blob: a28ba82a57e8fdfe967e99d9bd2dacd5a2f4027d [file] [log] [blame]
//===-- ProfiledBinary.h - Binary decoder -----------------------*- C++ -*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
#ifndef LLVM_TOOLS_LLVM_PROFGEN_PROFILEDBINARY_H
#define LLVM_TOOLS_LLVM_PROFGEN_PROFILEDBINARY_H
#include "CallContext.h"
#include "ErrorHandling.h"
#include "llvm/ADT/Optional.h"
#include "llvm/ADT/StringRef.h"
#include "llvm/DebugInfo/DWARF/DWARFContext.h"
#include "llvm/DebugInfo/Symbolize/Symbolize.h"
#include "llvm/MC/MCAsmInfo.h"
#include "llvm/MC/MCContext.h"
#include "llvm/MC/MCDisassembler/MCDisassembler.h"
#include "llvm/MC/MCInst.h"
#include "llvm/MC/MCInstPrinter.h"
#include "llvm/MC/MCInstrAnalysis.h"
#include "llvm/MC/MCInstrInfo.h"
#include "llvm/MC/MCObjectFileInfo.h"
#include "llvm/MC/MCPseudoProbe.h"
#include "llvm/MC/MCRegisterInfo.h"
#include "llvm/MC/MCSubtargetInfo.h"
#include "llvm/MC/MCTargetOptions.h"
#include "llvm/Object/ELFObjectFile.h"
#include "llvm/ProfileData/SampleProf.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/Path.h"
#include "llvm/Transforms/IPO/SampleContextTracker.h"
#include <list>
#include <map>
#include <set>
#include <sstream>
#include <string>
#include <unordered_map>
#include <unordered_set>
#include <vector>
extern cl::opt<bool> EnableCSPreInliner;
extern cl::opt<bool> UseContextCostForPreInliner;
using namespace llvm;
using namespace sampleprof;
using namespace llvm::object;
namespace llvm {
namespace sampleprof {
class ProfiledBinary;
struct InstructionPointer {
const ProfiledBinary *Binary;
union {
// Offset of the executable segment of the binary.
uint64_t Offset = 0;
// Also used as address in unwinder
uint64_t Address;
};
// Index to the sorted code address array of the binary.
uint64_t Index = 0;
InstructionPointer(const ProfiledBinary *Binary, uint64_t Address,
bool RoundToNext = false);
bool advance();
bool backward();
void update(uint64_t Addr);
};
using RangesTy = std::vector<std::pair<uint64_t, uint64_t>>;
struct BinaryFunction {
StringRef FuncName;
// End of range is an exclusive bound.
RangesTy Ranges;
uint64_t getFuncSize() {
uint64_t Sum = 0;
for (auto &R : Ranges) {
Sum += R.second - R.first;
}
return Sum;
}
};
// Info about function range. A function can be split into multiple
// non-continuous ranges, each range corresponds to one FuncRange.
struct FuncRange {
uint64_t StartOffset;
// EndOffset is an exclusive bound.
uint64_t EndOffset;
// Function the range belongs to
BinaryFunction *Func;
// Whether the start offset is the real entry of the function.
bool IsFuncEntry = false;
StringRef getFuncName() { return Func->FuncName; }
};
// PrologEpilog offset tracker, used to filter out broken stack samples
// Currently we use a heuristic size (two) to infer prolog and epilog
// based on the start address and return address. In the future,
// we will switch to Dwarf CFI based tracker
struct PrologEpilogTracker {
// A set of prolog and epilog offsets. Used by virtual unwinding.
std::unordered_set<uint64_t> PrologEpilogSet;
ProfiledBinary *Binary;
PrologEpilogTracker(ProfiledBinary *Bin) : Binary(Bin){};
// Take the two addresses from the start of function as prolog
void inferPrologOffsets(std::map<uint64_t, FuncRange> &FuncStartOffsetMap) {
for (auto I : FuncStartOffsetMap) {
PrologEpilogSet.insert(I.first);
InstructionPointer IP(Binary, I.first);
if (!IP.advance())
break;
PrologEpilogSet.insert(IP.Offset);
}
}
// Take the last two addresses before the return address as epilog
void inferEpilogOffsets(std::unordered_set<uint64_t> &RetAddrs) {
for (auto Addr : RetAddrs) {
PrologEpilogSet.insert(Addr);
InstructionPointer IP(Binary, Addr);
if (!IP.backward())
break;
PrologEpilogSet.insert(IP.Offset);
}
}
};
// Track function byte size under different context (outlined version as well as
// various inlined versions). It also provides query support to get function
// size with the best matching context, which is used to help pre-inliner use
// accurate post-optimization size to make decisions.
// TODO: If an inlinee is completely optimized away, ideally we should have zero
// for its context size, currently we would misss such context since it doesn't
// have instructions. To fix this, we need to mark all inlinee with entry probe
// but without instructions as having zero size.
class BinarySizeContextTracker {
public:
// Add instruction with given size to a context
void addInstructionForContext(const SampleContextFrameVector &Context,
uint32_t InstrSize);
// Get function size with a specific context. When there's no exact match
// for the given context, try to retrieve the size of that function from
// closest matching context.
uint32_t getFuncSizeForContext(const SampleContext &Context);
// For inlinees that are full optimized away, we can establish zero size using
// their remaining probes.
void trackInlineesOptimizedAway(MCPseudoProbeDecoder &ProbeDecoder);
void dump() { RootContext.dumpTree(); }
private:
using ProbeFrameStack = SmallVector<std::pair<StringRef, uint32_t>>;
void trackInlineesOptimizedAway(MCPseudoProbeDecoder &ProbeDecoder,
MCDecodedPseudoProbeInlineTree &ProbeNode,
ProbeFrameStack &Context);
// Root node for context trie tree, node that this is a reverse context trie
// with callee as parent and caller as child. This way we can traverse from
// root to find the best/longest matching context if an exact match does not
// exist. It gives us the best possible estimate for function's post-inline,
// post-optimization byte size.
ContextTrieNode RootContext;
};
using OffsetRange = std::pair<uint64_t, uint64_t>;
class ProfiledBinary {
// Absolute path of the binary.
std::string Path;
// The target triple.
Triple TheTriple;
// The runtime base address that the first executable segment is loaded at.
uint64_t BaseAddress = 0;
// The runtime base address that the first loadabe segment is loaded at.
uint64_t FirstLoadableAddress = 0;
// The preferred load address of each executable segment.
std::vector<uint64_t> PreferredTextSegmentAddresses;
// The file offset of each executable segment.
std::vector<uint64_t> TextSegmentOffsets;
// Mutiple MC component info
std::unique_ptr<const MCRegisterInfo> MRI;
std::unique_ptr<const MCAsmInfo> AsmInfo;
std::unique_ptr<const MCSubtargetInfo> STI;
std::unique_ptr<const MCInstrInfo> MII;
std::unique_ptr<MCDisassembler> DisAsm;
std::unique_ptr<const MCInstrAnalysis> MIA;
std::unique_ptr<MCInstPrinter> IPrinter;
// A list of text sections sorted by start RVA and size. Used to check
// if a given RVA is a valid code address.
std::set<std::pair<uint64_t, uint64_t>> TextSections;
// A map of mapping function name to BinaryFunction info.
std::unordered_map<std::string, BinaryFunction> BinaryFunctions;
// An ordered map of mapping function's start offset to function range
// relevant info. Currently to determine if the offset of ELF is the start of
// a real function, we leverage the function range info from DWARF.
std::map<uint64_t, FuncRange> StartOffset2FuncRangeMap;
// Offset to context location map. Used to expand the context.
std::unordered_map<uint64_t, SampleContextFrameVector> Offset2LocStackMap;
// Offset to instruction size map. Also used for quick offset lookup.
std::unordered_map<uint64_t, uint64_t> Offset2InstSizeMap;
// An array of offsets of all instructions sorted in increasing order. The
// sorting is needed to fast advance to the next forward/backward instruction.
std::vector<uint64_t> CodeAddrOffsets;
// A set of call instruction offsets. Used by virtual unwinding.
std::unordered_set<uint64_t> CallOffsets;
// A set of return instruction offsets. Used by virtual unwinding.
std::unordered_set<uint64_t> RetOffsets;
// A set of branch instruction offsets.
std::unordered_set<uint64_t> BranchOffsets;
// Estimate and track function prolog and epilog ranges.
PrologEpilogTracker ProEpilogTracker;
// Track function sizes under different context
BinarySizeContextTracker FuncSizeTracker;
// The symbolizer used to get inline context for an instruction.
std::unique_ptr<symbolize::LLVMSymbolizer> Symbolizer;
// String table owning function name strings created from the symbolizer.
std::unordered_set<std::string> NameStrings;
// A collection of functions to print disassembly for.
StringSet<> DisassembleFunctionSet;
// Pseudo probe decoder
MCPseudoProbeDecoder ProbeDecoder;
bool UsePseudoProbes = false;
bool UseFSDiscriminator = false;
// Whether we need to symbolize all instructions to get function context size.
bool TrackFuncContextSize = false;
// Indicate if the base loading address is parsed from the mmap event or uses
// the preferred address
bool IsLoadedByMMap = false;
// Use to avoid redundant warning.
bool MissingMMapWarned = false;
void setPreferredTextSegmentAddresses(const ELFObjectFileBase *O);
template <class ELFT>
void setPreferredTextSegmentAddresses(const ELFFile<ELFT> &Obj, StringRef FileName);
void decodePseudoProbe(const ELFObjectFileBase *Obj);
void
checkUseFSDiscriminator(const ELFObjectFileBase *Obj,
std::map<SectionRef, SectionSymbolsTy> &AllSymbols);
// Set up disassembler and related components.
void setUpDisassembler(const ELFObjectFileBase *Obj);
void setupSymbolizer();
// Load debug info of subprograms from DWARF section.
void loadSymbolsFromDWARF(ObjectFile &Obj);
// A function may be spilt into multiple non-continuous address ranges. We use
// this to set whether start offset of a function is the real entry of the
// function and also set false to the non-function label.
void setIsFuncEntry(uint64_t Offset, StringRef RangeSymName);
// Warn if no entry range exists in the function.
void warnNoFuncEntry();
/// Dissassemble the text section and build various address maps.
void disassemble(const ELFObjectFileBase *O);
/// Helper function to dissassemble the symbol and extract info for unwinding
bool dissassembleSymbol(std::size_t SI, ArrayRef<uint8_t> Bytes,
SectionSymbolsTy &Symbols, const SectionRef &Section);
/// Symbolize a given instruction pointer and return a full call context.
SampleContextFrameVector symbolize(const InstructionPointer &IP,
bool UseCanonicalFnName = false,
bool UseProbeDiscriminator = false);
/// Decode the interesting parts of the binary and build internal data
/// structures. On high level, the parts of interest are:
/// 1. Text sections, including the main code section and the PLT
/// entries that will be used to handle cross-module call transitions.
/// 2. The .debug_line section, used by Dwarf-based profile generation.
/// 3. Pseudo probe related sections, used by probe-based profile
/// generation.
void load();
public:
ProfiledBinary(const StringRef Path)
: Path(Path), ProEpilogTracker(this),
TrackFuncContextSize(EnableCSPreInliner &&
UseContextCostForPreInliner) {
setupSymbolizer();
load();
}
uint64_t virtualAddrToOffset(uint64_t VirtualAddress) const {
return VirtualAddress - BaseAddress;
}
uint64_t offsetToVirtualAddr(uint64_t Offset) const {
return Offset + BaseAddress;
}
StringRef getPath() const { return Path; }
StringRef getName() const { return llvm::sys::path::filename(Path); }
uint64_t getBaseAddress() const { return BaseAddress; }
void setBaseAddress(uint64_t Address) { BaseAddress = Address; }
// Return the preferred load address for the first executable segment.
uint64_t getPreferredBaseAddress() const { return PreferredTextSegmentAddresses[0]; }
// Return the preferred load address for the first loadable segment.
uint64_t getFirstLoadableAddress() const { return FirstLoadableAddress; }
// Return the file offset for the first executable segment.
uint64_t getTextSegmentOffset() const { return TextSegmentOffsets[0]; }
const std::vector<uint64_t> &getPreferredTextSegmentAddresses() const {
return PreferredTextSegmentAddresses;
}
const std::vector<uint64_t> &getTextSegmentOffsets() const {
return TextSegmentOffsets;
}
bool offsetIsCode(uint64_t Offset) const {
return Offset2InstSizeMap.find(Offset) != Offset2InstSizeMap.end();
}
bool addressIsCode(uint64_t Address) const {
uint64_t Offset = virtualAddrToOffset(Address);
return offsetIsCode(Offset);
}
bool addressIsCall(uint64_t Address) const {
uint64_t Offset = virtualAddrToOffset(Address);
return CallOffsets.count(Offset);
}
bool addressIsReturn(uint64_t Address) const {
uint64_t Offset = virtualAddrToOffset(Address);
return RetOffsets.count(Offset);
}
bool addressInPrologEpilog(uint64_t Address) const {
uint64_t Offset = virtualAddrToOffset(Address);
return ProEpilogTracker.PrologEpilogSet.count(Offset);
}
bool offsetIsTransfer(uint64_t Offset) {
return BranchOffsets.count(Offset) || RetOffsets.count(Offset) ||
CallOffsets.count(Offset);
}
uint64_t getAddressforIndex(uint64_t Index) const {
return offsetToVirtualAddr(CodeAddrOffsets[Index]);
}
size_t getCodeOffsetsSize() const { return CodeAddrOffsets.size(); }
bool usePseudoProbes() const { return UsePseudoProbes; }
bool useFSDiscriminator() const { return UseFSDiscriminator; }
// Get the index in CodeAddrOffsets for the address
// As we might get an address which is not the code
// here it would round to the next valid code address by
// using lower bound operation
uint32_t getIndexForOffset(uint64_t Offset) const {
auto Low = llvm::lower_bound(CodeAddrOffsets, Offset);
return Low - CodeAddrOffsets.begin();
}
uint32_t getIndexForAddr(uint64_t Address) const {
uint64_t Offset = virtualAddrToOffset(Address);
return getIndexForOffset(Offset);
}
uint64_t getCallAddrFromFrameAddr(uint64_t FrameAddr) const {
auto I = getIndexForAddr(FrameAddr);
FrameAddr = I ? getAddressforIndex(I - 1) : 0;
if (FrameAddr && addressIsCall(FrameAddr))
return FrameAddr;
return 0;
}
FuncRange *findFuncRangeForStartOffset(uint64_t Offset) {
auto I = StartOffset2FuncRangeMap.find(Offset);
if (I == StartOffset2FuncRangeMap.end())
return nullptr;
return &I->second;
}
// Binary search the function range which includes the input offset.
FuncRange *findFuncRangeForOffset(uint64_t Offset) {
auto I = StartOffset2FuncRangeMap.upper_bound(Offset);
if (I == StartOffset2FuncRangeMap.begin())
return nullptr;
I--;
if (Offset >= I->second.EndOffset)
return nullptr;
return &I->second;
}
// Get all ranges of one function.
RangesTy getRangesForOffset(uint64_t Offset) {
auto *FRange = findFuncRangeForOffset(Offset);
// Ignore the range which falls into plt section or system lib.
if (!FRange)
return RangesTy();
return FRange->Func->Ranges;
}
const std::unordered_map<std::string, BinaryFunction> &
getAllBinaryFunctions() {
return BinaryFunctions;
}
BinaryFunction *getBinaryFunction(StringRef FName) {
auto I = BinaryFunctions.find(FName.str());
if (I == BinaryFunctions.end())
return nullptr;
return &I->second;
}
uint32_t getFuncSizeForContext(SampleContext &Context) {
return FuncSizeTracker.getFuncSizeForContext(Context);
}
// Load the symbols from debug table and populate into symbol list.
void populateSymbolListFromDWARF(ProfileSymbolList &SymbolList);
const SampleContextFrameVector &
getFrameLocationStack(uint64_t Offset, bool UseProbeDiscriminator = false) {
auto I = Offset2LocStackMap.emplace(Offset, SampleContextFrameVector());
if (I.second) {
InstructionPointer IP(this, Offset);
I.first->second = symbolize(IP, true, UseProbeDiscriminator);
}
return I.first->second;
}
Optional<SampleContextFrame> getInlineLeafFrameLoc(uint64_t Offset) {
const auto &Stack = getFrameLocationStack(Offset);
if (Stack.empty())
return {};
return Stack.back();
}
// Compare two addresses' inline context
bool inlineContextEqual(uint64_t Add1, uint64_t Add2);
// Get the full context of the current stack with inline context filled in.
// It will search the disassembling info stored in Offset2LocStackMap. This is
// used as the key of function sample map
SampleContextFrameVector
getExpandedContext(const SmallVectorImpl<uint64_t> &Stack,
bool &WasLeafInlined);
// Go through instructions among the given range and record its size for the
// inline context.
void computeInlinedContextSizeForRange(uint64_t StartOffset,
uint64_t EndOffset);
const MCDecodedPseudoProbe *getCallProbeForAddr(uint64_t Address) const {
return ProbeDecoder.getCallProbeForAddr(Address);
}
void getInlineContextForProbe(const MCDecodedPseudoProbe *Probe,
SampleContextFrameVector &InlineContextStack,
bool IncludeLeaf = false) const {
SmallVector<MCPseduoProbeFrameLocation, 16> ProbeInlineContext;
ProbeDecoder.getInlineContextForProbe(Probe, ProbeInlineContext,
IncludeLeaf);
for (auto &Callsite : ProbeInlineContext) {
InlineContextStack.emplace_back(Callsite.first,
LineLocation(Callsite.second, 0));
}
}
const AddressProbesMap &getAddress2ProbesMap() const {
return ProbeDecoder.getAddress2ProbesMap();
}
const MCPseudoProbeFuncDesc *getFuncDescForGUID(uint64_t GUID) {
return ProbeDecoder.getFuncDescForGUID(GUID);
}
const MCPseudoProbeFuncDesc *
getInlinerDescForProbe(const MCDecodedPseudoProbe *Probe) {
return ProbeDecoder.getInlinerDescForProbe(Probe);
}
bool getTrackFuncContextSize() { return TrackFuncContextSize; }
bool getIsLoadedByMMap() { return IsLoadedByMMap; }
void setIsLoadedByMMap(bool Value) { IsLoadedByMMap = Value; }
bool getMissingMMapWarned() { return MissingMMapWarned; }
void setMissingMMapWarned(bool Value) { MissingMMapWarned = Value; }
};
} // end namespace sampleprof
} // end namespace llvm
#endif