| const Matcher<NamedDecl> &Base, |
| BoundNodesTreeBuilder *Builder, |
| bool Directly) { |
| if (!Declaration->hasDefinition()) |
| return false; |
| for (const auto &It : Declaration->bases()) { |
| const Type *TypeNode = It.getType().getTypePtr(); |
| |
| if (typeHasMatchingAlias(TypeNode, Base, Builder)) |
| return true; |
| |
| // FIXME: Going to the primary template here isn't really correct, but |
| // unfortunately we accept a Decl matcher for the base class not a Type |
| // matcher, so it's the best thing we can do with our current interface. |
| CXXRecordDecl *ClassDecl = getAsCXXRecordDeclOrPrimaryTemplate(TypeNode); |
| if (!ClassDecl) |
| continue; |
| if (ClassDecl == Declaration) { |
| // This can happen for recursive template definitions. |
| continue; |
| } |
| BoundNodesTreeBuilder Result(*Builder); |
| if (Base.matches(*ClassDecl, this, &Result)) { |
| *Builder = std::move(Result); |
| return true; |
| } |
| if (!Directly && classIsDerivedFrom(ClassDecl, Base, Builder, Directly)) |
| return true; |
| } |
| return false; |
| } |
| |
| // Returns true if the given Objective-C class is directly or indirectly |
| // derived from a matching base class. A class is not considered to be derived |
| // from itself. |
| bool MatchASTVisitor::objcClassIsDerivedFrom( |
| const ObjCInterfaceDecl *Declaration, const Matcher<NamedDecl> &Base, |
| BoundNodesTreeBuilder *Builder, bool Directly) { |
| // Check if any of the superclasses of the class match. |
| for (const ObjCInterfaceDecl *ClassDecl = Declaration->getSuperClass(); |
| ClassDecl != nullptr; ClassDecl = ClassDecl->getSuperClass()) { |
| // Check if there are any matching compatibility aliases. |
| if (objcClassHasMatchingCompatibilityAlias(ClassDecl, Base, Builder)) |
| return true; |
| |
| // Check if there are any matching type aliases. |
| const Type *TypeNode = ClassDecl->getTypeForDecl(); |
| if (typeHasMatchingAlias(TypeNode, Base, Builder)) |
| return true; |
| |
| if (Base.matches(*ClassDecl, this, Builder)) |
| return true; |
| |
| // Not `return false` as a temporary workaround for PR43879. |
| if (Directly) |
| break; |
| } |
| |
| return false; |
| } |
| |
| bool MatchASTVisitor::TraverseDecl(Decl *DeclNode) { |
| if (!DeclNode) { |
| return true; |
| } |
| |
| bool ScopedTraversal = |
| TraversingASTNodeNotSpelledInSource || DeclNode->isImplicit(); |
| bool ScopedChildren = TraversingASTChildrenNotSpelledInSource; |
| |
| if (const auto *CTSD = dyn_cast<ClassTemplateSpecializationDecl>(DeclNode)) { |
| auto SK = CTSD->getSpecializationKind(); |
| if (SK == TSK_ExplicitInstantiationDeclaration || |
| SK == TSK_ExplicitInstantiationDefinition) |
| ScopedChildren = true; |
| } else if (const auto *FD = dyn_cast<FunctionDecl>(DeclNode)) { |
| if (FD->isDefaulted()) |
| ScopedChildren = true; |
| if (FD->isTemplateInstantiation()) |
| ScopedTraversal = true; |
| } else if (isa<BindingDecl>(DeclNode)) { |
| ScopedChildren = true; |
| } |
| |
| ASTNodeNotSpelledInSourceScope RAII1(this, ScopedTraversal); |
| ASTChildrenNotSpelledInSourceScope RAII2(this, ScopedChildren); |
| |
| match(*DeclNode); |
| return RecursiveASTVisitor<MatchASTVisitor>::TraverseDecl(DeclNode); |
| } |
| |
| bool MatchASTVisitor::TraverseStmt(Stmt *StmtNode, DataRecursionQueue *Queue) { |
| if (!StmtNode) { |
| return true; |
| } |
| bool ScopedTraversal = TraversingASTNodeNotSpelledInSource || |
| TraversingASTChildrenNotSpelledInSource; |
| |
| ASTNodeNotSpelledInSourceScope RAII(this, ScopedTraversal); |
| match(*StmtNode); |
| return RecursiveASTVisitor<MatchASTVisitor>::TraverseStmt(StmtNode, Queue); |
| } |
| |
| bool MatchASTVisitor::TraverseType(QualType TypeNode) { |
| match(TypeNode); |
| return RecursiveASTVisitor<MatchASTVisitor>::TraverseType(TypeNode); |
| } |
| |
| bool MatchASTVisitor::TraverseTypeLoc(TypeLoc TypeLocNode) { |
| // The RecursiveASTVisitor only visits types if they're not within TypeLocs. |
| // We still want to find those types via matchers, so we match them here. Note |
| // that the TypeLocs are structurally a shadow-hierarchy to the expressed |
| // type, so we visit all involved parts of a compound type when matching on |
| // each TypeLoc. |
| match(TypeLocNode); |
| match(TypeLocNode.getType()); |
| return RecursiveASTVisitor<MatchASTVisitor>::TraverseTypeLoc(TypeLocNode); |
| } |
| |
| bool MatchASTVisitor::TraverseNestedNameSpecifier(NestedNameSpecifier *NNS) { |
| match(*NNS); |
| return RecursiveASTVisitor<MatchASTVisitor>::TraverseNestedNameSpecifier(NNS); |
| } |
| |
| bool MatchASTVisitor::TraverseNestedNameSpecifierLoc( |
| NestedNameSpecifierLoc NNS) { |
| if (!NNS) |
| return true; |
| |
| match(NNS); |
| |
| // We only match the nested name specifier here (as opposed to traversing it) |
| // because the traversal is already done in the parallel "Loc"-hierarchy. |
| if (NNS.hasQualifier()) |
| match(*NNS.getNestedNameSpecifier()); |
| return |
| RecursiveASTVisitor<MatchASTVisitor>::TraverseNestedNameSpecifierLoc(NNS); |
| } |
| |
| bool MatchASTVisitor::TraverseConstructorInitializer( |
| CXXCtorInitializer *CtorInit) { |
| if (!CtorInit) |
| return true; |
| |
| bool ScopedTraversal = TraversingASTNodeNotSpelledInSource || |
| TraversingASTChildrenNotSpelledInSource; |
| |
| if (!CtorInit->isWritten()) |
| ScopedTraversal = true; |
| |
| ASTNodeNotSpelledInSourceScope RAII1(this, ScopedTraversal); |
| |
| match(*CtorInit); |
| |
| return RecursiveASTVisitor<MatchASTVisitor>::TraverseConstructorInitializer( |
| CtorInit); |
| } |
| |
| bool MatchASTVisitor::TraverseTemplateArgumentLoc(TemplateArgumentLoc Loc) { |
| match(Loc); |
| return RecursiveASTVisitor<MatchASTVisitor>::TraverseTemplateArgumentLoc(Loc); |
| } |
| |
| bool MatchASTVisitor::TraverseAttr(Attr *AttrNode) { |
| match(*AttrNode); |
| return RecursiveASTVisitor<MatchASTVisitor>::TraverseAttr(AttrNode); |
| } |
| |
| class MatchASTConsumer : public ASTConsumer { |
| public: |
| MatchASTConsumer(MatchFinder *Finder, |
| MatchFinder::ParsingDoneTestCallback *ParsingDone) |
| : Finder(Finder), ParsingDone(ParsingDone) {} |
| |
| private: |
| void HandleTranslationUnit(ASTContext &Context) override { |
| if (ParsingDone != nullptr) { |
| ParsingDone->run(); |
| } |
| Finder->matchAST(Context); |
| } |
| |
| MatchFinder *Finder; |
| MatchFinder::ParsingDoneTestCallback *ParsingDone; |
| }; |
| |
| } // end namespace |
| } // end namespace internal |
| |
| MatchFinder::MatchResult::MatchResult(const BoundNodes &Nodes, |
| ASTContext *Context) |
| : Nodes(Nodes), Context(Context), |
| SourceManager(&Context->getSourceManager()) {} |
| |
| MatchFinder::MatchCallback::~MatchCallback() {} |
| MatchFinder::ParsingDoneTestCallback::~ParsingDoneTestCallback() {} |
| |
| MatchFinder::MatchFinder(MatchFinderOptions Options) |
| : Options(std::move(Options)), ParsingDone(nullptr) {} |
| |
| MatchFinder::~MatchFinder() {} |
| |
| void MatchFinder::addMatcher(const DeclarationMatcher &NodeMatch, |
| MatchCallback *Action) { |
| llvm::Optional<TraversalKind> TK; |
| if (Action) |
| TK = Action->getCheckTraversalKind(); |
| if (TK) |
| Matchers.DeclOrStmt.emplace_back(traverse(*TK, NodeMatch), Action); |
| else |
| Matchers.DeclOrStmt.emplace_back(NodeMatch, Action); |
| Matchers.AllCallbacks.insert(Action); |
| } |
| |
| void MatchFinder::addMatcher(const TypeMatcher &NodeMatch, |
| MatchCallback *Action) { |
| Matchers.Type.emplace_back(NodeMatch, Action); |
| Matchers.AllCallbacks.insert(Action); |
| } |
| |
| void MatchFinder::addMatcher(const StatementMatcher &NodeMatch, |
| MatchCallback *Action) { |
| llvm::Optional<TraversalKind> TK; |
| if (Action) |
| TK = Action->getCheckTraversalKind(); |
| if (TK) |
| Matchers.DeclOrStmt.emplace_back(traverse(*TK, NodeMatch), Action); |
| else |
| Matchers.DeclOrStmt.emplace_back(NodeMatch, Action); |
| Matchers.AllCallbacks.insert(Action); |
| } |
| |
| void MatchFinder::addMatcher(const NestedNameSpecifierMatcher &NodeMatch, |
| MatchCallback *Action) { |
| Matchers.NestedNameSpecifier.emplace_back(NodeMatch, Action); |
| Matchers.AllCallbacks.insert(Action); |
| } |
| |
| void MatchFinder::addMatcher(const NestedNameSpecifierLocMatcher &NodeMatch, |
| MatchCallback *Action) { |
| Matchers.NestedNameSpecifierLoc.emplace_back(NodeMatch, Action); |
| Matchers.AllCallbacks.insert(Action); |
| } |
| |
| void MatchFinder::addMatcher(const TypeLocMatcher &NodeMatch, |
| MatchCallback *Action) { |
| Matchers.TypeLoc.emplace_back(NodeMatch, Action); |
| Matchers.AllCallbacks.insert(Action); |
| } |
| |
| void MatchFinder::addMatcher(const CXXCtorInitializerMatcher &NodeMatch, |
| MatchCallback *Action) { |
| Matchers.CtorInit.emplace_back(NodeMatch, Action); |
| Matchers.AllCallbacks.insert(Action); |
| } |
| |
| void MatchFinder::addMatcher(const TemplateArgumentLocMatcher &NodeMatch, |
| MatchCallback *Action) { |
| Matchers.TemplateArgumentLoc.emplace_back(NodeMatch, Action); |
| Matchers.AllCallbacks.insert(Action); |
| } |
| |
| void MatchFinder::addMatcher(const AttrMatcher &AttrMatch, |
| MatchCallback *Action) { |
| Matchers.Attr.emplace_back(AttrMatch, Action); |
| Matchers.AllCallbacks.insert(Action); |
| } |
| |
| bool MatchFinder::addDynamicMatcher(const internal::DynTypedMatcher &NodeMatch, |
| MatchCallback *Action) { |
| if (NodeMatch.canConvertTo<Decl>()) { |
| addMatcher(NodeMatch.convertTo<Decl>(), Action); |
| return true; |
| } else if (NodeMatch.canConvertTo<QualType>()) { |
| addMatcher(NodeMatch.convertTo<QualType>(), Action); |
| return true; |
| } else if (NodeMatch.canConvertTo<Stmt>()) { |
| addMatcher(NodeMatch.convertTo<Stmt>(), Action); |
| return true; |
| } else if (NodeMatch.canConvertTo<NestedNameSpecifier>()) { |
| addMatcher(NodeMatch.convertTo<NestedNameSpecifier>(), Action); |
| return true; |
| } else if (NodeMatch.canConvertTo<NestedNameSpecifierLoc>()) { |
| addMatcher(NodeMatch.convertTo<NestedNameSpecifierLoc>(), Action); |
| return true; |
| } else if (NodeMatch.canConvertTo<TypeLoc>()) { |
| addMatcher(NodeMatch.convertTo<TypeLoc>(), Action); |
| return true; |
| } else if (NodeMatch.canConvertTo<CXXCtorInitializer>()) { |
| addMatcher(NodeMatch.convertTo<CXXCtorInitializer>(), Action); |
| return true; |
| } else if (NodeMatch.canConvertTo<TemplateArgumentLoc>()) { |
| addMatcher(NodeMatch.convertTo<TemplateArgumentLoc>(), Action); |
| return true; |
| } else if (NodeMatch.canConvertTo<Attr>()) { |
| addMatcher(NodeMatch.convertTo<Attr>(), Action); |
| return true; |
| } |
| return false; |
| } |
| |
| std::unique_ptr<ASTConsumer> MatchFinder::newASTConsumer() { |
| return std::make_unique<internal::MatchASTConsumer>(this, ParsingDone); |
| } |
| |
| void MatchFinder::match(const clang::DynTypedNode &Node, ASTContext &Context) { |
| internal::MatchASTVisitor Visitor(&Matchers, Options); |
| Visitor.set_active_ast_context(&Context); |
| Visitor.match(Node); |
| } |
| |
| void MatchFinder::matchAST(ASTContext &Context) { |
| internal::MatchASTVisitor Visitor(&Matchers, Options); |
| Visitor.set_active_ast_context(&Context); |
| Visitor.onStartOfTranslationUnit(); |
| Visitor.TraverseAST(Context); |
| Visitor.onEndOfTranslationUnit(); |
| } |
| |
| void MatchFinder::registerTestCallbackAfterParsing( |
| MatchFinder::ParsingDoneTestCallback *NewParsingDone) { |
| ParsingDone = NewParsingDone; |
| } |
| |
| StringRef MatchFinder::MatchCallback::getID() const { return "<unknown>"; } |
| |
| llvm::Optional<TraversalKind> |
| MatchFinder::MatchCallback::getCheckTraversalKind() const { |
| return llvm::None; |
| } |
| |
| } // end namespace ast_matchers |
| } // end namespace clang |